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Abstract

An Autonomous Underwater Vehicle (AUV) is expected to opefia an aquatic en-
vironment and compensate for poorly known disturbanceeo@nd moments. Due to
uncertain environment, it is difficult to apply an open-lammtrol scheme for tracking the
desired trajectory. The objective of this thesis is to deped robust feedback trajectory
tracking control scheme for an AUV that can track a prescriipgjectory amidst such dis-

turbances.

This thesis is composed of two parts. In the first part, weysthd problem of attitude
tracking of an AUV submerged in an ideal fluid. The feedbaakid scheme is a recently
reported almost global tracking control scheme for atétadd angular velocity of a rigid
body in the presence of external torques. The feedbackaitad attitude dynamics of the
AUV is simulated and the results corroborate the expectaost global tracking behavior
of the feedback system. In the second part, we solve a moer@equroblem of tracking



both the orientation and position of the vehicle submerged real fluid. The feedback
control scheme is derived using Lyapunov-type analysig résults obtained from numer-
ical simulations confirm the asymptotic tracking propertié the feedback control law.
We apply the feedback control scheme for different missaemarios of an AUV with an

initial error in its states.

Am accurate and efficient numerical integration scheme usial to verify the con-
troller performance in the closed-loop feedback dynamiEsploying an accurate com-
putational approach which respects the geometry of thelgmohas been one of the focal
points of this research. We use a Lie group variational natieg to simulate the feedback
attitude dynamics of an AUV. Differential equations on a nxaLie group that governs
the closed loop kinematics is solved using the Crouch-Graasf@G) method. The CG
method coupled with a fourth-order Runge-Kutta method isligesimulate the feedback

dynamics of the vehicle ifE(3).
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Chapter 1
Introduction

Oceans cover two-thirds of the earth and have a large infuenthe global climate. They
have a great impact on the lives of human beings, plants aimbés They are a huge
source of mineral resources. However, many of these ressstdl remain untapped and
potentially unknown.

With the advancement of technology, man has stepped on m8eweral unmanned
missions have been carried out successfully to the outeheseof space. Scientists have
been successful in sending robots to as far as Mars. Howsaening a successful voyage
to the abyssal world still remains elusive for researchers.

Executing a manned voyage to the deep sea is extremely resiguise of the unknown
environment. Moreover, the oceanic environment is notlitteshumans, as the ambient
pressure is unbearable at depths as shallow as 200m. Thwmoethunderwater robots
prove to be an ideal platform to perform deep sea research.

Underwater robots can help us in many ways to understandfeat that oceans have
on our climate. They can be utilized in geological and ocgeaghic research. Further-
more, they are instrumental in exploring vast ocean regsuwhich can be used for the
welfare of mankind. They can prove to be a huge asset to thadiktries in ocean-bed
survey and resource assessment. They can also be utilizedlfiary purposes such as
shallow water mine search and disposal. Moreover, they eaaniployed for doing ship-

hull inspection and numerous other works related to mandestry. Thus, it is evident



that the development in underwater research has vast sec@aiomic and military impli-
cations.

A successful execution of all of the above missions and sée¢hers, requires robust
control of the motion of the underwater vehicle. The primdifficulty in their control is
because of their non-linear dynamics (see [3]). The hydmadyic parameters governing
the dynamics are highly nonlinear, coupled and time varyidglike terrestrial or aerial
vehicles, underwater vehicles can not use Global Positip8iystem (GPS). Sonar based
sensors are the commonly used underwater sensors. But teagumements are usually
crippled by noise, missed detection, poor resolution, €tws the state-of-the-art under-
water robotic technologies need further development.

In the next section, we do a brief overview on the researchdandlopment in under-

water robotics over the last two decades.

1.1 Control of Underwater Vehicles: A Brief Survey

Until recently, remotely operated vehicles (ROVs) havenbesed as a platform for un-
derwater robot manipulators [19], [20], [54]- [58]. As thame suggests, ROVs are
underwater vehicles controlled by operators aboard a stapshore. The transmission of
electrical signals back and forth between the operator baed/¢hicle is made via group
of cables attached to the vehicle. However, the cablesditheé maneuverability of the
vehicle and puts constraints on depth. Also, because oatpdatigue and limited area of

operation, extensive use of tethered ROVs is limited to adeecific applications, such as
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shallow water oceanogrphic data collection. Thus with tleegasing demand for impart-
ing greater autonomy to underwater vehicles, researcheusd the world are focusing on
developing intelligent, decision-making AUV. Referencelated to the research on AUVs
can be found in [2], [10]- [14], [24], [28], [31], [38], [50],[51] and the references
contained therein.

A detailed survey on the research and development in theataitunderwater robots
in the 1990s can be found in [59]. It gives a detailed surveys@me key areas on the
existent state-of-the-art underwater technologies. sib @ives a comprehensive list of a
worldwide development of AUVSs, their configurations anditlspecific mission require-
ments during that period.

Researchers have proposed numerous advanced controlaraderwater vehicles.
In the next section, we provide a literature survey on varioantrollers that have been

successfully implemented on underwater vehicles.

1.1.1 Proportional-Integral-Derivative Control

A Propotional-Integral-Derivative (PID) control desigakes into account error in the cur-
rent state as compared to the desired state, sum of previaus and the rate of change
of error. In [54], the authors used a PID controller for theshicle, an ROV. A PID-based

control technique for the navigation control system of arvAB reported in [28].



1.1.2 Sliding Mode Control

Sliding mode control has been applied successfully in thgrobof underwater vehicles
in [56, 57]. The control scheme involves twin tasks of setecbf a manifold such that
the system trajectory exhibits desirable behavior wherficed to this manifold, and find-
ing feedback gains so that the system trajectory intersgutsstays on the manifold. For
a thorough knowledge on differential geometric conceptgirect our reader to [5]. In
[58], the authors discuss how adaptive sliding control camjpplied to underwater vehi-
cles. In [16], an adaptive sliding mode controller is apgplie control an AUV in the dive
plane. The use of multi-variable sliding mode controllardatonomous diving and steer-
ing of unmanned underwater vehicles is reported in [24Hi8d mode control can lead to
chattering which must be eliminated in order for the cotérdo perform properly.
Because of their nonlinear dynamics, uncertain models angrisence of underesti-
mated, often unestimated, disturbances there is alwaysd foe designing an improved
robust controller for underwater vehicles. In [57], theleus have developed an extension
of sliding mode control which is robust to imprecise modeld which explicitly accounts

for the presence of high-frequency unmodeled dynamics.



1.1.3 2% Control

An JZ, type control is an optimal control design technique whicholust to process
and measurement noise. This control addresses the probletustness by deriving con-
trollers which maintain system response and error sigoahgthin prescribed tolerances,
despite the presence of noise in the system. Applicatiossici controller to the control
of submarines has been reported in [41, 53, 55]. In [29], titbas have designed a
multiple-input-multiple-output (MIMO) controller for aAUV using standard techniques

of 7, theory.

1.1.4 Adaptive Control

In robotics, adaptive controllers have been shown to gigh lperformance for nonlin-
ear systems [15, 45, 49, 52]. When designing controllerstideowvater robotic systems,
it is necessary to compensate for model features such ameantynamics, uncertain and
time-varying parameters. This suggests a robust adapiiveat scheme for an underwa-
ter vehicle. An adaptive control changes the control landusethe controller to adapt to
the changing parameters. Application of adaptive contralrtderwater vehicles has been

documented in [2, 58, 60, 61, 63].



1.1.5 Control Using Fuzzy Logic, Neural Network and Genetic Agorithm Techniques

Tools such as fuzzy logic (see [62]), neural networks ancetieralgorithms have also
been applied by various researchers in robotic controkergtitnes these are combined to-
gether to design a robust control scheme by deriving adgastiiom each of the individual
components. In [31], the authors have studied the appdicati neuro-fuzzy controller for
AUVs. An adaptive neural-net controller system for an umdger vehicle has been de-
signed in [27]. A self-adaptive neuro-fuzzy system with faarameter learning for AUVs

has been reported in [33].

1.1.6 Geometric Control

During the past decade, a number of researchers have dédatheiproblem of control of
AUVs using a differential geometric architecture. We musterthat the present research
has been undertaken in the same spirit. One of the reasomhdosing this approach
is that the configurations defined by a rigid body correspcatdnally to a differentiable
manifold in a one to one manner. This allows us to work withdbwial structure of the
problem, without being trapped in the complications asged with a certain choice of
coordinates while representing the dynamics of a rigid b@ihe can derive motivation for

this approach from [40].



We would find [7] very helpful in understanding the modelimglaontrol of mechani-
cal systems using a geometric framework. Applications ohgetric control to AUVs can
be foundin [12, 13, 14, 36, 37, 50]. Moreover in [10, 11], théhars have investigated the
design and implementation of time efficient and energy eificirajectories for an AUV
using geometric control. Research has also been undertakiemarea of control ainder-
actuatedAUVs, i.e. the vehicle loses direct control on one or morerdeg of freedom. A

sample of such work can be found in [38, 39, 50, 51].

1.2 Overall Layout

In Chapter 2, we state the feedback control problems thatadwedsin this thesis. Chap-
ter 3 presents a model of the dynamics of a submerged rigigl b&vd briefly discuss the
various forces and moments that act on a body moving in awssfioid. In chapter 4, we
give the feedback control approach for the attitude traghiima rigid body submerged in an
ideal fluid. Chapter 5 formulates the feedback tracking mobbdf a submerged rigid body

in the state-spac&SE(3). In Chapter 6, we briefly discuss the Lyapunov analysis done for
deriving the feedback control scheme. Chapter 7 discussespiplication of a kinematic
reduction and use of decoupling vector fields for designimgreference trajectory to be
tracked by the controller. We discuss the various integnaschemes used for our simula-
tions in Chapter 8. In Chapters 9 and 10, we present the sironlasults for the trajectory

tracking inSO(3) andSE(3) respectively. Chapter 11 discusses possible future work.



Chapter 2
Problem Statement

This work is mainly focused on the challenging problem ofeitéory tracking for an AUV
in the presence of poorly known disturbance forces and mtsnenowever, the theory
can also be applied to the trajectory tracking of a remobgigrated aerial or underwater
vehicle. In Chapter 1 we mentioned that the hydrodynamicrpatars which influence
the dynamics of the vehicle are highly nonlinear and timeyivay. Applying an open-
loop control to perform a desired task is not possible in stages. In such cases one can
not apply a corrective force or moment to compensate for tiex eaused by unmodeled
disturbances. A slight change in the state of the vehicleeastart of its mission could lead
to a large final error in its state.

An open-loop, optimal control scheme for the motion plagnih a test bed AUV has
been reported to be designed and implemented in [10, 11].18) 40, 51], the authors
have successfully implemented an open-loop motion planaigorithm, derived using a
kinematic reduction and decoupling vector fields, on alest-AUV. However, it should
be noted that all these experiments were carried out in aalted environment where the
disturbance forces are negligible.

In a real-world application, an AUV has to account for the @ymc environment of the
ocean. While in the ocean, an AUV experiences forces and mismérich are very uncer-
tain and hence can not be modeled accurately. Amidst suchwwmoement, the missions

implemented using open-loop control strategies can notrilg realized. Therefore in



such cases, a feedback trajectory tracking control schlateig robust to these distur-

bances would be essential to ensure that the vehicle traeldessired trajectory.

2.1 Feedback Trajectory Tracking in SO(3)

To better understand the trajectory tracking problem foABlV in SE(3), we first con-
sider the attitude tracking problem #©(3). This problem refers to the feedback control
of the attitude dynamics of an AUV. The attitude of any rigatly is defined as the relative
orientation of a body-fixed coordinate frame to an inertiahfe. It is represented globally
by a group of special orthogonal matric&$)(3). Trajectory tracking irSO(3) finds its
application in spacecraft control, control of aerospaak @mderwater vehicles, control of
mobile robots, and networked control of such autonomouesys

The dynamics of a feedback-controlled rigid body systemvesoonTSO(3). Recent
research, reported in [9, 46, 47], has been successful imasmating almost global tra-
jectory tracking inTSO(3), applied to spacecraft control. The almost global propefty
the control scheme refers to the fact that a desired attitwdstitude motion trajectory
may be obtained starting from almost any initial state, nhm@uset of measure zero, in
the state spac&€SO(3). In [46], the authors have included the effects of additiatistur-
bance moments (bounded but unknown) on the attitude dysamnc demonstrated that
the desired trajectory i'SO(3) could be tracked satisfactorily and almost globally, even
in the presence of such disturbances. In Chapter 4, we wiflidenthe problem of attitude

tracking of an AUV submerged in an ideal fluid under the assionghat the translational

9



velocity is zero, and the moment due to external disturbarscabsent.

2.2 Feedback Trajectory Tracking in SE(3)

Trajectory tracking of an AUV irBE(3) is an extension of the attitude tracking problem
in SO(3); the extension includes the translational motion in its dyica. The addition
of translational motion introduces dynamic coupling bedwéhe attitude and translational
degrees of freedom (DOF). This coupling is very strong in &W/Asince the energy dis-
tributed among the translational DOF is comparable to trerggnin the attitude DOF.
This is unlike a spacecraft or aerial vehicle, where traisial DOF have more energy
than the rotational (attitude) DOF. In Chapter 5, we invedigan almost global asymp-
totic trajectory tracking of reference trajectories of ad\Ain TSE(3), in the absence of
disturbance inputs. The reference trajectories are taken different mission scenarios
reported in [50]. Here the author implemented an open-loofian planning algorithm

on the test-bed AUV, called ODIN

1The Omni-Directional Intelligent Navigator (ODIN) is owti@nd maintained by Autonomous Systems
Laboratory (ASL), College of Engineering, University of aii, Manoa

10



2.3 Structure-Preserving Numerical Integration Scheme

In addition to designing the control scheme for the trajgctoacking problem at hand,
a major focus of this research has been on employing effiaigthtaccurate computational
approaches which respect the geometry of the problem. Noahenethods that preserve
the geometric properties have been studied in [23]. In oureotl research, we will be
implementing such structure-preserving integration swgethat maintain the structure of
the configuration space (see Chapter 8). An example of suche&is the Crouch-
Grossmann integrator for attitude motion (see [18, 23]ypted with the fourth-order
Runge-Kutta scheme for translational motion. We will be gdimis numerical scheme
for simulating the feedback trajectory trackingdg(3).

A Lie group variational integrator is another example ofracure preserving numer-
ical integrator. This variational integrator exhibits gylectic and momentum preserving
properties, as well as good energy behavior charactevisfivariational integrators (see
[23, 42]). This class of variational integrators has begrored to be used in [34, 35, 48]
for the attitude dynamics of a rigid body. We use this Lie greariational integrator to
numerically simulate the feedback tracking3df®(3). A Lie group variational integrator
for motion inSE(3) has been developed in [35]. However, we will not be using this

thesis.
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Chapter 3
Modeling the Dynamics of an AUV

In the present work we express the dynamics of a submergieldoagly in the framework
of geometric mechanics. Since coordinates are only vatid focal region of a configura-
tion space, by looking at the dynamics in a coordinate fraradomse the inherent global
properties of the mechanical system and its manifold sirectThe dynamics expressed
in coordinate invariant setting allows us to describe théionoof a rigid body in a global
setting and thus preserve the structure of the problem. Wkehtbe dynamics of an AUV
by use of ideas from [7, 50].

We begin by describing the kinematic equations for a rigidybdNext, we discuss the
hydrodynamic forces and moments that act upon the body whiemerged in fluid. A
proper understanding of these forces is crucial to undsastae underlying dynamics of
an AUV moving in a viscous fluid. Following this, we obtain thgnamics governing the
motion of an AUV in a real fluid in a geometric setting. At thedewe provide a coordinate
representation of these kinematic and dynamic equatioesal®d note here that the phrase
submerged rigid bodlgas different meanings when used in different contextdhigthesis,

we will use AUV and submerged rigid body interchangeably.
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3.1 Model of AUV Kinematics

The position and orientation of an AUV at any point in time ¢enrepresented by, R),
whereb € R* and R € SO(3) is a rotation matrix. In the above notatiohgives the
position of the origin of a body-fixed fram@p, with respect to the origin of an inertial
frameQ;. The rotation matrixR,gives the attitude of a rigid body. We defifeto be the
matrix that when multiplied by a vector expressed in a borgefiframe yields the same
vector expressed in the inertial frame. That is; iE R? is a vector in the inertial frame
andz’ € R? is the same vector expressed in the body-frame, thenR~'.

We can write the rotation matrix in terms of the Euler angle$! and. The rotation
about ther-axis (roll) is denoted by, rotation about thg-axis (pitch) is given by, and
the rotation about the-axis (yaw) is given by). Using(1, 2, 3) or (z, y, z) convention for

Euler angles, the rotation matrix is represented as

CoCyy  SpSeCy — CpSy  CpSeCy + S¢Sy

CoSyy  SpSeSy T CpCy  CySeSy — SpCy |

—Sp CoS¢ CoCy

wherec,, = cos(a) ands,, = sin(«).
The configuration space of a rigid bodySE(3), the special Euclidean group. The Lie

groupSE(3) is the semi-direct product ¢fO(3) andR3. We denote the translational and

13



angular velocities in the body-fixed frame byand(2, respectively. The kinematics of a
rigid body are given by

b= Rv
(3.1)

R = RO,
where the operatdr)* : R? — so(3) is defined byy*z = y x 2. The spaceo(3) is the Lie
algebra of the Lie groupO(3), and is identified with the space of skew-symmebrig 3

matrices.

3.2 Hydrodynamic Forces and Moments

It is an indispensable part of AUV research that we undedstha environment that we
are dealing with, and know the forces and moments actingewaehicle due to its submer-
sion in a viscous fluid. Thus, before we give the dynamic eqgnatgoverning the motion
of a submerged rigid body, let us analyze the hydrodynamaeand moments that act on
a submerged rigid body. A thorough treatment of the hydradyio forces and moments
acting on a submerged rigid body can be obtained from [21, B& first consider the
restoring forces acting on an AUV. Next, we discuss the addasls forces and moments
due to the inertia of the surrounding fluid. Finally, we dissthe dissipative forces acting
on a body submerged in a viscous fluid. A detailed treatiséieset forces and moments in

both classical and geometric setting can be found in [50].
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3.2.1 Restoring Forces and Moments

In hydrodynamic terminology, the forces and moments dueréwity and buoyancy are
called restoring forces and moments. They are also calleghpal forces and moments.
These forces and moments are conservative in nature. Thigegienal force acts through
the center of gravity., = (zq, ya, 2¢), whereas the buoyant force acts through the center
of buoyancyre, = (v5,ys. 25). Here,r¢, (rc,) is the vector from the origin of the body-
fixed frame of an AUV to its center of gravity;; (center of buoyancy¢’'s). The restoring
force is given byf | + f,, wheref  is the gravitational force anfj, is the buoyant force.
The restoring moment is given by, x f  + r¢, x f,. Throughout this thesis, we will
assume that'; = Op,i.e. ¢, = (0,0,0)” . Under this assumption the restroing moment

reducess teq, x f,.

3.2.2 Added Mass Forces and Moments

According to [3], a body having an accelerated motion in aicolwus medium of fluid

experiences a force that is greater than the mass of the bodyg the acceleration. Since
the increment of force can be defined as the product of the dodleration and a quantity
having the same dimension as mass, it is termed as added H@assver, one should re-
member that the concept of added mass is introduced intorflacchanics for convenience

of evaluation, and does not have any physical significance.ekample, one should not
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imagine that a body accelerating in an ideal fluid in a ceda®ction drags with it a certain
amount of fluid mass.

According to fluid mechanics, the added mass forces and migraeting on a vehicle
are pressure-induced forces and moments due to the inéttie surrounding fluid and
which are proportional to the acceleration of the body. Ineggal, for a body performing
movements in six DOF, the added mass >a 6 matrix called the added inertia matrix.
Under the assumption of a low speed maneuver, which is qarteal in AUV applications,
and three planes of symmetry in the vehicle design, the aidéetia matrix can be reduced
to a diagonal form. With these assumptions along with theeddassumption that; =

Op, the added inertia matrix is given by

My Osxs

O3><3 J})

whereMY = diag M}*, M{?, M}*) and.J{ = diag(J}", J§*, J}**) correspond to the trans-

lational forces and rotational moments, respectively (&8).
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3.2.3 Hydrodynamic Damping

Hydrodynamic damping forces and moments are dissipatinatare and oppose the rela-
tive motion of the vehicle. Hydrodynamic damping can be edusy various factors, viz.
radiation-induced potential due to forced body oscillasiolinear or quadratic skin fric-
tion depending upon laminar or turbulent boundary layespeetively, wave drift damping
and damping due to vortex shedding. A detailed descriptidgheohydrodynamic damping
forces acting on an underwater vehicle is given in [1].

The hydrodynamic damping of an underwater vehicle moving DOF at high speed
will be highly nonlinear and coupled. Nevertheless, for application, considering the
spherical shape of the vehicle and its size, one can rougtimate the drag forces and
moments by assuming that the vehicle has three planes of symand is performing
non-coupled motions at low speed. For an AUV performing nonpled motion at a slow

speed, the drag matri® (v, (?) attains diagonal structure which is given by

D(v,Q) = diag(D1(v) 11, Da(v)[va], Ds()[vs], Da(S)[€], D5 ()], Ds(€)€2s)),

where theD;,’s are drag coefficients for th&" direction of the velocity (see [50]). The

drag effects depend on the velocity and the form (shape)eof¢hicle.
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In addition to the hydrodynamic forces discussed abovegthee other forces which
affect the dynamics of an AUV when it is moving underwater.r Erample, previous
research (see [19, 20]) shows the drag effects of a comntigriceable attached to an
underwater vehicle on its dynamics. The underwater veltihdewe use for our research
is fully autonomous. However, we carry out control expentsean tethered mode so that
we can perform multiple experiments for a single motion. Veeehstudied the effect
of umbilical cable on the dynamics of our test-bed AUV. Thaliings on the effect of
various configurations of the cable attached to the vehiale heen reported in [11, 50].
The magnitude of these forces and moments are very smalhagazed to the forces and

moments discussed above, so they are not included in thermdymaodel.

3.3 Model of AUV Dynamics

Knowing all the external forces and moments acting on an Aubhserged in a viscous
fluid, we are now ready to discuss the dynamic equations gogethe motion of an AUV.
Again, we should note that the dynamic equations of motimtussed next, are developed
in a differential geometric setting. In this setting theiontof acceleration and force is
different from what one encounters in Newtonian mecharkos.a thorough investigation
on this topic, see [7].

A detailed derivation of the dynamic equation of a rigid baiypomerged in a viscous
fluid in the framework of geometric mechanics can be found58].[In the present work,

we just state the governing equations.
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Sincerc, = [0 0 0]%, the only moment due to the restoring buoyant force is the
righting moment-rc,, x (pgV)R”e3, whereg is the acceleration due to gravify,is the
volume of the displaced fluid, angg = [0 0 1] is the inertial unit vector pointing
in the direction of gravity. Let; = [1 0 0]7 ande, = [0 1 0]7 denote the other
unit vectors in the inertial frame such that e,, andes form an orthonormal basis. The
dynamic equations of motions are

M = My x Q+ D,()v + (W — pgV)R e + ¢, + L.,
(3.2)

JQU=JQ X Q+ Mv x v+ Do(Q)Q —ro, x (pgV)RTes + 1 + 73, where

D, (v)v = (diag(D1|v1], Da|val|, D3lvs|))v andDo ()2 = (diag(Ds|Q1], D5|Qs], Ds|Q3])) €2
represent the drag force and drag momentum, respectivelse, W is the weight of the
AUV in air. The equations of motion are given by the kinem&ti8.1) and the dynam-

ics (3.2). The mass matrix/ = ml; + My accounts for the mass and added mass, whereas
the moment of inertia matrix = J, + JJ‘? accounts for the body moments of inertia and the
added mass moment of inertia. The vectofsc R3 and7d € R? are the bounded distur-
bance force and disturbance moment respectively, whichssenae to be zero throughout
this thesis. The control forces and moments of the AUV arergbwy, = (0., Py, @us) T

andrq = (1q,, Ta,, 7o, ), respectively.

Lemma 3.1. The equations of motion expressed in coordinates of the-bweg frame
for a rigid body submerged in a viscous fluid subject to exdkeforces are given by the

following affine control system (see [10])
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by = 1y cos ) cos O + 1R + RS, (3.3)

by = v sin cos  + v R* 4 13 R*, (3.4)
by = —uy sin 6 + vy cos @ sin ¢ + v5 cos 0 cos b, (3.5)
=1 + Qysinptand + Qg cos ¢ tan b, (3.6)
0 = Q) cos ¢ — Qg sin @, (3.7)
) = Sm¢92 + cos ¢ 3 (3.8)
cosf cos 6
. 1 .
V= E[_(m3)’/392 + (ma)vaQds + D, (1) — Gsind + ¢, ], (3.9)
1
1
V'g = m—[(TTLP,)Vng — (ml)Vlﬁgg + DV(VQ) + GCOSQSiD¢ + QOVQ], (310)
2
1
Vg = m—[—(mQ)qul + (mq)11Qe 4+ D, (v3) + G cos 6 cos ¢ + ¢,,], (3.11)
3
(3.12)
. 1
Ql :—Ql[(JbQ — (]53 + J}b — J?B)Qggg + (]\4}/2 — M;S)Vgl/g
T 5 (3.13)
+ Do (21) + pgV(—yp cos O cos ¢ + zp cos O sin ¢) + 7q, |,
. 1
Oy = ———[(Joy — oy + I3 = TP Qs + (MP = M7 vy
o + Iy (3.14)
+Dq(Q2) 4+ pgV(zpsinf + xp cos O cos ¢) + Tq,],
1
3:T—Wﬂ%—%+ﬁuJ%mm+W?4wwM
bs T Jy (3.15)

+Dq(23) + pgV(—xp cosfsin ¢ — ypsin ) + 7q,],
whereG = mg — pgV,m; = m + M}”‘,DV(V,-) = D;|vi|, Da(%) = D;1|Q2;| where
i = 1,2,3. Note thatp? = 7 = 0. Also, R'> = —sin cos ¢ + cos 1 sinfsin ¢, R1? =
sin ¢ sin ¢+cos 1 cos ¢+sin ¢ sin 0 sin 1), R*? = cos 1) cos ¢p+sin ¢ sin @ siny,and R* =

— cos 1 sin ¢ + siny cos ¢ sin .
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Chapter 4
Almost Global Attitude Tracking of an AUV

The attitude of a rigid body is the relative orientation oé thody-fixed coordinate
frame to the inertial frame. The coordinate axes of thesmdmsare related by a linear
transformation given by a proper orthogonal matrix, callexrotation matrix. The rotation
matrix can also be represented by coordinate sets, like tier Bngles or quaternions
[21, 22]. We represent the global attitude Bye SO(3), as mentioned in Section 3.1.

Before going any further, let us discuss some definitions hadrems which will be
helpful in understanding the derivation of the feedbackitaw. The proofs of these can

be found in [30].

Definition 4.1. An equilibrium pointr = 0 € U C R™ of a nonlinear system described by:

T = f(x(t),t),z(ty) = o, wherez € U andf : U x R — R™ is a vector field, is

1. stable (in the sense of Lyapunov), if for &l > 0 ande > 0, there exists a(t, ¢)
such thatl|xzo|| < d(to,€) = ||x(t)|| < €Vt > t,. Herex(t) is the solution of the

nonlinear system.
2. unstable if it is not stable.

3. asymptotically stable if it is stable and attractive,,ifer all ¢, > 0 there is &(t,)

such that|zy|| < 0 = tlim |lz(t)|| = 0.

4. uniformly stable, i is chosen independent &f.
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Theorem 4.1. (Lyapunov Stability of Autonomous Systems)aet 0 be an equilibrium
point for a system described by: = f(x(¢),t), wheref : U — R™ is locally Lipschitz
andU C R"™is a domain that contains the origin. L&t : U — R be a continuously

differentiable, positive definite function in

1. If V(z) = [0V/dz]f is negative semidefinite, then= 0 is a stable equilibrium

point.
2. If V(:z:) is negative definite, then= 0 is an asymptotically stable equilibrium point.

In both cases abovE is called a Lyapunov function. Moreover, if the conditiomédhfor
all x € R"” and||z|| — oo, thenz = 0 is globally stable in the first case and globally

asymptotically stable in the second case.

Theorem 4.2. (Lyapunov Uniform Asymptotically Stability of Non-Autormas Systems)
Letz = 0 be an equilibrium point of a system describediby= f(z,¢) such thatr €
U c R™, whereU is a domain. LelV : U x [0,00] — R be a continuously differentiable

function that satisfies

Wi(z) < V(x,t) < Wa(x), (4.1)
V(a:,t) = %—‘; + g—Zf(:c,t) < —Ws(x), (4.2)

forall t > t,, andz € U, whereW,(z), W, (z) andW;(z) are continuous positive definite
functions onU. Then,z = 0 is uniformly asymptotically stable aridis called a Lyapunov

function. Furthermore, i#V5(x) = 0, thenz = 0 is uniformly stable.
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Corollary 4.1. Suppose that the assumptions of Theorem 4.2 hold far &l R” and

Wi(x) — oo for ||z|| — oo, thenz = 0 is globally-uniformly-asymptotically stable.

We will be applying the above concepts to obtain the feedlsacitrol scheme for the
attitude tracking problem by doing Lyapunov-type analysis [9, 46] the authors have
shown that such an analysis gives multiple critical poimatsl€¢ast four) for a feedback-
controlled rigid body or5O(3). The stable manifolds of the non-minimum critical points
are locally attractive, and this leads to loss of globalrastptic stability. Nevertheless,
using such a scheme leads to convergence of tracking eoraaigtiost all initial conditions

except those that lie on a set of measure zero (see [47]).

4.1 Modeling the Attitude Dynamics

The attitude tracking of a rigid body can be studied undeiousrscenarios. In our case,
we study the pure attitude motion of an AUV without any tratisih of its center of mass.
Therefore, the translational velocityis assumed to be zero. Thus, from (3.1), the attitude
kinematics equation can be given By= RQ*.

For the attitude tracking problem, we neglect the drag mdraed any other external
disturbance moments appearing in the dynamic equatiom ¢pyeEq. (3.2). The assump-
tion of zero drag moment essentially means that the AUV isintgpin a perfect fluid, i.e.,
an inviscid and incompressible fluid. This assumption isprattical, as water is not a

perfect fluid. However, we must note that the previous assiomphave been made as an
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initial study of the use of the structure-preserving Lieugr@ariational integrator to simu-
late the attitude feedback dynamics of an AUV. The use of gr@tional integrator in the

presence of drag moments have been reported in [46], wheruthors have investigated
the disturbance- rejecting and feedback-tracking cowtrah spacecratft.

The attitude dynamic equations are obtained from (3.2) as

JO=JAxQ—7r¢c, X (pgV)RTes + 7, (4.3)

wherer is the control input torque vector.

4.2 Modeling the Attitude Error Dynamics

In this section, we introduce the attitude and angular wBla@jectory tracking problem,
and formulate it in terms of tracking errors in attitude angw@ar velocity. The reference
trajectory is given by the initial attitud&, (0), and the angular velocity as a function of
time2,.(¢), for some interval of time € [0, 7], whereT" > 0. The reference angular veloc-
ity and acceleratiorf), and(),, respectively, are bounded during this time interval so that

the attitude rate of change is given by

R.(t) = R.()2,()*, given R,(0),0,(t). (4.4)

24



The attitude and angular velocity tracking error is definged a

Q) = REWR(), w(t) == Q1) — Q" () (1). (4.5)

Equations (4.4) and (4.5) lead to the attitude error kineaaaquation

Q(t) = Q1) — QT(H2(1))* = Q)W (t). (4.6)

Note that the attitude error kinematics is also “left ingati’ like the original attitude kine-
matics (3.1), i.e., i), = CQ, whereC' € SO(3) is constant, the); = Q™.
Rewriting the attitude dynamic equation (4.3) in terms ofttheking errors, we obtain
Jo=J(w*QTQ - QT,) — (w+ QT J(w+ QTQ,)

(4.7)
+ Mb(RrQ) + T,

where My, (R,Q) = —rc, X (pgV)(R,Q)Tes. Note, the trajectory tracking error kinematic
and dynamic Egs. (4.6) and (4.7), respectively, depend)an, (.., ., and the control

momentr.
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4.3 Control Law for Tracking the Reference Trajectory

In this section, we provide the control law that achievesciarol task of asymptotically
tracking the desired attitude and angular velocity giver{4¥), following the kinematics
and dynamics (4.6) and (4.7). The controller obtained aelsi@almost global asymptotic
tracking, i.e., the attitude and angular velocity conveamgthe desired trajectory from all
initial conditions, except those that lie in a subset of aerome in the state space.

Before we move ahead, we provide some Definitions and a Lematanth will be
making use of in this section. We discuss Morse Lemma andnisddiate corollaries
which will be important for our feedback control design. Foe proofs of these results,
we refer the reader to [44]. Lét/ be anm dimensional manifold without boundary and

f : M — R asmooth function defined on it.

Definition 4.2. (Critical points of f). A pointp, € M is a critical point ofM if we have

of v _o9f,  \_ of
8_1:1(po> =0, Dis (po) =0,..., 0 (po) =0,

with respect to a local coordinate systém, -, . . ., x,,) aboutpy.

Definition 4.3. (Non-degenerate and degenerate critical points). We sattritical point
po is non-degeneraté the determinant of the Hessian ¢fat p,, det H;(po) is not zero.

We say that it islegeneratéf det H(po) = 0.

Definition 4.4. (Morse function). We say that a functigh: M — R is a Morse function
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if every critical point of f is non-degenerate.

Lemma 4.1. (Morse lemma for dimension m). Lgf be a non-degenerate critical point
of f : M — R. Then we can choose a local coordinate systéf, Xs, ..., X,,) about
po such that the coordinate representation fofvith respect to these coordinates has the

following standard form

f=-X{-X5— ... - X3+ X3, +...+ X +c

wherep, corresponds to the origif0, 0, ..., 0) andc is a constant£ f(po)).

Definition 4.5. (Index). The numbek is called thendexof a non-degenerate critical point

po- The index ofp, lies in [0, m).
Corollary 4.2. A non-degenerate critical point is isolated.

Corollary 4.3. A Morse function defined on a compact manifold admits onlgefinmany

critical points.

Definition 4.6. (ClassX function). A functiona(-) : Rt — RT belongs to Clas:

(denoted byy(-) € K) if it is continuous, strictly increasing and0) = 0.

Let® : RT — R* be aC? function that satisfie®(0) = 0 and®'(z) > 0 for all
r € RT. Letd'(:) < af(-), wherea(:) is a Classk function.

Next, letZ andK be the positive definite control gain matrices, with= diag(k, k2, k3)
such thad) < k; < ko < k3. The control law design is based on a Lyapunov-type analysis
on the state spacBSO(3) of the attitude dynamics.
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Using Eq. (4.6), the time derivative df(tracd K — K())) (see [46]) is given by

%@(traoe{K - KQ)) =— ®'(tracd K — KQ))tracg KQu™)

= — ®'(trac€ K — KQ))w' [k1e;Q ey + koey QT ey + kzel QT es).

Based on the results of [46, 47], the following continuoustcmiaw to asymptotically
track the desired attitude and angular velocity is proposed

T=—Lw+JQTQ, + (QTQ)*JQTQ,
(4.8)

+ @' (tracd K — KQ))[k1e; Q% ey + kaes QT ey + kses QT es] — My(R,Q),

where®(tracd K — K(Q)) is a Morse function or5O(3) whose critical points are non-
degenerate, and hence isolated according to the Morse Lehata that this control law,
and hence the trajectories of the closed-loop system, apetbmvith respect to time and
the error variableg) andw.

In [46], the authors have shown th@D,w) = (I,0) is a stable equilibrium of the
closed-loop system consisting of Egs. (4.6), (4.7) and)(4/®reover, this equilibrium is
almost global asymptotically stable, i.e., the domain tfation is the whole state space

(which is the tangent bundlBSO(3)), except for a subset of volume measure zero.
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Chapter 5
Asymptotic Feedback Tracking of an AUV in
SE(3)

Earlier, we have seen that the trajectory tracking in thiestpacé'SE(3) is a challeng-
ing problem with several applications to the control of umdser vehicles and spacecratft.
In this chapter, we develop the theory for the asymptotickireg of reference trajectories
by an AUV in TSE(3), in the absence of disturbance inpyt$ and7¢. From equation
(3.2), the dynamic equations are given by

Mp = Mv x Q+ D,(v)v+ (W — pgV)RTe3 + ¢,
(5.1)

JU=JQA X Q+ Mv x v+ Do(Q)Q —re, x (pgV)R es + 7q.

5.1 Kinematics and Dynamics of Trajectory Tracking Error

The reference trajectory to be tracked by an AUV is given lyitfitial desired position
vector in the inertial frame,.(0), the desired orientatio®®,.(0) and the desired transla-
tional and angular velocity time profiles in the body framg) and(,.(t), respectively.
We discuss the design of reference trajectories in chapter 7

The reference trajectory satisfies the following kinematjoation

gr = g?"CTv (52)

29



R, b, QO b,
whereg, = € SE(3) and(, = € se(3).

0 1 0 0
We first define the trajectory tracking errors as follows:

a(t) := b(t) — b.(t) = error in inertial position,
z(t) := RT(t)a(t) = error in position expressed in reference body frame,
Q(t) := RT(t)R(t) = error in body attitude (orientation),
v(t) == v(t) — QT (t)(v(t) + Q.(t)*x(t)) = error in body translational velocity,
w(t) == Qt) — QTQ,.(t) = error in body angular velocity.
The above definitions and Eq. (5.2) lead us to the followingekiatics for the error
variables

T = Qu,
(5.3)

Q= Qu*.

Equation (5.3) can be written in a compact formias h&, where

x
h = € SE(3),
0 1
and
w* v
€= € se(3).
0 0
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Note that the kinematics of the error variables are in thadsted left-invariant form on
SE(3).

Let us define’, := v, + QXx. Now, we rewrite Eq. (5.1) by substituting+ Q7 2, and
v + QTv, for Q andv, respectively. Therefore we obtain the trajectory tragkdgnamics
given by

Mo =M{w*Q"0, — QTir} + M(v + QT5,) (w + QTQ,) + D, (v) (v + Q71
(5.4)

+ (W - ng)QTRfe?) + (Y2

Jo =J(*QTQ — Q") — (w+ QTR J(w+ QTQ,) — (v + Q7D M(v+ Q")
+ Da(Q)(w + QTQ,) —rop x (pgV)QT R es + 74,
(5.5)

So, the trajectory tracking error kinematics and dynamiegyaven by Egs. (5.3), (5.4) and
(5.5).

We will see in the next section that the control law for feedkbracking depends on
x, error in position in the reference body frame. However, ifexelude the control forces
and moments, then the Egs. (5.4) and (5.5), involving thedyos of the tracking error,
are independent of the tracking error in position, whichive by a or z.

Next we give the control law that achieves the control taskaxfking the desired po-
sition and velocity as specified by the reference trajectdnite following the kinematic
and dynamic equations given by Eqgs. (5.3)-(5.5). The cbtdwo design in based on a

Lyapunov-type analysis on the nonlinear state-sptie(3) of the AUV dynamics.
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5.2 Control Law for Almost Global Asymptotic Tracking

Here, we provide a control law that achieves the control tafsklmost global asymp-
totically tracking the reference trajectory$i(3). The almost global asymptotic tracking
performance ensures that the actual trajectory of the AUwWerges to the reference tra-
jectory asymptotically for almost all initial tracking ens except for a set of measure zero
in the state spacéd,SE(3).

In Section 4.3, we developed a control law for asymptotycakcking the desired at-
titude and angular velocity. Here, we use the Definitions i@sailts from Section 4.3 to
give the control law for trajectory tracking BE(3). The feedback tracking control scheme
is based on Lyapunov-type analysis. We assume that we hawa¢hsurements or can
estimate all the “tracking error” states, i.e, v, Q andw.

Letd : R* — RT be aC? function that satisfie®(0) = 0 and®’(u) > 0 for all u €
R*. Let®'(-) < a(-), wherea(-) belongs to clas#: function (denoted byi(-) € K). Also,
let K, L,, Lo and N be positive definite control gain matrices, with = diag(k1, k2, k3)
such that) < k; < ks < k3. Therefored(tracé K — KQ)) is a Morse function 080(3),
where( € SO(3). The critical points ofb(tracd KX — K())) are non-degenerate, and hence

isolated according to the Morse Lemma (see Section 4.3).
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Along the kinematics, given by Eq. (5.3), the time derivatof ¢(tracd K — KQ))

(see [46]) is given by

%@(trace([( — KQ)) =— d'(tracd K — KQ))tracé KQu™)
=— ®'(tracd K — KQ))w  [k1e;Qe; + koey QT ey + kzel QT es].

(5.6)

We propose the following control laws far, andr, to asymptotically track the refer-

ence trajectory ifl'SE(3)

oy =— Lo+ MQ 0, + (QT) (M(v+ Q")) — Dy (v)(v + Q")

(5.7)
— (W = pgV)Q"Rles — Q" Nz,
7o = —Low + JQTQ, + (Q"Q,)*(JQTQ,) + (Q"5,) (MQ" ;)
— Da(Q)(w + Q") + (pgV)rép(QT Ry es) (5.8)

+ (ID’(traCQK — KQ))[]{?lei( QT61 + k’QB; QTGQ + k?3€§< QT63].
Itis to be noted that the control law, and hence the trajetaf the closed-loop system,

are continuous with respect to the error variahles, ) andw.
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Chapter 6
Lyapunov Analysis of the Feedback Tracking
Control Scheme

In [46, 47], the authors have shown that a control law, simdahe one proposed in
Chapter 4, asymptotically tracks the desired attitude amglilan velocity trajectory of a
spacecraft. The attitude dynamics of an AUV was modeled irp@hnat with the assump-
tion that there is a disturbance moment, and that the triémséa velocity is zero. Under
these assumptions, the attitude dynamics of an AUV are airtol that of a spacecratft.
So, the asymptotic properties of the trajectory trackirrgrarin TSO(3) follows from the
analysis done in [46, 47].

Before we proceed, we discuss some important concepts whichenof use in this
section.

Asymptotic stability of a control system is an important peay to be determined.
Lyapunov’s stability theorems studied in Chapter 4 are odtificult to apply to establish
this property, as it often happens that the derivative ofliyepunov function candidate
¢ is only negative semi-definite. In this situation, it is Istibssible to draw conclusions
on asymptotic stability with the help of thavariant settheorem, which is attributed to

LaSalle.
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Definition 6.1. (Invariant Set). LetX be a smooth vector field on a manifald.

1. AsetA C M is X-invariant (or invariant for X) if, for allke € A, the integral curve

R > t — ®X(x) takes values in A.

2. AsetA C M is positively X -invariant if, for allz € A, the integral curvi® ' 5t

®X (z) takes values in A, wherB = {z € R|z > 0}.

Now we state the important LaSalle’s Invariance Princifie, proof of which can be

found in [7].

Theorem 6.1. (LaSalle Invariance Principle). FoX € I'*°(M), let A ¢ M be compact
and positivelyX -invariant. Let the Lie-derivative af € C>(M ), with respect toX, satisfy
Zxy(z) < 0forall z € A, and letB be the largest positively -invariant set contained

in {z € A|Zxy(x) = 0}. Then the following statements hold:
1. each integral curve ok with initial condition in A approaches3 ast — +oc;

2. if B consists of a finite number of isolated points, then eaclgiateurve of X with

initial condition in A converges to a point a8 ast — +oc.
Thus, LaSalle’s principle is a useful extension of Lyapu&tability theory.

Definition 6.2. (Domain of Attraction). The domain of attraction of an eduilum point
Ty, is the largest seb (X, ) such that, for ale € D(X, zy), ®;*(z) converges ta, as

t — +o0,i.e., D(X,mg)={zr¢€ M|tli+m OX (1) = 20}

Remark 6.1. The domain of attraction of an equilibrium poing is also an invariant set.
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Now, we are ready to show the asymptotic properties of thediary tracking errors in

TSE(3) by analyzing the closed-loop system presented in Chapter 5.

6.1 Critical Points for the Closed-Loop Attitude Dynamics

In this section, we present a Lemma from [46]. We will be udimg to prove the main

result on asymptotic trajectory tracking.

Lemma 6.1. The function®(trace( K — KQ)) on SO(3) has the set of non-degenerate

critical points

E. = {H’ dlag(_]-’ L, _1)7 dlag(lv —1, _1)7 dlag<_17 -1, 1)} (61)

Further, the unique minimum point of this functioriJs= 1 = diag(1, 1, 1).

Proof. As discussed earlier, the functidritracd KX — KQ)) onSO(3) is a Morse function,
and has a set of non-degenerate critical points. The gairxnat = diag k;, ko, k3), with
0 < k1 < ko < kg, is a positive definite diagonal matrix. L&t denote the trace inner

product on the vector spa@&*" given by (A, B) = tracg AT B). The critical points ofp
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are given by equating its first variation to zero

0d(traced K — KQ)) = 9'(trace K — KQ))otracd K — KQ)
= d'(tracd K — KQ))0(K, I — Q)

= —d'(tracd K — KQ))(K,0Q) = 0.

Let the variation or8O(3) be given byo@ = QU, whereU € so(3). Sinced’(z) > 0 for

x > 0, we get the criticality condition

(K,0Q) = (K,QU) = 0,

which is equivalent td<() being symmetric (sinc& is skew-symmetric). LeKQ = S =
ST which implies that) = K~15.
As(Q € SO(3),wehaveQQT =T K 1S?K~! =1« S? = K2 Also sincedet Q = 1,

the set of solution§ of S for the above equation is given by

S = {K, diag(—kl, ]{32, —kfg), diag(kl, —]{32, —kfg), diag(—kl, —k’g, k’g)}

This leads to the set of four critical points given by Eq. 6.1

To find the minimum of the functio®(trac& X' — KQ)) in SO(3), we set its second vari-

37



ation, with respect t@) at a critical point, to be positive

O*®(tracd K — KQ)) = —®'(tracd K — KQ))(K,QU?) > 0,
& —(K,QU?) >0,

& tracd KQU?) > 0.

Note that we have assuméd = 0. Now, sincel/? > 0 for U € so(3), the above condition
is equivalent toK'(Q = S being positive definite. From the set of critical poigidor S,
we see that the only positive definite solutionSis= K = diag(k1, k2, k3). So, we get a

unique minimum point ofb(trac K — KQ)) in SO(3) asQ = S;' K = L. O]

Using this result, we will show almost global asymptoticbdity of the equilibrium

(Te, Qe, Ve, we) = (0,1,0,0) € TSO(3) x R® ~ TSE(3) in the next section.

6.2 Asymptotic Convergence Results

For the closed-loop dynamics of the AUV, we first prove thealogsymptotic stability
of the equilibrium(L,0) € TSO(3), when(v,w) = (0,0). Before discussing our main

Theorem, we give the following Lemma, the proof of which carfaund in [46].

Lemma 6.2. The equilibrium(L, 0) of the closed-loop attitude dynamics given by £q5)
and the control law given in E(5.8)is locally asymptotically stable whémn, w) = (0, 0).

The other equilibria given byQ.,0), where@,. € E. \ {I}, of the closed-loop attitude
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dynamics under these conditions are unstable. Furthermuorger these conditions the set
of all initial conditions converging to the equilibriugd)., 0), where@,. € E¢ \ {I} form a

lower dimensional manifold.

The next theorem gives the main result regarding the asytropgtonvergence of the
tracking error dynamics for the closed-loop dynamics in.E@s4)-(5.8) to the desired

equilibrium (z., Q., ve, w.) = (0,1,0,0).

Theorem 6.2. The trajectories of the closed-loop tracking error systemeqg by the dy-

namics in Eqs(5.4)(5.8) converge to the set

E={(z,Q,v,w) € TSE(3) : v =0,w =0,2=0,Q € E_.}, (6.2)

whereFE, is as defined in Eq(6.1). Further, the equilibriumz., Q., v.,w.) = (0,1,0,0)
of the closed-loop system is asymptotically stable in thge@nd its domain of attraction

is almost global.

Proof. For the closed-loop tracking error dynamics given by Eqs})¢65.8), we propose

the following candidate Lyapunov function

V(z, Q,v,w) = Vr(z,v) + Va(Q,w), (6.3)

whereVr(z,v) = 0" Mv + 32" Nz, andVa(Q,w) = jw’Jw + d(tracd K — KQ)).
Note thatV (z,Q,v,w) > 0 and its “attitude component’,(Q,w) = 0 if and only if
(Q,w) = (I,0). Thus,V(x,Q,v,w) is a positive-definite function of'SE(3) which is
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zero only at the desired equilibrium.

We now obtain the time derivative of this Lyapunov functiosing the time derivative of
d(tracd K — K()) along the trajectories of the closed-loop system, which btaioed
in Eq. (5.6). We evaluate the time derivativelofz, ), v, w) along the trajectories of the
closed-loop system given by Egs. (5.4)-(5.5) and the colaves in Egs. (5.7)-(5.8). The

time derivative ofi(z, v) along (5.4) and (5.7) is

Vi =0T Mo + 2T Ni
= M@ Q"7) = MQ"5] + (M(v +Q"7)) (w + Q") + D, (v) (v + Q1)
+ (W = pgV)Q " Ries + Q" Nz + o, (2, Q, )]
= v [M(w* Q") + (M(v+ Q")) w — L.

(6.4)

The time derivative of/4(Q,w) along Egs. (5.5), (5.6) and (5.8) is

Vi =wlJi — @ (tracd K — KQ))w” [k1e} Q ey + koel QTes + ksel QTes]
=TI (W QT2 — Q") — (QT) J(w+ Q™) — (v+ Q) M(v+ Q1)
—755(pgV)Q" Ry ez + Da(Q)(w + QT Q)
— &' (tracd K — KQ))[kiey Q" er + kael QT ey + ksey Q7 es] + m(Q, v, w)
=w [J(@ Q") — (Q") Jw — v*M(v + Q"0r) — (Q" 1) Muv — Lauw]
=~ M(v+ Q") + (QT0;)* Mv + Low].

(6.5)
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Therefore combining Egs. (6.4) and (6.5) and using the stiade product identity, we

get

V= VT + VA = —v'Lv—w'Low < 0,

andV = 0iff v = 0 andw = 0.
Recall thatd(-) is a strictly increasing monotone function. Thus, for any

(2(0), Q(0), v(0), w(0)) € TSE(3), the set

T ={(x,Q,v,w) € TSE(3) : V(z,Q,v,w) < V(x(0),Q(0),v(0),w(0))},

is an invariant set of the closed-loop system [9, 46]. Now,Lhalle’s invariant set
Theorem, it follows that all solutions that begindrconverge to the largest invariant subset
of V-1(0) contained irZ. SinceV (z, Q,v,w) = 0 impliesv = w = 0, we substitute this

into the closed-loop system equations to get

VH0) ={(z,Q,v,w) € TSE(3) : v =0,w = 0,Q" Nz = 0,
' (trac€ K — KQ))trac€ KQw™) = 0}
= VH0) ={(z,Q,v,w) € TSE3) : v = 0,w = 0,
r=0,kiefQe; + koel QT ey + ksel QT es = 0}

={(z,Q,v,w) € TSE3) : 2 =0,Q € E.,,v =0,w =0},
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sinceQ”’Nz = 0 = x = 0 asQ € SO(3) is invertible andN is positive definite. In
this case, each of the four points given by Eq. (6.2) are aflilequm of the closed-loop
dynamics inTSE(3). Therefore, by LaSalle’s Theorem, all solutions of the otbkmp
system converge to one of the equilibriacim Z, where€ is given by Eq. (6.2).

From Lemma 6.2, we see that the only stable equilibrium is #guilibrium set is
(z,Q,v,w) = (0,1,0,0). In fact, as stated in Lemma 6.2, all solutions that converghe
other three equilibria form a lower dimensional manifolchus, this set of solutions has
measure zero i'SE(3) (see also [9, 46]). Solutions of the closed-loop systemdbatot
start in this manifold, thus converge asymptotically tosteble equilibriun{z, Q, v,w) =

(0,1,0,0). Therefore, the domain of attraction of this equilibria isakt global. O

Remark 6.2. Since this is also the desired equilibrium for asymptoacking, the closed-

loop system performs almost global asymptotic trackindnis tase.
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Chapter 7
Design of Reference Trajectory

In the previous two chapters, we have formulated the feddbaatrol dynamics for the
two problems at hand: the attitude tracking problen8@(3), and the trajectory tracking
problem inSE(3). We have seen that the feedback dynamics depend on the i&ddran
jectory to be tracked. In this chapter, we discuss the meatleogployed for designing the
reference trajectory.

For the attitude trajectory tracking #0(3), the reference trajectory is given by the
initial attitude R,.(0) and the angular velocity as a function of tifle(t), for some interval
of timet € [0, 7], whereT > 0. Also ||Q2,(¢)|| < Cy and||,(t)]| < Cyfor0 <t < T,
whereC;(i = 1,2) is a constant. We will give the explicit equations for thetatte time
trajectory and the desired angular velocity time profilehia hext Chapter, where we deal

with simulation of the feedback dynamics.
7.1 Reference Trajectory inTSE(3)

The design of a reference trajectory fBSE(3) merits a detailed discussion. The refer-
ence trajectory has been taken from different mission saenahich have already been
implemented on the test-bed AUV, ODIN, and which have beesgnmted in [50]. Itis
relevant, as well as interesting, to know how these missigere implemented on ODIN

using geometric control techniques. However, we shoule tlwat the motion planning
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problem using geometric control techniques is in itselff@asate research topic and out of
the scope of this thesis. A detailed description of the aesfgpen-loop control strategies
for the motion of a test-bed AUV can be found in [50].

Since the scope of this thesis is not to study the methodsagmegblfor generating
the control forces, we do a brief review of the control degigocess using &inematic
reduction and decoupling vector fieldas is detailed in [50]. A detailed discussion of
these concepts can also be found in [7].

We are interested in the open-loop control forces and mastbat have been derived
in [50] for different mission scenarios. We use these cdstt@ numerically solve the

system of equations given in Lemma 3.1; this gives us theerbe trajectory.

7.1.1 Kinematic Reduction and Decoupling Vector Fields

Let @ be the configuration space of the system. From [50], we haséotlowing Lemma

Lemma 7.1. LetQ = SE(3), V be the modified Levi-Civita connection on the configura-
tion space) associated with the Riemannian meti@nd let the set of input control vector
fields be given b = {I-1,... I-'}. LetG* P(y(t)) represent the restoring forces aris-
ing from gravity and buoyancy. Then, the equations of matioa rigid body submerged

in a viscous fluid are given by the forced affine connectionrobsystem:

6

Vo = GFP((1) + Y T (y(t))oi(t), (7.1)

i=1
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whereo;(t) represent the controls.

Note that the viscous drag forces have been included in thofied Levi-Civita con-
nection. The restoring forces and moments due to gravitypangancy can not be included
in this connection as these forces depend on the orientatithre body and not on its ve-
locity or acceleration. Also note that Eq. (7.1) is a secordkr system o1).

The motion planning problem for a second-order systery @an be reduced to a first-
order system o) by use of a kinematic reduction, with the property that thetadled
trajectory (i.e. solutions) of the reduced system are disacontrolled trajectories of the
original second-order system, with the exception of a fssreparameterization”. This
method of reducing the complexity of the system to solve dyinaontrol problems has
been previously reported in [6, 8]. In [7], the authors haxgl&ned this topic in great
detail.

We denote an affine connection control system (dynamicthy = (Q,V,),RS).
The associated driftless system (kinematic) is the thile = (Q, X = { X4, ..., Xz}, U),
whereX € I'*(TQ),U C R™ m < 6. HereT™(TQ) represents th€>-section of the
distribution generated by (), the tangent bundle @). The driftless system is associated

to the affine control system defined by

V(1) =Y @ () Xaly(1)), (7.2)

where a controlled trajectory is a péiy, ) such that

1. v: I — Qandu: I — U are both defined on the same interyat R,
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2. u belongs to the class of kinematic inpttg: ,
3. (v, m) together satisfy Eq. (7.2).

Definition 7.1. (Kinematic Reduction). LeE,, = (Q,V,),R™) be aC*> affine con-
nection control system witl having locally constant rank. A driftless systemy;, =

(Q,X,R™), (m < 6) is a kinematic reduction dt,,, if
1. 2 is alocally constant rank subbundle©f), and if

2. for every controlled trajectortyy, u, ) for Xy, with ug;, € U, there existsi,,, €

Uy, such thaty, uq,, ) is a controlled trajectory ot ,,,,.

Here, ) are the input vector fields for an affine connection contraitay, and? is a
distribution generated by them. The distribution generatethe input control vector fields

for the kinematic syste®” are given by.2".

The rank of a kinematic reduction,;, atq € @ is the rank ofZ™ at¢. In particular,
a rank-one kinematic reduction is calldécoupling vector field The design of control
strategies for the motion planning problems presented 0] lfas been done by use of

decoupling vector fields.
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7.1.2 Open-Loop Control Design

Given an initial and a final configuratiom; andn;, respectively, the motion planning
problem can be solved by determining a sequence of integraés of decoupling vector
fields to follow connecting),; to n;. We then parameterize each segment to start and end at
zero velocity so that each segment begins with the samaliaitd final conditions and that
the segments can be concatenated to build the entire tiajedthe dynamic, open-loop
controls that steer the vehicle fromto n, can be constructed from this reparameterized,
concatenated, kinematic motion trajectory (see [50] faaits.

It should be noted that by use of this method, we get a contrateg)y for a drift-free
affine connection control system. However, as already meat in Lemma 7.1, the affine
connection control system of an AUV is not driftless. In [58je author has suggested
a method of dealing with drift vector fields so that the cadtedl control scheme can be
implemented onto a test-bed AUV.

We have briefly outlined a method for designing open-loomagyic controls which
can be implemented on a test-bed AUV. In our present work, eise the control forces
that have been designed in [50]. We use these control forbde solving the ordinary
differential equations given in lemma 3.1. We solve thigeysof equations using a fourth-
order Runge-Kutta (RK) method to find the translational andubargrelocities as well as

translational and angular accelerations. Thus we get feearece trajectory.
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Chapter 8
Numerical Schemes Used for Simulations

In this chapter, we discuss the various numerical schena¢$iive been used to simulate
the feedback dynamics discussed in Chapters 4 and 5. Theisamimnerical schemes that

have been employed in this thesis are

1. Feedback Trajectory Tracking iH0(3).We use a Lie group variational integrator to
simulate the feedback attitude dynamics discussed in Chépie also use a fourth-
order RK coupled with a CG numerical scheme to simulate theud#tifeedback
dynamics. We will compare the results obtained by both -d¢hreethods in Chapter

9.

2. Feedback Trajectory Tracking ifiE(3).We use a fourth-order RK coupled with a
CG numerical scheme to simulate the feedback dynamics of an discussed in

Chapter 5.

We first present a discussion on differential equations ergkoups and the application
of CG method to solve the equations. Next, in Section 8.2, waiola discrete model of

the continuous feedback attitude dynamics model presém€Htapter 4.
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8.1 Differential Equations on Lie Groups

In this section, we study differential equations on a mdtrexgroup.

Definition 8.1. (Lie Group). A Lie group is a groufr that is also a differentiable manifold
such that, for any,, b € G, the multiplication(a, b) — ab and inverse: — a~! are smooth

maps.

Definition 8.2. (Lie Algebra).A Lie Algebra/ is aR-vector space endowed with a bilinear

operation[-, -] : V x V — V called thebracketsatisfying
1. anti-commutativity, i.e.[¢,n] = —[n,&], V¢ n eV, and
2. the Jacobi identity, i.e[¢, [, C]] + [, [C, ]l + [¢. [§:n]] =0, V{n,C€V.

A matrix Lie group is an example of a Lie group, whereas a mati¢ algebra is an
example of a Lie algebra.

A differential equation on a matrix Lie group, denoted®yis an equation of the form

Y = AY)Y, Y(0)=Y,eq, (8.1)

where A(Y) € g andY € G with g denoting the Lie algebra af (see [23]). As the
tangent space at € G has the formly G = {AY|A € G}, the solution of Eq. (8.1)

satisfiesY (t) € G.
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One has to be very cautious in numerically integrating thiedintial Eq. (8.1). The
numerical method may have the shortcoming that, even whea G, the updatey,,
may not belong to the Lie group any more. In particular, s@utq. (8.1) by Runge-Kutta
method may lead to the iterates¥fdrifting away from the manifold. Equation (8.1) can
be solved using CG method or by Munthe-Kass method (see [23dur case, we will be

using the former.

8.1.1 Crouch-Grossman Method

In CG method, the update is done by the exponential mapahA(Y,,))Y,. The method
is described below (see [23]).

Fori:=1,2,...,s

Yy = exp(ha; ;-1 K;_1)....exp(ha;1K1)Y,,

Y11 = exp(hbsKy)...exp(hb K7),

wherea, ; andb; are integration parameters describing the particulan@kphethod. For

G = S0(3), the exponential magxp(w™), w* € so(3) is given bye*” =T+ w* + “2—,2 +
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3
wX

s + - -, Which can be written in closed form solution as

wr w*?
o :]I+Wsm||w|| + 5
w ]

(1 — cos|jwl])-

This is known afRodrigue’s formula

Equation (8.1) asserts that A(Y,,) does indeed belong to the associated Lie algebra.
By the property of the exponential map, and by the constroctfahe update operation, the
method of CG gives rise to approximatidf, ; which lies exactly on the manifold defined
by the Lie group. The accuracy of CG method is indicated by tiderocondition [23],
which is determined by the coefficieat;, b; andc; fori,j = 1,2,...,s. The variables

denotes the stage of the algorithm.

8.2 Variational Integration of the Feedback Attitude Dynamics

The idea behind variational integrators is to discretize \thriational principles of me-
chanics:Hamilton’s principlefor a conservative system or thagrange-d’Alembert prin-
ciplefor a system with non-conservative forcing [42]. In [34],aiational integrator was
obtained by discretizinglamilton’s principle

Here, we obtain a Lie group variational integrator by diszneg theLagrange-d’Alembert
principle. Next, we present a discrete Lagrange-d’Alembert primcfpl the continuous

feedback attitude dynamics of an AUV discussed in Chapter 4.
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8.2.1 Discrete Lagrange-d’Alembert Principle

The Lagrangian of the rigid body attitude dynamics discdsaeSection 4.2 can be ex-

pressed as
L(R.Q) = 52, 7) ~U(R), 8.2)

where (-, ) is the trace inner product oR**® given by (4, B) = tracé AT B], for all
A, B € R**3. The moment of inertia matriy/ can be expressed in terms of the standard
moment of inertia matrix by7 = tracdJ|I — J, wherel is the3 x 3 identity matrix. The

angular momenturhil = JS2 can be expressed in terms@fas follows
I =JQ)* =Q*J +JQ~". (8.3)

The continuous Lagrange-d’Alembert principle for the sysgiven in Eqgs. (4.3) and (4.8)

can be given as

5/T£(R(t),Q(t))dt+/T(7X(R,Q),EX> 0, (8.4)

whereX andé2 are the permissible variations &fand2 on TSO(3), respectively. These
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possible variations, also known eluced variation$43], can be expressed as
SR=RY*, 60=2+QxX.

Leth = tx1 — tr, > 0 be the fixed step size. Lét, € SO(3) denote the attitude of the

rigid body at timet,,.. The kinematic equatioR = RQ* can be approximated as
Rii1 = RiFy,, where Fj, =exp(hQ)*)~ 1+ hQ). (8.5)

This approximation is based on the assumption that the angalocity(; is constant in
the time intervalty, t;1]. Also, note that the discretization scheme is locally secudér
in h onSO(3).

For the time intervalty, t; 1], the first term in Eq. (8.4) can be approximated as

/ " LR, 1))t~ hLa( R, ), (8.6)

tr

whereL,; denotes the discrete Lagrangian. The second term in Eq). i§8approximated

as

| =

/ T R, Q()), 27t ~

ty

(T (R, Q) + 77 (Rieg1, Q) B ) (8.7)
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So, thediscrete Lagrange-d’Alembert Principis given by

N-1

1) Z Ed(Rk, Qk) +

k=0

=2

<TX(Rk,Qk) +TX(R;§+1,Q]€),Z;:+1> = O, (88)
0

N | —
=
Il

whered R, = R,YX; andX, = Xy = 0. Equation (8.8) is utilized to obtain a Lie group
variational integrator for the feedback attitude dynanatan AUV. We discuss this step

in detail in the next section.

8.2.2 Discrete Equations of Motion

We obtain a Lie group variational integrator as a discretsiva of the feedback-controlled
rigid body attitude dynamics, based on the discrete Lagratiglembert principle. The
integrator obtained is different from those obtained in ][3[B5] in the sense that in our
case the rigid body dynamics model has non-conservativadb&ex control torques that
are not obtained from an optimal control scheme. One can fihetailed description on
discretizingHamilton’s principleand the Lagrange-d’Alembert principle for mechanical
systems in [23] and [42].

In [34], the authors have compared the results obtained ttari_ie Group varia-
tional integrator with the RK method to demonstrate that gnrgational integrator exhibits
characteristic, symplectic and momentum preservatiopgat@s, as well as good energy
behavior characteristics of variational integrators. Vhagational method also preserves

the orthogonal structure &fO(3) without need for reprojection. In this thesis, we extend
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this approach to incorporate time-varying control momeht&t depend on attitude and
angular velocity using the discrete Lagrange-d’Alemberigple given in Eqg. (8.8).

In [47], the author has obtained a Lie group variationalgraéor for the feedback at-
titude dynamics of a spacecraft in the presence of non-caabee, time-varying potential
and external moments. Deriving the equations similarly4@],[the Lie group variational

integrator can be described by the following discrete tiopgagions

F.J - JF = h(J)™, (8.9)
Ry = Ry Fy, (8.10)
h
JQyr = FL I + hMy(Ry,) + 5(7,; +7), (8.11)

wherer, = 7(Ry, Q) andr,” = 7(Ri41, Q). The integrator yields a mary, Q) —
(Rr+1,%11) by solving the implicit Eq. (8.9) to obtaift;, and substituting it into Egs.
(8.10) and (8.11) to obtaiR,,; and; ;. A method to solve the implicit Eq. (8.9) using

Newton iterations is given in [34], [48].
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Chapter 9

Simulation Results: Trajectory Tracking in
SO(3)

In this chapter, we discuss the results obtained by sinmgjatie feedback dynamics dis-
cussed in Chapter 4. The feedback attitude dynami&®if8) are simulated by two dif-
ferent numerical schemes: using a Lie group variationagrgtor and using a RK-CG

scheme.

9.1 Variational Integration of the Feedback Attitude Dynamics

The variational approach was discussed in detail in Se@ti®nin this section, we present
some numerical simulation results obtained from applyimgltie Group variational inte-
grator presented in Eqgs. (8.9)-(8.11) to the feedback-aycsgof an AUV given in Chapter
4.

9.1.1 Simulation Results and Observations

The parameters used in the variational integration schemthase of ODIN. A detailed

list of the various physical as well as hydrodynamic paramsedf ODIN can be found in

[50]. These parameters are given in Table 1.
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The gain values appearing in the feedback control law aentédk be

L=diag[3.3 14 21]), K=21diag[l 2 3]), and &(z)=Tz.

The attitude time trajectory to be tracked is given by

CoCyy  SpSHCy — CpSy  CpSeCy + S¢Sy

R.(t) = CoSyy  SpSeSy T CpCyp  CpSeSy — SeCy |

—Sp CoS¢ CoCy

wherec,, = cos(a(t)) ands, = sin(a(t)). This attitude profile is obtained from a (1,2,3)-
Euler angle representation withit) = 0.003t—0.5, 6(¢) = 0.004t—0.9, and (t) =

0.001¢ + 0.9. Thus, the desired angular velocity, described in the bofireace frame, is

given by
¢ — sy
QT (t) = 9C¢ + ZZ'JCQS(b
—98¢ + ¢CQC¢

Mass 123.8kg [[B=pgV [12158N [[Cs [(0,0,—7)T mm
Diameter| 0.64 m W =mg | 12145N || Cs | (0,0,0)" mm
M 70 kg M2 70 kg M;® | 70 kg
Lo 5.46kgnt || I, 529kgnt || I.. |5.72kgnd
J3 Okgn? [ J3" Okgn? || Ji® | Okgn?

Table 1: Main dimensions and hydrodynamics parameters dNOD
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Note that the angular rates are constant. Whefigg) can be easily obtained frof, (t)

as

—0977/.)9.

Qr (t) = —sd)éé — SQS¢¢9 + Ca%lﬁb

—C¢é(é — S@Cqﬂ/‘}é — 098451/‘1@

With these simulation parameters for ODIN, we implementlifeegroup variational in-
tegrator given in Egs. (8.9)-(8.11) with the dynamic modeEq. (4.3), error dynamics

model Eq. (4.7) and control law Eg. (4.8). We assume thewiafig initial tracking errors

0.9567 —0.2863 0.0524 0.0252
Q)= | 01063 05115 0.8527 | w(0) =1 —0.0189
~0.2709 —0.8102 0.5198 0.0147

Next, we give the numerical simulation results with a timepssize ofh = 0.01 seconds.
The final time is taken to b& = 600 secs.

The plotted results are the norm of the attitude trackingrethe norm of the angular
velocity tracking error and the norm of the control torqueegttitude error norm is defined
as||C(1)| whereQ(t) = exp(C*(1)).

A plot of the norm of the attitude tracking error is given irgFil. Figure 2 presents a
plot of the norm of the angular velocity tracking error. A ptd the norm of the control

moment is given in Fig. 3. The time scale in these plots is adimad by dividingt by the
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Figure 1: Evolution of attitude tracking error norm under\W&Gcheme.

final timeT" = 600 s in the simulated motion.

From Fig. 1 and Fig. 2, we see that the tracking error asynuaibt decreases to zero.
This validates the asymptotic tracking properties of thatic law given in Chapter 4. The
norm of the control moment, as shown in Fig. 3 decreases dsyicaly.

In the next section, we compare these results with the stronleesults obtained using

a RK-CG numerical scheme.

9.2 RK-CG Integration of the Feedback Attitude Dynamics

In Chapter 8, we discussed the CG scheme for solving a difiafeaguation on a ma-

trix Lie group. The attitude error kinematics of the AUV givby Eq. (4.6) is an example
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of such a differential equation. We solve Eq. (4.6) using@& method. Runge-Kutta
method is used to solve the attitude error dynamics givendy(E.7) together with the
control law in Eq. (4.8).

The algorithm used to integrate the feedback-controlleaide dynamics in Egs. (4.6)-
(4.8) is as follows: let be the present time step. Using the attitude efor;, and the
angular velocity tracking errag; _; from the previous step, we calculatefrom Eq. (4.8).
We user; to solve Eq. (4.7) by RK method and obtain Then,w;_; andw; are used to
obtain@; from Eq. (4.6) using CG scheme.

In the next section, we present the simulation results nbtbirom a numerical scheme

based on the above algorithm.

9.2.1 Simulation Results and Observations

The simulation parameters for this method is the same agiat in Section 9.1.1 for
the variational method. The time step size is again takeretb b 0.01 s and the total
simulated time ig" = 600 s.

The plot of the norm of the attitude tracking error is giverFig. 4. Figure 5 gives the
plot of the norm of the angular velocity tracking error. THetpf the norm of the control
moment is given in Fig. 6.

The attitude error norms, attitude tracking error norm Figand the angular velocity
tracking error norm Fig. 5, decrease asymptotically witheti

Comparing Fig. 1 and Fig. 4, we see that the attitude error rstiows similar decreas-
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ing pattern in both of the integration schemes. In Fig. 2 aigd & we observe that both
display an assymptotic decrease in the angular velocitkiing error. However, the final
angular velocity tracking error shown in Fig. 5 is less thaat shown in Fig. 2. Comparing
Fig. 3 and Fig. 6, we observe that the norm of the control terfgllows a similar pattern
in both the cases.

As mentioned earlier, the Lie group variational integragwhibits characteristic sym-
plectic and momentum preservation properties, as well asl gmergy behavior charac-
teristics of variational integrators. Successful appiaaof the variational integrators for
the feedback control of the attitude dynamics of an AUV naié us to extend it to the

feedback tracking problem iE(3), which can be investigated in the future.

62



14

0.8 b

[| || (rad/s)

0.4 i

0.2 b

T

Figure 5: Evolution of angular velocity tracking error noumder RK-CG scheme.

70

60

(1Tl (Nm)

20 1

10} i

T

Figure 6: Evolution of norm of control torque under RK-CG scleem

63



Chapter 10
Simulation Results: Trajectory Tracking in
SE(3)

For simulating the feedback dynamicsSit(3), we use a Crouch-Grossmann integrator
(see [23]) for attitude motion and a fourth-order Runge-&sttheme for translational mo-

tion.
10.1 Feedback Trajectory Tracking inSE(3)

In this section, we present the numerical simulation resolitained from applying the
RK-CG numerical integration scheme to the feedback attityehwhics given in Chapter
5. As mentioned before, we use published hydrodynamic patersiand other physical
parameters of ODIN for our simulation. These parametergiaen in Table 1.

For our purpose we take the drag forces and moments matingaazh ODIN to be
diag Dy, Dy, D3, Dy, Ds, Dg) = diag(—231, —231, —120, —37.2, —37.2, —28.57). In
[50], the author has painstakingly calculated the drage®and moments acting on ODIN
during the experiments examined in this thesis.

In Chapter 7, we discuss in detail the method employed to genéne reference tra-
jectories. We use the feedback control scheme developed apt&h5 to track the de-
sired trajectories with an initial error in the states. In0J[5the author has implemented

open-loop control schemes for different mission scendnoDIN. For our numerical
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simulations, we pick three of these mission scenarios dombaan validate our feedback
control scheme. For each mission, we use the open-loopatpogiculated in [50], to
solve the system of equations given in Lemma 3.1, using lieoirder RK numerical inte-
grator. Thus for the feedback control simulations, we getdasired trajectory given by
translational and angular velocities, givenipyk) and(,.(k), respectively at discrete time
steps (see Chapter 5). Once we get the desired velocitiesanvase the equations from
Lemma 3.1 again to get the desired translational and angaotaierations, given by, (k)
and(, (k), respectively at discrete time steps.

Now, we are ready to simulate the feedback error dynamicengby Egs. (5.3),
(5.4), (5.5), (5.7) and (5.8). The initial error in attityd@(0) is taken to be the same
as the one given in Section 9.1.1. The error in inertial pasiat timet = 0 is a(0) =
[0.07 0.08 0.09]" m. The initial errors in the translational and angular viéjomea-
sured in the body-fixed frame awé0) = 0.5[0.06 0.08 0.09]" m/sandv(0) = 2.1[0.12 —
0.09 0.07]7 rad/s respectively.

The algorithm used to numerically simulate the feedbaaiktrotied dynamics is as fol-
lows: leti be the present time step. Using the errors, Q;_1, v;_1, andv;_1, we calculate
the control forces and moments, andr; using Egs. (5.4) and (5.5). The feedback control
force and momenty; andr; is then used in Egs. (5.4) and (5.5) to obtaimndw;. We use
RK numerical scheme to perform this simulation. We also dateu; in the same routine.
Thenw,_; andw; are used to obtai); from Eqg. (5.3) using a CG scheme. For all the
missions, the time step size for numerical integratiol is 0.01 s.

This algorithm is repeated for< ¢ < 7. In the next section, we present the simulation
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results for the different mission scenarios obtained fromuerical scheme based on the
above algorithm.

As a motivation for the use of feedback control, we presemstmulation results for a
scenario when the vehicle has to perform a desired missitimeipresence of initial dis-
turbances without a feedback loop. This is achieved by rateyy the system of equations
given in Lemma 3.1 using fourth-order RK method. The initialue of the states for this
integration is given byb, (0), b2(0), b3(0), ¢(0), 6(0), ¥(0), v1(0), 12(0), v3(0),2;(0),
22(0), Q3(0)]=[0.07m, 0.08m, 0.09m, —1.0004rad 0.2743rad 0.1107rad 0.03m/s,
0.04m/s, 0.045m/s, 0.252rad/s —0.189rad/s 0.147rad/3. Note that these initial values

corresponds to the initial errors discussed above.

10.1.1 Mission 1

In this mission the AUV is expected to perform a pure bodyvkaaotion of 2.5 m . The
trajectory lasts for 8 seconds.

Before we give the simulations results for the feedback cbsttheme, let us plot the
trajectory of the AUV, in the presence of initial disturbascunder an open-loop control
scheme. In Fig. 7, we plot the translational and angulartiposi of the vehicle. Figure 8
gives the open-loop control forces)(and momentsr).

From Fig. 7 we observe that the final position of the vehicleaswhat was desired.
There is a large error in the translational and angular jpostif the vehicle. This deviations

motivates the use of feedback control to track the desiegddtory.
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Figure 8: Open loop-controls (Mission 1).
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Next, we present the simulation results obtained usingdf@eki control. Note that in
this case, the reference trajectory has been generategithsifact that the initial states are

zero. The control parameters for this simulation are takeyet(see Chapter 5)

L, = 4diag([20, 30, 40]), Lgq =5 diag([4.4, 5.5, 6.6]), N = 8 diag([22, 26, 50]),and

K =1.2diag([1, 2, 3]).

The evolution of the position of the AUV with time is plotted Fig. 9. In Fig. 10,
we compare the actual velocities of the AUV with the refeeewnelocities. From Fig. 10
we see that the errors in the velocities in the six degreeseeflbm of the AUV decrease
as time progresses. Figures 9 and 10 show an exceptionaflpearice of the controller to
track the desired trajectory. We see that the feedbackaartrrects the initial error in the
states and the final position of the vehicle matches well itstesired state. In spite of the
presence of initial disturbances, the vehicle is able tbza@a pure heave motion of 2.5 m.
In Fig. 11 we compare the control effort required for the fesck scheme, in the presence

of initial errors, as compared to the open-loop control ssb&vith no initial disturbances.
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Figure 11: Comparison of the control effort in feedback sob@s compared to the open-
loop scheme (Mission 1).

10.1.2 Mission 2

For this mission the AUV is expected to perform a positiveegpsurge (i.e. motion in
b-direction) of 5 m. This mission lasts for 30 sec.

First of all let us plot the trajectory of the AUV in the preserof initial disturbances,
under open loop control scheme. In Fig. 12, we plot the tedimsial and angular positions
of the vehicle. Figure 13 gives the open loop control foraesmoments.

From Fig. 12 we observe that the there is a large error in Hrestational and angular

position of the vehicle. As a result of coupling between yawla and sway, the error

70



10 100

b, (m)
(6]

¢ (deg)
o

0 -100

0 10 20 30 0 10 20 30
t(s) t(s)
4 20
= =)
N ~
° @
0 =20
0 10 20 30 0 10 20 30
t(s) t(s)
0.5 60
= 0 \ > 40
=, S
2 -05 3> 20
-1 0
0 10 20 30 0 10 20 30

t(s) t(s)

Figure 12: Translational and angular positions using dpep-control with initial distur-
bances (Mission 2).

in yaw angle shows up in the sway motion of the vehicle. Sihesdontrol moment is
zero (see Fig. 13), the roll angle of the vehicle goes to zertinae progresses. We also
observe a change in the depth of the vehicle with time. Ady@ategle and heave motion
are coupled, we see an error in the pitch angle as well.

Now let us plot the simulation results obtained using fee#lliontrol scheme. Note
that the reference trajectories were generated using loegneontrol scheme in the ab-
sence of initial disturbances. The control parametersiersimulation are.,, = 0.5 diag([10 10 10]),
Lg = 5diag([4.4 5.5 6.6]), N = 0.5 diag([12 12 12]),and K = 1.2 diag([1 2 3]).

Figure 14 plots the reference trajectory and the actuaddtajy. In Fig. 15 we give

the evolution of the desired and the actual Euler angles tivite. A comparison of the
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reference and the actual velocities of the AUV is made in Bi§. The control effort for

both the feedback and open-loop control scheme is plottédgin17. It is evident from

Figs. 14, 15 and 16 that the controller tracks the desirgedi@ry quite well.
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10.1.3 Mission 3

For this mission the AUV has to execute a more complex traigctin [50], the design
of this trajectory was motivated by the practical use of Alperform a seabed survey.
Assuming that a camera is fit at its front, the AUV is expectegerform an L-shaped
motion while maintaining a constant pitch angledof —20° and constant depth through-
out its motion. The vehicle executes this trajectory in ¢éhgeparate stages. For the first 5
seconds, the vehicle stabilizes at a pitch angle-ef—20°. In the second leg of its motion,
fromt = 5 to 35 s, the vehicle has to movem in the positive surge direction (i.e., in
positive b, -direction) while maintaining a constant depth and a corigtéch. In the last
stage, which spans from= 35 to 47 s, the vehicle has to mow&m in the positive sway
direction (i.e., positivé,-direction) while maintaining the same depth and pitch angle
assume the buoyant force acting on the vehicle t&be 0.82 + V.

At first we plot the trajectory of the AUV in the presence oftial disturbances, under
open loop control scheme. In fig 18, we plot the translatiamal angular positions of the
vehicle. Figure 19 gives the open loop control forces and erdm

In Fig. 18, we plot the position and orientation of the vetiaf the AUV in the presence
of initial disturbances, under an open-loop control scheie observe that the vehicle
moves 4 m in the positive;-direction in the first 35 s, but then moves backward for the
remaining time. This motion was not predicted. There is gdarror in the yaw angle

which also gets reflected in the error in sway. Thus, we sddrilthe presence of initial
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Figure 18: Translational and angular positions using dpep-control with initial distur-
bances (Mission 3).

disturbances, the desired trajectory is not achieved usingpen-loop control scheme.
Since a constant moment is applied to hold the pitch angke f{gel9), we observe that
the AUV maintains a constant pitch angle of 22@roughout its motion. Since the control
moment is zero in roll direction (see fig 19), the roll angletloé vehicle goes to zero as
time progresses. Thus we see that the in the presence al uigturbances, the desired
trajectory is not achieved using open-loop control scheme.

Next, we present the results obtained using a feedbackaistheme in the pres-
ence of disturbances. The reference trajectory is gerteratimg the open-loop control
with the assumption of zero error in the initial states. Thatwml parameters for this

simulation are taken ag, = 0.5 diag([10 10 10]), Lo = 5 diag([4.4 5.5 6.6]), N =
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Figure 19: Open-loop controls (Mission 3).

0.5 diag([12 12 12]),and K = 1.2 diag([1 2 3]). Figure 20 plots the reference trajectory
and the actual trajectory. In Fig. 21 we give the evolutiorthef desired and the actual
Euler angles with time. A comparison of the reference anétheal velocities of the AUV
is made in Fig. 22. The control effort for both the feedbac#t apen-loop control scheme
is plotted in Fig. 23. In Fig. 20 we notice that the feedbachktoaller tracks the desired
trajectory quite well. We observe from the reference plog for the first 5 s, the vehicle
does not move in thé,, b, or b3 direction, as was expected. Fram= 5tot = 35 s, the
AUV moves 5 m in the positive surge direction. We also obsémm the plot that after

t = 35 s, the AUV is executing a pure sway motion. In Fig. 21, we se¢despite initial
errors in the Euler angles, the AUV is able to maintain-#2° pitch angle. The errors in

roll and yaw also show an asymptotic decrease.

77



Figure 20:
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Figure 21: Comparison of the referencg and actual Euler angles of the AUV, (Mission

3).
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Chapter 11
Conclusions and Future Work

The successful implementation of a feedback control sctentie attitude dynamics
problem inSO(3) has provided motivation to work with the more general probieSE(3).
The main outcome of this research is that by using a feedbacka scheme, we can
attenuate the effect of initial disturbance forces and nmamen the dynamics of the AUV.
This will help us in our endeavor to test motion planning aitpons on an AUV in the
uncertain environment of the oceans.

This thesis opens many doors for possible future work in tlea @f AUV motion
planning and trajectory design. We have demonstrated tiigyadf a feedback control
scheme to track a reference trajectory of an AUV in the presei initial errors in its
states. However, implementing the feedback control sch@am®DIN is the next major
challenge. First and foremost, it will require an advancedssr on board the vehicle.
Also, as reported in [50], one faces several practical gl while implementing the
theoretically designed trajectories on a real vehicle.hSasues have to be dealt with in
the future.

In this thesis, we have looked at a scenario where the vebigleriences disturbance
forces at the start of its mission. This may be extended torparate bounded and time-
varying external disturbances in the dynamics of the vehiclThus, a robust feedback
controller has to be designed to track the desired trajgettile rejecting the effects of

these disturbances. The design of adaptive control sché&amésajectory tracking falls
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within the realm of possible future research.
In this thesis, we used a Lie group variational integrataitoulate the feedback con-
trolled attitude dynamics of an AUV. An extension of this mad to discretize the feedback

dynamics of an AUV irSE(3) is also an area of future investigation.
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