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Abstract
This paper describes a model for expressing coordination in multiple view

visualization systems. We present the model and describe a prototype

implementation that illustrates the features of the model. Current visualization

systems tend to have an informal and inconsistent approach to coordination.
Our model takes a formal approach to describing widely used coordination

concepts. The model is based on views sharing abstract objects such as the

visualization parameters of the dataflow model. Additionaly, this paper
describes how current coordinations in exploratory visualization work and

how novel coordinations can be constructed using our model.
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Introduction
Coordination is a powerful tool for interacting with multiple views when
performing exploratory visualization tasks. For instance, selecting a group
of data items in one view in coordination with the selection of the same
items in another can reveal new relationships, such as distribution,
grouping or subordination within these items, which might otherwise
remain hidden. However, current visualization systems using coordination
tend to have an ad hoc and informal approach. We present a model for
coordination of multiple views that formalises coordination concepts in
exploratory visualization, clarifies existing coordination systems and
encourages the identification of new coordination combinations.

The model is designed to be unbiased towards any particular data,
navigation or communication paradigm, and hence can be described as a
generic model for coordination in exploratory visualization. This model
differs from general visualization models in exclusively detailing coordina-
tion by describing a mechanism for linkage that relies on the sharing of
visualization parameters. It defines coordination rudiments drawing on
the findings of the interdisciplinary study of coordination and also the
existing research in exploratory visualization. Furthermore, we describe
the visualization process using the dataflow visualization model and our
coordination model allows for the description of types of coordination
that can occur in a system by detailing the sections of the dataflow model
that the coordinations affect in each view.

We have developed a software system to demonstrate our model in use.
The prototype, called CViews, implements coordinated views of the
Surface and Underlying Structural Analysis of Natural English Corpus
(SUSANNE). Currently, there are three types of views supported by our
prototype. However, the implementation can easily scale to support
additional views and coordination types, as the views do not need
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knowledge of each other, instead all communication is
through coordination objects, allowing ‘plug and play’ of
views that support the required interaction features. Our
experience with CViews shows that having a coordina-
tion model facilitates the implementation of a multiple
view visualization system since the inter-relationships
between views can be flexible.

The work presented in this paper is a substantially
updated and revised version of the paper presented
at CMV2003,1 in particular the implementation is
entirely new. This paper is divided into the following
sections: related work; discussion of the salient features
of coordination in exploratory visualization; the
new model; discussion about the relationship of
the model to current coordinated visualization
systems; model implementation; and future work and
conclusions.

Related work
There are many aspects of computing for which coordi-
nation is useful. Coordination increases user perfor-
mance, allows discovery of unforeseen relationships and
leads to unification of the desktop.2 As a result,
coordination has been the subject of study of many
separate disciplines, but only recently have researchers
such as Olson et al3 appreciated the advantages of
interdisciplinary viewpoints.

Interdisciplinary view of coordination
Coordination in exploratory visualization may benefit
from observing how other disciplines address issues of
inter-related information, multitasking and the interde-
pendency and coupling of components. Each of these
disciplines has its own architectures, models and proto-
cols; some may be based on sharing memory and other
resources, others on managing constraints or propagating
data values or data parameters. Coordination in each of
these fields is portrayed in a different context.

In the context of the multiple ontologies research,
heterogeneous information services may be coordinated
using an approximate ontology translation framework.
For instance, the research done by Akahani et al4 provides
a representation formalism to define the mapping
between different ontolgoies as well as the translation
and approximation techniques. In this case the inter-
ontology mapping of data attempts data integration by
identifying semantically corresponding terms of different
source ontologies.5

In context of middleware provision for cooperative
work, Ciancarini et al6 examine a suitable middleware for
coordinating distributed active document-centric appli-
cations. This middleware is a software layer that abstracts
from the heterogeneous characteristics of different
architectures, operating systems, programming languages
and networks in distributed systems. The main responsi-
bility of the coordination middleware is one of data
communication. Furthermore, middleware coordination

often allows multiple views to occur in client-server
architecture.

Another approach to coordination is the observation
pattern as an ontology and a formal framework, as
proposed by Viroli et al.7 They write ‘in general,
observation occurs when a system o [observer] is interested
in some information made available by a system s
[source]. Typically, y s is modeling some portion of the
world o is interested in, and providing o with some
knowledge about it, as well as some mechanisms to access
it’. The request–reply strategy of interaction in this
paradigm works as a model-view-controller (MVC) pat-
tern.

Although much of the interdisciplinary research on
coordination is informal; for instance, the ontology
translation uses informal mapping rules between the
various ontologies.4 The interdisciplinary study of co-
ordination presents ideas that can be used for modeling
multiple view exploratory visualization and entities, such
as objects, events, processes, functions, agents and
ontologies all may be coordinated. There is much
communality between concepts from a variety of fields
and a strong case for transference of ideas.

Coordination for exploratory visualization
One way of exploring data is through interactive
visualization. This form of exploration is important
because it enables the user to change the viewing
parameters in one realization actively, which is the
essence of visual information seeking. On that, Ahlberg
and Shneiderman8 state: the emphasis is on ‘rapid
filtering, y progressive refinement of search parameters,
continuous reformulation of goals and visual scanning to
identify results’. Within such environments, the user can
subsequently perform one operation a number of times
in various views. However, there is an obvious benefit in
simultaneously coordinating the operation for the
multiple views.

There are many ways through which we can describe
coordination. Olson et al3 define coordination as ‘com-
posing purposeful actions into larger purposeful wholes’,
where ‘the additional information processing performed
when multiple, and connected actors pursue goals that a
single actor [or indeed the multiple actors working
separately] pursuing the same goals would not perform’.
We emphasize the point that the whole is greater than
the sum of its components.

A coordination model improves understanding, and
allows effective development and qualitative evaluation
of systems that incorporate coordination. The field of
visualization is full of overloaded terms and suffers from
inconsistencies. Moreover, visualizations often are based
on different models. Coordinating different visualiza-
tions requires a mechanism, which allows interoperabil-
ity between these differing models. A coordination model
should also provide guidelines for using multiple views
such as those suggested by Baldonado and Woodruff.9

A model for coordinated multiple views Nadia Boukhelifa and Peter J. Rodgers

259

Information Visualization



Current coordination models
Coordination is implemented in various visualization
systems such as Xmdvtool,10 Spotfire,11 VIP, LinkWinds12

and Visage.13 Most common is the linked overview-detail
views that is highly utilized in geovisualization, for
example, see Andrienko and Andrienko.14 This fits with
North and Shneiderman2 dual selection and navigation
motivation for coordination.

There are only a few systems that design models for
coordination, for example Data Exploration and Visuali-
zation (DEVise)15 and GeoVISTA Studio.16 However, like
Pattison and Philips,17 we believe in a wider view of
coordination, which potentially may coordinate any
aspect, such as data preparation, averaging, clustering
and moving window positions. Recently, two models
have been proposed: the Snap conceptual model18 and
the View Coordination Architecture.17

Snap The Snap conceptual model takes a data-centric
approach to coordination. Relational database
components are tightly coupled such that an
interaction with one component results in changes to
other components. Snap utilizes the concept of database
design to promote better visual exploration. It provides a
mechanism for constructing coordinations without the
need for programming. In addition, new types of
coordination are introduced, such as the compound
join and the multiple alternative joins.18

In some respects Snap resembles our model; for
instance, its architecture is event based and coordination
is built from action associations. Snap also recognizes the
need for a middleware party to ensure coordination
operation and for a translation mechanism when dealing
with heterogeneous information sources. However, our
model handles coordination from a more general view-
point and takes in consideration exploratory visualiza-
tion needs for rich and varied user interactions.
Furthermore, we are interested in modeling representa-
tion-oriented coordinations as well as data-centric co-
ordinations.

View coordination architecture for information
visualization Pattison et al17 present an architecture for
the implementation of generic view coordination in the
MVC pattern. The proposed framework separates
between the specification and implementation of
mapping between data model to view model.

Coordination is managed by a new component (called
coordination). Bidirectional coordinations can be achieved
through directional coordination between presentation
components, view model components or specification
components. The more components there are and the
more links exist between them, the more complex the
implementation and debugging becomes, especially
when linking different components.17 Thus, to encou-
rage reuse, presentation, content and the coordination
itself should be – as far as possible – disparate and
independent.

Rather than concentrating on the implementation
architecture our work focuses on a layered approach
based on the dataflow model. Like Pattison, we use an
MVC fundamental design; however, we utilize multiple
components and different facets of coordination.

Facets of coordination
From the related work and broadness of the interdisci-
plinary viewpoint, we see that coordination conjures
some interesting challenges, such as relevance, design
and visual depiction of each coordination as well as
considering what and how to coordinate.

Coordination challenges and opportunities
First, due to the multiform nature of the multiple views,
actions in one view cannot always be directly applied to
other views. For example, it may be useful to rotate two
three-dimensional views coincidentally, but if each uses a
different mathematical projection then a translation
needs to occur that converts user interactions in one
view to a suitable format for the other. However, some
coordinations that may be possible to achieve, may in
fact not be useful; and yet others may be impossible to
realize. However, at this abstract level it is possible to rely
on the user to make such judgment of the usefulness of a
particular coordination. Indeed, there is the whole
question of how the system is implemented and whether
the coordinations automatically occur or are created by
user requests.19

Second, there are design and user-interface questions
that a designer may wish to pose. For example, if the
multiple views represent a visual history then is it feasible
or relevant to coordinate between past variances of the
exploration? Moreover, is everything coordinated or are
aspects of a few windows coordinated (and if so who
decides on what is coordinated – the user or the
system?20) For instance, if may be beneficial to only
coordinate views that are classified within the same
group (the notion of Render Groups21).

Third, how does the system visually represent and
notify to the user what is currently being coordinated
(e.g. visual methods such as used by the spiral calendar,22

or by the implicit laying out of modules in Waltz21).
Many issues in visualization, such as synchronization,
correlation of visual or non-visual information, occlu-
sion, view explosion and multitasking could be more
approachable through a coordination model.

Coordination in use – two examples
In order to develop some rudiments of coordination in
EV, we investigate the use of coordination in a current
tool (LinkWinds) and how coordination may be thought
of as analogous to program variables.

LinkWinds uses a data-linking paradigm for coordina-
tion, which is comparable to the spreadsheet concept
where cells are related to each other using a formula and
changing the formula in one cell recalculates the value of
the linked cell.12 The basic entities that are coordinated
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in LinkWinds are objects shown at the windowing level
as either data, control or display objects. Objects of the
same type sit in the same window making an object view.
The general purpose of coordination is to detect possible
relationships in data.

LinkWinds allows one-to-many links; for example, a
slider broadcasts messages to all objects it is linked to
when its value is changed. The user performs linking as
well as unlinking interactively. In addition, there exist
some constraints on coordination. For instance, data
must be put into empty windows and messages are passed
only between objects that are already linked. There is also
a message-passing protocol that handles inter- and
intraobject messages. The effect coordination causes on
the user interface is the emanating flow between linked
objects.

Program variables may be thought as analogous to
coordination objects; for example, variables may be used
in multiple places and accessed by reference, they must
be instantiated, and they each have a type (if they are of a
wrong type then they may be cast – either by default or
explicitly). There are also notions of global and local
scope.

Rudiments of coordination
Taking aspects from this analogy, the LinkWinds exam-
ple, aforementioned challenges and other coordination
tools we categorize the rudiments.

Coordination entities: This details what is actually being
coordinated, such as aspects of the actual window, view,
data, record, tuple, attribute, parameter, process, event,
function, graphic or time.

Type: The type of the coordination determines the
method by which the entities are linked. For example,
simple coordination (such as rotation or transformations)
may be implemented using primitive types (float, integer,
etc.), while others may be more complex data structures.
Translation (casting) may be required if the entities utilize
different types. The types may also determine direction-
ality of the links (unidirectional or bidirectional). For
example, IRIS Explorer allows parameters to be coordi-
nated but the events flow one way (as it disallows
simultaneously connecting the reverse to inhibit circular
event explosions taking place).

Chronology (lifetime and scheduling): How long entities
are coordinated is governed by its lifetime (which is also
known as the persistence of the coordination). It may be
coordinated permanently, for a given action, or deter-
mined by some scope. Moreover, the coordination may
be synchronous, asynchronous, reactive or proactive. For
example, it may be useful to rotate the view of a fast and a
slow renderer coincidentally; one solution is that the
time-consuming one could update at a slower rate by
taking every n events from a coordination event queue, or
merely notified at every n seconds.

Scope: Scope determines both the global/local connec-
tion and the lifetime of the links; a global scope would
mean that any entity (wherever and whatever it is) could

be connected; whereas some links may be restricted to
being only used in a local area. For example, the user may
set up a group where simply adding a new member to the
group automatically coordinates it to each of the others
in the group (which is commonly known as a Render
Group). Moreover, the scope also may restrict the
lifetime.

Granularity of links: Many entities may be connected
together via various links. Granularity determines: the
number of entities in one coordination {2yn}, number of
views in one coordination {1yn}, and number of links an
entity contributes to coordination {0yn}.

Initialization: Initialization determines how the coordi-
nation is created. For example, it may be automatic (such
as using a Render Group) or user specific, scheduled in
some fashion, etc. Moreover, the user may need to
connect entity A to B explicitly, for every type by (say)
connecting ports from modules A to B; alternatively, the
user may only need to drag and drop the whole module
into a Render Group to instantiate and link everything in
modules A–B.

Updating: Coordinated views require that the informa-
tion is dynamically up-to-date. However, there may be
conflicting uses especially if, for example, the multiple
views represent a visual history. Commonly, in a dataflow
paradigm, the downstream modules always reflect the
information upstream. However, it may be prudent that
sometimes some views become out of synchronization:
such that they reflect a previous time in history. The
displays may be updated by various means, such as eager
or greedy update, lazy update or user initiated.

Realization (link realization, user control): How is the
expression of coordination conveyed to the user? It may
be that explicit lines are used (such as the Spiral
Calendar22) or via some formal layout mechanism.21

Moreover, how does the user control the information to
be linked, do they use direct manipulation or indirect
means via (say) dynamic sliders?

The model
The challenge is to develop a model that addresses the
coordination design issues mentioned above without bias
towards a particular data, navigation or communication
paradigm. Effectively, it should be flexible, adoptable,
extensible and foster better visual exploration.

The model should allow visualization designers to
specify existing and novel coordinations formally in
multiple view exploratory visualization and so facilitate
early testing of the proposed coordination designs before
they are implemented by programmers or constructed
visually by the user.

Abstract model for coordination
The model we define includes ‘coordination objects’ that
manage combinations of entities (e.g. parameters) that
control aspects of the linked views. A single coordination
object is associated with each separate coordination in
the system. A view is said to be coordinated if it shares a
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common coordination object. All the coordination
objects for a visualization system are held in a ‘coordina-
tion space’ as shown in Figure 1. This is similar to the
middleware layer component we mentioned in the
Interdisciplinary view on coordination.

The views that are being coordinated need to define a
translation function (for instance, f1,1 and f2,1 for
Coordination Object 1 as shown in Figure 1) from the
shared coordination object to the linked view parameters.

The views must also register to be informed of a notify
event when a coordination object is changed. If an event
occurs, which might typically be a user initiated action in
one of the linked views, it alters the coordination object,
which sends a notify to all the linked views registered.
Registration may depend on a given scope. Then, those
views that were notified of a change consequently use the
information provided by the coordination object via
their translation function to generate the new view.

A single coordination object is considered to be present
for each type of coordination in the system. So that if
multiple views define coordination for both corotation
and brushing, this will be represented by two separate
coordination objects: a rotation coordination object for
corotation and a selection coordination object for
brushing.

In the previous example, brushing uses the same
visualization parameter for both views, selecting in one
view results in selecting in another view and the same
applies to corotation. However, a coordination object
may hold more than one visualization parameter. For
instance, one action in view V1 may be linked to two
actions in view V2. In this case, we have three parameters
in the coordination object.

An advantage of this model is its dynamic nature,
as views may be added and removed without other
views that also access the same coordination object
necessarily having knowledge of this activity.

Importantly, views do not need to know about other
views in the coordination.

A layered approach to coordination
The views themselves are a result of parameter changes to
the visualization process; an interaction or exploration
would generate a new view, likewise viewing the same
data by a different display technique (multiform) would
provide a new view. These different instances may be
displayed in different windows, overlaid into the same
window or in fact replace the current window (replica-
tion, overlay, replacement, respectively20).

Often in exploratory visualization, visual correlation is
seen as the focus of coordination, which tends to limit
the techniques to brushing and navigational slaving.
However, coordination may be understood in a wider
context and occur on any variable or data at any level
within the whole visualization process.

Consider the dataflow model23 (which is used in many
systems such AVS, IRIS Explorer, Amira, Data Explorer DX
to describe the whole visualization process); the data is
enhanced or enriched in some form, then mapped into
an abstract visualization object (AVO) that can be
rendered into an image (Figure 2). Multiple views are
generated by splitting the dataflow at any stage of the
pipeline (generating a fan-out). Aspects of the replicated
modules may be readily associated with engender
coordination. In addition to the traditional dataflow
model, aspects may also be coordinated at the viewport
transform (see Figure 3). Such coordinated transform
operations might include simultaneously rotating view-
points or altering projections. Moreover, coordination
may occur at Window level, for example, moving or
closing windows concurrently. Incidentally, the same
visualization process can also be described using the data
state model as it is equivalent to the dataflow model.24

One criticism directed at the dataflow metaphor
concerns the granularity of its processes. The dataflow
paradigm describes a coarse model for the visualization
process; for instance, the entire graphics field is encapsu-
lated in one process ‘rendering’.25 In addition, a single
process represents the mapping stage, which is the
essence of information visualization whereby informa-
tion objects are mapped to visual objects.

Moreover, the map and render stages of the dataflow
model are tightly associated in many application areas
(such as ‘information visualization’) and thus often
treated as one process.

Therefore, theoretically any process could be coordi-
nated with anything (relevant translations applied);
however, this may not be feasible or relevant. Our model
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Object 2

Coordination
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Coordination Space

View1 View2

f1,2f2,1
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Notify1,2

Event 1 Event 2
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Figure 1 Abstract model for coordination in exploratory

visualization. This diagram shows two different coordinations
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Figure 2 The data flow paradigm.
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allows a coordination to apply to a group of different
process layers within the dataflow paradigm. However,
we note that typically coordination tends to occur within
a particular layer.

Components of the model
Our model is divided into four components. They are the
basic visualization processes and states, the coordination
space, the events and the translation and notification
functions.

Basic visualization processes and states These are
enhance, map, render and transform processes of the
dataflow pipeline as explained in section on A layered
approach to coordination. Data are transformed in the
dataflow paradigm from the raw data to an image, firstly
by enhancement to produce a derived data set. This is
then mapped onto some geometry described by the AVO.
The final data state is the rendered image. These provide
the coordination entities (see section on [Rudiments of
coordination]).

Coordination space
Each visualization system has one coordination space
that holds various coordination objects. Coordination
objects connect events and a number of linked coordi-
nated views. In interactive exploratory visualization the
event is often user initiated in one of the views.

One view may be associated with many coordination
objects in a coordination space since a view may play
various roles in different coordinations: it might be part
of a focus-and-overview coordination, as well as a
rotation coordination (see granularity in Rudiments of
coordination).

The abstract parameters in a coordination object might
be simple thresholds, coordinates of mouse clicks, or
more complex notions, such as modifications required to
color maps or rendering algorithms (the concept of type
in Rudiments of coordination). In the simple cases, the

abstract parameters could easily be the actual parameters
used by a view, such as a bounding box when filtering
data in the Enhance section of the visualization pipeline.
Even such simple parameters are not suitable in a raw
form for all views, as some views may measure screen
distances in different units, or from different origins, so
translation functions may still need to be defined, for
example, to convert measurements between inches and
centimeters.

This demonstrates the need for a more neutral format
for storing these abstract parameters in some cases.
Naturally, we might want to store the shared parameters
in the same format as the event-generating view
parameter format. Hence, there will be no translation
needed between the coordination space and that parti-
cular view. However, there might be a more suitable
format for storing this parameter that suits more than
one view, which is not the current format of any view
parameter, hence, in this case, all views would need to
define a non-trivial translation function on the abstract
parameter.

The abstract parameters stored in the coordination
space can be grouped into four varieties of coordination
subspaces (see Figure 3), since we describe the visualiza-
tion process in terms of four processes: the enhance
coordination subspace, the mapping coordination sub-
space, the rendering coordination subspace and the
transform coordination subspace. However, in many
situations the division between these subspaces is less
rigid and coordination objects may include various
parameters from each of the coordination subspaces.

Events In this model, abstract parameters held in
coordination objects are changed by events. Events can
be generated by explicit user actions or automatically, by
for example continuous analysis of the input data. Some
user actions, such as selection with a mouse, are
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Figure 3 Coordination model for exploratory visualization showing subspaces.
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connected to a particular view, whereas others, such as
keystrokes for altering parameters, are not.

Events modify abstract parameters, so they must be
aware of the nature of the format and extent of the
abstract parameters in the coordination objects. Where
events are generated in particular views, the event-
generating view will only be updated in the course of
the event-notify cycle along with the other views.

As events associated with views are usually indirect in
any case, and typically the cycle defined in this model is
fairly immediate, this system seems an elegant manner of
allowing multiple events, generated by any view linked
to the coordination object, to modify the abstract
parameters.

While in this model we do not consider the time lag to
be significant between the occurrence of the event and
the notification event, this model should be adaptable to
more critical real time visualization applications where
large numbers of multiple events are occurring.

There may be many events associated with a particular
coordination object, so allowing the modeling of various
types of coordination. A simple master–slave relation-
ship, where all the actions are in one view and which
simply reflected in other linked views might have only
one event inputting into the coordination object, from
the master view. On the other hand, where the coordina-
tion allows input from any or all of a group of similar
views, the number of events may be at least the number
of linked views.

Translation and notification functions A translation
function takes the abstract parameters in the
coordination object and converts them to view
parameters, which are used in the visualization process
to produce the final image. Each view registered with the
coordination object has one such function. The result of
the translation function at the view level is the
replacement of current view parameters affecting the
operations in the dataflow pipeline. Often a translation
function might affect only one operation, but it is
perfectly valid for the function to coincidentally affect
all of enhance, map, render and transform. The view
integrator might define the translation function. It is also
possible for a set of default registration methods to link a
coordination object inside the coordination space to a
certain class of views, which would then define a render
group. The coordination object designer would define
these defaults.

As well as defining a translation function, a linked view
must be registered to receive notify events when the
coordination object has changed, signifying that the
view’s image needs to be updated. As there may be
concurrent coordination objects defined over one view
parameter, the notify indicates which coordination
object has changed, and so which translation function
must be accessed. The view must define a notify handler
that is triggered by the notify event. At its simplest the
notify handler merely forces a regeneration of the image

by resending the current data through the dataflow
pipeline. Where temporal issues exist, for example with
time consuming visualizations, so that perhaps several
notify events occur during the production of one view,
then the notify handler in the view must include a
scheduling algorithm to deal with the queue that
develops in the best way for that particular view, deciding
whether to restart the visualization process or discard
some notify events.

Other elements in the coordination object As mentioned
above, it may be desirable to include some notion of
default registration for a render group of views so that a
plug and play approach to linking views to the
coordination object is possible. There are other possible
components in sophisticated coordination objects. It
may be possible to place constraints on both the type
and number of views that can connect to an object. For
instance, if one view wants to register to coordinate with
another specific view over a particular coordination
object, a constraint can be added to that coordination
object as to only give those views permission for access
and change. A further constraint on linking views might
be related to its lifetime, so restricting linking to limited
periods, or timing out views after a certain amount of
time.

Discussion
Our model fits well with current visualization systems
that implement coordination. For instance, Amira is a
modular- and object-oriented software system for scien-
tific visualization. It allows the simultaneous display of
multiple data sets in different views or in a common view.
Amira’s components are modules and data objects, each
of which has a set of parameters, which can be modified
using a parameter editor in an interaction area of the
application. Views are coordinated if they share some
parameters displayed to the user in the object pool view.
The user specifies which views to coordinate.

Similarly, IRIS Explorer users interactively create their
application by linking modules; each module has some
associated set of parameters, which describe its behavior.
The control panel editor creates, modifies and links
module control panels, and a parameter function editor
creates relationships between parameters in linked mod-
ules.26 The parameter value in the downstream module is
then expressed as a function (P-Func) of the upstream
parameter values (the translation function in our model).

Many visualization systems, such as IRIS Explorer, AVS
and Amira provide capabilities for user-oriented design;
users could choose modules, edit parameters and link
components. This facilitates coordination design. We
note that these systems use the dataflow model to build
applications for scientific visualization.

Abstract example using the model
Using the abstract example in Figure 4, we illustrate our
model using visualizations of geographical map data. The
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event handled by the Selection coordination object is
that of the user selecting a rectangular area of a map, an
event that could be generated by any of the views. The
effect in V1 is to filter the data to show only the selected
rectangle whereas V2 changes the color map to highlight
particular objects, such as road junctions inside the
rectangle. The result in V3 is to modify the rendering
inside the rectangle, increasing the level of detail to show
smaller roads. Finally, the consequence for V4 is to
perform a combination of all these actions, cropping
the data, highlighting certain objects and increasing the
level of detail by altering the rendering.

Furthermore, f1 is a simple identity function, as the
Selection object holds parameters indicating which area
of the map to crop, which is the information required by
the Enhance flow of V1. f2 is slightly more complex, as it
is alters part of the color mapping, so this function
indicates that a subsection of the color map will be
replaced by the mapping indicating selection. f3 will pass
the selection area to the renderer of V3, with a flag
indicating the desired level of detail. f4 combines all the
effects of f1, f2 and f3 in V4. We can describe this form of
complex coordination using the dataflow paradigm,
where coordinations are described by the parts of EMRT
(Enhance, Map, Render and Transform) composition
affected. The type of coordination in Figure 4 is then
E,M,R,EMR as E1 is affected by f1, M2 is affected by f2, R3 is
affected by f3 an all of E4M4R4 are affected by f4.

Model implementation
We have developed a concrete prototype that implements
our model of coordinated views. The result is a system

called CViews (see Figure 5). Here, CViews is applied to
visualizing the SUSANNE. SUSANNE was created as a
taxonomy and annotation scheme of the English gram-
mar.27

A corpus is a body of linguistic data, typically some
hundred million words. New data are continuously
acquired. Analysts often want to extract qualitative as
well as quantitative information from this pure text data.
Some typical tasks would be to generate frequency lists,
concordances, collocations, keyword search and gram-
matical, gender and social variations. While some
visualization systems exist for corpus data,28 information
extraction is dominated by query-based retrieval techni-
ques. There is much space for further exploratory
visualization research in this area.

This section examines CViews prototype from five
different areas; the program structure, coordination
initialization, view registration, event notification and
program scalability and extendibility.

Program structure
CViews is developed using Java 1.4 and has three main
classes for implementing coordination. They are the View
abstract class, the cObject abstract class and the Link class.
The remaining classes are data or domain specific. In this
case, they are closely related to SUSANNE data files (see
Figure 6).

First, the View class implements the common features
of views. Currently, there are three types of views that
extend this class: tabularView, textView and concordance-
View. The tabularView displays SUSANNE’s raw data in a
tabular format. The textView class constructs the original
text from SUSANNE’s tags and annotation scheme.
Finally, the concordanceView displays occurrences of a
user selected word as it appears in multiple contexts.

Second, the cObject class implements the coordination
objects described in our model (see section on Coordina-
tion space). For each coordination such as brushing there
exists one cObject instance. This class is responsible for
setting the parameters of each coordination object and
for notifying system views of any change to these objects.
As it stands now, CViews supports only one type of
coordination object: brush.

Third, the Link class is responsible for initialization of
coordinations and registration of views.

Coordination initialization
We create a coordination initialization table which
defines default coordinations between View instances
and coordination objects. For example, a coordination
which links a number of views has this general entry form

C : ððView1;Event1Þ; ðView2;Event2Þ; . . . Þ ! cObject

For brushing coordination, the default entry is

b : ððV1; selectÞ; ðV2; selectÞ; ðV3; selectÞÞ ! brush

where V1, V2 and V3 correspond to instances of tabular-
View, textView and concordanceView classes.
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Data 1 AVO 1 Data 1 E 1 M 1 R 1 
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Image1V 1 

Data 2 AVO 2 Data 2 E 2 M 2 R 2 
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Image2V 2 
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Figure 4 Schematic showing selection coordination.
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Note that the order of the tuple components is not
significant. Moreover, the initialization table does not take
in consideration the detail of how events are implemented

at each view level. For instance, the select event is
implemented by highlighting the chosen text in the tabular
view, and in the other two views by underlying the text.

Figure 5 CViews system showing three coordinated views.
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Figure 6 CViews UML diagram.
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View registration
All views of our prototype system need to register if they
are to play a role in any form of coordination. Registra-
tion is dynamic and involves associating views to
coordination objects. In particular, a user event occurring
in a view is linked to a coordination object cObject. A link
can be defined as follows:

Link : ðView; EventÞ ! cObject

The register method of the Link class creates a cObject
instance using the definition above. We also ensure that
view registrations always meet the specification of the
initialization entry of this coordination object. For
example, in order for a view to register for brushing,
the relevant tuple needs to be in the domain of the brush
coordination entry in the initialization table. If this is the
case, then during exploration the view can change the
brush coordination object using a select event. For a
coordination to be constructed there should be at least
two views registered for the same coordination object.
Brushing data items between the views V1, V2 and V3 is
only possible if we allow the following three definitions
to coexist:

Link1: (V1, select)-brush

Link2: (V2, select)-brush

Link3: (V3, select)-brush

This in effect describes the directionality of our
coordination. In this example, brushing is bidirectional
among views V1, V2 and V3. More generally, this method
of defining link directions allows bidirectional linkage
across more than two views.

During exploration, parameters of one or more co-
ordination objects may be changed. The abstract class
View has abstract method setCObject that sets the
coordination object parameters upon change and update
the view parameters in consequence. Hence, setCObject
contains the translation function (see section on Transla-
tion and notification functions). Whenever a coordina-
tion object is changed, the notifyViews method of the
cObject class is called. This method finds the views
registered for this coordination object and calls the
notifyHandler method of each of the affected views.

Program scalability and extendibility
Currently, there are three types of views supported by our
prototype. However, the implementation can easily scale
to support more views and the coordination space can be
extended to include other coordination types. This is
possible because our coordination space is separated from
view implementations. In addition, new coordination
definitions can be handled by our registration
mechanism.

The scope of our brush coordination object is global
(i.e. it is linked to all registered views for brushing).
However, as we include more objects in the coordination
space, we may want to restrict the scope of some of its
members to certain types of views. Moreover, if a
coordination object is changed all registered views for
this object are updated. This tight coupling could be
made more relaxed later on when we introduce con-
straints on the scope of our view update.

There is a trade off between the formatting of the
parameters of the coordination objects and the transla-
tion function to the corresponding view parameters. This
may become problematic if the translation functions are
expensive. If the number of multiform views in the
system increases this will cause more view updates and
hence bigger computational overhead.

In the current CViews version, the neutral parameter
format of the coordination object ‘brush’ is the same as
the format of the tabularView parameters and so the
translation function for that View is the identity func-
tion. For the textView and concordanceView, their
translation functions take the data in the neutral format
and generate text indexes in their own view format.

Moreover, our layered approach to coordination is
based on the dataflow model. Within this pipeline, the
user can change the visualization parameters that belong
to the E, M, R or T processes. However, in our prototype,
there is no indication of what dataflow process is affected
as a result of which event. Nevertheless, the user can
interactively change the Enhance visualization para-
meters and some of the Transform parameters. The
mapping and rendering parameters cannot be changed
at the current version of CViews. Hence, coordination is
still limited to visual correlation.

Furthermore, the mapping between the (event, view)
space into the coordination type space is performed
statically during the initialization stage (see Coordination
initialization). Later on, when constraints are introduced
to our system, users will be allowed to change those
mappings interactively. Hence, a coordination manager
will be added to CViews. It will serve as a visual
representation of user exploration and coordination.
Conclusions may be drawn from this subsystem to
establish new types of coordination based on frequency
of associated tasks performed in the multiple views.

Future work and conclusions
Coordination as described by this paper is the mechanism
through which views interact together to achieve purpo-
seful goals that could not otherwise be achieved effi-
ciently by these individual views working
uncooperatively. In this paper, we have detailed a model
for describing how coordination objects in multiple view
exploratory visualization are built from simple user
interactions. Our model borrows ideas from recent
research in visualization and other disciplines. It handles
any combination of data sets and any number of linked
views as it is based on sharing objects (parameters) that
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control the rendered view and not the sharing of the data
that is being visualized. Indeed, a view parameter can be
part of more than one coordination object.

The issues involved in coordinating different data sets
and visualization methods are dealt with at the transla-
tion function stage, where abstract parameters are
converted to meaningful parameters in each view.
Interactions are variations on the basic visualization
functions: Enhance, Map, Render and Transform. If a
view interaction is to play a role in coordination, it
changes the coordination space, which is then reflected
upon the linked views that use that coordination object.
We notify all linked views upon change. Hence, we use
the eager notify mechanism for our model and imple-
mentation. However, we do not allow channels for
storage and we are not concerned with establishing a
protocol for notification.

Our future work includes extending the CViews
prototype system to include more views, more coordina-
tions and constraints in the coordination space. For
example, semantic brushing is an obvious extension to
our coordination space because it provides the corpus
analyst with not only the exact occurrences of a selected
word in multiple contexts but also the occurrences of a
similar word in various contexts, where similar means
concepts such as synonym and antonym.

Moreover, more sophisticated features could be intro-
duced. We could have default coordinations based on
system or user settings. Furthermore, we can have

recommended types of coordination if the system learns
about user interactions, goals and existing coordinations.

More research is required in the area of coordination
design to provide rules and guidelines. In addition,
comparative studies regarding users’ ability to work with
independent views compared to working with coopera-
tive multiple views are still underinvestigated. For
example, how many coordinated events can one user
keep track of during visual exploration? (some work has
been done, such as by North and Shneiderman29).
Moreover, further research is required in the area of
multitasking for multiple view exploratory visualization.

The nature of coordinated multiple views is a necessa-
rily vague concept and open to interpretation, hence we
cannot claim that our model encapsulates all forms of
coordination in this application area. However, we feel
that the model covers more concepts than previous
attempts, and we have not yet found a counter example
of coordination in multiple views that our model cannot
capture.
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