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Abstract

The pH-responsive poly(amidoamine)s (PAAs) have been previously described. Whereas ISA23 enhances transfection in
vitro and ISA1 promotes the cytosolic delivery of the non-permeant toxins this process shows poor efficiency. The aim of
this study was to prepare and evaluate PAA conjugates containing the membrane disrupting peptide melittin (MLT). It was
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ypothesised that PAA conjugation would reduce the haemolytic activity of MLT at pH 7.4, however, upon delivery to
y the EPR effect, the polymer would uncoil in an acidic environment exposing MLT and allowing it to interact with mem
AA–MLT conjugates were prepared using MLT as a comonomer together withbis-acryloylpiperazine, 2-methylpiperazine a
is-hydroxyethylethylenediamine (ISA1-like), orbis-acrylamidoacetic acid and 2-methylpiperazine (ISA23-like). The me
ontent of the conjugates was 6–19% (w/w). Although ISA1–MLT improved gelonin delivery compared to the parent
SA1 (� 13-fold increase) and showed pH-dependent haemolytic activity at a polymer concentration of 0.05 mg/ml, this c
lso displayed high haemolytic activity at pH 7.4. In contrast, ISA23–MLT like the parent compound ISA23 did not
elonin. However, this conjugate could have potential as a novel polymeric anticancer conjugate due to its lack of h
ctivity at pH 7.4 and retention of cytotoxicity.
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1. Introduction

Progress in genomics and proteomics resear
leading to a better understanding of the molecular b
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of many diseases. This, in turn, has generated increased
interest in macromolecular therapeutics such as pep-
tides, proteins and genes. Compared to low molecular
weight new chemical entities these macromolecular
drugs often present specific drug delivery challenges,
not least their relative inability to access the intracel-
lular compartments where many must interact with
their pharmacological target (reviewed inDuncan, in
press). Various approaches have been investigated as
tools to improve cytosolic delivery. These include both
natural (e.g. viruses) and synthetic non-viral vectors.
The latter comprise cationic lipids, cationic polymers,
e.g. polyethyleneimine (PEI) and poly(l-lysine) (PLL)
(Wagner, 2004), and multicomponent systems some-
times including targeting ligands and membrane-active
peptides (Wagner, 1999).

Due to the highly toxic nature of many cationic
vectors we have been developing amphoteric
poly(amidoamine)s (PAAs) as endosomolytic poly-
mers to aid cytosolic entry of proteins and genes.
These water soluble, biodegradable polymers are
>100-fold less toxic than PEI and PLL (Richardson et
al., 1999; Ferruti et al., 2000; reviewed inFerruti et al.,
2002). PAAs undergo a conformational change during
progression from neutral to acidic pH. The relatively
coiled closed PAA structure at pH 7.4 opens to a more
extended (hydrophilic) structure as pH decreases.
Recent studies using small angle neutron scattering
(SANS) have shown that closed PAA coil (∼2 nm in
diameter) opens to a maximum of∼8 nm (Griffiths
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Fig. 1. Structure of poly(aminoamide)s. Panel (a) ISA1 and panel
(b) ISA23.

A chain (RTA) (Pattrick et al., 2001). Although the
latter observations were very promising, the molec-
ular ratio of PAA:RTA needed to achieve the same
toxicity as one molecule of ricin holotoxin was very
high, i.e.∼12,000:1. This prompted the search for PAA
constructs with higher delivery efficiency. One recent
approach was synthesis of random and block copoly-
mers combining ISA1 and ISA23. However, only the
block copolymer ISA23:ISA1 (molar ratio 2:1) was
able to promote intracellular toxin delivery (Lavignac
et al., 2004). Thus, having shown previously that melit-
tin (MLT) conjugation to HPMA copolymers reduces
non-specific haemolytic activity, the aim of this study
was to investigate whether incorporation of MLT into
PAA constructs would potentate endsomolytic effi-
ciency whilst generating conjugates suitable for intra-
venous (i.v.) administration. MLT is a 26 amino acids
peptide of�-helical conformation and it is the main
constituent of the venom of the European honey bee
(Apis meliffera) (Dempsey, 1990) (Fig. 2). We hypoth-
esised that incorporation of MLT to the PAA struc-
ture might produce a construct that could “shield” the
peptide and reduce its haemolytic activity at pH 7.4.
However, as it has been shown that PAAs can target
tumours by the enhanced permeability and retention
(EPR) effect (Matsumura and Maeda, 1986; Richard-
son et al., 1999), it might be predicted that the polymer
would uncoil in an acidic environment (tumour inter-
stitium or intracellular endosomal compartments) thus
exposing MLT and allowing it to interact with mem-
b ation
a u-
g

t al., 2004). Studies examining the pH-depend
aemolytic activity of a PAA-Triton X-100 constru
howed the ability of the PAA backbone to shiel
embrane active agent at neutral pH, but expose
H decreased giving confidence that such polym
ould be used as bioresponsive polymers abl
romote endosomotropic delivery (Duncan et al.
994). Recent experiments have also shown
hoice of PAA counterion is critically important
etermining effective membrane perturbation (Wan et
l., 2004).

Two PAA structures have emerged as particul
nteresting. An amphoteric PAA (ISA23) which is n
ositively charged at pH 7.4, and the more catio
AA ISA1 (Fig. 1). Whilst ISA23 showed greate
bility to act as a transfection reagent (Richardson
t al., 2001), ISA1 (and not ISA23) was also ab

o deliver the non-permeant toxins gelonin and r
ranes. Here we report the synthesis, characteris
nd in vitro biological evaluation of PAA–MLT conj
ates.
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Fig. 2. The amino acid sequence of melittin (panel (a)) and its�-helical wheel diagram, panel (b). The potentially charge-carrying amino acids
are shown in bold and the hydrophobic segment is shaded.

2. Materials and methods

2.1. Materials and equipment

Sodium hydrogen carbonate (NaHCO3), con-
centrated HCl andbis-hydroxyethylethylenediamine
(DHE) were purchased from Fluka (Dorset, UK)
and used without purification. 2-Methylpiperazine (2-
MePip) was also obtained from Fluka, but was recry-
stallised fromn-hexane, its purity was determined
titrimetrically before use. The monomers 2,2-bis-(acry-
lamido)acetic acid (BAC) andbis-acryloylpiperazine
(BP) were synthesised as previously described (Ferruti,
1985) and their purity was determined titrimetri-
cally (BAC) or by NMR (BP) just before use.
Dextran (Mw = 74,000 g/mol), gelonin, MLT, bovine
serum albumin (BSA), 5-dimethylthiazol-2-yl-2,5-
diphenyltetrazolium bromide (MTT) and Triton X-
100 were all from Sigma (Dorset, UK) and were
of analytical grade. PBS was supplied from Oxoid
Ltd. (Basingstoke, UK). RPMI 1640 medium (25 mM
HEPES) supplemented withl-glutamine, foetal bovine
serum (FBS) and 0.25% trypsin-EDTA were purchased
from Gibco-BRL (Paisley, UK). The B16F10 mouse
melanoma cells were from ATCC (CRL-6475).1H
NMR spectra were obtained in deuterated water on a
Bruker 400 MHz instrument.

2.2. Synthesis and characterisation of PAAs and
PAA–melittin conjugates

Synthesis of PAAs by hydrogen-transfer polyad-
dition of primary amines tobis-acrylamide has been
well documented (Ferruti et al., 1973, 2002; Fer-
ruti, 1996). The parent polymers ISA1 and ISA23
were synthesised and characterised by1H NMR as
described previously (Richardson et al., 1999; Fer-
ruti et al., 2000). PAA–MLT conjugates were prepared
using a two-step reaction involving an activated MLT
comonomer (Schemes 1 and 2). In the first step,
MLT was left to react for 1 h withbis-acrylamide
to form an “activated trimer” bearing two terminal
double bonds (Schemes 1a and 2a). This trimer
was further used as comonomer in the final step of
the copolymerisation (Schemes 1b and 2b). After
completion of the reaction, the conjugates were
isolated as chloride salts, purified by ultrafiltration
and lyophilised. Details of typical syntheses are given
below.

As the pKa of the terminal MLT amino group
is 7.8, and the pKa of lysine is 9.3–9.5 and argi-
nine >12, under the reaction conditions used here
only the terminal amino group would be protonated
and this is therefore expected to be the only one to
react.
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Scheme 1. Synthesis of the melittin–ISA1-like conjugate.

2.2.1. Synthesis of ISA1–MLT
MLT (15 mg; 5.3�mol) was dissolved in double

distilled water (ddH2O, 424�L) and BP (35.9 mg;
185 mmol) was added under nitrogen (N2). The mix-
ture was stirred in the dark for 1 h. Then MePip
(9.5 mg; 92.5 mmol) and DHE (14.4 mg; 92.5 mmol)
were added. The reaction was stirred under N2 and in
the dark for 3 days. After diluting with ddH2O and addi-
tion of HCl (5 M) until pH 2.5 was reached, the solution
was ultrafiltered using a membrane with a Mw = 10 kDa
cut-off. The conjugate was recovered by freeze drying
with a 75% yield.

2.2.2. Synthesis of ISA23–MLT
BAC (39.6 mg; 198 mmole) and LiOH (8.4 mg;

198 mmol) were dissolved in ddH2O (472�L). MLT
(15 mg; 5.3�mol) was added under N2. The mix-
ture was stirred in the dark for 20 min. Then MePip
(20.4 mg; 198 mmol) was added and the reaction was
stirred for 3 days. The ISA23–MLT conjugate was
recovered as described above with a yield of 70%.

2.2.3. Characterisation of the melittin conjugates
Molecular weight and polydispersity of the resul-

tant conjugates was determined by gel permeation
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Scheme 2. Synthesis of the melittin–ISA23-like conjugate.

chromatography (GPC). The MLT content was deter-
mined using a BCA protein assay and residual free
melittin was assessed by FPLC. GPC was conducted
at 30◦C using Toso-Haas 486 columns. Sample con-
centration: 10 mg/ml; flow rate: 1 ml/min; detector
UV Knauer model: 230 nm; eluent: Tris buffer pH
8. Poly-N-vinylpyrrolidinone (PVP) standards were
used to estimate Mw, Mn and Mw/Mn. The BCA
assay was conducted as follows. Samples at appro-
priate dilution and BSA standards (0–25�g/ml) were
prepared in PBS pH 7.4 and 100�l aliquots were

added to 96-well plate. One hundred microlitres of
BCA reagent (50:49:1, v/v/v, MA:MB:copper sul-
phate) was added to all wells. The plate was incu-
bated at 37◦C for 30 min after which absorbance
was measured at 560 nm. It should be noted that the
PAAs do not give a false positive with the BCA
assay.

FPLC was conducted at 20◦C using a Superdex 75
column (Pharmacia Biotech) connected to an AKTA
FPLC (Amersham Pharmacia Biotech). The sample
concentration was 3 mg/ml; injection volume: 100�l;
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eluent: PBS pH 7.4, 0.1 M, NaCl 0.15 M; detection:
280 nm and flow rate: 0.5 ml/min. The percentage con-
tent of free MLT was assessed by comparison with a
calibration obtained using free MLT standard samples
(0–5 mg/ml).

2.3. Cell culture and evaluation of PAA–MLT
cytotoxicity

B16F10 cells were cultured in RPMI-1640 supple-
mented with 5 mMl-glutamine and 10% (v/v) heat
inactivated FBS. The cells were sub-cultured every
4 days at a split ratio of 1:10. Polymer cytotoxicity
(PAAs and PAA melittin conjugates) was assessed
during the log phase of cell growth using an MTT
assay as described previously (Sgouras and Duncan,
1990). Briefly, cells were seeded at a density of
1× 104 cells/well 24 h prior to the assay. At the start of
the experiment the culture medium was removed and
the desired polymer solution (0–2 mg/ml in complete
medium) was added (100�l). After 67 h MTT (20�l;
5 mg/ml in PBS) was added and the plates re-incubated
for a further 5 h. The formazan crystals were dissolved
in DMSO and the absorbance read at 550 nm using
a microtitre plate reader. The results were expressed
as viability (%) relative to a control containing no
polymer.

2.4. Evaluation of PAA–MLT mediated gelonin
delivery

;
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was determined after 72 h by MTT assay as described
above.

2.5. Evaluation of PAA–MLT haemolytic activity

The haemolytic activity of the PAAs was evalu-
ated using a rat red blood cell lysis assay as previ-
ously described (Carreno-Gomez and Duncan, 1997).
Freshly prepared rat erythrocytes (RBC) were resus-
pended in cold PBS of the appropriate pH at a 2%
(w/v) RBC concentration. Solutions of each conjugate
(2 mg/ml) were prepared in PBS at a starting pH of 5.5,
6.5 and 7.4. These solutions (100�l) were added to 96-
well plates and the appropriate RBC suspension was
added at a 1:1 (v/v) ratio. The plates were incubated
for 1 h at 37◦C. Unlysed erythrocytes were removed
by centrifugation (1000×g, 10 min, room tempera-
ture) and 100�l of the supernatant was transferred
to a new 96-well plate. Absorbance was measured at
550 nm using a microtitre plate-reader. Haemolysis was
expressed as a percentage of the haemoglobin (Hb)
release obtained using Triton X-100 (1%, w/v, Triton
X-100).

3. Results

The characteristics of the PAAs prepared in this
study are shown inTable 1. The weight average molec-
ular weight of the ISA1–MLT and ISA23–MLT was
1 tent
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A method previously described (Pattrick et al., 2001
avignac et al., 2004) was used to assess the ability

he PAA–melittin conjugate to deliver gelonin (Stirpe
t al., 1980). B16F10 cells were plated as descri
bove. PAAs (0–2 mg/ml) were then added to cel

he presence or absence of gelonin (1.4�g/ml, a non
oxic concentration of gelonin alone) and cytotoxic

able 1
haracteristics of synthesised polymers

olymer Mwa (g/mol) Mna

SA1 12,300 6,
SA1–MLT 13,400 4,2

SA23 50,800 28,
SA23–MLT 10,900 5,

he ratio of melittin (MLT) to the polymer was calculated using
a The molecular weights characteristics were estimated by G
3,370 and 10,870 g/mol, respectively. MLT con
as 19.3% (w/w) for ISA1–MLT and 6% (w/w) fo

SA23–MLT. The theoretical maximum value wou
e∼20% (w/w). For both conjugates, free MLT co

ent was <0.2% (w/w) as determined by FPLC (Fig. 3).
omparison of the cytotoxicity of the PAA–ML
onjugates with that of the parent polymers sho
he conjugates to be more cytotoxic than the res

) Mw/Mna MLT content (wt%)

1.78 –
3.21 19.3

1.78 –
2.05 6.0

assay.
ing PVP standards.
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Fig. 3. FPLC of ISA1–MLT (3 mg/ml), ISA23–MLT (3 mg/ml) and
free melittin (5 mg/ml). Eluent: PBS 0.1 M, NaCl 0.15 M pH 7.4;
detection, 280 nm; flow rate, 0.5 ml/min.

tive parent polymers (Fig. 4a). The IC50 value for
ISA1–MLT was 0.04 mg/ml, which represents a 30-
fold increase in toxicity compared to ISA1. Whereas
ISA23 was not toxic towards B16F10 cells up to
2 mg/ml, its MLT conjugate had an IC50 value of
0.5 mg/ml. Comparison of conjugate cytotoxicity with
free MLT (by expression of the data relative to the
equivalent peptide content) (Fig. 4b) indicated that
both ISA1–MLT (IC50 = 7.8�g/ml) and ISA23–MLT
(IC50 = 30�g/ml) were significantly less toxic than
free MLT (IC50 = 4.5�g/ml). ISA1–MLT was able
to deliver gelonin to the cytosol of B16F10 cells
with an IC50 = 20�g/ml for the ISA1–MLT/gelonin
combination (Fig. 5a). This corresponds to two-fold
increase in toxicity compared to ISA1–MLT alone and
a 13-fold increase compared to ISA1–gelonin deliv-
ery (IC50 = 260�g/ml). In contrast ISA23–MLT, like
ISA23, did not deliver gelonin (Fig. 5b).

The haemolytic activity of the PAA–MLT con-
jugates was evaluated using a red blood cell lysis
assay (Fig. 6). At a polymer concentration of 1 mg/ml,
both PAA–MLT conjugates were highly haemolytic
at all pHs, with 100% (Hb) release for ISA1–MLT
and release for ISA23–MLT. At the lower concen-
tration of 0.05 mg/ml, both conjugates showed pH-
dependent haemolytic activity, although ISA1–MLT
was still highly haemolytic (Hb release >50% at all
pHs). At pH 6.5, ISA23–MLT-induced Hb release was

Fig. 4. PAA cytotoxicity towards B16F10 mouse melanoma. Panel
(a) shows the relative toxicity of PAAs and PAA–MLT conjugates,
panel (b) shows the relative toxicity of MLT and PAA–MLT con-
jugates. Viability is expressed as % of control cells incubated in
medium alone. Data represent mean± S.E.M. wheren= 12.

20% and this increased two-fold at pH 5.5. More-
over, at pH 7.4 the conjugate was not haemolytic, Hb
release was similar to that seen the PBS and dextran
controls.

4. Discussion

Peptides are being used in gene delivery either
to target cells or to increase transfection efficiency
(reviewed inFujii, 1999; Duncan, in press). Influenza
virus-derived peptides have shown pH-dependent lipo-
some leakage and haemolytic activities (Wagner et al.,
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Fig. 5. Ability of PAA–MLT conjugates to deliver gelonin. Panels (a)
and (b) show the toxicity of PAA–MLT conjugates when incubated
with B16F10 cells in the presence and absence of a non-toxic con-
centration of gelonin (1.4�g/ml). Data represents mean± S.E.M.
wheren= 12.

1992). When bound to PLL either ionically or cova-
lently, they have increased transfection efficiency by
promoting delivery of DNA to the cytosol (Plank et
al., 1994). Melittin has also been used as an endo-
somolytic agent. A PEI–MLT conjugate was used to
form polyplexes that increased gene expression in sev-
eral cell lines (Ogris et al., 2001). More recently a
maleic anhydride derivative of MLT was used to deliver
oligonucleotides to the cytosol of Hela cells (Rozema
et al., 2003).

Although biologically active PAAs (Ferruti et
al., 1973), PAA-based complexing agents (reviewed
in Ferruti et al., 2002) and PAA drug conjugates
(Ferruti et al., 1999) have been described, relatively
few PAA–peptide and PAA–protein conjugates have

been synthesised.Ranucci et al. (1995)described a
PAA–albumin conjugate prepared using albumin as a
macromonomer. That study showed that amino groups
present in proteins can react in the same way as low
molecular weight amines. A similar method was used
to prepare the PAA–MLT conjugates described here.
Although melittin contains six amino groups (Lys-
7, Lys-21, Lys-23, Arg-22, Arg-24 (Fig. 2)) only the
N-terminal amino group (pKa 7.8) was expected to
be involved in the hydrogen-transfer reaction as it
is unprotonated under the reaction conditions. How-
ever, due to steric hindrance it was anticipated that
reactivity might be low compared with that of the
other aminic monomers involved in PAA synthesis.
For that reason, the reaction was carried out in two
steps as shown inSchemes 1 and 2. In the first step,
MLT was left to react for 1 h withbis-acrylamide to
form an “activated trimer” bearing two terminal double
bonds that could be used in the final copolymerisa-
tion step (Schemes 1b and 2b). Absence of free MLT
was confirmed by FPLC and MLT incorporation was
6–19%, w/w, respectively (Table 1). In theory, various
routes to MLT conjugation would have been possible
using pre-synthesised PAAs. However, it was felt that a
macromonomer approach is the best route to a pendant
MLT–PAA conjugate.

The results presented here suggest that after con-
jugation to PAAs, MLT is still able to interact with
membranes (Figs. 4 and 6). The mode of action of
MLT membrane perturbation is complex. MLT can
e m-
b d
W s
h and
t l.,
2 to
t ju-
g the
p em-
b be
c
n oth
P LT
a
I IC
v ss
t ion,
M ion
xhibit ‘detergent-like’ effects and/or induces me
rane pore formation (Bechinger, 1997; Ladokhin an
hite, 2001; Gomara et al., 2003). These mechanism

ave been described using the ‘carpet-like model’
he ‘barrel-stave model’ (Shai, 1999; Schreier et a
000). Although it is impossible to speculate as

he mechanism(s) by which the PAA–MLT con
ates interact with the membranes, conjugation to
olymer seems to modify these interactions. M
rane permeabilisation caused by MLT is known to
oncentration-dependent (Midoux et al., 1995), with
o activity at low concentration. In these studies b
AA–MLT conjugates were more cytotoxic than M
t concentrations below the IC50 of free MLT (Fig. 4b).

n contrast, at concentrations greater the free MLT50
alue, and up to 100�g/ml, both conjugates were le
oxic than MLT. This suggests that at low concentrat
LT conjugation to the polymer promotes interact
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Fig. 6. pH-dependent haemolytic activity of PAA–MLT after 1 h incubation at 37◦C. Two polymer concentrations were used (either 1 mg/ml or
0.05 mg/ml). Hb release is expressed as % of the value obtained by Triton X-100 (1%, w/v). Data represent mean± S.E.M. wheren= 12.

with membranes, perhaps due to the multivalent nature
of the construct, whereas at higher concentration activ-
ity was lower possibly by polymer hindrance of the
formation of melittin tetramers (Dempsey, 1990).

The ability of PAAs to facilitate gelonin-mediated
toxicity has been used as an indicator of their endoso-
molytic potential (Pattrick et al., 2001). The relatively
large number of PAA molecules required to facili-
tate toxin delivery might be due to the low efficiency
of membrane breakage or due to differential intra-
cellular trafficking pathway of PAA and toxin when

Fig. 7. Correlation between concentration-dependence cell
killing and haemolytic activity of ISA23–MLT. Data represent
mean± S.E.M. wheren= 12.

added to the incubation medium as a simple mixture
(Pattrick et al., 2001). Whereas ISA1–MLT showed
greater ability to deliver gelonin (∼13-fold) than the
parent polymer, neither ISA23–MLT nor ISA23 alone
demonstrated gelonin delivery (Fig. 5). Although this
is consistent with previous observations involving the
ISA23–gelonin combination (Pattrick et al., 2001), it is
noteworthy that the ISA1–MLT conjugate has a higher
MLT content (∼19%, w/w) than ISA23–MLT (∼6%,
w/w). These preliminary results suggest that synthesis
of a library of PAAs with a range of MLT content would
be interesting, to see if ISA23–MLT would deliver
gelonin if a higher loading were used.

Previously melittin has been explored as an anti-
cancer agent. A melittin-based recombinant immuno-
toxin exhibited specific cytotoxicity against human
tumour cells (Dunn et al., 1996) and more recently
an HPMA copolymer–MLT conjugate showed in vitro
toxicity towards B16F10 cells with reduced haemolytic
activity (Musila and Duncan, 2001). This prompted
consideration of ISA23–MLT as an anticancer polymer
therapeutic. The relationship between ISA23–MLT
conjugate concentration and both the haemolytic activ-
ity and cytotoxicity is shown inFig. 7. Whereas
ISA23–MLT was not haemolytic (compared to the
PBS control) up to a concentration of 0.3 mg/ml, it
was able to decrease cell viability at concentrations
of 0.01–0.3 mg/ml suggesting that this conjugate could
have potential for further development as an anticancer
conjugate.
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5. Conclusions

Novel ISA1- and ISA23-like MLT conjugates
have been prepared. Both conjugates displayed pH-
dependent haemolytic activity and ISA1–MLT also
enhanced intracellular delivery of the non-permeant
toxin gelonin compared to the parent ISA1 polymer.
Whilst ISA23–MLT did not deliver gelonin, its lack of
haemolytic activity at pH 7.4, and retention of cyto-
toxicity, suggests it worthy of further evaluation as an
anticancer polymer therapeutic.
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