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Regulating Autonomous Agents
facing Con�icting Objectives: A
Command and Control Example

Jim Q. Smith and Lorraine Dodd
Warwick University and Cran�eld University

Abstract

UK military commanders have a degree of devolved decision
authority delegated from command and control (C2) regulators,
and they are trained and expected to act rationally and account-
ably. Therefore from a Bayesian perspective they should be sub-
jective expected utility maximizers. In fact they largely appear
to be so. However when current tactical objectives con�ict with
broader campaign objective there is a strong risk that �elded
commanders will lose rationality and coherence. By systemati-
cally analysing the geometry of their expected utilities, arising
from a utility function with two attributes, we demonstrate in
this paper that even when a remote C2 regulator can predict
only the likely broad shape of her agents�marginal utility func-
tions it is still often possible for her to identify robustly those
settings where the commander is at risk of making inappropriate
decisions.

1 Introduction

To encourage its personnel to act as �exibly as possible, a command
and control (C2) regulator (usually at a senior level of UK military com-
mand), devolves di¤ering degrees of decision authority to �eld comman-
ders. Within a mission statement, such a commander is given detailed
information about how his decisive acts might provoke praise or in�ame
public opinion, promote or undermine trust and hence expedite or frus-
trate campaign objectives in the medium and long term. We henceforth
say these factors frame the strategic objective. Such factors tend to en-
courage restraint, appeasement, the avoidance of con�ict and embrace
the need for public security. This objective will be complemented by
the commander�s particular mission task, called his tactical objective,
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which directs him to achieve certain immediate military aims against an
adversary.
The commander is trained and expected to act rationally. In partic-

ular, when given decision autonomy, he is aware that he will need to be
able to justify his chosen acts in later after action reviews. In this paper
a "rational" agent will be interpreted as someone who is a subjective
expected utility maximizer.
Surprisingly, in contrast with some other domains, this type of Bayesian

rationality assumption appears to be broadly consistent with how com-
petent commanders usually act. Simulation experiments have identi�ed
only one scenario where such a commander�s rationality is liable to be
signi�cantly undermined. This is when not only no act simultaneously
appears to score well on both the set tactical and strategic objectives and
but also two other relatively well scoring alternatives exist: one approx-
imating being rational and ignoring the strategic objective whilst the
other ignores the tactical objective. There is then a risk that a comman-
der will exhibit various irrational behaviors such as hypervigilance [6] or
decision suppression []. Even if the commander manages to remain ratio-
nal then such scenarios will tend to induce discontiguity across adjacent
autonomous commanders. For example, being faced with similar objec-
tives and information, one rational commander may choose to commit
to a full o¤ensive whilst the other with similar training retreats - with
potentially disastrous overall consequences. The C2 regulator therefore
needs to address these risks in the way she communicates to her com-
manders.
One natural risk model for the C2 regulator to use would be to as-

sume that her expected utility maximizing commander as having a utility
with two attributes.- broadly measuring success in strategic and tacti-
cal objectives respectively. Her problem would then translate into one
where she must minimize situations where her commander�s expected
utility exhibited two isolated local maxima, one favoring prioritizing the
tactical objective and the other the strategic objective. However one ap-
parent challenge in pursuing this approach is that the regulator is remote.
Her information is therefore likely to inform her only about the broad
characteristics of the geometry of the commander�s utility function and
posterior density. In this paper we demonstrate that the regulator can
nevertheless still address these risks using only the coarse information
plausibly available to her.
The development below may look speculative. However it is �rmly

based on evidence from on-going studies of decision-taking under simu-
lated conditions of internal command contention and situational uncer-
tainty, applied to the domain of military C2 on serving and experienced
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military commanders see e.g. [1],[3]. In the next section we present a
formal framework within which a regulator can address the risk of los-
ing smooth C2 agility. We then present a new illustrative example of
the type of scenario that can give rise to this loss of agility and how
our formal approach can model this risk. After reviewing some per-
tinent general results from singularity theory [4] we then proceed to
demonstrate how, under certain mild regularity conditions, the remote
regulator can make broad risk assessments about the e¤ectiveness of the
decision making of her agent more generally.

2 Some Technical Apparatus

A rational commander decides an action d� 2 D maximizing the ex-
pectation of his utility function U . Initially assume that a comman-
der�s utility function U(d;x) has two value independent attributes x =
(x1; x2) 2 X1 � X2 [5], [11] where x1 measures the tactical success and
x2 the strategic success of the mission. Then we can write

U(d;x) = k1U1(d; x1) + k2U2(d; x2)

d 2 D, x = (x1; x2) 2 X1 � X2; where the ithmarginal utility Ui(d; xi)
is a function of its argument only and the criteria weights ki(�1) satisfy
ki(�1) � 0; i = 1; 2; k1(�1) + k1(�1) = 1; i = 1; 2. The rational com-
mander then chooses a Bayes decision d� 2D to maximize his expected
utility

U(d) = k1U1(d) + k2U2(d) (1)

where for i = 1; 2

U i(d) =

Z
Ui(d; xi)pi(xi)dxi (2)

and where pi(xi) is his posterior marginal density of the attribute xi,
i = 1; 2.
Next express any course of action d = (d;d1;d2) 2D = D�D1�D2

- for D a possibly complicated decision - where D is a subset of the real
line The decision d 2 D represents the intensity of engagement of an
associated action d 2 D:. Let the embellishment (d�1(d);d�2(d)) denote
respectively the commander�s decision to use an intensity d and then
chooses a best action d�1(d) (d

�
2(d)) to address respectively the tactical

(strategic) objectives consistent with this chosen intensity of engage-
ment. In many scenarios [4] it is possible to argue that, for a �xed
embellishment (d�1(d);d

�
2(d)) ; a commander�s expected tactical achieve-

ment U1(d
�
1(d);d

�
2(d)) is non-decreasing in his choice of intensity d whilst
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his strategic achievement U2(d
�
1(d);d

�
2(d)) is non-increasing in d. Thus

the higher his intensity of engagement the better the chances of tac-
tical success but the worse the chances of strategic success. For sim-
plicity assume that d�1(d) and d

�
2(d) do not to constrain one another

given d so that the marginal utility U i(d) is a function only of (d;di),
(d;di) 2 D �Di; i = 1; 2, where D � R.Under these mild assumptions
it is easily checked (see [4]) that a commander�s Bayes intensity d� will
then maximize

V (d) = rP1(d)� P2(d) (3)

where P1(d) (P2(d)) are each distribution functions and respectively in-
creasing (decreasing) linear transformations of U i(d;d

�
i (d)) i = 1; 2:

Let Pi(d) have support [ai; bi]; where, with an abuse of notation, we
allow the lower bounds to take the value �1 and the upper bound 1.
i = 1; 2.:By this de�nition the commander believes that an intensity
d below a1 will surely achieve no tactical success but above b1 he will
surely be completely successful tactically. Similarly a2 is the highest
intensity he could use without damaging the strategic objective and the
bound b2 is the lowest value at which the strategic objective would be
most severely compromised. Two particular decisions will be important
reference points: an action with intensity d = b1 we call pure combat
and an action d = a2 we call pure circumspection.
Let u�i = infd2D U i(d;d

�
i (d)) and u

+
i = supd2D U i(d;d

�
i (d)) denote,

respectively, the worst and best possible outcomes - for each of the ob-
jectives. We shall call the parameter

� , log r = flog k1 � log k2g+
�
log
�
u+1 � u�1

�
� log

�
u+2 � u�2

�	
the daring. Without loss we can assume the parameters of the problem
are (�;�) 2 R��, where P1(dj�); P2(dj�), � 2 �, i = 1; 2 are chosen to
be functionally independent of �. The �rst term in the above expression
is increasing in the relative weight the commander places on tactical
verses strategic objectives whilst the second measures the extent to which
he expects he would attain his tactical objective were he to focus only
on this less the extent he expects he could attain his strategic objective
were he to address on that. Note that, because she is remote from the
�eld of engagement a regulator may have di¢ culty accurately predicting
her commander�s chosen value of � in any given scenario.
The value of a commander�s daring � impacts signi�cantly on his

decision making. As � ! �1 his expected utility will tend to his
expected marginal utility on x2 and so pure circumspection a2 tends to
optimality. On the other hand as � ! 1 pure circumspection tends to
optimality [4]. Furthermore if d0 < d and d0 is not preferred to d when
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� = �� then d
0 is not preferred to d when � = �+ , for any �+ � ��

and if d0 > d00 and d0 is not preferred to d00 when � = �� then d
0 is not

preferred to d00 when � = �+ ,for any �+ � �� . In this sense a rational
commander�s predisposition to act with intensity d is non-decreasing
in his daring � whatever his circumstances. In particular, if his Bayes
decision d�(�) is unique for all values of � for a �xed value of � then it
is non-decreasing continuously in � for that �xed � (see [4]).
Rationality and contiguity challenges arise when two similar values

of � can provoke the commander to choose two very di¤erent intensi-
ties of action. For then a commander�s Bayes decision can suddenly can
jump to a new much higher value even if � increases in�nitesimally. So a
commander facing a slight change in circumstances or con�dence might
suddenly regret not committing to a di¤erent decision. Furthermore in
these circumstances two contiguous but autonomous commanders with
similar expected marginal utilities could choose radically di¤erent inten-
sities. So we study here when and how these risks might arise.
In fact the fairly weak assumptions above immediately imply three

characteristics of the behavior of a rational commander:

� In [4] we prove that if P2(d) stochastically dominates P1(d) for
feasible choices of intensity d .i.e. that

P1(d) � P2(d) (4)

- for example if b2 � a1- then the intensity chosen by any rational
commander will be either pure combat or pure circumspection de-
pending on his daring. Therefore the regulator can only address
the discontiguity or contradiction induced by this unresolvable sit-
uation by trying to ensure that any commander�s � are all of the
same sign and well away from zero. So this scenario is always risky.

� When b1 � a2 then any �OK�courses of action (for example ones
obtained from the Command Estimate Process) [7] with an asso-
ciated intensity d� = [b1; a2] will be optimal. By choosing d� the
commander believes he will simultaneously achieve the maximum
possible reward for both objectives. A resolvable situation has low
risk: the autonomous commanders can be predicted largely to act
appropriately. They will have been trained to search and �nd such
OK actions.

� When b1 > a2 there is always a Bayes decision for the intensity
which is pure combat b1 or circumspection a2 or some compromise
intensity d, maxfa1; a2g � d � minfb1; b2g: so henceforth assume
the commander will choose his optimal intensity from this set.
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Then when a2 < a1 or b2 < b1 the Bayes intensity will always be a
discontinuous function of � see [4], hence always potentially risky.

� The �nally case is where a1 � a2 < b1 � b2 , when from the above,
d� 2 [a2; b1]. Here the regulator has some control, so we study
this case further below. Depending on how she communicates the
mission her commander might choose an extreme decision close
to pure circumspection or combat or some other intermediate in-
tensity of engagement. We argue below that whenever possible a
C2 regulator should try to construct scenarios where the comman-
der will be predisposed to choose such an intermediate intensity
because this will then expose her to less risk.

3 An Example of a Military Con�ict Decision

In the following example we set a1 = a2 = �1 and b1 = b2 = 1, so
that under the assumptions above the rational commander will choose
an intensity �1 � d � 1, and illustrate the critical last scenario of the
previous section.

Example 1 A battle group is set the tactical objective of securing two
districts a; b of a city. Its commander believes that each district will
take a minimum time to clear plus an exponentially distributed delay xa
and xb with rate parameter �1. He believes he will have failed tactically
unless this task is fully completed. However before the securing a and b
his strategic task is to �rst evacuate vulnerable civilians from two other
districts c; d. There are potential delays xc and xd with rate parameter
�2 to add to the minimum time to complete this strategic objective and
he believes he will have completely failed strategically unless he is able to
evacuate both areas successfully. The whole mission must not be delayed
by more than 2 units of time. The commander must commit now to the
time d + 1 he allows for delays in the tactical objective (so implicitly
budgets for a 1� d delay in completing the evacuation. He believes that
�1 q �2 and that �i has a gamma density

�(�i) =
��ii
�(�i)

��i�1 exp(��i�i); > 0

where �i; �i > 0, so the delay he expects for each operation is E(�i) =
�i�

�1
i ; i = 1; 2.

The sum of two independent exponential variables with the same rate
� has a Gamma G(2; �) distribution. Therefore his predictive density
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for the delay experienced in each of the tasks has a density pi(t); t > 0,
with a unique mode (�i + 1)�1�i; given by

pi(t) =

Z
�>0

�2t exp(��t) �
�i
i

�(�i)
��i�1 exp(��i�)d� =

�(�i + 2)t�
�i
i

�(�i) [t+ �i]
�i+2

i = 1; 2: Since his utility function is zero-one on each attribute, his
expected utility associated with using intensity y, �1 � y � 1; is pro-
portional to

rP1(1 + y) + P2(1� y)
where Pi(t) is the distribution function associated with p(t), i = 1; 2.
Any Bayes intensity must therefore satisfy

rp1(1 + y) = p2(1� y)

For illustration �rst suppose �1 = �2 = 1. and � , r�1��12 = 1. Then
this equation rearranges to the cubic

ay
�
1� y2

�
+ b

�
1� y2

�
+ cy + e = 0

where a , 4+ 3(�1+ �2); b , 3 [�1(1 + �1)� �2(1 + �2)] , c ,
�
�32 + �

3
1

�
and e = �31 � �32.
By letting f , b

3a
, g , (1� a�1c) and z = y+ f the equation above

rearranges into

z3 +
�
9f 2 + g

	
z � f

�
g � 2f 2 � e

�
= 0

The local maxima of the commander�s expected utility function can
therefore be described by the well studied canonical cusp catastrophe
[12] [9] where the splitting factor of this cusp catastrophe is � (9f 2 + g).
So if

9f 2 + g � 0() b2 � a(a� c)
the commander�s expected utility function can have only one local max-
ima: a "compromise" Bayes intensity. When parameters summarizing
the commander�s information and his values lie in this region his choice
of optimal decision will therefore be a smooth function of those parame-
ters: similarly trained and tasked adjacent commanders will tend to act
similarly, and small changes in the commander�s information will not
lead to large changes in what he perceives to be his optimal decision.
On the other hand if

9f 2 + g < 0() b2

a2
< 1� c

a
, b2 < a(a� c)
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then, for values of f (g � 2f 2 � e) close to zero his expected utility func-
tion will have two local maxima - one nearer pure circumspection and
the other nearer pure combat with a local minimum in between. Small
changes in parameters may then cause di¤erent contiguous commanders
to choose di¤erent decisions or a single commander to regret having
committed to his chosen act.
So for example in the completely symmetric scenario when �1 =

�2 = � there is always a stationary point at 0. When � is very large
(so that the expected delays are very small) 0 is the unique stationary
point. However the "compromise" d = 0 is actually a minimum of the
expected utility - i.e. locally the poorest - whenever

2 + 3�� �3 > 0

It is easy to check that this inequality is satis�ed only if ��1 > 1
2
i.e.

when the sum over the four expected delays is greater than the total
time allowed for the mission 2. The larger this expected total delay is
the more extreme the two equally preferable alternative decisions are.
Clearly then the regulator should try to ensure that her commander
is not faced with a scenario where 9f 2 + g < 0 , when in the case
�1 = �2 = � translates into the commander has been given enough time
to expect to complete both parts of his mission.

4 The General Case

The example above would be unremarkable if the geometry of the ex-
pected utility were heavily dependent on the exact form of distributional
assumptions made by the commander. However it can be shown that
qualitatively the geometry determining whether or not a given scenario
exhibits these risks is surprisingly robust to changes in the algebraic
forms of the quantitative forms of the commander�s beliefs and values.
So the sorts of broad criteria that a regulator should adopt, such as allow-
ing the commander enough time to expect he can complete his mission
successfully, can be determined in a much more general framework. In
this general framework the conditions needed to avoid bipolar decision
making are expressed in terms of points of in�exion of certain functions.
Just as for the example above any given scenario the position of these
points can in turn usually be expressed in a qualitatively meaningful
way and subject to the in�uence of the regulator.
Thus using [7], [8], [10], we next investigate the geometrical condi-

tions determining when such risks might exist. Henceforth assume that
the regulator believes that her commanders all have distributions Pi that
are unimodal and twice di¤erentiable in the open interval (ai; bi), i = 1; 2
and constant nowhere in this interval and �x the value of the parameters
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�. Any local maximum of V (d) will then either lie on the boundary of
the feasible space or satisfy

v(d) , f2(d)� f1(d) = � (5)

where fi(d) = log pi(d), i = 1; 2. Provided the derivative Dv(d) � 0
such a stationary point must be a local maximum of V .
Let �i denote the maximum (or mode) of pi(d) i = 1; 2 :Because �1 is

a point of highest incremental gain in mission we call this point the mis-
sion point and the intensity �2 where the threat to campaign objectives
worsens fastest the campaign point. Note that it is not unreasonable two
assume that two similarly trained and missioned commanders will enter-
tain similar campaign and mission points when facing similar scenarios.
From this de�nition if the modes satisfy �1 � �2, then, for any d 2

[�1; �2], v(d) is strictly decreasing. It follows that there is at most one
solution d� to (5) for any value of � and Dv(d) � 0. Therefore this
stationary value d� 2 (a; b) is a local maximum of V . When �1 � �2 for
each value of � 2 � : so that the mode of the intensity of tactical success
is less than the modal intensity for strategic success, there is a unique
interior maximum in this interval moving as a continuous function of �.
Consequently a regulator will �nd such a scenario almost as desirable as
resolvable ones where the actions of the devolved decision-takers work
well. Although their actions will depend on �, two commanders with
similar but di¤erent daring � will act similarly and in particular it is
rational for them both to compromise. So if contiguous commanders are
matched by their training and emotional history then they will make
similar and hence broadly consistent choices. In our running example
this scenario would correspond to one where the modes of the sum of
the two delay distributions was less than the time allowed for the this
delay.
On the other hand we prove in [4] that when �2 < �1 there is a value

of � and an associated decision which is a stationary point of V for
which the derivative of v(d) is negative so that such a stationary point
will be a localminimum. Then, just as in our example, the set of optimal
decisions bifurcates into two disjoint sets: one lying in the interval of a
"lower intensity" consistent with strategic objectives, and the other in
an interval of intensity favouring achieving mission objectives. At value
of � = �@ an option in each of these sets will be optimal giving rise to
bipolarity in the decision space.

Example 2 In our running example but when all prior parameters are
arbitrary the condition on the two modes �1; �2 above implies bifurcation
can occur for some value of � i¤

(�1 + 1)
�1 �1 + (�2 + 1)

�1 �2 < 2
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The original interpretation that risks are avoided if the delays are per-
ceived as not too large is therefore retained. When �1 = �2 = � and
�1 = �2 = � this condition says that the prior expectation � for deal-
ing with any area satis�es � � (1 + �)�1 where ��1=2 is the coe¢ cient
of variation of the prior. So as � ! 1 there is less and less point
aborting the evacuation because the commander believes he is unlikely to
encounter any less delays in the tactical elements of his mission.

From the geometrical arguments given above we can argue that the
phenomena we illustrated with our last example are generic and depend
only on certain broad features such as that the predictive distributions
associated with the two attributes being unimodal and smooth. It can
even be shown that even the unimodality conditions can be relaxed. It
follows that the regulator can be fairly con�dent of the types of scenar-
ios where his agents may not act well. Of course she will not be able
to predict the precise values of the critical parameters like the sign of
�1 � �2. But in many situation she can broadly estimate this using the
information she has at hand or from general experiential knowledge.

5 Robustness and Links with Game Theory

The running example could be extended into a problem in dynamic
stochastic control where the commander has a choice of whether or not to
abort the evacuation at any given time and simply focus on the tactical
imperatives. Although the associated technicalities are beyond the scope
of this paper, an optimal policy is straightforward to calculate. The
qualitative behavior of the commander is analogous to the one above:
the only di¤erence is that he tends to give up earlier on the evacuation
after he learns that the delays to this operation turn out to be longer
than predicted.
However, much more critical to the qualitative form of our deductions

is the commander�s prior beliefs about the dependence of the parameters
of his distribution and the actual form of utility independence he holds.
Suppose he believes that the delays he incurred were not due to the
nature of the task but the competence of his unit to accomplish any
task speedily. Then in the dynamic control setting above, instead of
believing �1q�2 he might believe that �1 = �2. Were both his criterion
weights 1

2
then it is easily checked that pure circumspection is always

optimal for him: i.e. he should continue evacuation until the two area
are clear and only then attempt the tactical objective. Of course when a
regulator is familiar with the likely qualitative form of the reasoning used
by her commander, here whether he assumes independence or identity,
then his behavior will still be qualitatively predictable to her.
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Another qualitatively di¤erent setting, potentially giving rise to dif-
ferent behavior is when the commander does not have value independent
attributes. For example suppose his mission of securing areas c and d
will have failed unless he has �rst evacuated areas a and b. In this case
his utility function will be of the form U = k1U1U2 + k2U2. Then ob-
viously pure circumspection - "continue until evacuation is �nished and
only then secure the other areas" is again always optimal. A regulator
will thus incline contiguity by communicating the mission in this way.
Again the di¤erence in qualitative form of the utility should be relatively
predictable to the regulator.
Finally in these continuous models of decision process by autonomous

agents a regulator can explore e¢ cacious ways to try to in�uence the ac-
tions of her remote agent by partitioning the parameter space into �nite
discrete subsets within which certain qualitative features of the agent�s
behavior are predictable. This �niteness opens the possibility of drawing
on game theory to further our understanding of such scenarios. Note
that the contiguity of the opponent�s rationality may be undermined
by deceiving the adversary into facing its commanders with bipolarity.
Thus in our running example if mission statements are consistent with
only short delays being experienced by a commander then the regulator
will be con�dent she is in a situation which is OK and controllable on
the ground. Therefore if an adversary can deceive her into being over
optimistic about these delays then her operations are liable to be more
easily disrupted. Similarly, if a con�dent commander can be frustrated
early in his actions so that he becomes more uncertain - for example
by the adversary throwing all its e¤ort into frustrating his evacuation of
area a in the example above - then that commander may again be drawn
into bipolar decision making, potentially undermining his rationality and
therefore his later e¤ectiveness. As far as we know the study of these
sorts of developments, combining experimental psychology, game theory,
singularity theory and dynamic stochastic control are in their infancy.
In a later paper we will communicate some of our early results about
these synergies as they apply to this domain.

References

[1] Dodd, L. Mo¤at, J Smith, J.Q. and Mathieson. G.(2003) �From sim-
ple prescriptive to complex descriptive models: an example from a re-
cent command decision experiment� Proceedings of the 8th Interna-
tional Command and Control Research and Technology Symposium June
Washington

[2] Dodd, L.(1997), �Command decision studies for future con�ict�DERA
Unpublished Report.

11

CRiSM Paper No. 11-12, www.warwick.ac.uk/go/crism



[3] Dodd, L. Mo¤at, J. and Smith, J.Q.(2006) "Discontinuities in decision-
making when objective con�ict: a military command decision case
study" J.Oper. Res. Soc.,57, .643 - 654

[4] Dodd, L. and Smith, J.Q. (2010) "Devolving Command Decisions in
Complex Operations" CRISM Res. Rep. 10 -17

[5] French, S. and Rios Insua, D.(2000) �Statistical Decision Theory�Arnold
[6] Janis, J.L. and Mann, L.(1977) �Decision Making: A Psychological

Analysis of Con�ict, Choice and Commitment�Free Press. N.Y.
[7] Mo¤at, J. (2002) �Command and Control in the Information Age�The

Stationary O¢ ce, London
[8] Mo¤at,J. and Witty, S. (2002) �Bayesian Decision Making and military

control" J. Oper. Res. Soc. , 53, 709 - 718
[9] Poston, T. and Stewart, I. (1978) �Catastrophe Theory and its applica-

tions�Pitman
[10] Smith, J.Q., Harrison, P.J., and Zeeman, E.C.(1981) �The analysis of

some discontinuous decision Processes�E. J. Oper.Res. Vol. 7, 30-43.
[11] Smith, J.Q.(2010) �Bayesian Decision Analysis: Principles and Practice�

Cambridge University Press
[12] Zeeman E.C.(1977) �Catastrophe Theory: Selected Papers� Addison

Wesley

12

CRiSM Paper No. 11-12, www.warwick.ac.uk/go/crism


