
The Haskell Refactorer, HaRe, and its API �

Huiqing Lia,1 Simon Thompsona,1 Claus Reinkeb,1

a Computing Laboratory, University of Kent, Canterbury, UK

b Canterbury, UK

Abstract

We demonstrate the Haskell Refactorer, HaRe, both as an example of a fully-functional tool for
a complete (functional) programming language, and to show the API which HaRe provides for
building source-level program transformations for Haskell. We comment on the challenges presented
by the construction of this and similar tools for language frameworks and processors.

Keywords: Haskell, refactoring, HaRe, program transformation API, source code, layout
preservation, strategic programming, Strafunski, Programatica

Refactoring is the process of improving the design of a program whilst pre-
serving its behaviour. Separating general software updates into functionality
changes and refactorings has well-known benefits. This process is supported
both by catalogues documenting the effects and side-conditions of refactor-
ing steps and, more importantly, by tools. Tools can ensure the validity of
refactoring steps by automating both the checking of the conditions for the
refactoring (using various program analyses) and the application of the refac-
toring itself, thus making refactoring less painful and less error-prone.

As part of our project on ‘Refactoring Functional Programs’ [1], we have
developed the Haskell Refactorer, HaRe [3], providing support for the working
programmer to refactor Haskell programs. HaRe supports the full Haskell 98
language and it works within Haskell programmers’ preferred tools (Emacs
and Vim, according to a survey of the community). Crucially for usability,
it preserves the appearance of source code programs. To do this requires

� This work is partially supported by EPSRC grant GR/R75052.
1 Email: H.Li@kent.ac.uk, S.J.Thompson@kent.ac.uk, claus.reinke@talk21.com

Electronic Notes in Theoretical Computer Science 141 (2005) 29–34

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.02.053

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10623969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:H.Li@kent.ac.uk
mailto:S.J.Thompson@kent.ac.uk
mailto:claus.reinke@talk21.com
http://www.elsevier.com/locate/entcs


-- Test1.hs -- Test1.hs
module Test1 where module Test1 where

g x = x : (g (x + 1)) g m x = x : ((g m) (x + m))

-- Test2.hs -- Test2.hs
module Test2 where module Test2 where
import Test1 import Test1

h y = g y h y = g 1 y

Fig. 1. HaRe in action: generalise g over the subexpression 1.

comments and source code locations to be preserved (or synthesised, for ‘new’
code) by language processors; a challenge for existing language frameworks.

The initial release of HaRe contained a repertoire of scope-related single-
module refactorings; multiple-module versions of these refactorings were added
in HaRe 0.2, and various data refactorings were added in HaRe 0.3. This
version restructures HaRe to expose an API to our infrastructure for imple-
menting refactorings and more general transformations of Haskell programs.

HaRe is shown in action on a trivial example in Figure 1; the original
code appears in the left-hand column and the refactored code in the right.
Assuming that the expression 1 is selected within the definition of the function
g in Test1, the user is prompted for the name of the variable to be added
(here m). Applying the generalise refactoring will ensure that g is given an
extra formal parameter in its definition, and that the expression selected is
supplied as argument at applications of g throughout the project (in this case
in modules Test1 and Test2). Larger examples appear in our papers [3,5]

Generalisation is typical of the class of structural refactorings; others in-
clude renaming a definition, changing the scope of a definition to make it
broader or narrower, and unfolding a definition. Module refactorings include
various operations on import and export lists as well as supporting the move
of a definition from one module to another. The data refactorings support a
number of atomic steps which together build a transformation from a concrete
data type to an abstract type. This requires the synthesis of various functions
(selectors, discriminators) and multi-level pattern-matching removal.

Implementation

Implementing these refactorings requires information about a number of as-
pects of the program; we refer back to the example of Figure 1 here.

Syntax. At the heart of the transformation is the abstract syntax tree (AST)
for the parsed program. To preserve comments and layout, information
about comments and source code locations for all tokens is also necessary.

Static semantics. Before inserting the new formal parameter m it is neces-

H. Li et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 29–3430



sary to check that this new binding does not capture any existing uses of
the name. The binding analysis provides this information.

Module analysis. In a multi-module project, analysis must include all mod-
ules. For example, a binding of m may have been imported into Test1, and
the static analysis must treat this possibility.

Type system. If a type declaration accompanies the definition of g then it
has to be updated with the new type of g with the parameter m added.

Clearly, we require the full functionality of a Haskell front-end in order to
implement the refactorings completely and safely. For pragmatic reasons,
we build on other projects that provide a Haskell frontend and support for
generic transformations of Haskell data types [3]. These projects use standard
idioms for generating or embedding language processors and transformations
in Haskell, which serves as an expressive integration framework for the collec-
tion of tools. We had to extend their basic functionality because losing layout
information and comments is not acceptable for our application.

Preserving the appearance of source code as much as possible presents a
challenge for the tool builder, since a typical compiler front end, such as Pro-
gramatica [4], will discard comments and layout information at an early stage
in program analysis. In order to retain the information, we work simulta-
neously with the token stream (for comments and layout) and the AST. In
Programatica, each identifier’s location information is kept in both the token
stream and the AST, and the locations can serve as the bridge for connecting
the tokens in the token stream with the syntax phrases in the AST.

The HaRe API for Implementing Refactorings

The architecture of HaRe has been evolved in order to expose an API to
HaRe’s infrastructure for implementing refactorings or general program trans-
formations. This API contains a collection of auxiliary functions for pro-
gram analysis and transformation, covering a wide range of syntax entities
of Haskell 98, including identifiers, expressions, patterns, declarations, im-
ports and exports and so forth, and provides functions such as free and de-
clared variable analysis, simplification of multi-equation definitions, updat-
ing/adding/removing/swapping syntax phrases, etc. Together with Progra-
matica’s abstract syntax for Haskell 98 and the Strafunski [2] library for AST
traversals, this API serves as the basis for implementing primitive refactorings.

In principle, our API exposes the full abstract syntax and our domain-
specific utility libraries embedded in the full Haskell programming language.
In practice, as will be demonstrated, only small fragments of the abstract
syntax types need be dealt with thanks to support for generic strategic pro-

H. Li et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 29–34 31



module RefacCase(ifToCase) where
import RefacUtils

ifToCase fileName beginPos endPos
= do (_, _, mod,ts) <- parseSourceFile fileName

-- mod: the AST; ts: the token stream.
let exp = locToExp beginPos endPos mod ts
case exp of
(Exp (HsIf _ _ _))

-> do r<-applyRefac (worker exp) (Just(mod,ts)) fileName
writeRefactoredFiles False [r]

_ -> error "You haven’t selected a conditional expression!"
where
worker exp = applyTP (once_buTP (failTP ‘adhocTP‘ inExp))
where
inExp exp1@((Exp (HsIf e e1 e2))::HsExpP)

|sameOccurrence exp exp1
= let newExp =Exp (HsCase e

[HsAlt loc0 (nameToPat "True") (HsBody e1) [],
HsAlt loc0 (nameToPat "False")(HsBody e2) []])

in update exp1 newExp exp1
inExp _ = mzero

Fig. 2. An example refactoring: from conditional expression to case expression.

gramming provided by Strafunski, a Haskell library of functions embodying
tree-traversal strategies of various sorts, implemented in a type-generic way;
using Strafunski keeps the amount of ‘boilerplate’ code minimal. Scope and
module information is readily at hand, and the details of layout and comment
preservation are handled behind the scenes.

This hiding of layout and comment preservation in the program transfor-
mation functions eliminates a major source of programming errors which were
possible in pre-API case studies: these functions now modify not only the
AST but also the token stream. A collection of basic token stream manipula-
tions, such as deleting or updating a list of tokens, getting the corresponding
tokens of an AST syntax phrase and so on, have been implemented. Un-
derneath these token stream manipulations is a layout adjustment algorithm
which keeps the program’s layout correct whenever the token stream has been
updated. The refactored program source is extracted from the token stream
rather than from the AST.

Demonstration

The demonstration will briefly show existing refactorings – generalisation and
introduction of an abstract data type – illustrating that they can be applied
across a multi-module project written in full Haskell 98. Then the API will be
demonstrated by implementing a new refactoring, underlining the compact-
ness and high level nature of the code produced.

Figure 2 shows the refactoring that transforms a user-selected conditional
expression into a case expression. The body of the refactoring turns a textual

H. Li et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 29–3432



selection into an expression exp, if possible, and then calls the worker function
to effect the transformation, taking exp as an argument.

In worker the functions applyTP, once buTP, failTP and adhocTP are
type-preserving strategy combinators from Strafunski [2]. once buTP performs
a bottom-up traversal of the AST, terminating after its argument function
succeeds at one node. In this case its argument fails at every type except
HsExpP, where it calls function inExp. This latter function transforms the
current expression into a case expression if the expression refers to the same
occurrence as the user-selected expression, otherwise, it fails. So, the overall
effect is to transform the first (and only) occurrence of exp.

The API function update replaces a syntax phrase with a new syntax
phrase of the same type in both the AST and the token stream. The functions
parseSourceFile, locToExp, applyRefac, writeRefactoredFiles, same-

Occurrence and nameToPat are also from the API, and their meaning can be
found in the API documentation available from the HaRe webpage[1].

The example in Figure 2 is extremely simple, and involves neither scope
analysis nor the module system. In the demonstration, we will illustrate how
scope analysis and the module system are handled in HaRe by showing the
implementation of a more complex refactoring which swaps the first two ar-
guments of a function.

Conclusions

The Haskell Refactorer, HaRe, is a pragmatically motivated example of a fully-
functional tool for a complete (functional) programming language. To ensure
correctness of refactorings, HaRe builds on a complex infrastructure of pro-
gram analysis and transformation tools, using Haskell both as an implemen-
tation language and as an integration framework for these tools. To facilitate
the implementation of further refactorings, and to enable other Haskell trans-
formation projects to reuse HaRe’s infrastructure, we have recently published
an API for building source-level program transformations for Haskell.

Taken together, the tools provide a high-level ‘domain specific language’
for writing transformation and their side-conditions. This alone does not
guarantee correctness of program transformations, but the compactness and
transparency of the code as well as the isolation of common error sources
allows API users to have a high degree of assurance that the implementation
is faithful to their intention. It would also be possible formally to verify aspects
of the implementation; we are currently working on aspects of this.

H. Li et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 29–34 33



References

[1] Refactoring Functional Programs, http://www.cs.kent.ac.uk/projects/refactor-fp/.

[2] Lämmel, R. and J. Visser, Generic Programming with Strafunski (2001),
http://www.cs.vu.nl/Strafunski/ .

[3] Li, H., C. Reinke and S. Thompson, Tool Support for Refactoring Functional Programs, in: ACM
Sigplan Haskell Workshop, 2003.

[4] Programatica, http://www.cse.ogi.edu/PacSoft/projects/programatica/ .

[5] Thompson, S. and C. Reinke, A Case Study in Refactoring Functional Programs, in: Brazilian
Symposium on Programming Languages, 2003.

H. Li et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 29–3434

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.vu.nl/Strafunski/
http://www.cse.ogi.edu/PacSoft/projects/programatica/

	References



