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ABSTRACT22

Groundwater contamination was characterised using a methodology which combines23

shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a24

statistical framework and hydrogeological techniques. Nitrate-N (NO3-N)25

contaminant mass flux was calculated across three control planes (rows of26

piezometers) in six isolated plots. Results showed natural attenuation occurs on site27

although the method does not directly differentiate between dilution and28

denitrification. It was further investigated whether NO3-N concentration in shallow29

groundwater (<5 m below ground level) generated from an agricultural point source30

on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated31

hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance32

Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and33

distance from a dirty water point pollution source. Tobit regression, using a34

background concentration threshold of 2.6 mg NO3-N L-1 showed, when assessed35

individually in a step wise procedure, Ksat was significantly related to groundwater36
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NO3-N concentration. Distance of the point dirty water pollution source becomes37

significant when included with Ksat in the model. The model relationships show areas38

with higher Ksat values have less time for denitrification to occur, whereas lower Ksat39

values allow denitrification to occur. Areas with higher permeability transport greater40

NO3-N fluxes to ground and surface waters. When the distribution of Cl- was41

examined by the model, Ksat and ground elevation had the most explanatory power but42

Ksat was not significant pointing to dilution having an effect. Areas with low NO343

concentration and unaffected Cl- concentration points to denitrification, low NO344

concentration and low Cl- chloride concentration points to dilution and combining45

these findings allows areas of denitrification and dilution to be inferred. The effect of46

denitrification is further supported as mean groundwater NO3-N was significantly47

(P<0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and48

N2 and was close to being significant with N2O (P=0.08). Calculating contaminant49

mass flux across more than one control plane is a useful tool to monitor natural50

attenuation. This tool allows the identification of hot spot areas where intervention51

other than natural attenuation may be needed to protect receptors.52

Keywords: nitrate; shallow groundwater; saturated hydraulic conductivity;53

contaminant mass flux; denitrification; natural attenuation; Ireland; grassland.54
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Delineation of an elevated nitrate (NO3-N) plume in shallow groundwater is difficult62

as NO3-N concentration differences may be prevalent over short distances. As a result63

of high denitrification capacity, NO3-N concentration may be low at the centroid of64

the plume. Contaminated groundwater in aquifers with low hydraulic conductivity65

(Ksat) may represent a long-term threat to groundwater due to long travel times from66

source to receptor. A shallow watertable allows reduction of nitrate through67

denitrification before recharge reaches deeper groundwater (Boland et al., 2002). The68

thickness and permeability of subsoil can control groundwater vulnerability (Lee,69

1999). In such shallow groundwater sites reduction of NO3-N through denitrification70

may provide the basis for remediation. Monitored natural attenuation is a valid71

method in sites with low permeability and high denitrification capacity, leading to a72

low vulnerability status. In such scenarios surface water and not deeper groundwater73

may be a potential receptor for NO3-N pollution.74

75

In spite of efficient nutrient management practices, agricultural activities, such as76

application methods and storage, are probably the most significant anthropogenic77

sources of NO3-N contamination in groundwater (Oyarzun et al., 2007). Current78

agricultural practices (application methods, application rates and storage) while79

achieving high nutrient efficiency and nutrient management cannot avoid some80

nutrient losses to surface and groundwater. Contamination of shallow groundwater81

(<30 m bgl) with NO3-N has been documented in a large number of studies (C. D. A.82

McLay et al., 2001; Harter et al., 2002; Bohlke et al., 2007; Babiker et al., 2004). To83

relate different forms of landuse to different shallow groundwater NO3-N84

concentrations spatially, a variety of statistical techniques, such as multivariate cluster85

analysis (Hussain et al., 2008; Ismail et al., 1995; Yidana et al., 2008), Tobit and86
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logistic regression using mean nutrient data (Gardner and Vogel., 2005; Kaown et al.,87

2007), weights of evidence modelling techniques (Masetti et al., 2008), and ordinary88

kriging methods (Hu et al., 2005), have been used. Other tools, such as regression89

models based on conceptual models, link shallow groundwater NO3-N concentration90

with inventories such as landuse and cattle density (Boumans et al., 2008). Other91

techniques are employed when both spatial and temporal relationships are considered92

such as the vulnerability of an aquifer to nitrate pollution through the use of93

DRASTIC and GLEAMS models (Almasri, 2008; Leone et al., 2007). Spatial and94

temporal correlations of surface and groundwater were described using t-test analysis95

to show that surface and groundwater management should be integrated (Kannel et96

al., 2008). Agri-environmental indicators (AEIs) provide information on97

environmental as well as agronomic performance, which allows them to serve as98

analytical instruments in research and provide thresholds for legislation purposes99

Langeveld et al. (2007) investigated AEIs used in various studies: nitrogen use100

efficiency, nitrogen surplus, groundwater nitrate concentration and residual nitrogen101

soil concentration, to explain nitrogen management. Results indicated an integrated102

approach at an appropriate scale should be tested, not forgetting that indicators are103

simplifications if complex and variable processes.104

105

The land surface around a well which contributes to the water quality at that well may106

be calculated from: aquifer discharge (m3 day-1), aquifer thickness (m) and effective107

Darcian velocity (m day-1). This circular buffer zone contributes direct recharge to a108

specific monitoring point, such as a borehole or piezometer (Kolpin, 1997). The109

circular shape is assumed to be homogenous according to its physical properties. If110

groundwater flow direction is known, any pollution sources down-gradient of the111
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monitoring point may be discounted. The size of the buffer zone is an important112

factor and many studies have used different buffer zone radii: (Eckhardt et al., 1995) -113

800 m; (Kolpin, 1997) - 200 to 2000 m; (Barringer et al., 1990) – 250 m to 1000 m,114

(McLay et al., 2001)- 500 m and (Kaown et al., 2007) – 73 to 223 m. A mean115

diameter is often taken where a large range occurs. In an area with a common landuse116

nutrient management within this area will be an important factor as well as identifying117

potential point sources in this zone.118

119

Both qualitative and quantitative methods need to be applied to investigate120

contaminant concentration patterns and to calculate contaminant mass flux.121

Contaminant flux can prove that natural attenuation occurs on a site but does not122

differentiate between dilution and denitrification. Contaminant mass flux across a123

transect of wells, known as a control plane, has been used to quantify the contaminant124

load leaving a system (Basu et al., 2006; Bockelmann et al., 2001; Bockelmann et al.,125

2003; Brusseau et al., 2007; Campbell et al., 2006; Duncan et al., 2007; Hatfield et al.,126

2004; Kubert et al., 2006). This method allows a quantifiable load of NO3-N leaving a127

system to be calculated, rather than focusing on a point where shallow groundwater128

exceeds target or legislative concentration limits such as 11.3 mg NO3-N l-1.129

130

Traditional source treatment assessment has focused on the pollution source zone,131

partial mass removal and the calculation of the source strength (contaminant mass132

discharge and mass flux). Contaminant plume properties are a combination of source133

strength, assimilative capacity (differential mass discharge with distance along a134

plume) and time. This procedure is based on the assumption that source treatment135

results in a contaminant mass reduction in the source zone. It gives an incomplete136



7

view of potential impacts and there is uncertainty regarding the plume response to137

partial mass removal (source treatment). Risk reduction is, therefore, uncertain and138

the associated costs are difficult to ascertain (Jarsjö et al., 2005). The source strength139

is calculated from groundwater samples, taken at specified time intervals, and the140

water flow velocity calculated for each well. These data are then inputted into141

predictive models and the down-gradient concentration in a sentinel well is predicted.142

The sentinel well is positioned along a compliance plane down-gradient of the control143

plane and up-gradient of a potential receptor. For the calculation of contaminant mass144

flux, a number of screened wells along a control plane, which transect the entire145

contamination plume perpendicular to groundwater flow direction downstream of the146

pollutant source, are used, as opposed to the standard central line cross section parallel147

to groundwater flow direction of the plume (Bockelmann et al., 2003). Longitudinal148

cross sections may over- or underestimate the contaminant mass flux value and this149

method requires a larger number of piezometers. The contaminant mass flux is then150

measured directly from the contaminant flow and concentration in the monitoring151

piezometers. The source strength is interpolated and then inputted into a model for the152

prediction of down-gradient contaminant concentrations. Natural attenuation rates153

(dilution and denitrification) may be achieved by the use of two control planes: a154

control plane to calculate contaminant mass flux (influent) and a compliance plane155

down-gradient (Kao et al., 2001). Flux-averaged concentrations along the compliance156

plane must adhere to specified water quality targets.157

The aim of this study was to investigate the factors contributing to the occurrence of158

elevated NO3-N concentration in shallow groundwater (<10 m) on a section of a beef159

farm in SE Ireland. A statistical framework, combining mean geochemical and160

physical data (saturated hydraulic conductivity (Ksat) measurements, ground elevation161
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(m Above Ordnance Datum), elevation of groundwater sampling (screen opening162

interval) (m AOD) and distance from point pollution source (m)) from a grid of 17163

piezometers over a 2 year period, was used to identify factors affecting the occurrence164

of NO3-N concentration on site.165

The contaminant mass flux entering and leaving the site is also assessed through rows166

of piezometers called control planes to assess the amount of natural attenuation due to167

dilution and denitrification combined on site. To differentiate between dilution and168

denitrification occurrence on site chloride (Cl-) was also inputted into the model and169

NO3/Cl- ratios investigated. Other parameters were sampled on a random date to170

confirm areas indicative of denitrification.171

172

1.1 INTRODUCTION TO THE STUDY SITE173

A 4.2 ha gently sloping (2%) study site, comprising six study plots, was located on a174

beef farm at the Teagasc, Johnstown Castle Environmental Research Centre, Co.175

Wexford, Ireland (Figure 1).176

The field site is bound to the north by an elevated 3.2 ha grassland sandhill area (71-177

75 m above ordnance datum (AOD), slope 5%), to the northwest by a 2.8 ha grassland178

site (71-72 m AOD, slope 2%, and on all other sides by agro-forestry. The dirty water179

point source was located in this sandhill area.180

Possible receptors on site are a narrow contour stream and the larger Kildavin River181

boarding the site (Figure 2). The sandhill and northwest areas are up-gradient and182

hydrologically connected through shallow flow lines to the 4.2 ha study site183

approximately 200 m away. Groundwater head contours show groundwater flow184

direction is towards the six isolated plots (Figure 2).185

186
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Two shallow, unlined trapezoidal drains, excavated to a depth of 1 m, with bases187

ranging from 71.08 m AOD to 70.2 m AOD and 71.10 m AOD to 70.30 m AOD,188

respectively, were constructed along the northern edge of the plots. This prevents189

runoff from entering the plots from the elevated up-gradient area. Runoff from the190

point source flowed directly into these drains. The plots were also isolated laterally to191

1m bgl to prevent cross flows from one plot to the other.192

193

Heterogeneous glacial deposits on the farm vary in thickness from 1-20 m. On site the194

glacial deposits are < 10 m, underlain by Pre-Cambrian greywacke, schist and195

massive schistose quartzites, which have been subjected to low grade metamorphism.196

Outcrop appears just south of the plots and confirms with the shallow nature of the197

glacial deposits.198

This results in a differential Ksat at depth. The topography is morainic and, in the area199

of the point source pollution where the elevation is greater than 71 m AOD, consists200

of both sand and fine loamy till, and has different topographical form and drift201

composition. Some of this sand may have been soliflucted downslope, resulting in202

stratification between sand and underlying fine till. The sandhill is well- to203

excessively drained and consists of deep loamy sands (Figure 2). A sandpit of204

industrial grade sand is in operation in the area.205

Topsoil samples (0 to 0.4 m) contained 22 ± 3.7 % coarse sand, 26 ± 3.6 % fine sand,206

34 ± 5.1 % silt and 18 ± 2 % clay and subsoil samples (0.4 to 1.0 m) contained 18 ±207

5.3 %, 22 ± 4.2 %, 34 ± 4.5 % and 25 ± 4 %, respectively (Diamond, 1988). Clay208

content increases with depth on site as sand decreases. Silt content remains the same.209

Textural changes are not due to pedolocical processes but to small scale sorting of210

glacial till. It is this transition between sand and clay that governs Ksat heterogeneity at211
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depth. Subsoils with a high percentage of fines (clay and silt) are classed as having212

low permeability, poorly sorted subsoils are assigned as having moderate permeability213

and well sorted coarse grained subsoils (glaciofluvial sand and gravel) have high214

permeability (Swartz et al., 1999).215

216

In 2005, the first groundwater samples were taken. (The study site was instrumented217

with piezometers in 2003.) Initially, 30% of all shallow groundwater samples (< 5 m)218

exceeded NO3
_N drinking water quality targets (11.3 mg NO3-N l-1). The present219

model is only applicable to shallow flow lines of the same groundwater age220

connecting the pollution source to the 1 m screen intervals in all 17 piezometers.221

(Fenton et al., 2008) investigated the source of pollution and proposed the use of a222

continuous shallow denitrification trench to intercept contaminated shallow223

groundwater. A stationary beef dirty water irrigation system, operated on the sandhill224

for decades until 2004, and was identified as a pollution point source (Figure 2). This225

small area has been treated uniformly over a long period of time, before and after226

implementation of the irrigation system. Currently, the site is cut for silage twice a227

year and is being used to monitor natural attenuation of the elevated groundwater228

NO3-N plume migration, position and concentration on site.229

230

2. MATERIALS AND METHODS231

2.1 NUTRIENT MANAGEMENT232

A detailed account of organic and inorganic application and silage production on the233

sandhill, northwest and field site was kept for 2006-2007. Nutrient records confirm234

uniform treatment in subsequent years. The nitrogen (N) surplus was calculated for235

each area. These areas are not grazed.236
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237

2.2 MONITORING ON SITE238

Partially penetrating piezometers (n=17) (25 mm LDPE casing; Van Walt Ltd, Surrey,239

U.K.) were installed in a grid to shallow groundwater of multilevel depths using240

rotary drilling (60 mm) (Giddings soil excavation rig, Colorado, USA) to several241

metres below the groundwater table. The average piezometer drilling depth was 3.2 m242

bgl (Table 3), with a 1 m screen at the bottom of each well. The screen was covered243

with a filter sock, surrounded with washed pea gravel, and sealed with bentonite244

above the gravel. Two multi level drilling depths were used, from 63 m to 67 m above245

ordnance datum (AOD), and from 67 m to 70 m AOD, respectively, were drilled.246

247

Drilled holes were back-filled with gravel (3-6 mm diameter) to 0.5 m above the248

screen, sealed with bentonite (1 m-deep), and then backfilled to the land surface to249

avoid contamination. All piezometers were surveyed using GPS (X-Y survey only)250

and the locations of the piezometers were recorded using digital mapping software251

(ArcGISTM 9.1, ESRI, Ireland). The site and monitoring network was then digitised252

using a DGPS antenna, MG-A1 equipment (TOPCON, Ireland) and the site elevations253

were obtained (Z survey). The depth to the water level in each monitoring well was254

measured using an electric water-level indicator (Van Walt Ltd, Surrey, U.K.) and255

groundwater heads were determined using ordnance survey data. Data are described256

using m AOD to allow comparisons of plume position, thus eliminating topographical257

differences.258

259

Surface water features, such as streams, drains and lagoons, were also levelled on the260

same date. The maps were used to construct groundwater maps and elucidate261
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groundwater flow direction. A topographic base map with a field boundary overlay262

was generated using ArcGISTM and merged with well location and groundwater head263

input files. 2-dimensional groundwater data models were generated using GW-264

Contour 1.0 software (Waterloo Hydrogeologic, Canada).265

266

Watertable levels were measured weekly using an electronic dipper (Van Walt Ltd,267

Surrey, U.K.) and groundwater was sampled in duplicate using a Waterra hand-held268

pump (Van Walt Ltd, Surrey, U.K.) Nutrient concentrations were analysed (in269

duplicate) monthly with a Thermo Konelab 20 (Technical Lab Services, Ontario,270

Canada) for nitrite-N (NO2-N), total oxidised N (TON-N), ammonium-N (NH4-N)271

and chloride (Cl-).272

273

2.3 WATER BALANCE274

A water balance of the site was used to calculate the travel time from surface level to275

the watertable in the six isolated plots. Daily weather data, recorded at the Johnstown276

Castle Weather Station, were used to calculate daily soil moisture deficit (SMD) using277

a Hybrid model for Irish grasslands. Potential evapotranspiration, ET0 (mm day-1),278

was calculated using the FAO Penman-Montieth equation (Allen et al., 1998):279

280
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282

where Rn is the net radiation at the crop surface (m-2 day-1), T is the air temperature at283

a 2 m height (ºC), u2 is the wind speed at a 2 m height (m s-1), es and ea are the284

saturation and the actual vapour pressure curves (kPa ºC-1), and γ is the psychrometric285
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constant (kPa ºC-1). ET0 was then converted to actual evapotranspiration (Ae) using an286

Aslyng scale recalibrated for Irish conditions (Schulte et al., 2005). Effective rainfall287

was calculated by subtracting daily actual evapotranspiration from daily rainfall288

(assuming no overland flow losses due to the high infiltration capacity of the soil on289

this site). Higher Ksat zones were found in the topsoil, even in the poorly drained plot.290

SMD on day one (January 1st, 2006 and 2007) was set to zero and effective drainage291

was estimated for each subsequent day. Modelling the effective drainage enables the292

infiltration depth of water to be calculated at specific hydraulic loads where the soil293

effective porosity is known. This infiltration depth may be compared to watertable294

data to investigate if recharge to groundwater in that particular year affects water295

quality.296

297

2.4 HYDRAULIC CONDUCTIVITY DETERMINATION298

Ksat for the open screen area of each piezometer was estimated in slug tests using an299

electronic diver (Eijkelkamp, the Netherlands) set to record heads at 1-sec time300

intervals in each piezometer. The diver measures the initial head of water in the301

piezometer before, during and after the test until full recovery occurs in the302

piezometer. A slug of 1 L of water was placed instantaneously into the piezometer.303

The start time (t0) for the test was noted. Data was downloaded and analysed after304

(Bouwer et al., 1976) method as outlined in (ILRI, 1990) for unconfined aquifers in305

steady-state flow conditions:306
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where rc is radius of the unscreened part of the well where the head is rising, rw is the308

horizontal distance from the well centre to the undisturbed aquifer, Re is the radial309
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distance over which the difference in head, ho, is dissipated in the flow system of the310

aquifer, d is the length of the well screen, ho is the head in the well before the start of311

the test and ht is the head in the well at time t>to.312

313

As the wells on site are partially penetrating, the following equation was used:314
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where b is the distance from the watertable height to the bottom of the well, D is the316

distance from the watertable to the impermeable zone, and A and B are dimensionless317

parameters, which are function of d/rw. If D>>b, the effective upper limit of ln [(D-318

b)/rw] may be set to 6. A spatial Ksat map was developed in ArcGISTM and merged319

with well location and groundwater head input files. b is measured by an electronic320

dipper before commencement of the slug test.321

322

2.4.1 DISCHARGE AND DARCIAN VELOCITY323

The quantity of water discharging from each plot (a known width of aquifer), Q (m 3324

day -1), was determined using (Darcy, 1856):325

dx

dh
AKQ sat (4)326

where A = bw, where b is the aquifer thickness (m), w, the width (m), and dh/dx is the327

hydraulic gradient. w is taken as the combined diameter of the plots.328

329

The average effective Darcian linear velocity, v (m day-1), was calculated from:330

dx

dh

n
Kv sat

1
 (5)331
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where v is equal to Q/A, and n is effective porosity calculated in a previous study by332

(Fenton et al., 2008)333

334

The transmissivity, T (m2 day-1), was calculated using the aquifer thickness, b:335

bKT sat (6)336

337

2.4.2 BUFFER ZONE DIAMETER AND CONTAMINANT MASS FLUX338

A land use circular buffer zone around each piezometer was previously used to339

correlate a landuse area that contributes to groundwater quality (Kaown et al., 2007)340

where the diameter D (m) of the buffer zone in the direction of groundwater flow was341

approximated by:342

bv

Q
D  (7)343

where Q is calculated using equation 4, b is the aquifer thickness as used in equation344

6 and v is calculated using equation 5. The central piezometer in each plot was taken345

as the centre of the buffer area. In areas where groundwater flow direction is known346

the buffer zone method over estimates the groundwater contribution down hydraulic347

gradient, while underestimating the area of contribution up hydraulic gradient, which348

should extend to a groundwater divide. When groundwater flow direction is known349

the buffer zone becomes a true zone of contribution (ZOC). This is then defined as the350

area surrounding the piezometer that encompasses all areas or features that supply351

groundwater recharge to the piezometer up hydraulic gradient to the groundwater352

divide. In this case the groundwater divide is represented by the brow of the sandhill.353

Over a period of time, determined by effective Darcian velocity, groundwater within354

the ZOC will flow past the piezometer monitoring point and thus will affect the355
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hydrochemistry at that point. In this study land use management within the entire356

ZOC, was assessed.357

To evaluate the contaminant mass flux (g m3 day-1) of a dissolved contaminant, the358

mass flux was measured across a control plane (row of piezometers). The total359

contaminant mass flux across a control plane was determined by summing the mass360

flux of the individual cells along this plane. Each cell was assigned a unique depth of361

saturated zone, mean NO3-N concentration, and groundwater-specific discharge362

(calculated using mean Ksat values at each piezometer and mean hydraulic gradient in363

each plot). The total mass flux across the plane was determined by summing the mass364

flux of the individual plots according to (API, 2003):365

iii

ni

i
AqCw 






1
(8)366

where w is total mass flux across a control plane (g m3 day-1), Ci concentration of367

constituent in ith plot (g l-1), qi is specific discharge in ith plot (m day-1) and Ai is area368

of ith plot (m2). Within the plots, three control planes were assigned using the top (3,369

5, 8, 11, 14, 17), middle (2, 7, 10, 13) and bottom (1, 4, 6, 9, 12 and 15 form the370

compliance control plane) piezometers (Figure 2). The contaminant mass flux passing371

through each control plane was calculated and the natural attenuation process372

assessed.373

The overall efficiency of NO3-N attenuation between control planes has been used in374

riparian studies (Orleans et al., 1994; Dhondt et al., 2006) and may be calculated by375

the following equation:376

%100*
IN

OUTIN

N

NN
Efficiency


 (9)377

where NIN is the up-gradient NO3-N contaminant mass flux and NOUT is the down378

gradient contaminant mass flux.379
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380

2.5 TOBIT REGRESSION381

The effects on groundwater NO3-N concentration of Ksat (m day-1), elevation, screen382

opening elevation and distance from pollution source were assessed using a Tobit383

regression model (Tobin, 1958). The NO3-N concentration was left censored using a384

background concentration threshold of 2.6 mg L-1. Model selection was performed385

using a forward selection stepwise procedure. Due to the grid layout of the386

piezometers, residuals could not be assumed to be independent and their spatial387

dependence was modeled using an anisotropic power covariance structure. The388

anisotropic power correlation model depends on two parameters: one that represents389

the correlation between piezometers in the direction of rows and the other that390

represents the correlation in the direction of columns. Models were fitted using the391

MIXED procedure (SAS, 2003). To separate the effect of groundwater NO3-N392

denitrification from dilution, groundwater NO3-N retention is studied by evaluating393

concurrently groundwater NO3-N and Cl- concentration (Altman et al., 1995). To394

investigate the effect of dilution on the study area Cl- was also inputted into the395

model. Cl- is considered a conservative tracer.396

397

2.6 DENITRIFICATION398

Denitrification is considered the most important reaction for NO3
- remediation in399

aquifers. The process of denitrification occurs in O2 depleted layers with available400

electron donors and in agricultural environments with N nutrient losses considerable401

NO3
- reduction is possible. To investigate further if denitrification is a viable pathway402

for NO3
- reduction some additional water quality measurements were taken on a403

random date. Physio-chemical parameters- pH, redox potential (Eh (mV)),404
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conductivity (cond (µS cm-1)), temperature (temp (ºC)) and rugged dissolved oxygen405

(RDO (µg L-1)) were measured in the field using a multi parameter Troll 9500 probe406

(In-situ, Colorado, U.S.A) with a flow through cell.407

To elucidate the locations of potential denitrification during groundwater sampling408

based on dissolved N2 and the N2/Ar ratio, three water samples were taken from each409

piezometer mid way within the screened interval using a 50 ml syringe and gas410

impermeable tubing. Samples were transferred from the syringe to a 12 ml411

Exetainer® (Labco Ltd, UK) and sealed to avoid any air entrapment with a butyl412

rubber septum. Samples were then placed under water in an ice box, transported to413

laboratory and kept in a cold room at 4oC prior to analysis. Dissolved N2, O2 and Ar414

were analyzed using a Membrane Inlet Mass Spectrometry (MIMS) at the temperature415

measured (11oC) during groundwater sampling (Kana et al. 1994). For N2O416

concentration, three additional samples were taken in glass bottles for degassing.417

Eighty ml collected water was injected into a pre-evacuated 160 ml serum bottle418

followed by 80 ml pure helium. The bottles were shaken for 5 minutes and then 15 ml419

equilibrated gas in the headspace was collected using an air-tight syringe and420

transferred into a 12 ml Exetainer for the analysis of dissolved N2O using a gas421

chromatography (GC; Varian 3800, USA) equipped with electron capture detector.422

The concentration of dissolved N2O was calculated by using the Henry’s law constant,423

the concentration of the gas in the head space, the bottle volume, and the temperature424

of the sample but the lowest 14oC was taken due to limitation in gas solubility425

coefficient to calculate Henry’s law constant (Hudson, 2004).426

3 RESULTS427

3.1 NUTRIENT MANAGEMENT428
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In 2006 as in previous years after the point source was removed, the sandhill area, the429

northwest area and the isolated plots received the same N application (Table 1). What430

about previous years e.g. before 2003-2005. Comment here. These areas were cut for431

first cut silage at the end of May and for second cut silage in July but they were not432

grazed by cattle for the duration of this study. Half of the fertiliser N was applied as433

urea in late-February and April and the remaining N was applied in June and August434

as calcium ammonium nitrate (CAN). Loss of N to the environment from urea would435

tend to be atmospheric ammonia (NH3) losses as urea tends to be immobile and is436

retained in the soil by cation exchange capacity (CEC). Whereas N applied as CAN is437

already partially nitrified and would be susceptible to leaching and denitrification.438

439

At a crop uptake rate of 2 kg N ha-1day-1 from March – May, a surplus of440

approximately 75 kg N ha-1 remained after first cut silage. The grass needed441

approximately 80 kg N ha-1 before second cut silage at the end of July. Therefore, no442

N leaching losses would be expected from this surplus. In August 2006, the six443

isolated plots received a higher application of CAN (83.7 kg N ha-1) for the third cut444

silage in early October. The grass requirement for third cut silage matched the445

fertilizer application rate (approximately 90 kg N ha-1).446

447

In June 2007, in addition to fertilizer application (Table 1), the sandhill and northwest448

area received 118 kg N ha-1 as cattle slurry. The sandhill area was N-deficient by449

approximately 24 kg N ha-1 for first cut silage in May. With addition of CAN and450

slurry in June, there was an N-surplus of approximately 70 kg N ha-1 after second cut451

silage. In July and August 2007, there was a large increase in effective drainage. With452

the time lag between second cut silage and the final application of CAN in the middle453
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of August, there was just enough N available for grass recovery. The same was true454

for the northwest site but there was a surplus after first cut silage in May.455

456

3.2 WATER BALANCE457

A water balance for the site showed total precipitation of 992.6 mm and 889.1 mm for458

2006 and 2007, respectively. For the two years, the Hybrid model calculated 483 mm459

and 335 mm drainage through the root zone in a process known as effective drainage.460

It was assumed that all of this direct recharge reached the watertable as the rainfall461

intensity is generally lower than the soil infiltration capacity. Model output showed462

effective drainage occurred on 87 and 74 days, giving an average recharge rate of 5.5463

and 4.5 mm day-1, respectively. Cumulative drainage for both years is presented in464

Figure 3. The mean soil total porosity was 32.2±4.9%. The average pore velocity was465

estimated to be 17.3 and 14.1 mm day-1, giving an approximate mean travel depth of466

1.5 and 1.04 m in a moderately-drained soil for 2006 and 2007. The mean watertable467

depth for 2006- 2008 on site was 2.2 m bgl. This is the unsaturated zone vertical468

travel time (approx 2 years) achievable due to effective drainage, representative of469

drainage during the winter period. Lateral migration of the nutrients is with470

groundwater flow direction under the experimental plots.471

Accumulative effective drainage shows differential recharge each year and seasonal472

differences in recharge led to differential NO3-N dilutions over time. Both years had473

wet winters but 2006 had a dry summer period (Figure 3). Slurry was only spread in474

times of dry weather. This contributed to higher mean site NO3-N concentrations for475

sampling events in early 2006. The dry summer of 2006 halted significant recharge476

and NO3-N concentrations reached steady state. As effective drainage increases,477

overall mean NO3 concentration on site increases.478
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Each piezometer followed the same pattern for mean NO3-N concentration, with some479

piezometers falling below the 11.3 mg L-1 threshold for drinking water quality within480

1 year. There was no increase in the shallow groundwater NO3-N concentration, after481

the slurry application in June 2007 due to a combination of slow groundwater482

transport (Ksat ranges from 0.001 – 0.016 m day-1 with subsequent travel distance of483

2.9 and 4.5 m yr-1) (Table 2) and gaseous losses of NH3.484

485

3.3 BUFFER ZONE AND CONTAMINANT MASS FLUX486

Buffer zone diameter for plots 1-6, using equation 7, was 193, 178, 195, 195, 148 and487

120 m respectively.488

A mean area of 2.4 ha for the ZOC was calculated. The buffer zones can extend489

beyond the isolated study site to the groundwater divide in the sandhill area.490

Therefore, land management and recharge in the entire ZOC area can contribute to491

shallow groundwater NO3-N contamination within the study site. The historical492

stationary dirty water point source pollution occurred within this ZOC.493

The contaminant mass fluxes calculated for three control planes are presented in Table494

2. Influent contaminant mass flux through the upper control plane cells ranged from495

0.0008 to 0.0016 g N m3 day-1 and the contaminant mass fluxes leaving the site at the496

compliance plane ranged from 0.00001 to 0.0007 g N m3 day-1. Total contaminant497

mass flux on a plot basis was as follows: Plot 3>1>5>4>6. Total contaminant mass498

flux decreased from the top plane to the central plane to the compliance plane499

demonstrating natural attenuation. Using equation 9, a 42 % contaminant mass flux500

reduction efficiency was calculated from the influent control plane to the central501

plane. From the central plane to the compliance plane a 64 % reduction occurred. Plot502

3 contributed the greatest contaminant mass flux. The load transfer from the influent503
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control plane to the central control plane showed a reduction of 33.6 %, with a504

subsequent reduction of 69.5 % at the compliance control plane. Plot 4 showed a 96 %505

reduction in contaminant mass flux from the influent control plane and the central506

control plane. Plot 1 doubled its contaminant mass flux from the influent control plane507

to the central control plane, but then decreased by 51.2 % downgradient at the508

compliance control plane. The upper, middle and lower control planes are 18%, 44%509

and 76% below the compliance control plane threshold (11.3 mg l-1 with present flux)510

respectively.511

512

4 TOBIT REGRESSION513

Selected piezometer parameters are presented in Table 3. In each step of the514

procedure, a series of regressions are fitted (Table 4). Each model includes random515

effects to account for the spatial dependence of model residuals. Type III F-tests for516

the fixed effects are presented for each model accompanied by Akaike's Information517

Criterion (AIC). The AIC is a model selection tool that compares the Log Likelihood518

of models while penalising for the number of parameters in the model. The model519

with the lowest AIC is the best fitting model.520

521

When assessed individually, Ksat (p=0.0004) had significant impacts on NO3-N522

concentrations. However, Ksat (p=<0.001) and distance from point source (p=0.0014)523

are significant when K is already in the model. The stepwise procedure selected the524

Ksat and distance from point source as having more explanatory power than when525

other parameters are inputted into the model. The final model contains only Ksat and526

distance from point source. The final model is presented in Figure 4.527
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Estimated model coefficients for final model from the Tobit regression are presented528

in Table 5. The model describes the relationship between mean groundwater NO3-N529

concentration and the explanatory variables Ksat and distance from pollution source.530

The percentage variation explained by different factors is presented in Table 6.531

532

Dilution due to recharge occurred for all piezometers within the contamination plume533

on site (NO3-N/Cl- ratio), but at the same rate for each piezometer. Therefore, dilution534

did not account for differences in NO3-N concentration within the contamination535

plume. Therefore, diffuse pollution due to fertiliser application within the field site536

may be discounted. A two-layered conceptual model represents a shallow zone of537

higher Ksat ≥ 0.01 m day-1 with higher NO3-N concentrations and a deeper low Ksat538

zone < 0.01 m day-1 with lower NO3-N concentrations. In the shallow layer, Ksat539

values ranged from 0.01 – 0.016 m day-1 but were not consistent with depth,540

indicating heterogeneity.541

542

4.1 DILUTION AND DENITRIFICATION DIFFERENTIATION543

In some locations the Cl- concentration is representative of natural background levels544

(NBL). In Ireland groundwater has a median NBL of 18 mg L-1. Some points545

therefore were not included in the regression process. Plots 1, 2, 4, 5 and 6 have the546

highest ratio in the top of the plots nearest the source but standard deviation shows547

some change over time (Table 3).548

The model was run a second time to explain Cl- occurrence using the same parameters549

as before. Here Ksat and ground elevation have the greatest explanatory power but Ksat550

is not significant. As shown previously, NO3-N occurrence in the same piezometers551

was explained by Ksat and distance from the dirty water point pollution source552



24

pollution, while both being significant. Due to the fact that Ksat influences NO3-N553

occurrence but not Cl- occurrence denitrification can be inferred. But distances from554

the dirty water source and ground elevation are linked due to the nature of the sloped555

site and therefore dilution is a factor for Cl- occurrence. In general on site:556

 Low NO3 concentration and unaffected Cl- concentration points to557

denitrification (Figure 5a)558

 Low NO3 concentration and low Cl-chloride concentration points to dilution559

(Figure 5b)560

 Over lying Figure 6a and 6b allows areas of denitrification and dilution to be561

inferred (Figure 5c)562

The Nitrate/chloride ratio identifies two zones where the present plume position is563

evident. This ratio is low in plot 4 and in the southern part of the site where the plume564

has not reached. This infers denitrification in the central part of the site (plot 4) and565

dilution in other areas.566

567

To further elucidate the effect of groundwater denitrification on NO3-N occurrence on568

the site, dissolved gases and physiochemical properties of groundwater collected on a569

random date were determined and related to the mean groundwater NO3-N570

concentration during the study. Average groundwater NO3-N was significantly571

(P<0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and572

N2 and was close to being significant with dissolved N2O concentration (P=0.08)573

(Table 7). Based on the AIC score N2/Ar ratio and redox potential (Eh) were the best574

fitting models of groundwater NO3-N occurrence. The higher ratio of N2/Ar directly575

indicates that denitrification is occurring on the site (Figure 5d) and that lower redox576
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potentials and dissolved oxygen are related to lower groundwater NO3-N occurrence577

(Table 7).578

579

5 DISCUSSION580

Documented nutrient management of the study site, while contributing to the elevated581

NO3-N concentration in shallow groundwater, could not solely account for NO3-N582

distribution on site. Surplus nutrients calculated for 2007 in the sandhill area had not583

yet reached the shallow groundwater under the plots due to slow travel times. Historic584

dirty water irrigation occurred on the sandhill site for decades prior to this study with585

excessive hydraulic loads leading to elevated infiltration on the sandhill.586

587

Vertical unsaturated zone travel time was not within a single drainage season.588

Saturated shallow groundwater and contamination plume migration time was from589

2.92 to 4.50 m yr-1 underneath the plots. The travel time from the sandhill (source) to590

the plots approximately 200 m away was much quicker due to the sand.591

Dilution of the groundwater NO3-N concentrations by recharge to the shallow592

watertable occurred in both study years. A two-layered conceptual model of the site593

emerged, where higher NO3-N concentrations existed in the shallower, high Ksat594

subsurface.595

596

The model describes the relationship between mean groundwater NO3-N597

concentration and the explanatory variables Ksat and distance of the piezometers from598

the point pollution source. To account for bias due to the distance of each piezometer599

within the grid pattern from the pollution source, the spatial dependence of residuals600

was modelled using an anisotropic power covariance structure. Higher Ksat zones in601
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the subsurface allow faster migration of contaminated groundwater, resulting in602

shorter retention time. The shorter retention time in the high Ksat zone decreases the603

opportunity for denitrification to occur. Lateral flow in higher Ksat layers may result604

in surface water pollution. The opposite is true of lower Ksat zones, where a longer605

retention time is available for denitrification to occur. This is why low NO3-N606

concentrations may be present at the plume centroid. In elevated areas, the watertable607

mirrors topography and has a greater hydraulic gradient and higher Ksat values.608

609

Groundwater NO3-N occurrence was statistically related to topsoil denitrifying610

enzyme activity, topsoil inorganic N content, depth to water table and a stronger611

relationship was observed with vadose zone permeability (McLay et al., 2001). The612

effect of vadose zone permeability on groundwater NO3-N distribution was613

recognised by (Vellidis et al., 1996) who observed low N leaching associated with low614

subsoil permeability and (Hansen et al., 1996) observed high N leaching with high615

subsoil permeability. (Richards et al., 2005) observed lower groundwater NO3-N616

occurrence in deeper wells with clay soils with no cropland nearby but they could not617

separate the effect of Ksat from landuse or well depth. In Ireland (Ryan et al., 1996)618

also highlighted the importance of soil type and permeability with lower NO3-N619

losses from soil with the percentage fines (silt and clay) >75% estimated mean620

subsoil travel times of 0.01 m day-1 on a site with elevated groundwater NO3-N621

concentrations. The unsaturated vadose zone transport of NO3-N is clearly influenced622

by the permeability and thus longer residence time in lower permeability subsoil623

favouring NO3-N reduction through denitrification. The strong relationship observed624

in this work also clearly identifies the importance of the saturated subsoil zone in625

favouring NO3-N reduction by denitrification in low subsoil permeable zones. Also626
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importance is the exact location of the point pollution source. The strong correlations627

between mean groundwater NO3-N and denitrification end products (N2O and N2) and628

physiochemical properties favouring denitrification (dissolved O2 and Eh) further629

supports that denitrification is the dominant process controlling groundwater NO3-N630

occurrence and transport on the study site. The relationship between subsoil/aquifer631

Ksat and denitrification requires further investigation.632

633

In Ireland, groundwater protection is based on the mapping of vulnerability zones for634

the protection of groundwater source (wells and springs) and the groundwater635

resource. Irish aquifers are deemed to have low attenuation potential due to there636

fractured and karstified nature and thus they are mainly protected by the overlying637

glacial tills. Vulnerability zones are ranked in four classes from extreme to low638

vulnerability based primarily on the thickness and lithology/permeability of the639

Quaternary subsoil deposits (Daly et al., 1988). Vulnerability decreases with640

increasing thickness and decreasing permeability of subsoil. The definition of641

groundwater in Ireland often excludes the shallow groundwater in subsoils (with the642

exception of sand and gravel aquifers) as it is not valued as a potential source of water643

for human consumption. Although not sufficient for consumption shallow subsoil644

groundwater is environmentally important as it contributes to through flow and drain645

flow to surface waters bypassing any potential for abatement when transported646

through deeper aquifers.647

648

Groundwater protection in Ireland for subsoil permeability is not routinely measured649

in Irish subsoils, (Fitzsimons et al., 2006) classified Irish till permeability as being650

highly permeable Ksat=10 m day-1, moderately permeable when Ksat = 0.004 to 0.009651
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m day-1 and low permeability (clay content >13%) when Ksat= 0.0004 to 0.0009 m652

day-1. Mean plot Ksat values on site range from 0.008 – 0.01 m day-1. This suggests653

further classification may be needed from moderate to highly permeable classes.654

655

Contaminant mass flux calculations show that the load of NO3-N passing through656

parallel control planes perpendicular to groundwater flow was uneven across the site.657

A 96 % reduction in contaminant mass flux occurred across the control planes in Plot658

3. This leads to groundwater NO3-N loads of acceptable quality leaving the site.659

Natural attenuation occurred down-gradient in all plots except Plot 1.660

In this study subsoil permeability and distance from point source pollution have been661

clearly identified as significant factors in determining the occurrence of NO3-N in662

groundwater. The subsoil on the study classified as moderate permeability and this663

study highlights the need to further subdivide this category for risk assessment of664

NO3-N occurrence in groundwater and transport to surface waters via through flow or665

artificial drainage. Furthermore as subsoil Ksat is incorporated in the contaminant mass666

flux calculation, particular hot spot locations may be identified, which contribute667

significantly more contaminant flux per unit area to potential down-gradient receptors.668

The identification of hot spots of groundwater contaminants may be used to target669

areas for locating an environmental remediation technology to reduce contaminant670

fluxes to sensitive receptors.671

672

6 CONCLUSION673

Ksat and distance from point source are important when assessing the spatial674

distribution of NO3-N in shallow groundwater. Within subsoils classified as675

moderately permeable subsoil saturated hydraulic conductivity was significantly676
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related to groundwater NO3-N occurrence and slight differences in permeability677

greatly influenced the concentrations on site. Groundwater denitrification is likely to678

be the dominant process influencing groundwater NO3-N occurrence and transport at679

this site. Calculating contaminant mass flux across more than one control plane is a680

useful tool to monitor natural attenuation. This tool allows the identification of hot681

spot areas where intervention other than natural attenuation may be needed to protect682

receptors.683
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907
908

Table 1. Nutrient management of the sandhill, northwest and field site for 2006 and909
2007.910

911
912

Year Location Area (ha)
Month N fertiliser application

rate (kg N ha-1)
Nitrogen fertiliser type

2006
Sandhill 3.2 Feb 28.5 Urea†

April 124.1 Urea
June 102.1 CAN†
Aug 51.1 CAN

Northwest 2.8 Feb 28.5 Urea
April 124.1 Urea
June 102.1 CAN
Aug 51.1 CAN

Plots 4.2 Feb 28.5 Urea
April 124.1 Urea
June 102.1 CAN
Aug 83.7 CAN

2007
Sandhill 3.2 March 56.9 Urea

April 71.2 Urea
June 102.1 CAN
Aug 51.1 CAN

Northwest 2.8 March 56.9 Urea
April 124.1 Urea
June 102.1 CAN
Aug 51.1 CAN

Plots 4.2 March 28.5 Urea
April 124.1 Urea
June 102.1 CAN
Aug 83.7 CAN

913
† Urea is 46% nitrogen914

915
† Calcium Ammonium Nitrate (CAN) is 27% nitrogen916
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Table 2. Contaminant mass flux calculation for six isolated plots

Parameters Plot Number
1 2 3 4 5 6

Area (ha) 0.78 0.75 1.01 0.94 0.41 0.41
Width of plot (m) 50 50 55 55 30 30
Mean effective velocity v (m day-1) 0.011 0.006 0.012 0.013 0.012 0.008
Hydraulic conductivity K (m day-1) 0.009 0.0083 0.0117 0.0117 0.0123 0.008
Transmissivity T (m2 day-1) 0.07 0.07 0.09 0.09 0.1 0.06
Mean hydraulic head (Top) (m AOD) 67.13 68.65 70.13 69.92 69.53 69.3
Mean hydraulic head (Bottom) (m AOD) 63.31 66.21 66.8 66.4 66.5 66.28
Mean Travel Distance in 1 year 3.92 2.31 4.44 4.70 4.25 2.76

Q m3 day-1

Top Control Plane Nodes 0.15 0.15 0.15 0.15 0.12 0.09
Middle Control Plane Nodes 0.15 - 0.15 0.20 0.11 0.07
Bottom Control Plane Nodes 0.11 0.01 0.22 0.19 0.04 0.01

Contaminant Mass Flux g m3 day-1

Top Control Plane Nodes 0.0009 0.0017 0.0016 0.0009 0.0015 0.0008
Middle Control Plane Nodes 0.0018 - 0.0011 0.0001 0.0010 0.0004
Bottom Control Plane Nodes 0.00074 0.00001 0.0003 0.0000 0.0004 0.0001
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Table 3. Selected piezometer parameters from 2005 – 2008.

Piezometer Plot Position Elevation
(mAOD)

Total depth
(m bgl)

Mean NO3-N
(mg L-1)

Stdev± Mean NO2-N
(mg L-1)

Stdev± Mean Cl-

(mg L-1)
Stdev± Mean NH4-N

(mg L-1)
Stdev± Mean

NO3-
N/Cl-

ratio

Stdev± Ksat

(m day-1)
Mean Watertable

Elevation
(mAOD)

1 1 Bottom 67.8 3.6 6.9 2.7 0.04 0.1 27.1 6.1 0.24 0.3 0.08 0.25 0.007 63.7
2 1 Middle 70.2 4.1 11.6 4.9 0.05 0.2 24.9 7.4 0.25 0.6 0.09 0.48 0.01 66.9
3 1 Top 72.1 4.3 5.6 3.5 0.07 0.1 18.4 4.8 0.34 0.3 0.25 0.30 0.01 67.9
4 2 Bottom 67.6 3.1 1.4 3.5 0.07 0.0 28.8 8.1 1.67 1.1 0.18 0.10 0.001 66.3
5 2 Top 72.0 4.3 11.8 5.7 0.02 0.0 19.0 5.2 0.21 0.5 0.27 0.62 0.015 68.8
6 3 Bottom 68.2 3.5 12.8 3.4 0.09 0.2 32.5 5.5 0.26 0.4 0.09 0.41 0.015 66.6
7 3 Middle 70.0 2.6 7.3 2.6 0.01 0.0 19.0 10.4 0.06 0.1 0.08 0.43 0.01 68.5
8 3 Top 71.7 3.2 11.0 3.4 0.03 0.1 59.0 9.5 0.22 0.4 0.04 0.53 0.01 69.6
9 4 Bottom 67.7 2.7 0.1 1.3 0.01 0.0 9.9 10.6 0.16 0.1 0.06 0.02 0.012 65.1

10 4 Middle 69.5 2.9 0.3 1.5 0.00 0.0 41.4 6.3 0.10 0.1 0.06 0.01 0.013 67.9
11 4 Top 71.8 2.4 5.7 2.7 0.00 0.0 21.9 7.8 0.06 0.2 0.08 0.24 0.01 70.3
12 5 Bottom 67.7 1.5 8.7 2.3 0.01 0.0 32.5 7.2 0.08 0.1 0.07 0.27 0.006 65.6
13 5 Middle 69.4 2.8 9.4 2.7 0.00 0.0 29.1 4.9 0.07 0.1 0.09 0.32 0.015 68.2
14 5 Top 72.0 4.3 12.8 4.1 0.02 0.1 30.2 2.9 0.24 0.4 0.15 0.47 0.016 71.0
15 6 Bottom 67.4 2.9 3.6 2.7 0.02 0.0 33.9 4.1 0.23 0.4 0.08 0.10 0.002 64.0
16 6 Middle 68.4 3.1 5.0 1.7 0.04 0.1 24.5 6.4 0.14 0.2 0.11 0.19 0.01 67.1
17 6 Top 71.1 3.0 9.3 2.0 0.04 0.1 23.2 12.2 0.12 0.5 0.13 0.41 0.012 70.2
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Table 4. Details of the stepwise procedure used to select the explanatory variables of importance in the relationship between mean groundwater
NO3-N concentration and hydrogeological factors. Model containing Ksat and distance from point source is chosen as the final model.

Step 1 Include all variables individually in
model

Step 3 Add other variables to model containing
Ksat and distance from point source (m)

Effect F(1,11) P-value Effect F(1,9) P-value
Ksat (m day-1) 24.55 0.0004 Ksat (m day-1) 53.5 <0.0001
Elevation (m
AOD) 10.23 0.0085

Distance from
point source (m)

9.68 0.0125

Distance from
point source (m) 0.6 0.4562

Elevation (m
AOD)

0.08 0.7884

Screen depth
(m AOD) 1.28 0.2826

Ksat (m day-1) 73.45 <0.0001
Result of step 1 K chosen as most important Distance from

point source (m)
15.79 0.0032

Screen depth
(m AOD)

1.69 0.2253

Step 2 Add other variables to model
containing K

Result of step 3 Other variables not significant in a model
that contains Ksat and distance from point source

Effect F(1,10) P-value
Ksat (m day-1) 13.05 0.0048
Elevation (m
AOD)

1.75 0.2156

Ksat (m day-1) 78.85 <0.0001
Distance from
point source (m)

19.1 0.0014

Ksat (m day-1) 33.75 0.0002
Screen depth
(m AOD)

1.47 0.2526

Result of Step 2 Distance is significant when Ksat is
already in the model
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Table 5. Estimated model coefficients for final NO3-N model but also for Cl- from the regression.

Effect Coefficient Standard Error Degrees of Freedom (DF) t-value P-value
NO3-N

Intercept -13.7328 3.6584 0 -3.75
K 960.98 108.22 10 8.88 <0.001

Distance 0.0506 0.01158 10 4.37 0.0014

Effect Coefficient Standard Error Degrees of Freedom t-value P-value
Cl-

Intercept 212.34 62.22 0 3.41
K 548.59 390.49 12 1.40 0.1854

Elevation -2.73 0.9294 12 -2.94 0.0123
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Table 6. Percentage variation explained by different factors

Degrees of freedom SS % variation
Fixed
Ksat (m day-1) 1 63.72 55.5
Distance from point source (m) 1 15.52 13.3
Screen depth (m AOD) 1 5.48 4.8
Elevation (m AOD) 1 0.62 0.5
Random
Row 1 7.95 6.9
Column 1 4.26 3.7

Residual 5 17.58 15.3

Total 114.90
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Table 7. Relationships between dissolved groundwater gases, redox potential (Eh) and average NO3-N. Each parameter is regressed in turn
against average NO3-N. The spatial structure on the variance covariance matrix is as described for the stepwise regression.

Parameter Estimate Standard Error T value 13 DF P>t AIC

N2/Ar ratio -1.33 0.544 -2.45 0.029 81

Redox potential (Eh) 0.040 0.013 3.17 0.0073 86.4

N2O 0.2247 0.1182 1.9 0.0798 87

RDO 0.0012 0.0003 3.58 0.0034 91.4

O2 0.0011 0.0004 2.48 0.0275 95

N2 -0.0012 0.001 -2.17 0.0493 95.5



41



42



43



44



45


