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The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone
protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle.
In this study we assessed genotype-phenotype associations between four single nucleotide poly-
morphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of
performance traits related to milk production, animal growth and body size, fertility and progeny
survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909
and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2=0.995), were associated
with milk yield (Pf0.01) and milk protein yield (Pf0.05); the rs42196901 SNP was also
associated (Pf0.05) with milk fat yield. Associations (Pf0.05) with milk fat percentage and milk
protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively.
The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass con-
formation (Pf0.05), while an association (Pf0.01) with progeny carcass weight was observed at
the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and
progeny survival. These findings support previous work which suggests that the IGF2 locus is an
important biological regulator of milk production in dairy cattle and add to an accumulating
body of research showing that imprinted genes influence many complex performance traits in cattle.
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Genetic studies have shown that the paternally inherited
and maternally inherited genomes in eutherian mammals
are not functionally equivalent. This is most aptly illus-
trated by genetic (or ‘genomic’) imprinting, a form
of epigenetic regulation that results in the preferential
expression of an allele from one of the two parentally
inherited chromosomes in a parent-of-origin manner
(McGrath & Solter, 1984; Surani et al. 1984). To date,
nearly 100 imprinted mammalian genes have been ident-
ified, many of which play important roles in fetal growth
and development (Bartolomei, 2009; Feil, 2009).

The insulin-like growth factor 2 gene (IGF2), which
encodes a fetal mitogenic protein (IGF-II) structurally re-
lated to insulin (O’Dell & Day, 1998), has been the most
extensively studied imprinted mammalian gene owing to
its pivotal role in the regulation of embryonic development
and relationship to disease (Reik et al. 2000; Rodriguez
et al. 2007). In mammals, IGF2 is expressed preferentially
from the paternally inherited allele in most embryonic
tissues and forms a conserved imprinted gene cluster with
the reciprocally imprinted, non-protein coding H19 gene,
which is highly expressed in embryonic and fetal tissue
but whose function remains unclear (Bartolomei et al.
1991; Rachmilewitz et al. 1992; Giannoukakis et al. 1993;*For correspondence; e-mail : david.magee@ucd.ie
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Feil et al. 1998; McLaren & Montgomery, 1999; Dindot
et al. 2004a; Dindot et al. 2004b; Zhang et al. 2004; Li
et al. 2008). The detection of biallelic IGF2 expression in
certain mammalian post-natal and adult tissues, however,
does suggest that monoallelic expression of this gene is
both tissue- and developmental-stage specific (Dindot et al.
2004b; Curchoe et al. 2005; Goodall & Schmutz, 2007;
Chao & D’Amore, 2008; Li et al. 2008).

The majority of studies involving IGF2 have focused on
mouse models and human biomedical disorders (Chao &
D’Amore, 2008); however, there is growing interest in the
role of IGF2 in domestic livestock. For example, DNA
sequence polymorphisms within IGF2 have been shown
to contribute to variation in complex production traits,
notably muscle mass and fat deposition in pigs (Jeon et al.
1999; Nezer et al. 1999; Nezer et al. 2002; Van Laere
et al. 2003). Since these early studies, a range of SNPs
distributed across the porcine IGF2 gene have been shown
to be associated with carcass traits, meat production,
body size, fertility and survival traits in pigs (Vykoukalova
et al. 2006; Stinckens et al. 2007; Heuven et al. 2009;
Oczkowicz et al. 2009; Hou et al. 2010; Stinckens et al.
2010).

According to the Ensembl database (http://www.
ensembl.org), the current fully annotated bovine IGF2 gene
is located at the telomeric end of chromosome 29 (BTA29)
and consists of five exons, the first two of which are
untranslated (Ensembl gene ID ENSBTAG00000013066;
Ensembl transcript ID ENSBTAT00000017372). Two alter-
native RNA transcripts have also been reported from this
gene (Ensembl transcript IDs ENSBTAT00000044139 and
ENSBTAT00000044140). Recently, there have been a
number of publications detailing associations between
DNA sequence polymorphisms in the bovine IGF2 gene
and meat and milk production traits in beef and dairy
cattle, respectively (Flisikowski et al. 2007; Goodall &
Schmutz, 2007; Sherman et al. 2008; Bagnicka et al.
2010), hence we hypothesized that DNA sequence poly-
morphisms within this gene may also be associated with
performance traits within a population of progeny-tested
Irish Holstein-Friesian artificial insemination (AI) sires.

Previously, we validated 15 SNPs in the bovine IGF2
gene (Magee et al. 2010). In the present study, we in-
vestigated genotype-phenotype associations between four
of these SNPs distributed across a y31 kilobase (kb) re-
gion of Bos taurus chromosome 29 (BTA29) encompassing
the bovine IGF2 gene and genetic merit for a range of
performance traits in 848 Irish Holstein-Friesian AI sires,
estimated from progeny performance.

Materials and Methods

SNP validation

The methods used to validate DNA sequence polymorph-
isms within, or proximal to, the bovine IGF2 gene have
been discussed in detail elsewhere (Magee et al. 2010).

Briefly, high-fidelity polymerase chain reaction (PCR) am-
plicons spanning putative IGF2-associated SNPs on BTA29
(as per build BTAU_4.0 of the bovine genome in the
Ensembl database: http://www.ensembl.org) were gener-
ated for a panel of 26 animals of wide geographic prov-
enance and sequenced bi-directionally (Macrogen Inc.,
Seoul, Korea). The MEGA 4.0 software package (Tamura
et al. 2007) was used to analyse all resulting DNA
sequences, validate the SNPs reported in Ensembl and
identify novel SNPs in the re-sequenced regions.

In the current study, four validated SNPs distributed
across a 30 827 base pair (bp) region spanning the bovine
IGF2 gene (Ensembl gene ID ENSBTAG00000013066)
were selected for high-throughput genotyping: rs42196909,
IGF2.g-3815A>G, rs42194733 and rs42196901 (Table 1).
These SNPs were selected as they are distributed across
the full length of the annotated bovine IGF2 gene and
displayed minor allele frequencies (MAF) o0.18 in a
panel of 138 European B. taurus animals screened pre-
viously by us (Magee et al. 2010). Based on the current
annotation of the bovine IGF2 gene in the Ensembl data-
base, two SNPs were located upstream of the IGF2 gene
(rs42196909 and IGF2.g-3815A>G), one SNP (rs42194733)
was located in an intron between the 2nd and 3rd exon of
the IGF2 gene, and one SNP (rs42196901) was located
downstream of the IGF2 gene. All SNPs represented tran-
sitions.

It is important to note that the IGF2.g-3815A>G is not
currently deposited within the dbSNP database (http://
www.ncbi.nih.gov/projects/SNP); however, this SNP has
previously been reported by us (Magee et al. 2010), where
it was listed as SNP IGF2_08. In the current study we have
recoded this SNP using the guidelines of the Human
Genome Variation Society (http://www.hgvs.org). This SNP
was named by first listing the nearest gene (i.e. IGF2) fol-
lowed by ‘.g ’ to denote genomic DNA, ‘-3815 ’ to denote
the position of this SNP relative to the transcriptional start
site (i.e. 3815 bp upstream of the IGF2 gene based on
Ensembl transcript ID ENSBTAT00000017372) and finally
‘A>G ’ to denote the alleles present at this locus.

DNA samples, DNA extraction, high-throughput SNP
genotyping and SNP data filtering

Genomic DNA from 914 Irish Holstein-Friesian AI bulls
was purified using a MaxwellTM 16 automated apparatus
(Promega Corp., Madison WI, USA) according to the
manufacturer’s instructions. These bulls have been used to
produce progeny in Ireland and are representative of the
commercial germplasm used in Irish dairy herds in recent
years. All four IGF2 SNPs were genotyped in all 914 sires
(together with an additional 25 independently extracted,
duplicate samples that were included for genotype quality
control purposes) using the MassARRAY� iPLEXTM Gold
genotyping platform provided by Sequenom Inc. (San Diego
CA, USA; http//:www.sequenom.com). This SNP geno-
typing method discriminates between SNP alleles using

2 EW Berkowicz and others



single base primer extension technology after which
primer extension products are analysed using matrix-
assisted laser desorption ionization time-of-flight (MALDI-
TOF) mass spectroscopy (http://www.sequenom.com/iplex).
Following quality control on all genotype data (Waters
et al. 2010) genotypes for 848 bulls remained. The SNP
genotype concordance rate between technical replicate for
these SNPs was 100%.

A range of phenotypic traits were analysed in this study
and were categorized into seven broad categories: (1) milk
production traits (milk yield, fat yield, protein yield, milk
fat and protein percentage); (2) udder health (somatic cell
count, SCC); (3) carcass traits (cow carcass weight, pro-
geny carcass weight, subcutaneous carcass fat level and
carcass conformation score) ; (4) growth and size related
traits in live animals (stature, chest width, body depth,
rump width) ; (5) subjectively assessed subcutaneous fat
level on live animals (angularity and body condition score) ;
(6) calving traits (direct calving difficulty, maternal calving
difficulty, perinatal mortality) ; and (7) fertility and survival
(calving interval and functional survival). Sire predicted
transmitting ability (PTA) was the dependent variable for
all traits with the exception of the milk production traits,
including SCC, which were daughter yield deviations
(DYDs) expressed on a PTA scale.

Models used in genetic evaluations in Ireland, as well as
variance components, have been previously described in
detail by Berry et al. (2009) and summarized by Waters
et al. (2010). All PTAs were de-regressed using the pro-
cedure outlined by Berry et al. (2009). Only sires with a
reliability score, less parental contribution, of >60% were
retained for inclusion in the association analysis. A total of
742 sires fulfilled this criterion for inclusion in the analysis

of milk, fat and protein yield as well as milk fat and protein
concentration and the number of sires included for calving
interval and survival was 501 and 477, respectively. The
numbers of sires for direct calving difficulty, maternal
calving difficulty, and perinatal mortality were 575, 506
and 201, respectively. The number of sires with a re-
liability of >60% for the carcass traits was 446 and the
number of sires with a reliability of >60% for the size
linear type traits varied from 484 to 551.

The association between each SNP and performance
was quantified using weighted mixed linear models in
ASReml (Gilmour et al. 2009), with individual included
as a random effect, and average expected relationships
among individuals accounted for through the numerator
relationship matrix. Year of birth (divided into five-yearly
intervals) and percent Holstein of the individual sire were
included as fixed effects in the model. In all instances
the dependent variable was de-regressed PTA or DYD,
weighted by their respective reliability, less the parental
contribution. Genotype was included in the analysis as a
continuous variable coded as the number of copies of a
given allele. The Haploview package (Barrett et al. 2005)
was used to measure r2 and D’ values of linkage dis-
equilibrium (LD) between pair-wise combinations of seg-
regating SNPs (Lewontin, 1964; Hill & Robertson, 1968).

Results and Discussion

Summary statistics for the four analysed IGF2 locus SNPs

Summary statistics, including genotype and allele fre-
quencies together with deviations from Hardy-Weinberg
equilibrium (HWE), for each of the four genotyped IGF2

Table 1 Summary statistics for the IGF2-associated SNPs analysed across 848 Holstein-Friesian sires analysed in this study†

SNP ID

Location of
SNP relative
to the bovine
IGF2 gene

SNP location
on BTA29 Genotypes

Genotype
frequencies

Minor
allele
frequency

Deviations
from HWE
(P value)

rs421969091 Upstream 51 250 879 GG 0.40 0.38 (A) 0.28
AG 0.45
AA 0.15

IGF2.g-3815A>G‡ Upstream 51 254 122 GG 0.40 0.38 (A) 0.28
AG 0.45
AA 0.15

rs42194733· Intronic 51 263 683 CC 0.55 0.26 (T) 0.06
CT 0.37
TT 0.08

rs42196901· Downstream 51 281 706 AA 0.79 0.12 (G) 0.02
GA 0.19
GG 0.02

† Genotype and allele frequencies, and the significance of deviations from Hardy-Weinberg equilibrium (HWE) based on P-values obtained from x2-test

results are shown for all four IGF2-associated SNPs. All SNP nucleotide positions (on BTA29) were obtained from the Build 4.0 of the B. taurus genome

sequence on the Ensembl database (http://www.ensembl.org, release 58, as per Ensembl gene ID ENSBTAG00000013066) or the UCSC genome browser

(http://genome.ucsc.edu). All SNPs genotyped are located on BTA29. The open reading frame (ORF) gene model positions for each SNP are given
‡ Details of the SNP nomenclature used is given in the Materials and Methods section of the manuscript

· The dbSNP accession for the analysed SNP
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SNPs are presented in Table 1 and the location of all
four SNPs is depicted graphically in Fig. 1. Minor allele
frequencies (MAF) for all analysed loci were o0.12.
Observed heterozygosity (i.e. the proportion of hetero-
zygous individuals within the analysed sire population)
ranged from 0.19 (rs42196901) to 0.45 (rs42196909 and
IGF2.g-3815A>G) with a mean observed heterozygosity
of 0.37 across all four loci. Only one SNP (rs42196901)
exhibited a significant deviation from HWE (P=0.02). This
was due to an observed excess of homozygous individuals
for the ‘C’ allele (observed proportion of C/C indi-
viduals=0.021; expected proportion=0.013) and may be
explained by random sampling.

Inspection of the r2 values of LD for all pairwise SNP
combinations (Table 2) demonstrated that the rs42196909
and IGF2.g-3815A>G SNPs, which are separated by a
total of 3243 bp, were in strong LD (r2=0.995), suggesting
that they represent an IGF2 haplotype. This is further sup-
ported by the identical allele and genotype frequencies
observed at these markers (Table 1). All remaining
pairwise SNP combinations displayed r2 values f0.230
suggesting the existence of discrete haplotype blocks
within the 30.8 kb genomic region analysed. LD statistics
for each pairwise SNP combination are presented in Table 2.

Associations with carcass and body conformation traits

Significant phenotype-genotype associations for all SNPs
analysed are detailed in Table 3. In the current study, one
of the four bovine SNPs (rs42194733) within the bovine
IGF2 locus was significantly associated (P<0.01) with
progeny carcass weight: a T-to-C allele substitution at this
intronic SNP was associated with gain in progeny carcass
weight. The rs42194733 was not associated with any of

the other performance traits analysed in this study. In
addition, the two SNPs located upstream of the bovine
IGF2 gene (rs42196909 and IGF2.g-3815A>G), both of
which were in strong LD, were associated (Pf0.05) with
overall carcass conformation—a visually assessed measure
of animal muscularity (Butterfield, 1988). Both the G-to-A
substitutions at the rs42196909 and IGF2.g-3815A>G loci
were associated (Pf0.05) with small increases in progeny
carcass conformation, which are indicative of increased
muscle mass. With the exception of these associations,
none of the four assayed SNPs were associated with any of
the other carcass, body conformation and body size traits
analysed (listed in the Materials and Methods section).
Also, although a recent study reported associations be-
tween SNPs within the porcine IGF2 gene and prolificacy
and longevity in pigs (Stinckens et al. 2010), no associ-
ations with fertility or survival were observed here.

These observations suggest that the bovine IGF2 locus
may harbour a QTL for muscle mass in cattle, an assertion
which is supported by previous animal genetic studies.

Fig. 1. Location of the four bovine IGF2-associated SNPs analysed in this study based on ORF model for the annotated IGF2 gene
transcript (Ensembl transcript ID ENSBTAT00000017372; BTA29) as per Ensembl release 58 of the B. taurus genome.

Table 2. Pairwise SNP linkage disequilibrium (LD) statistics for
the four IGF2-associated SNPs analysed in this study

SNP 1 SNP 1

Distance
between
SNPs
in bp r2 D’

rs42196909 IGF2.g-3815A>G 3243 0.995 1.000
rs42196909 rs42194733 12 804 0.229 1.000
rs42196909 rs42196901 30 827 0.115 0.719
IGF2.g-3815A>G rs42194733 9561 0.230 1.000
IGF2.g-3815A>G rs42196901 27 584 0.116 0.731
rs42194733 rs42196901 18 023 0.027 0.737

4 EW Berkowicz and others



QTL mapping studies in cattle initially identified BTA29—
the chromosome to which the bovine IGF2 locus maps—
as containing a QTL influencing muscle mass in cattle
(Casas et al. 2003). More recently, genetic studies have
revealed association between a single IGF2 C-to-T SNP
[designated IGF2c.-292C>T (Goodall & Schmutz, 2003)]
and meat traits (including rib eye area and body fat con-
tent) and body weight in beef cattle (Goodall & Schmutz,
2007; Sherman et al. 2008). Also, Schmutz & Goodall
(2005) reported that the C allele of this SNP was associated
with lighter birth weight, while Sherman et al. (2008) have
reported that Aberdeen Angus animals with the TT geno-
type for this marker displayed increased average daily
weight gain.

Studies in pigs have also shown that DNA sequence
variation in the porcine IGF2 gene directly contributes to
growth and carcass traits. Notably, a single G-to-A substi-
tution within a regulatory region of the 3rd intron of the
IGF2 gene (termed ‘ IGF2 intron3 g.3072G>A ’) which is
directly responsible for a QTL influencing muscle mass
and fat deposition in pigs; this SNP has since been classi-
fied as a quantitative trait nucleotide [QTN] (Van Laere
et al. 2003). It is considered likely that the ‘A’ allele pre-
vents binding of a transcriptional repressor protein to the
IGF2 gene; hence individuals inheriting a sire-derived ‘A’
allele at this locus display increased muscle growth and
a corresponding reduction in body fat due to increased
expression of padumnal IGF2 mRNA (Van Laere et al.
2003; Stinckens et al. 2007). Other studies have demon-
strated similar phenotypic effects attributable to this QTN
in other pig populations (Jungerius et al. 2004; Estellé et al.
2005; Stinckens et al. 2007).

The observed phenotypic associations between DNA
sequence polymorphisms within the IGF2 locus and
animal carcass and growth traits, as reported in the current
study and elsewhere, are not surprising as it encodes
an important fetal mitogen (DeChiara et al. 1991;
Giannoukakis et al. 1993). While functional genetic

studies have identified a causal mutation for muscle mass
and fat deposition in pigs (Van Laere et al. 2003), no such
causal mutations have yet been identified within the
orthologous IGF2 locus in cattle. It has been proposed that
the observed associations between the IGF2c.-292C>T
SNP and muscle mass and fat content could be due to the
location of the SNP in a regulatory region of the IGF2
gene, which may alter the efficiency of IGF2 mRNA
translation and stability (Goodall & Schmutz, 2007).
Initially, this SNP was reported within the untranslated
exon 2 of the bovine IGF2 gene (Goodall & Schmutz,
2003; Goodall & Schmutz, 2007); however, inspection of
the currently annotated bovine IGF2 gene in the Ensembl
database (Ensembl gene ID ENSBTAG00000013066;
Ensembl release 58 of the B. taurus genome) locates
the IGF2c.-292C>T SNP 54 bp before the start of the
5k UTR of the IGF2 gene (Ensembl transcript ID
ENSBTAT00000017372). As per Build 4.0 of the B. taurus
genome (Ensembl release 58), the IGF2c.-292C>T SNP is
located at nucleotide position 51 257 871 on BTA29
and has not yet been deposited within the bovine dbSNP
database (http://www.ncbi.nih.gov/projects/SNP). Despite
the relocation of this SNP from an untranslated exon
sequence to 54 bp upstream of the gene, it is possible
that this polymorphism influences, or is linked to a poly-
morphism that regulates IGF2 expression, thereby ac-
counting for the observed associations with bovine carcass
traits.

Notably, none of the SNPs analysed in this study were
located in amino-acid coding exons of the IGF2 gene or
within untranslated IGF2 exonic sequences. Indeed, only
one SNP [(rs42194733 ; located in IGF2 intron 2 based
on the annotation of the bovine IGF2 gene (Ensembl ID
ENSBTAG00000013066)] was located within the IGF2
gene region; all other SNPs were located upstream or
downstream of the gene. As with the intronic IGF2 QTN
described in pigs by Van Laere et al. (2003), it is possible
that the intronic rs42194733 SNP has a similar function

Table 3 Significant allele substitution effects between the four IGF2 SNPs and milk traits and carcass traits. SE for each trait is shown
in parentheses.

SNP
Allele
substitution

Milk yield,
kg/lactation

Milk protein
yield,
kg/lactation

Milk fat
yield,
kg/lactation

Milk fat
percentage‡
(r10)

Milk protein
percentage‡
(r10)

Carcass
weight (kg)

Carcass
conformation·
[scale 1 (low)
to 15 (high)]

rs42196909 ApG 28.40** 0.63* 0.42 –0.13† –0.07† –0.37 –0.04*
(9.89) (0.27) (0.35) (0.08) (0.04) (0.49) (0.02)

IGF2.g-3815A>G ApG 30.31** 0.66* 0.51 –0.12† –0.07* –0.45 –0.04*
(9.78) (0.27) (0.35) (0.07) (0.04) (0.48) (0.02)

rs42194733 CpT 11.59 0.31 0.25 –0.06 –0.02 –1.39** –0.03
(10.39) (0.29) (0.37) (0.08) (0.04) (0.52) (0.02)

rs42196901 GpA 1.91 –0.45 –1.03* –0.21* 0.09† 0.76 0.04
(14.29) (0.40) (0.50) (0.11) 0.05 (0.68) (0.03)

‡ A value of 1 prior to multiplication by 1000 equates to 1 percentage unit

· See Materials and Methods for details

Significance of difference from zero: †Pf0.10; *Pf0.05; **Pf0.01
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in regulating IGF2 expression, possibly through inter-
ference with repressor proteins; however, functional genetic
studies are required to confirm this. It is more plausible,
however, that this SNP is itself associated with a regulatory
SNP (or set of SNPs) located proximal to, or within the
IGF2 locus.

Associations with milk performance traits

In the current study, significant associations between
all four assayed SNPs and milk performance traits were
detected (Table 3). The A to G allele substitution at the
IGF2.g-3815A>G SNP was positively associated with both
milk yield and milk protein yield, and was negatively as-
sociated with milk protein percentage. A tendency to be
associated (Pf0.10) with milk fat percentage was also
evident at this locus; however, this SNP did not display
any association with milk fat yield. Similar phenotypic
associations with milk yield were also observed at the
rs42196909 locus, where an A-to-G substitution was as-
sociated (Pf0.05) with improved milk yield and milk
protein yield and tended to be associated (Pf0.10) with
reduced milk protein percentage. Again, the similar pheno-
typic associations support the existence of an upstream
IGF2 haplotype incorporating both the IGF2.g-3815A>G
and rs42196909 SNP loci. Finally, the A-to-G allele sub-
stitution at the rs42196901 SNP, located downstream of
the IGF2 gene, was the only SNP associated (Pf0.05) with
increases in milk fat yield and milk fat percentage. A
tendency to be associated (Pf0.10) with increased milk
protein percentage was also observed for this marker;
however, this SNP was not associated with milk yield or
milk protein yield.

Recently there have been a number of publications
indicating that the bovine IGF2 locus may also harbour
a QTL for milk production traits. Ashwell et al. (2004)
detected a QTL associated with milk production traits
on BTA29; however, this QTL was localized to the
centromeric region of BTA29, whereas IGF2 maps to the
telomeric region of this chromosome. More recently,
Flisikowski et al. (2007) observed associations between an
insertion/deletion polymorphism in the non-translated
exon 6 of the bovine IGF2 gene and estimated breeding
values (EBV) for milk yield, milk fat yield and milk protein
yield in Holstein-Friesian bulls. Furthermore, associations
with milk traits including milk yield and milk constituents
have been reported at haplotypes constructed from the
C-to-T SNP located at position 51 257 871 and a G-to-T
non-amino acid changing substitution in the translated
exon 10 of the IGF2 gene (nucleotide position 51 273 733
on BTA29) in Polish Holstein-Friesian cows (Bagnicka et al.
2010).

The open reading frame gene model location of the
SNPs analysed here (two upstream, one intronic and
one downstream) does not immediately suggest that these
polymorphisms are functional. Instead, our results suggest
that these IGF2 SNPs are associated with a causal

regulatory mutation (or set of mutations) located proximal
to, or within the IGF2 locus that has not yet been ident-
ified. It is noteworthy that previous studies have implicated
IGF2 as playing a role in mammary gland development.
For example, local infusion of the IGF-II protein has been
shown to increase milk production in goats (Prosser et al.
1994) while studies in mice have shown that locally
secreted IGF-II mediates the effect of prolactin on mam-
mary gland development (Hovey et al. 2003). Another
possible candidate gene harbouring a QTL for milk pro-
duction on BTA29 is the insulin (INS) gene, which encodes
the insulin hormone peptide and is located y9.3 kb up-
stream of the bovine IGF2 gene. It is possible that the ob-
served associations reported here between SNPs within the
IGF2 locus may in fact be due to strong LD between the
SNPs described here and unidentified functional poly-
morphisms associated with the INS gene. This hypothesis
is supported by the role of the insulin protein in mediating
mammalian gland development and lactation in dairy
cattle (Akers, 2006).

Conclusion

The identification of DNA sequence variations associated
with body composition and milk performance traits make
the imprinted bovine IGF2 gene an attractive target for
future dairy cattle breeding programmes. The detection of
association between a single genotyped SNP in the current
study and traits related to animal growth also support this
locus as harbouring a potentially important QTN(s) for
beef breeding as observed in other cattle genetic studies
and studies in other domestic species, most notably pigs.
Furthermore, the results presented here add to an ac-
cumulating body of research showing that imprinted genes
contribute to many complex performance traits in cattle
and other livestock species. These findings, together with
the documented biological roles of mammalian imprinted
genes in mediating growth and development suggest that
they represent an important reservoir of molecular markers
for future genetic improvement of dairy and beef cattle
populations.
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