
Web Page Classification with an Ant Colony Algorithm

Nicholas Holden and Alex A. Freitas

Computing Laboratory, University of Kent
Canterbury, CT2 7NF, UK

{nph4, A.A.Freitas}@kent.ac.uk

Abstract. This paper utilizes Ant-Miner – the first Ant Colony algorithm for
discovering classification rules – in the field of web content mining, and shows
that it is more effective than C5.0 in two sets of BBC and Yahoo web pages
used in our experiments. It also investigates the benefits and dangers of several
linguistics-based text preprocessing techniques to reduce the large numbers of
attributes associated with web content mining.

1. Introduction

The amount of information available on the web is huge and growing each year. At
present Google searches more than 4.2 billion pages. As the web has grown, the abil-
ity to mine for specific information has become almost important as the web itself.
Data mining consists of a set of techniques used to find useful patterns within a set of
data and to express these patterns in a way which can be used for intelligent decision
making [1], [2]. In this project the knowledge is represented as classification rules. A
rule consists of an antecedent (a set of attribute values) and a consequent (class):

IF <attrib = value> AND ... AND <attrib = value> THEN <class>.

The class part of the rule (consequent) is the class predicted by the rule for the records
where the predictor attributes hold. An example rule might be IF <Salary = high>
AND <Mortgate = No> THEN <Good Credit>. This kind of knowledge representa-
tion has the advantage of being intuitively comprehensible to the user. This is impor-
tant, because the general goal of data mining is to discover knowledge that is not only
accurate, but also comprehensible to the user [2], [1]. In the classification task, the
goal is to discover rules from a set of training data and apply those rules to a set of test
data (unseen during training), and hopefully predict the correct class in the test set.

In this project, the goal is to discover a good set of classification rules to classify
web pages based on their subject. The main classification algorithm to be used in this
paper is Ant-Miner [3], the first Ant Colony Optimisation (ACO) algorithm for dis-
covering classification rules. Investigating the use of Ant-Miner in web mining is an
important research direction, as follows. First, an empirical comparison between Ant-
Miner and two very popular rule induction algorithms (C4.5 and CN2), across six data
sets, has shown that Ant-Miner is not only competitive with respect to predictive accu-
racy, but also tends to discover much simpler rules [3], [4]. However, that comparison

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10623847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

involved only “conventional” data mining – i.e., mining structured data sets. Web
mining is more challenging, because it involves unstructured or semi-structured text
found in web pages. In addition, there are a potentially very large number of attributes
(words) associated with web pages, and a theoretical analysis of Ant-Miner (under
very pessimistic assumptions) shows that its computational time is quite sensitive to
the number of attributes [3]. Hence, it is important to understand how scalable Ant-
Miner is to data sets with a large number of attributes in practice, in a challenge real-
world domain such as web mining. Finally, it is important to investigate the influence
of different text preprocessing techniques (which reduce the number of attributes) in
the performance of Ant-Miner. This is also addressed in this paper.

2 Web Mining and Linguistic Text Preprocessing

Web mining can be split into three main categories: content mining, usage mining, and
structure mining [5]. Content mining involves the automatic analysis of the text stored
in the files (i.e. HTML and email), images and any other media available on the web.
Usage mining [6] analyses access logs from web servers to discover the patterns that
users make when they use the web. Structure mining analyses how web pages link to
each other through hyperlinks, for example.

This project focuses on web-content mining. Also, like most web-content mining
projects, we mine only text – not images and other media. Web-content mining is a
challenging task, as follows. Firstly the amount of attributes (words) is unusually high
in comparison to simpler data mining applications. The number of possible classifica-
tion rules is exponential on the number of words, so that the search space quickly be-
comes very large. Secondly the English language (all languages in general) is very
complicated. There is no program at the moment that can fully understand the mean-
ing of a given web page. We can only hope for a relatively simple interpretation.

There is some hope, however, that html code gives us clues to help us cut down the
number of attributes [7]. The authors of web sites leave summaries or descriptions of
the web page in <meta> tags: in <meta NAME="keywords"> the content field gives
us a list of keywords the author thinks is suitable for the page; and there is also <meta
NAME="description"> which gives us hopefully a good overview of the page’s con-
tent. Going further, it is possible to apply linguistics-based text preprocessing tech-
niques to select the most relevant words from the text.

WordNet is an electronic lexicon that contains several relationships between words
[8]. It is an attempt to map the human understanding of words and their relationships
into an electronic database. In this project we have used three linguistic resources
from WordNet to preprocess the data, as follows.

Firstly, we used the morphological processor of WordNet to perform stemming
(i.e., removing the word suffixes). This is useful as instead of having, e.g., the words
borrow, borrowing and borrowed we would like to just have the word borrow added
to our list of attributes. This cuts down the number of attributes and allows us to find
patterns more easily. We may not be able to find a pattern with these separate words,
but when they are amalgamated together into one attribute, a pattern may emerge.

Secondly, we used WordNet to identify all the nouns in the text. As the amount of
words is so high in web mining, it may be useful to only use nouns as attributes, as
they are usually the subject of a sentence. Hence we trade off the completeness of the
information against the ability to find more useful patterns within a given time.

Thirdly, we use WordNet to capture the idea of a given word in a more generic
form and use that instead of the word itself. If different pages have the same idea be-
hind what they contain, then this should allow us to find more trends in the data. For
example, if one page contains the words: window, roof, and door, and another web
page contains the words chimney, room and brick then we should be able to use
WordNet to find the relationship or root of the tree, the word house. As you can see
this would reduce the number of attributes from six to just one. Although this is poten-
tially the most rewarding technique discussed, it is also the most risky. If WordNet
finds the wrong relationship between the words we may end up with the wrong root
word. To perform this kind of word generalization, we use the hypernym/hyponym
(“is a”) relationship of WordNet, where words are arranged in a tree-like structure.

OriginalWordsList = [Words From current web page];
GeneralisedWordsList = [];
RelationshipMaxLength = 2;
WHILE (OriginalWordsList.Size > 2)
 BestRelationShip = NULL;
 CurrentWord = remove first word from OriginalWordsList
 FOR (i = 0; i < OriginalWordsList.Size)
 Get all relationships between all senses of CurrentWord
 and all senses of OriginalWordsList element i, and
 for each relationship compute the number of edges
 in the WordNet taxonomy between CurrentWord and
 OriginalWordsList element i
 Get the relationship with the shortest number of edges,
 out of all relationships identified in previous step
 IF (number of edges in the shortest relationship ≤
 RelationshipMaxLength)
 Save shortest relationship as BestRelationship:
 BestParent = the parent (generalized) word
 BestSecondWord = OriginalWordsList element i
 END FOR
 IF (BestRelationship ≠ NULL)
 Add BestParent to GeneralisedWordList
 Remove BestSecondWord from the OriginalWordsList
 ELSE
 Add CurrentWord to GeneralisedWordsList
END WHILE

Alg. 1. Finding the best word-generalisation relationships

We have developed an algorithm (implemented using the JWNL library) to search

for the hypernyms (generalizations) of a pair of words and return the best hypernym.
The pseudo-code of the algorithm is shown in Algorithm 1. For each word in the cur-
rent web page, the algorithm finds the “best hypernym” that is generalizing both that
word and another word in the page. The best hypernym is the one associated with the
smallest number of edges in the path linking the two generalized words via the hy-
pernym. The best hypernym for each possible pair of words is then added to the “Gen-

eralisedWordList”. At the end of the algorithm this list contains the generalized words
that will replace their corresponding base words in the representation of the web page.

3 The Ant-Miner Algorithm

In nature ants are seen creating “highways” to and from their food, often using the
shortest route. Each ant lays down an amount of pheromone and the other ants are at-
tracted to the strongest scent. As a result, ants tend to converge to the shortest path.
This is because a shorter path is faster to transverse, so if an equal amount of ants fol-
low the long path and the short path, the ants that follow the short path will make more
trips to the food and back to the colony. If the ants make more trips when following
the shorter path, then they will deposit more pheromone over a given distance when
compared to the longer path. This is a type of positive feedback and the ants following
the longer path will be more likely to change to follow the shorter path, where scent
from the pheromone is stronger [9], [10].

The Ant-Miner algorithm takes the ideas from the Ant Colony paradigm and ap-
plies them to the field of data mining. Instead of foraging for food the ants in the Ant-
Miner algorithm forage for classification rules, and the path they take correspond to a
conjunction of attribute-value pairs (terms). A high-level pseudocode of Ant-Miner is
shown in Algorithm 2. A detailed description of the algorithm can be found in [3].

Ant-Miner starts by initializing the training set to the set of all training cases (web
pages, in this project), and initializing the discovered rule list to an empty list. Then it
performs an outer Repeat-Until loop. Each iteration of this loop discovers one classi-
fication rule. This first step of this loop is to initialize all trails with the same amount
of pheromone, which means that all terms have the same probability of being chosen
(by the current ant) to incrementally construct the current classification rule.

TrainSet = {all training cases};
DiscoveredRuleList = []; /* initialized with empty list */
REPEAT
 Initialize all trails with the same amount of pheromone;
 REPEAT
 An ant incrementally constructs a classification rule;
 Prune the just-constructed rule;
 Update the pheromone of all trails;
 UNTIL (stopping criteria)
 Choose best rule out of all rules constructed by all ants;
 Add the best rule to DiscoveredRuleList;
 TrainSet = TrainSet – {cases correctly covered by best rule};
UNTIL (stopping criteria)

Alg. 2. High-level pseudocode of Ant-Miner

The construction of an individual rule is performed by the inner Repeat-Until loop,
consisting of three steps. First, an ant starts with an empty rule and incrementally con-
structs a classification rule by adding one term at a time to the current rule. In this step
a termij – representing a triple <Attributei = Valuej> – is chosen to be added to the
current rule with probability proportional to the product of ηij × τij(t), where ηij is the

value of a problem-dependent heuristic function for termij and τij(t) is the amount of
pheromone associated with termij at iteration (time index) t. More precisely, ηij is es-
sentially the information gain associated with termij – see e.g. [1] for a discussion on
information gain. The higher the value of ηij the more relevant for classification termij
is and so the higher its probability of being chosen. τij(t) corresponds to the amount of
pheromone currently available in the position i,j of the trail being followed by the cur-
rent ant. The better the quality of the rule constructed by an ant, the higher the amount
of pheromone added to the trail positions (“terms”) visited (“used”) by the ant. (Rule
quality is measured by Sensitivity × Specificity [3].) Therefore, as time goes by, the
best trail positions to be followed – i.e., the best terms to be added to a rule – will
have greater and greater amounts of pheromone, increasing their probability of being
chosen to construct a rule.

The second step of the inner loop consists of pruning the just-constructed rule, i.e.,
removing irrelevant terms – terms that do not improve the predictive accuracy of the
rule. In essence, a term is removed from a rule if this operation does not decrease the
quality of the rule – as assessed by the same rule-quality measure used to update the
pheromones of the trails. The third step of the inner loop consists of updating the
pheromone of all trails by increasing the pheromone in the trail followed by the ant,
proportionally to the rule’s quality. In other words, the higher the quality of the rule,
the higher the increase in the pheromone of the terms occurring in the rule antecedent.

The inner loop is performed until some stopping criterion(a) is(are) satisfied, e.g.,
until a maximum number of candidate rules has been constructed. Once the inner loop
is over, the algorithm chooses the highest-quality rule out of all the rules constructed
by all the ants in the inner loop, and it adds the chosen rule to the discovered rule list.
Next, the algorithm removes from the training set all cases correctly covered by the
rule, i.e., all cases that satisfy the rule antecedent and have the same class as predicted
by the rule consequent. Hence, the next iteration of the outer loop starts with a smaller
training set, consisting only of cases which have not been correctly covered by any
rule discovered in previous iterations. The outer loop is performed until some stop-
ping criterion(a) is(are) satisfied, e.g., until the number of uncovered cases is smaller
than a user-specified threshold. The output of Ant-Miner is the discovered rule list.

4 Computational Results

4.1 Experimental Setup

A set of 127 web pages in three different classes (Education, Technology and Sport)
were harvested from the BBC web site. This site was chosen for analysis because it is
arranged in a rigid standard way, and all pages have standard tags which can be used
for mining. The standard of writing is also high, making it possible to draw relation-
ships between the content, the information in the Meta fields, and the class (subject) of
the page. Some pages published by the BBC are released in more than one class, so a
page that appears in, say, the Technology section may also appear in the Education
section. In these cases the page in question is removed from the collected set.

We extracted, from each web page, a set of binary attributes (words). Each attribute
represents whether or not the corresponding word occurs in a given web page. Since
using all words occurring in any web page would produce a huge and impractical
number of attributes, we used WordNet to perform the three kinds of linguistics-based
text preprocessing discussed in section 2. We also performed controlled experiments
to evaluate the effect of each of these preprocessing techniques, as follows.

First, we performed experiments with and without stemming. Second, we per-
formed experiments using only nouns as attributes and using all kinds of words as at-
tributes. In both cases, words that were not recognized by WordNet were presumed to
be proper nouns. These proper nouns were left in, as they usually contain important
and relevant names. Third, we performed experiments with and without the generalisa-
tion of words based on the hypernym relationship of WordNet (using Algorithm 1).

We also performed a basic text preprocessing that is often used in text mining,
where stop words, as well as punctuation, were removed. Stop words are words that
convey little or no useful information in terms of text mining – e.g. “the, and, they”.

To gauge the accuracy of the discovered rules, a conventional five-fold cross-
validation procedure was used [1]. Reported results are the average predictive accu-
racy in the test set over the five iterations of the cross-validation procedure. The fol-
lowing standard Ant-Miner settings [3] (except (d)) were used in all the experiments:
(a) No_of_Ants (number of ants, i.e. maximum number of rules evaluated) = 3000
(b) Min_cases_per_rule (minimum number of cases per rule) = 10
(c) Max_uncovered_cases (maximum number of uncovered cases) = 10
(d) No_rules_converg (number of identical consecutive rules required for indicating

convergence) = 20. This parameter was increased from 10 (default value of Ant-
Miner) to 20, to try and stop premature convergence to worse rules.

4.2 Results On the Influence of Linguistics-based Text Preprocessing Techniques

The experiments reported in this section evaluate the influence of different linguistics-
based text processing techniques in the performance of Ant-Miner. Tables 1 and 2 re-
port, for each setup, the number of attributes (after text preprocessing) and the average
cross-validation accuracy with the standard deviation shown after the “±” symbol. In
these figures, WN-generalization denotes WordNet generalization based on the hy-
pernym relation. Title is where the words are harvested from the title field in the docu-
ments, Description is where the words are taken from the description field and Union
is the union of the two sets of words (Title + Description).

Table 1: Ant-Miner Results in BBC web site – using only nouns

Test Setup No. of attrib. Accuracy
WN-generalisation, Title 41 77.34 ± 2.27
WN-generalisation, Description 125 68.01 ± 2.37
WN-generalisation, Union 188 70.42 ± 5.27
Stemming, Title 46 69.09 ± 5.92
Stemming, Description 159 71.00 ± 1.71
Stemming, Union 293 74.79 ± 2.86

Table 1 shows the accuracies from the different setups when using only nouns
(rather than all kinds of words) to create attributes. There are two different ways to
analyse this table. First, one can analyse the effect of using nouns from the web page
Title only, nouns from the web page Description only, and nouns from both (Union) in
the performance of Ant-Miner. There is no clear pattern associated with Title versus
Description or Union. However, both when using WordNet generalization and when
using Stemming, nouns from Union produced better results than nouns from Descrip-
tion only. Second, it is interesting to analyse the use of WordNet generalization versus
the use of stemming as a heuristic to reduce the number of attributes. The use of
WordNet was beneficial when the attributes contained only words in the Title. Indeed,
WordNet generalization with Title produced the best result (77.34% of accuracy).
However, the use of WordNet produced worse results than stemming when the attrib-
utes contained words in Description or in Union.

Table 2: Ant-Miner Results in BBC web site – using all words

 Test Setup No. of Attrib. Accuracy
WN-generalisation, Title 47 81.00 ± 2.93
WN-generalisation, Description 163 68.69 ± 2.90
WN-generalisation, Union 226 67.81 ± 2.62
Stemming, Title 52 71.28 ± 6.04
Stemming, Description 188 74.29 ± 4.90
Stemming, Union 339 70.97 ± 4.04

Table 2 shows the accuracies from the different setups when using all kinds of

words (except, of course, stop words) to create attributes. Again, there are two kinds
of analyses to be made. First, one can analyse the effect of using Title only, Descrip-
tion only, and the Union of Title and Description in the performance of Ant-Miner.
Unlike the results in Table 1, Table 2 shows that – both when using WordNet gener-
alization and when using stemming – Union produces the worst results. Hence, it
seems that when all kinds of words are used, Union leads to a degradation of accuracy
because the search space becomes very large, i.e., the large number of attributes
(which tends to have many irrelevant attributes) degrades Ant-Miner’s performance.

Second, one can analyse the use of WordNet generalization vs. stemming. Similarly
to Table 1, Table 2 shows that: (a) the use of WordNet was beneficial when the attrib-
utes contained only words in the Title –WordNet generalization with Title produced
the best result (81.0% of accuracy); (b) the use of WordNet produced worse results
than stemming when the attributes contained words in Description or in Union.

Hence, both Table 1 and Table 2 are evidence that WordNet generalization is a
very effective heuristic when the attributes contain words from the Title only, which
are the scenarios with the smallest sets of attributes used in our experiments. When the
attributes contain words from Description and Union, the larger number of attributes
seems to be a serious problem for WordNet generalization, leading to worse results
than stemming. Indeed, the title of a web page tends to be a very compact description
of its contents in only one sentence, possibly leading to fewer WordNet confusions be-
tween different senses of a word.

4.3 Results Comparing Ant-Miner and C5.0

The results with all kinds of words (Table 2) were better than the results with nouns
(Table 1) in 4 out of 6 cases. Hence, we decided to focus on the results with all words
and do an additional experiment, comparing Ant-Miner with the well-known C5.0 al-
gorithm, implemented in Clementine (an industrial-strength data mining tool). The re-
sults of this experiment are reported in Table 3. C5.0 was run with the default settings
for its parameters. To make the comparison as fair as possible, both algorithms used
exactly the same training and test set partitions in each of the iterations of the cross-
validation procedure. Table 3 reports the average cross-validation results with respect
to both accuracy and simplicity – number of discovered rules and total number of
terms (conditions) in all discovered rules. The reported rule count does not include the
default rule for Ant-Miner or C5.0.

For each setup in Table 3, the best result is shown in bold. With respect to accu-
racy, Ant-Miner obtained the best result in three setups, and C5.0 obtained the best re-
sult in the other three setups. In 4 out of the 6 setups the difference between the two
algorithms is not significant, since the accuracy rate intervals (taking into account the
standard deviations) overlap. There were just two setups in which the difference in ac-
curacy was significant (i.e. the accuracy rate intervals do not overlap), namely the first
setup (WordNet generalization, Title, All words), where Ant-Miner significantly out-
performed C5.0, and the last setup (Stemming, Union, All words), where C5.0 signifi-
cantly outperformed Ant-Miner.

With respect to the simplicity of the discovered rule set, Ant-Miner discovered a
significantly smaller number of rules in all setups. The total number of terms discov-
ered by Ant-Miner was also significantly smaller than the number of terms discovered
by C5.0 in all setups. This means that Ant-Miner has performed very well in terms of
knowledge comprehensibility in comparison to C5.0. I.e., a user would find it much
easier to interpret and possibly use the knowledge discovered by Ant-Miner.

Table 3: Comparison between Ant-Miner and C5.0 in BBC news web site, all words

Test Setup Algorithm Accuracy No. of rules
Total No. of
Terms

Ant-Miner 81.00±2.93 3.0±0.00 9.40±1.91 WordNet generalization,
Title, All words C5.0 73.19±4.77 12.00±1.44 24.80±1.71

Ant-Miner 68.69±2.90 3.0±0.00 12.40±2.58 WordNet generalization,
Description, All words C5.0 67.78±1.43 12.40±0.50 27.20±1.46

Ant-Miner 67.81±2.62 3.0±0.00 11.60±2.40 WordNet generalization,
Union, All words C5.0 71.83±2.08 11.60±0.40 23.40±0.87

Ant-Miner 71.28±6.04 3.0±0.00 12.13±1.70 Stemming, Title,
All words C5.0 77.08±4.48 14.00±0.54 26.4±0.74

Ant-Miner 74.29±4.90 3.0±0.00 11.66±2.56 Stemming, Description,
All words C5.0 71.03±4.41 11.00±0.54 22.25±1.79

Ant-Miner 70.97±4.04 3.0±0.00 10.06±2.16 Stemming, Union,
All words C5.0 76.39±1.01 13.80±0.73 27.60±1.63

We also did experiments with 429 web pages from the Yahoo web site. Each web

page belonged to one of the following three classes: business, tech and entertainment.
The results are reported in Table 4.

With respect to accuracy, Ant-Miner obtained the best result in four setups, and
C5.0 obtained the best result in the other two setups. However, the differences in ac-
curacy were not significant in any setup, since the accuracy rate intervals overlap.
With respect to the simplicity of the discovered rule set, again Ant-Miner discovered a
significantly smaller rule set than the rule set discovered by C5.0 in all setups.

Table 4: Comparison between Ant-Miner and C5.0 in Yahoo news web site, all words

Test Setup Algorithm Accuracy No. of rules
Total No. of
Terms

Ant-Miner 88.00±2.16 3.6±0.24 12.83±2.32 WordNet generalization,
Title, All words C5.0 89.87±1.88 18.6±1.20 42.20±6.80

Ant-Miner 86.50±1.99 3.0±0.00 14.53±2.93 WordNet generalization,
Description, All words C5.0 86.48±1.25 15.8±1.01 34.60±2.54

Ant-Miner 88.15±1.96 3.0±0.00 13.53±2.62 WordNet generalization,
Union, All words C5.0 86.46±1.24 16.6±0.74 39.80±2.41

Ant-Miner 83.54±2.52 3.4±0.24 12.88±2.48 Stemming, Title,
All words C5.0 86.70±1.10 16.8±0.66 30.40±1.80

Ant-Miner 87.91±1.75 3.4±0.24 11.05±2.19 Stemming, Description,
All words C5.0 83.14±3.63 17.4±1.07 29.00±1.22

Ant-Miner 90.01±2.62 3.0±0.00 12.00±2.33 Stemming, Union,
All words C5.0 89.29±2.09 11.2±0.19 21.40±0.87

5 Discussion and Future Research

This project was the first attempt to apply Ant-Miner to the challenging problem of
web page classification, which is plagued by a large number of attributes and the very
complex nature of relationships between words. To the best of our knowledge there
are just two other projects on using Ant Colony algorithms in web mining, namely the
projects described in [6] and [11]. However, our work is very different from those two
projects, since our project addresses the classification task, whereas those projects ad-
dressed the clustering task (which is very different from classification [2]).

This paper has the following contributions. First, it showed that: (a) Ant-Miner
produces accuracies that are at worst comparable to the more established C5.0 algo-
rithm; and (b) Ant-Miner discovers knowledge in a much more compact form than
C5.0, facilitating the interpretation of the knowledge by the user. These results agree
entirely with previous results comparing Ant-Miner with C4.5 and CN2 in “conven-
tional” data mining (rather than the more challenging text mining scenario), where
Ant-Miner also found much simpler rule sets than those algorithms [3], [4].

Secondly, we also investigated the relative effectiveness of different linguistics-
based text preprocessing techniques – used as heuristics to reduce the number of at-
tributes – in the performance of Ant-Miner. This is also, to the best of our knowledge,

the first time that an Ant Colony algorithm used WordNet. The results showed that a
relatively simple use of WordNet, using the hypernym relationship to generalize
words, is often beneficial. However, the errors and misinterpretations it produces
when dealing with more complex and longer sentences can sometimes nullify the ad-
vantages described. In the scenarios investigated in this paper, WordNet generalisa-
tion is most beneficial when the words being generalized occur in a short sentence
with a simple meaning, such as in the title field. It is possible that simply stemming the
words would be more effective on the more complex sentences, if the number of at-
tributes did not increase so much – overwhelming the Ant Miner algorithm.

Concerning future research, it has been shown that Ant Colony algorithms are good
at problems involving continuous learning [12]. It hopefully would be relatively easy
to adapt the Ant-Miner algorithm to continuous learning applications as the content
available on the web is dynamic by nature. One possibility, for instance, would be to
mine data represented in RSS (Really Simple Syndication), which is an XML based
web content syndication format. By extending Ant-Miner to continuous learning, the
algorithm could be easily used to cope with the dynamic nature of RSS. Another inter-
esting research direction, which could help to achieve a much greater reduction in the
number of attributes – while still preserving the most important words from the text –
would be to use several other kinds of linguistic relationships available in WordNet.

References
1. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools with Java Im-

plementations, Morgan Kaufmann Publications, 2000.
2. U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data mining to knowledge discov-

ery: an overview. In: U.M. Fayyad et al (Eds.) Advances in Knowledge Discovery and Data
Mining, 1-34. AAAI/MIT, 1996.

3. R.S. Parpinelli, H.S. Lopes and A.A. Freitas. Data Mining with an Ant Colony Optimization
Algorithm. IEEE Trans. on Evolutionary Computation, special issue on Ant Colony algo-
rithms, 6(4), pp. 321-332, Aug. 2002.

4. R.S. Parpinelli, H.S. Lopes and A.A. Freitas. An Ant Colony Algorithm for Classification
Rule Discovery. In: H.A. Abbass, R.A. Sarker, C.S. Newton. (Eds.) Data Mining: a Heuris-
tic Approach, pp. 191-208. London: Idea Group Publishing, 2002.

5. S. Chakrabarti Mining the web: discovering knowledge from hypertext data. Morgan Kauf-
mann, 2003.

6. A. Abraham and V. Ramos. Web Usage Mining Using Artificial Ant Colony Clustering and
Genetic Programming. Proc. Congress on Evolut. Comp. (CEC-2003). IEEE Press, 2003.

7. M. Cutler, H. Deng, S. S. Maniccam and W. Meng, A New Study Using HTML Structures to
Improve Retrieval. Proc. 11th IEEE Int. Conf. on Tools with AI, 406-409. IEEE, 1999.

8. C. Fellbaum (Ed.) WordNet - an electronic lexical database. MIT, 1998.
9. E. Bonabeau, M. Dorigo and G. Theraulaz. Swarm Intelligence: from natural to artificial

systems. Oxford, 1999.
10. M. Dorigo and L.M. Gambardella, Ant colonies for the traveling salesman problem. Biosys-

tems 43, 73-81. 1997.
11. K.M. Hoe, W.K. Lai, T.S.Y. Tai. Homogeneous ants for web document similarity modeling

and categorization. Ant algorithms, LNCS 2463, 256-261. Springer, 2002.
12. R. Schoonderwoerd, O. Holland, J. Bruten, Ant-like agents for load balancing in telecom-

munications networks. HP Labs Technical Report, HPL-96-76, May 21, 1996.

