View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Minds@University of Wisconsin

Design and Implementation of a Framework for
Software-Defined Middlebox Networking

Aaron Gember, Robert Grand|, Junaid Khalid, Shan-Hsiang Shen, Aditya Akella
University of Wisconsin-Madison, Madison, WI, USA
{agember,rgrandl,junaid,shan-hsi,akella} @cs.wisc.edu

ABSTRACT are crucial to enhancing the security, availability andqrer
mance of enterprise applications cannot be realized today.

Increasingly, middleboxes are being deployed as software) - ; ! -
MB operations are determined by configuration policies

components and, with the advent of software defined net-)) >
working, can be deployed at arbitrary locations. However, 21d parameters, traffic streams flowing to them, and their
existing approaches for controlling the operations of mid- internal _algorlthms and state. A variety of _heterogeneous
dleboxes continue to be rudimentary and ad hoc. As such mechanisms are used today to affect the first two factors:
a variety ofdynamicnetwork control scenarios that are cru- ©-9-» tweaking routing configurations and MB-specific con-

cial to enhancing the security, availability and performen ~ fiduration engines [11]. As for the third factor, there is no
of enterprise applications cannot be realized today. way today to directly access and modify internal MB algo-
In this paper, we ask: what is the right way to exercise rithms and state, because most MBs are closed systems.

unified control over the actions of middlebox thatenablesso 1 1iS apparentlack of unified fine-grained control over MBs
phisticated dynamic network control scenarios? Inspired b and their state precludes correct and performantimplesment
SDN, we argue that software-defined middlebox network- tion of control scenarios that require re-allocating livanfs

ing (SDMBN) framework—which provides fine-grained, pro- 2€r0Ss MBs. Examplgs include live migration of ent.erprise
grammatic control oveall MB statein concert with control ~ &Pplications for security reasons or resource constratits-

over the network—is the answer to this question. Thus, we tiC Scaling up/down of MBS to meet cost-performance trade-

present the design and implementation of OpenMB. OpenmgPffS and transparent MB failure recovefiy.

consists of slightly modified middleboxes that expose alsout !N this paper, we ask: what is the right way to exercise
bound API for importing/exporting middlebox state, a mid- unified control over the actions of MBs that enables sophisti

dlebox controller that implements a northbound API to de- c&ted dynamic network control scenarios? Inspired by SDN,

fine how state can be accessed or placed, and scenario-specf'€ argue that aoftware-defined MB networkii§DMBN)

fic control applications that orchestrate middlebox and net frameworkiis the answer to this question. ,
work changes in tandem. An ideal SDMBN framework offersiseful abstractions

for unified software-driven contralf MB functions across a
1. INTRODUCTION range of MBs (perhaps from different vendors). At the same
time, the framework should not wrest too much control away
Middleboxes (MBs) are network components operating at from the MBs themselves so that vendors can continue to
layers 4-7 through which network traffic passes for inspec- jnnovate and improve their MB offerings. Such a carefully
tion and/or modification. As recent quantitative studiegeha palanced SDMBN framework can simplify management of
shown, MBs are used widely, for security, facilitating net- complex MB deployments and engender a wide-variety of
work access, or providing other novel functionality [27].30 rich dynamic MB control applications. We believe that it
Modern MB deployments are driven by two trends. First, can also help create new hitherto unseen MBs.
MBs are increasingly deployed as software components: as Based on an analysis of key scenarios, we argue that SOMBN
VMs, in hypervisors, on end-hosts [19], or as collections of yequires fine-grained, programmatic control caMB state
processes [27]. Second, the advent of software defined Nethappening in concert with control over the netwofR)
working (SDN) has enabled MBs to be deployed at arbitrary There are two key roadblocks to realizing this.
locations. These trends align well with the flexibility en- First, compared to switch forwarding state, MB state is
abled by recent advances in compute and network virtualiza-higmy diverse. We survey of a wide range of MBs and find
tion, making it possible to offer novel services, e.g., éin@ that there exist coarse commonalities in the structure of MB
the creating of rich virtual network topologies. state. Based on this, we present a comprehensive taxonomy
However, existing approaches for controlling the opera- of MB state and argue for the use of a novel scheme to repre-

tions of MBs continue to be rudimentary and ad hoc. As sent state. We then show how to use the taxonomy and rep-
such, a variety oflynamicnetwork control scenarios that

https://core.ac.uk/display/10597914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Control Application

(MB Controller) (SDN Controller)

TR . .
MB\’ \’Mgwn‘ché éSWItch

Figure 1: Overview of the elements OpenMB encompasses

resentation to design appropriate state control mechanism Figure 2: Live migration between data centers
for different types of state.

Second, internal MB logic is complex, and as such, rip- MBs in a live migration scenario is the same, and there is at
ping it out of MBs is challenging; it also restricts innoati most a 2% increase in packet processing latency only while
in the design of MBs themselves. We argue for a novel divi- MBs are processing southbound API calls. This contrasts
sion of functionality whereby MBs are largely autonomous with existing techniques which can cause upwards of 9% of
and continue to be responsible for creating and modifying flows to be mishandled and up to a 100x increase in packet
crucial internal state according to proprietary logic, vdas latency while MB state is being moved.
the location of, and consistency across, these piecestef sta
is externally controlled. MBs also provide limited externa 2. MOTIVATING SCENARIOS
introspection of their actions.

We present the design and implementatio®@p&nMB an
SDMBN framework driven by these insights. Our architec-
ture (§3) consists of an MB controller, control applications
and slightly modified MBs as shown in Figure 1.

We now describe a few dynamic enterprise scenarios in-
cluding, live data center migration, elastic MB scaling and
load balancing, and MB failure recovery. With each sce-
nario, we derive key requirements that need to be satisfied to

We design an MB-facing (“southbound”) API that defines support it effectively. We argue that alternate statehef-art
approaches address some but not all requirements. In{partic

how MBs receive and export stat§4j. The semantics of . ;
P o ular, because MB state is complex and closed in nature (see

state operations (e.g., Should an operation be disallowed i 31f ¢ ¢ MB stat dth h |
some cases?) and representation of state (e.g., Showdd stal§ - forataxonomy ot Vb Sta e), and these approaches only
offer rudimentary and/or indirect control over the staleyt

be encrypted? Exported per flow?) are tied to the type of . .
state in question. We argue that this APl must be augmente an lead to correctness issues or performance dggradatlons
with a properly detailed event abstraction that allows MBs _(§2'1)' We C(_)nclude_ that supporting S.UCh dynamic scenar-
to notify the MB controller of the occurrence of, but not the los requires fine-grained, programmatic control over all MB

' state in tandem with control over the network.

reason behind, internal state establishment or manipulati . L .

actions. This helps ensure consistent operation at no IossL'Ve. Mlgrgtlon.Between I?atz?\ Ce_nters. Ente_rpnses may
of performance, and enables rich cross-MB actions, while desire to _I|ve mlgratg application virtual machines (VMe} b
preserving MB autonomy. tween private, public, and cloud data centers for reasons of

We design a control (“northbound”) API for MB state that performance, cost, security, resource ava.ilability, bags
defines how MB state can be accessed and placed or changeﬁ]USt be consu:_iered as part of the migration process to en-
by applications 45). We carefully trade-off richness of the sure the security af‘d performancg of these applications is
API for enabling simple and correct application designse Th pr(;/lsgrvgd, btc_>th (_junngt_antlzi alfter m|g|rati’onr.] | b
API helps control applications make network state changes migration IS particuiarly compiex when only a suo-
in sync with MB state changes. We design corresponding set O.f the VMs of an appl|cat_|on are m|grated., because it
functionality in the controller for translating betweenrtio requires changes to the conflgurat|on_ an_d/or internal Sme
bound and southbound API calls; these help prevent applica-relSldlngl a_t N[[BS’ we thtﬁW an examﬁlel\l/rllBFlgure 2. Ir?rgartl_c-
tions from issuing illicit actions to MBs while also limitin ufar, new instances ot the appropriate Vbs, €.g., an Irrusi
the amount of extra functionality MBs must implement (in prevention system (IPS) and a load balancer (LB), should be
addition to the southbound API) to support OpenMB launched in the new data center and loaded with the internal

We implement the northbound API as a module in Floog- State for the specific flows or flow groups associated with

light [5] and modify several MBs—Bro [24], SmartRE [16], the migrated app VMs; this state should be derived from the

and PRADS [10]—to implement the southbound ABT) original MB instances in the old data center. In other words:
We also construct two control applications—live migration R1: We need the ability tanoveinternal MB
and elastic scaling—$6) that leverage both our northbound state afine-granularity
API for MBs and OpenFlow [23].

We evaluate the OpenMB framework using these control
applications, along with traffic traces captured from arrepe

In some cases it may be necessary to copy, rather than
move, the internal state from existing MB instances. For ex-

ational enterprise network. In particular, we show thangsi ~ @MPle, consider replacing the IPS in Figure 2 with a redun-
OpenMB preserves the correctness and performance of MBsdancy elimination (RE) decoder [16]. When the RE decoder

in the presence of dynamic changes to an MB deployment: ! jve network migration was considered in LIME [22], but tie f
the output of both unmodified MBs and OpenMB-enabled cus was solely on network forwarding state.

scale Up geale Down When flows are short-lived, load can be balanced by care-

Add w/’ Add w/ ® ,‘9 . . - .
onﬁg move fully assigning new flows to specific MB instances. How-
’v'./ e

) =

5o Clone® S Werge O N ever, when flows are long-lived, in-progress flows needs to
Update T be reassigned to different MB instances to achieve an opti-
Routing \R Routing \R

mal load distribution. This requires moving the approgriat
state (R1) and updating routing (R4).

is migrated to a new location, it needs the appropriate cacheFailure Recovery. Deploying MBs as software components

entries to correctly decode received packets. This means: €nhables replacement (failover) instances to be launcheel mo
R2: We need the ability taloneinternal state. quickly. However, since most MBs are stateful, replacement

MBs must be loaded with the requisite internal state.

There a few possible approaches for this. One option s to
. . S . X . run two instances of the same MB in parallel, with a copy of
Additionally, live migration may require MB configuration each packet sent to both instances. But, this requires twice

chang(_as to ensure correct MB operatlon:_ €.g., the load bal'as many compute and network resources. A second option
ancer instances in both the new and original data centers.

hould b f dto bal traff | th is to create a copy of all MB state in real-time to bootstrap
should be reconnigured to balance tralfic only among the app replacement instance.This is computationally expensive
VMs in the respective data centers. This means:

-) While the overhead can be reduced by snapshotting at set

R3: We need th_e ab|I|t_y tolone and dynamically intervals, some state may still be lost when a failure occurs
modify MB configurations A more viable option which is as effective as the first ap-

When shifting flows to a new MB, the transfer of cor- proach, without the overhead or cost, is to keep (and move
responding internal MB state must happen in tandem with upon failure) aminimal live snapshot of only critical state
modifying network routing (to route traffic to the new MB). (e.g., IP address and port mappings from a NAT), with non-
Migrating internal state without regard to routing changes critical state (e.g., mapping timeouts) set to default &alu
failing to migrate internal state can cause serious caresst when a failed MB instance is replaced.
issues: e.g., a load balancer will assign an in-progress-ra Thus, to support efficient failure recovery across a range
action to a different server (when the routing update hagpen of MBs, it helps greatly to know when an MB created such
before state is moved), and an intrusion prevention systemcriticial state, and what the state created was. In othedsvor

Figure 3: Dynamic scaling and load balancing

The new and old MBs should operate with the same se-
mantics (high level policy) during and after live migration

(IPS) may miss (when state has moved and the routing up- R6: We need support for providing introspection
date did not yet take effect) or generate false alerts. Thus: into MB operations.
migration and configuration update with changes o))
to network forwarding state. Existing techniques can address a subset of the require-

ments, or offer alternative options for some of the scesario
discussed above. However, these approaches have limited
applicability, tend to waste resources, reduce performanc

Dynamic Scaling and Load Balancing.Deploying MBs as
software components makes it easy to add and remove MB

instances as network load c_hanges. Recent work has devely 0,4 1o correctness issues. We provide qualitative argu-
oped techniques to determine when MBs should be sc:aledments below and present quantitative evidendigin

and how many instances should be added or removed [20]. \ji;tual Machine Snapshots. Running MBs as VMs (or

However, making such scaling effective requires meeting | j x containers) enables the use of VM snapshots [17] as a

the above requirements, plus a few new requirements. ASp,echanism for moving and cloning MB state in its entirety.
Figure 3 shows, scaling up requires copying (and potentiall |, 16 jive migration scenario, for example, each MB will

modifying) the configuration state (requirement R3) from .6 the necessary internal state for flows in its data center

an existing MB instance. For some MBs (€.9., RE), scal- 5y ever the MBs will also have unneeded state (for flows
ing up also requires cloning internal state (requirement R2 jp, i other data center). This wastes MB memory, but more
from an existing MB instance. On the other hand, scaling ¢cially, it can cause incorrect MB behavior, e.g., an IDS
down requires consolidating several MB instances into fewe might generate false alerts. VM snapshots cannot be used
instances, or running multiple MB instances in parallel on when state from multiple MBs must be moved and merged,
the same compute resource with fewer resources assigned tQ g., in the case of scale down
each instance. In both cases, unless we have a way of COMe g xfigyration Protocols. SIMCO [11] is an attempt to pro-
bining state, we will not be able to operate correctly within ;46 5 standardized MB configuration protocol that can help
the new'resource constralrjj[s. Thus: . dynamically modify MB configuration. Unfortunately, it is
RS: We need the ability tanergeinternal state limited to firewalls and NATs due to its very specific syntax.
from multiple MBs. SIMCO also does not help manage internal state.
econd, scale up/down must happen in concert with load Controllin onfiguration and Routing. Partial con-
S d le up/d t happ t with load Controlling MB Configurat d Routing. Partial
balancing among MB replicas, as it helps maximize MB ef- trol can be achieved by performing MB configuration (using
ficiency and reduces the need for additional instances [20]. existing interfaces) and routing (using SDN) in tandem [28]

By periodically probing topology, traffic patterns, and MB

constraints, a controller can automatically compute ai opt
mal configuration of MBs and the network to satisfy a high
level policy. However, this is incomplete: re-routing in-

progress flows according to the new configuration without
moving, cloning, and merging internal state from MBs that
the traffic had touched in the old configuration can impact

|Control App (migrate) |
move (k) route(k,r)

state[s] MB Controller TN (SDN Controller)

AN
event[p] get(k)gdel(k)\gpu”s) event[p] | Ay
B A B L ==
Figure 4: Example API calls and notifications

correctness: e.g., an IPS will have no record of earlier pack triggers an update of network forwarding state, exggrate

ets from the flows. Only re-routing new flows avoids in-

issuesr out e(k, r) to the SDN controller to change the

correct MB operations, but prohibits the new configuration forwarding for flows identified by kek to the router . Fi-

from fully taking effect until all existing flows have finistde

nally, the MB controller issuesadel et e(k) to MB A after

e.g., a scaled down MB cannot be destroyed until all flows a set time has passed sirmet (s) returned.

passing through it have completed.
Application-level Libraries. In Split/Merge [25] MBs are
modified to use an application-level library whicl) pro-

vides methods for MBs to allocate, free, and reference in-

ternal state, i) exposes the internal state to a controller so
it can be migrated between MBs, and)(leverages SDN
to control the flow of traffic as state is moved. However,
Split/Merge abstractions fall short in generality: thetsds

There are two basic roadblocks in designing OpenMB:
e MB state is highly diverse. The ability to program-

matically control all MB state hinges on identifying
commonalities in the structure and semantics of a di-
verse range of MB state. [§8.1, we argue that such
commonalities do exist and present a state taxonomy
that forms the basis of our APlIs.

Internal MB logic is complex. Indeed, each MB fea-

tions are focused on scaling specific MB types, and it is un-
clear if they can apply to other MBs/scenarios. A key reason
is that there is no way to handle shared internal state, e.g.,
moving or cloning the cache on a RE decoder, or achieve
introspection into MB operations.

tures intricate and unique packet processing logic that
is closely tied to internal state. §8.2, we argue that
ripping this logic out—akin to SDN—is difficult, and
also undesirable. We then describe an appropriate split
of responsibility between MBs and the controller/app-
lications. This defines the richness of our APIs and of
3. OpenMB ARCHITECTURE the functionality at the controller/applications.

OpenMB achieves the requirements highlightedarby Building upon these insights, 4 and§5, we describe
introducing: (1) programmatic, fine-grained control oviér a our design choices for the MB-facing and control APIs, re-
forms of MB state and (2) unifying this control with exist- SPectively. We describe the design of control applications
ing SDN frameworks for controlling L2 and L3 network el- that use these APIs §6.
er_nen_ts. Together these enable_the_ design of rich control ar3 1 MB State Taxonomy
plications to support the scenariosga

In SDMBN, programmatic control (#1) is achieved through In contrast with SDN where switches have a forwarding
the introduction of an MB controller (see Figure 1) and two information base, MBs in SDMBN rely on complex pieces
novel APIs. Unification of MB and network control (#2) Of state that serve diverse purposes. A single MB may re-
is achieved by having the control applications coordinate ceive dozens of configuration inputs, and its internal logic
the control functions they invoke at the SDN and MB con- May establish and manipulate hundreds of pieces of in-depth
trollers. We illustrate these through the example in Figure ~ State based on received traffic whose structure and sermantic
A control application running on SDMBN, e.gnigrate op- Varies significantly across MB types and vendors.
erates on a view of network switches, links and MBs. To We reviewed several types of MBs from a variety of vendors—
achieve control over MB state, the application invokes the firewalls [8, 3], intrusion detection systems [24, 26, 2aad
control API—this defines how MB state can be accessed balancers [1], WAN optimize?§l5, 4, 7], proxies [13], and
and changed by control applications—emigrateissues ~ Monitoring systems [10, 9]—to identify commonalities in
nove(k) to transfer a subset of state, identified by the key the structure, sema}ntics, and purpose of their state. We mak
k, from MB A to MB B. The MB controller relays these ac- & few key observations:
tions to the appropriate physical MBs using ti8-facing e Each piece of MB state fulfills one of three purposes:
API|—this defines how MBs export and receive state—e.g., specifying policies and parameters, supporting packet
the MB controller issueget (k) , receives stats, and is- processing, or reporting MB observations/decisions.
suegut (s) to move state.The MB-facing API also defines e Each piece of MB state applies either to a specific “fldw”
when MBs need to notify the MB controller that they have or all traffic at the MB.

establlsh_ed/r_nanlpulat(_ad s_tate mterna_lly to ensure atomi 2This includes MBs that perform caching, compression, addrre
and provide introspection into MB actions, e.g., an event to dancy elimination.

re-process packetis raised by MB A; the controller passes 3we use “flow” to loosely refer to a transport connection, apliap
it to MB B. Whennov e returns successfully, the application cation session, a pair of communicating hosts, etc.

20'6;_ _ gel_s‘?“p“o”d - ;ﬁ”i“znggl mg OPZ supporting and reporting state residadditionally, the con-
onfiguring dgf:ﬁoniintur?:rlag%;gvioi ared iy Mereads troller is responsible focreating and updating all configura-
Supporting | Details on past traffic to guidePer-Flow &| MB reads tion state With this division of responsibility, the way MBs
MB decisions and actions | Shared & writes access, create, and update state is unchanged.
Reporting | Quantify observations and dePer-Flow &| MB writes
cisions Shared 4. MB-FACING API

Table 1: Taxonomy of MB state] o
The MB-facing (“southbound”) API defines) how MBs

import and export state, and)(when MBs need to signal

e The same basic data structure tends to be used acros .
that they have created or updated state internally.

different MBs for pieces of state with the same seman-
tics, e.g., MBs maintain an index of current transport 4.1 State Interface
connections using a hash table, tuning parameters are

specified as key/value pairs, etc. Providing programmatic, fine-grained control over all fearm

])) of MB state requires individual MBs to expose an external
Based on this, we classify MB state along two dimen- jnterface for reading and writing state. This should comple
sions: its role in MB operation—configuring, supporting, ment the state operations (read, update, add, and remove)

or reporting—and its _partitioning—per—flow or shared (_Ta_— performed by internal MB logic§@.2). The key question
ble 1). We also consider a key property for MB state: is it js at what granularity and in what form should MBs allow
read, written, or read & written by the MB? This has implica- state to be externally read/written®e rely on our state tax-
tions for whether the controller should be allowed to modify onomy §3.1) to help address this question. Since the answer
the state, and whether state should be moved, cloned, and/ofs syptly different for the three classes of MB state, we talk

merged when moving flows between MBs. about the interface for each class separately.

3.2 Division of Responsibility 4.1.1 Configuration State

MBs examine and modify network traffic according to Today, MBs support a variety of interfaces for setting, up-
complex internal logic. At launch time, this logic may parse dating or querying configuration state. Unfortunately, the
configuration inputs (e.g., rule definitions), initializaps syntax used varies across MB types and vendors, e.g., ipt-
porting and reporting state structures (e.g., conneatidex, ables [8] vs. Cisco 10S Firewall [3] rules. Prior attempts
timer manager, etc.), or perform other startup tasks. As theat standardizing MB configuration interfaces have been nar-
MB runs and examines traffic, the logic may: read configura- rowly focused. For example, SIMCO [11] only targets fire-
tion state; access, establish, and manipulate suppotéitegs walls and NATs, and VRT rules [12] are only designed for
create or update reporting state; and drop, forward, mpdify |PSs[12, 14, 2]. Even with SDN, non-routing-related switch
and/or generate network traffic. configuration (e.g., managing VLANSs, configuring ports) oc-

In contrast, the internal logic of network switches, and the curs using vendor-specific syntax. These issues make gonin
writing and reading of forwarding state, is cleanly divided and dynamically modifying MB configuration state complex.
between a control plane and a data plane [23]. SDN lever- |n SDMBN, we ask: how should configuration state be
ages this to divide responsibility between network swigche |ogically organized to enable fine-grained control? Baged o

a_md a controller/applications: All forwarding st_‘é\ie esta_b— our state taxonomy§B.1), we advocate organizing config-
lished by the SDN controller, and network switches simply uration state as a hierarchy of keys and values. Each value
forward packets based on this state. is a single unit of configuration state, e.g.: a single parame

The complexity of internal MB logic makes the “SDN ter (e.g., cache size, replacement algorithm), a singlieyol
model’—i.e., the controller makes all state changes—unsui item (e.qg., firewall rule, IPS rule), etc. Each key is associ-
able for MBs. The majority of internal MB logic would es- ated with either an unordered set of sub-keys or an ordered
sentially need to be re-implemented in the controller;sinc set of values. The exact hierarchy, key names, and value
this removes too much control from MBs themselves, it could syntax/semantics is unique to each MB. The API for access-
constrain innovation in the design of MBs. Additionally, ing/updating configuration state then is:
MBs which make complex state updates as they process ev- get Conf i g((HierarchicalKey)
ery packet (e.g., an IPS) would need to send almost all MB- set Confi g((Hierarchicalkey,
received traffic to the controller. [{ConfigurationValug, (ConfigurationValug, ...])

o L. - _ del Confi g((HierarchicalKey)

penMB thus divides responsibility for state changes be

tween MBs and the MB controller/control applications. MBs 4.1.2 Supporting State
are responsible focreating and modifying supporting and
reporting state as they do today. The MB controller, un-
der direction from the control application, is responsibole
manipulating where (i.e., on which MB) specific pieces of

Supporting state guides MB decisions and acti@3sl().
Correspondingly, the contents and structure of supporting
state depend on the functions the MB provides. Typically,
supporting state contains deep, detailed informatiotydic
“Excluding timers and packet/byte counters. ing: portions of the headers/payloads of received traffez, e

IP addresses, TCP flags, HTTP header fields; actions to apity. However, requests for per-flow state at a granularitgrfin
ply to received traffic, e.g., forward traffic to a specific IP, than the MB uses will return an error.

re-write the internal IP address to a specific public-fadithg Shared Supporting State.Shared state requires a different
address, drop all traffic from a specific host; meta-datadfor| interface because it applies to all traffic passing through a
cating pieces of state, e.g., hashes of flow identifiers,dsash MB. The key constraints imposed by shared supporting state
of packet payloads; and other important data. Each MB de- are: we cannot move it out of an MB if any flows will remain
fines its own organizational structure for this information on the MB (e.qg., during live migration) as the MB will not
E.g., Bro [24] defines more than 100 different structures for have the necessary state for the flows that remain, and we
storing supporting state. cannot move to an MB which already has flows (e.g., dur-

One option is to share the syntax of these structures, anding scale down) as this would overwrite the shared state that
the semantics of the data they contain, with control applica already exists on the MB to where the flows are moved.
tions so that they can inspect/modify/create supportiagpst Alternate ways of managing shared state may not face the
in sophisticated ways. This has crucial disadvantaggs: (above issues to start with: e.g., one possibility is to main-
Control applications may modify or create supporting state tain one global copy of each piece of shared supporting state
in a way that is inconsistent with MB logic, leading to un- across all instances of a specific type of MB. However, this
expected or incorrect MB behaviorii)(MB mendors may requires MBs’ internal logic to be significantly modified to
be unlikely to share the syntax and semantics of internal MB read/write shared supporting state differently, e.gnais
structures for proprietary reasori8S(2). distributed hash table.

Thus, we must reconcile the desire of MBs to concealand The approach we adopt eliminates the need for complex
protect the integrity of supporting state with the requiegitn modifications to MB logic. We synchronize MBs’ shared
of being able to move, clone, and merge supporting state atstate only when flows move, allowing the state to diverge
fine granularity §2). We address this challenge separately independently in the interim. In the case where a subset
for per-flow supporting state and shared supporting state. of flows are moved to a new MB (e.g., live migration), the
Per-Flow Supporting State. Per-flow state is intrinsically ~ shared state on the new and original MBs can be synchro-
organized into self-contained chunks, one for each flow. Ex- nized bycloningthe shared state from the original MB. In
posing state at the granularity of these per-flow chunks re- the case where all flows are moved to an existing MB (e.g.,
veals nothing about an MB’s internal structures that could scale down), the shared state from the two MBs must be
not already be deduced from knowledge of the MB'’s func- merged Because shared supporting state applies to all traf-
tionality. More crucially, MBs can encrypt (decrypt) chunk fic, all shared state must be cloned/merged, and hence MBs
of per-flow supporting state before exporting (after import should export/import shared supporting state in a singlekh
ing) to protect the state. The nature of per-flow state also Thus, the MB-facing API for shared supporting state con-
provides an inherent mechanism for identifying a specific tains two operations:
state chunk: We can simply use the same identifiers that get Support Shar ed()

are used by the MB to determine to which network traffic _Put Suppor t Shar ed((EncryptedChuriy
the per-flow state applies, e.g., IP addresses, ports,quoto Cloning/merging can be implemented using these cgils (
numbers. Note that the merge operation at the MB can be complex

Thus, MBs should exportimport pieces of per-flow sup- and dependent on the semantics of the shared state, which we
porting ’state as a key/value pair: do not want to expose to the controll§B(2). Thus, the MB
[(HeaderFieldList: (EncryptedChurf . must implement the needed logic for merging (invoked when

Additionally, MBs should support three basic operations fo Put is called at an MB that is already maintaining shared

controlling which per-flow supporting state resides atanMB SUpporting state): E.g., if two content caches (e.g., redun
dancy elimination (RE) decoders) are being merged, the MB

get Suppor t Per f | ow((HeaderFieldLis}) may require extra meta-data (e.g., hit counts) for eachecach
put Suppor t Per f | ow([(HeaderFieldList: (EncryptedChuni) entry to determine from which piece of state a particular en-
del Support Per f | ow((HeaderFieldLis}) try should be retained.

Note that the identifiers which an MB uses to determine)
which per-flow supporting state applies to which packets 4.1.3 Reporting State
also determines the finest granularity at which per-flow sup- Reporting state is intended to quantify observations or de-
porting state for that MB can be accessed. For example,cisions that have already happened. Internal MB logic does
Balance [1] only maintains a chunk of per-flow state based not rely on reporting state for packet processing functions
on source IP/ port, since the destination IP/port is the sameand decision making; MBs solely maintain this state for use
for all connections, namely, the IP/port of the load balance by external entities, e.g, a network-wide alarm system.
We do not preclude requesting per-flow supporting state ata Reporting state must be carefully managed to avoid “dou-
coarser granularity than the MB uses, e.g., identifyinggdlas ble reporting”. E.g., packet counters on one MB should not
only on source IP. Such a request will always return all match be duplicated on another MB when traffic is moved, oth-
ing pieces of per-flow supporting state at the finest granular erwise summing the counters from both MBs will double-

count packets which traversed the original MB prior to du-

plication. Avoiding double reporting of per-flow informa- Changes that involve both a controller-initiated state op-
tion is straightforward and we adopt techniques similar to eration and a network update (or other non-MB change) typ-
per-flow supporting state. ically need to happen atomically to ensure the correctnfess o

However, dealing with shared reporting state is less ditaig MB operations. For example, shifting flows from a particu-
forward. In particular, when a subset of flows are moved to a lar subnet from one MB to another requires moving per-flow
new MB, shared reporting state shoulat be cloned (unlike supporting state and updating network routing as a single
shared supporting state) as it leads to double reporting; in logical transaction. Such a transaction occurs atomidally
stead, we start tracking fresh reporting state at the new MB.
When consolidating two MBs, moving all traffic away from
an MB without doing anything with reporting state will re-
sult in under reporting, since the reporting state will b&t lo

(i) all affected packets are received and processed by at
least one of the MBs (old or new),
(ii) external side-effects from packet processing—e.g, agtack

when the MB is deprecated. In such cases, the consolidated 'S Injécted backinto the network, oran alertis generated—

MB can decide to merge the shared reporting state using ap- . only occur on(_:e for each packet,

propriate logic if possible (e.g., for aggregate traffic gou (ili) N0 state creations or updates are lost, and .

ters), or it may decide to start afresh when the state does not (V) & complete, up-to-date copy of the state involved in the

permit merge (e.g., for traffic volume percentiles). controller-initiated state action resides at the appropri
Thus, the MB-facing API for reporting supporting state ate MB (s) when the transaction is finished.

contains the following operations: Guaranteeing atomicity is complicated by our desire to
get Report Per f | ow((HeaderFieldLis}) g Y P y

put Report Per f | ow([(HeaderFieldList: (EncryptedChunf) minimize delay or suspension of MB operations.

del Repor t Per f | ow((HeaderFieldLis)) One option for guaranteeing atomicity is to suspend the
get Report Shar ed() flow of traffic to MBs while a transaction is occurring. This
put Repor t Shar ed((EncryptedChuni requires identifying which traffic may trigger modificaton
to the state involved in the operation, and temporarilyéduff
4.2 State Events ing this traffic at network switches. Additionally, packets

_) that are already in transit to the affected MBs must be drdppe
The operations discussed above enable the controller toupon arrival. The flow of traffic can be resumed only af-

move state in and out of MBs. But MB themselves may (¢ the operation and network update have both completed.
locally initiate/change staté3.2) unbeknownst to the con- \yhile this approach is straightforward, it requires suspen

troller, i.e., establish, update, or remove both suppgind i the processing of some flows for significant periods of
reporting state when either gacket is recelve_@r atimer time (up to several 100s of ms to a few seconds) which
fires For_examp_le, an IPS updates a connection record Whe_”can lead to, e.g., user applications timing out. Conducting
apacketis received, aload balancer creates anew conmectiogate gperations and network updates at small granularity,
to-server mapping when the first packet of a flow is received, e.g., one flow at a time, can minimize such downtime, but
and a NAT removes an IP address/port mapping when no g only works for per-flow MB state and requires installing
matching packet“s are ,r,ece|ved for some time period. The many fine-grained forwarding entries in network switches.
southbound API *hides” both thegic behindandthe occu- Instead, OpenMB allows MBs to continue processing traf-

rance ofsuch actions from the controller. fic while a transaction is occurring, and useents to “re-

In SDN, forwarding state at switches may change as a re- pay” state processing that occurs during (and slightlyeaft
sult of the same triggers. But switches don't change state e state action and network updat@his avoids delaying
themselves; they raise an event in response to the triggemacket processing for significant periods of time and does
which the controller views asrquest for a change in for- ot require network switches or end hosts to buffer (poten-
warding stateand makes necessary state changes. tially) large volumes of packets.

We argue that limited support for “SDN-like” events can 14 ynderstand how this approach works, consider the sce-
prove quite useful OpenMB. The architectural differencefr 4o in Figure 4: Since the flow of traffic is not suspended

SDN, rooted in how we divide functionality, is that eventsin j, OpenMB, packets corresponding to the state being moved
OpenMB are raisedshen an MB establishes or updates state may continue to arrive at MB A during the move. Further-

in response o a triggemot when the trigger itself (packet e aftemove returns and the applications proceeds to
received or timer fires) occurs. Thus, the events augment theupdate network state, packets corresponding to moved state
southbound API to provide visibility into occurance of aspe may arrive at MB A until routing change kicks in, plus for
cific set of MB actions, but the underlying logic is still hid- 5 sphort time after this change (as packets may already have
den. This helps ensure correct operations at no 10ss of per,een in transit to MB A when the routing change occurred).

formance as state is moved or cloned across MBs(1), There are several possible approaches for dealing with
and supporting rich functionality;4.2.2). these two sets of packets:

4.2.1 Atomicity Without Loss in Performance o Discard the packets.violates requiremer(t) above.

e Process the packets at MB A and re-send the af- SrcMB
fected state to MB B.This avoids a violation of atom- getsupportperion DstME
icity requirementiv). However, once the routing change

getReportPerflow

. .. \ rtPerflow
takes effect, MB B may begin receiving packets cor- (keysuppartiy >
responding to the moved state and the internal MB T “outsupportperfiow

[Keyl:Reportl] ACK

logic may update the supporting state that was orig-
inally transfered from MB A. A transfer of updated

[Event:PktA,Key2]

»
putSupportPerflow

state from MB A will wipe out the updates made on [key2:Support2] "1 00
MB B and violate atomicity requiremefti) . e e RS upportPerflow

ACK

e Redirectthe packets to MB B.Processing all packets | &=———______
for the state being moved on MB B ensures atomic- T e A e
ity requirementgi), (ii), and(iv) are met. However, if ererrion
the redirected packets arrive at MB B before the state Figure 5: Sequence of actions fasvel nt er nal .
from MB A, MB B will establish a new piece of per-
flow supporting state. This will resultin incorrect MB and an event code; additional MB-specific values (e.g., the
operation, and the state established by MB B will be server to which a flow was assigned) may be included to
lost when the state from MB A finally arrives, vio- provide more information. For example, a NAT could gen-
lating atomicity requiremen(ii). MB A must there- erate an event to announce the creation of a new mapping.
fore buffer the packets until MB B has acknowledged The event would include both the header fields of the af-
the corresponding per-flow supporting state has beenfected flow and the new mapping. Generally, points in inter-
installed; this unnecessarily delays packet processing.nal MB logic where information is written to a log file are
More crucially, redirection is unsuitable in the case of likely places for triggering events.

a clone action, since both MBs need to process the To ensure that the controller, network, and MB are not
packet to keep the clone up-to-date while the transac- at risk for overload, OpenMB makes it possible to enable or
tion is in progress§6.1). disable the generation of introspection events based art eve

OpenMB both guarantees atomicity and avoids processing®0des and keys. For example, a controller application can
delay using three steps: (1) These packets are processed 4£dUest to receive events only when a load balancer assigns
MB A as normal, including the occurrence of external side- N€W flows for a specific subnet to a server, or receive all
effects, e.g., forwarding of the packet and, (2) If a piece of €VeNts only for alimited period of time.
state that was moved or cloned is updated while the packet
is being processed, MB A sendgacket re-processvent, 5. CONTROL API
which includes a copy of the packet, to MB B. The application-facing (“northbound”) API encapsulates

(3) When MB B receives the event, it processes the packetthe intricacies of state operations on individual MBs. We
as normal to update statexcept it does not perform exter- discuss in§ 6 how control applications leverage this API.
nal side-effectsProcessing the packet in this manner at MB The API consists of six operations:

A preserves atomicity requiremenits iii, andiv. MB A r eadConf i g((SrcMB), (HierarchicalKey)
stops raising packet re-process events when it stops receiv wri t eConf i g((DstMB), (HierarchicalKey,
ing packets which trigger updates to moved or cloned state. [t(Conggul\r/lation\éalug <(|§o?5iLgurationValu¢ ~1)

One caveat of this _approach is later packets in the flow fmsefgt(errcnaE?'(<<S$caM§>r, I<eDstl\|/T§>, (HeaderFieldLis})
may already have qrrlved a.t E.lnd been processed by MB B oneSuppor t ((SrcMB), (DstMB))
before the event arrived. This is not a problem for MBs that ner gel nt er nal ((SrcMB), (DstMB))
can handle such out-of-order arrivals by design. Some MBS,

e.g., an RE decoder [16], cannot handle reordering; this is The controller serves as a broker for all of these operations
an intrinsic limitation of the MB and SDMBN does not in- Controller's Actions. We now discuss what sequence of

delSupportPerflow

troduce new complications. steps the controller executes when applications call the-fu
. tions above. The eadConfi g andwr iteConfig opera-
4.2.2 Introspection tions are simple: The controller issuesyat - confi g or

MBs also raise events to provide introspection into their set - confi g call to the appropriate MB. We could also in-
operations. For example, a control application may be in- clude acl oneConfi g operation that would be a compo-
terested in knowing when a NAT has created a new IP ad- sition of thereadConfi g andwiteConfig calls. The
dress/port mapping or when a load balancer has a assignedt at s operation is used for informational purposes. It al-
a new flow to a server. These events are broadly triggeredlows applications to query how much shared and per-flow
when an MB creates or updates supporting or reporting state;supporting and reporting state exists for a given key.
the exact triggers for these events are MB-specific. The Thenovel nternal ,cl oneSupport andmer gel nt er nal
events always include a key that identifies the relevane stat operations are more complex because they involve events,

in addition toget , put, anddel calls. Figure 5 illustrates ""P""‘"'e

config

movel nt er nal : the controller begins the operation by call- e

. Query_Move @
ing both theget Suppor t Per f | owand theget Report Per f | ow u,,,,a,e) Femote %ﬁ
operations on thé&rcMB using theHeaderFieldListpro- Config CIEREW | > Routing \Prads2

Scale Up Scale Down

vided to thenmovel nt er nal operation. ThesrcMBwill be- Terminate @

gin returning pieces of per-flow state to the controller. The T
controller will subsequently call theut Support Per f | ow 53—@ Move §
or put Repor t Per f | owoperation théstMB, providing the Duplicate i
piece of per-flow state that came from tBeMB TheDstMB _ - . .
will send an ACK to the controller after each put operation (2) Live migration with R (b) Scaling PRADS
completes successfully, and tSecMB will send an ACK Figure 6: Control application examples
to the controller after both get operations complete sigsces
fully. In parallel, the controller receives and forwardsr ocess ~ Third, it limits the potential for control applications to
events. ThércMBmay begin generating events as soon as it make state Changes that will lead to correctness or perfor-
sends the first piece of per-flow state to the controller. When mance issues. For example, the restrictive API prohibits
the events arrive at the controller they are buffered unélt ~ controlapplications from retrieving per-flow supportirtgte
DstMBhas not ACK'd the put for the piece of per-flow state from one MB but failing to it to another MB.
to which the event applies. Thevel nt ernal operation It is still up to control applications to issue multiple MB
returns once all puts have been ACK'd. However, the con- state control operations, and SDN control operations,én th
troller may continue to process events related to this oper- correct sequence. For example, a move operation must be is-
ation. When no events have been received fromStodB sued and completed before initiating a network routing glean
for a fixed amount of time (e.g., 5 seconds), it is assumed theNote that exposing supporting state as an encrypted blob
routing change has taken place. At this time, the controller (§ 4.1) also helps eliminate illicit state changes.
calls both thelel Support Per f | owanddel Report Per f | ow
operations on th&rcMBto complete the move. 6. CONTROL APPLICATIONS

The sequence of actions performed by the controller for
thecl oneSupport andmer gel nt er nal operationsis sim-
ilar, except: {) the get and put operations for shared support-
ing (and reporting, in the case of merge) state are called on
the SrcMBandDstMB, and (i) no delete operation is called
when events stop arriving.

The above discussion afid imply that the controller ac-
t?vely intervenesall exchange of state and ev_ents. Alterna- g1 Live Migration
tively, MBs can exchange state and events directly, based on

a request (move, clone, or merge) from the controller. We N : -
did not adopt the latter approach as it means that the MBsdundancy elimination (RE) MBs (Figure 6(a)). Initially] al
application VMs reside in a single data center (DC A). Traf-

must include the appropriate communication logic, cahgful fie destined for th h h q
order puts and events, and handle failure cases. In our delIC destined for these VMs passes through an RE encoder at

sign, this logic only needs to be implemented once (at the aremote site, traverses the WAN to regch DC A, and passes
controller) and processing burden of MBs is not increased. through an RE decoder. At some point, half of the appli-

Why A Separate API. Exposing a separate API, operating Ccation VMs are migrated to a new data center (DC B). Fol-
at a higher level of abstraction, to control applications ha lowing the migration, traffic destined for the VMs in DC B

several benefits over directly exposing the MB-facing API: PaSS€S tr:wough the samﬁ RE encod der at the r(;motehsite, tra-
First, decoupling the two APIs helps evolution: e.g., the verses the WAN to r.eac , pC B_’ and passes throug anew
MB-facing API can evolve without control applications clgan RE decoder in DC B; traffic destined for the VMs remaining

ing. This is vital given the rapid pace of MB innovation. in DC A follow the same path as before.
Second, it simplifies the design of applications. For ex- Both the RE encoder and decoder rely only on shared

ample, a move operation requires issugeg s to one MB, supporting state. _The encoder adds (_aach received p:_;\cket to
put s to another MB, and forwarding events from one MB a packet cache (|mple,mented asafrng buffer.) and ms_erts
to the other; these are now handled by the controller. Fur- hashes of the packets’ contents into a fingerprint t"’_lble (im-
ther, the controller can implement appropriate discigine Plémented as a hash table) [16]. Redundant portions of a
for scheduling the finer-grained actions comprising midtip packet are replgced by a smqll §h|m that specifies the loca-
northbound API calls to ensure, e.g., that northbound calls tion of the original content within the packet cache. The

complete in a reasonable time-frame; application logiais u decoder reconstructs the original packet from its own placke
burdened by these considerations cache, which is implemented and updated exactly the same

as the packet cache in the encoder.

We describe two scenarios below, which face different
challenges due to the nature of state resident at the MBs in
guestion and the interaction between network and middle-
box state. While these challenges are tricky to overcome in
general, we show how our northbound API helps, making
control application design simple and easy to reason about.

We first consider a live migration scenario involving re-

The control application must carefully manage the state at
the encoder and decoders to ensure packets can be appropri-
ately decoded when they arrive at a decoder. RE’s assump-

. Query how much per-flow state exists for specific sub-

nets to determine how in-progress flows should be re-
balancedst at s(Prads1, [nwsrc=1. 1. 1. 0/ 24])

tion that the encoder and decoder’s packet caches argytightl 3.
synchronized [16] makes this especially challenging. Pradsi, Prads2, [nw.src=1. 1. 1. 0/ 24])
The simplest solution would be to launch the new decoder 4. Route the moved flows to the new instance.
with an empty cache (and create a corr.esponding empty cache slightly different set of actions occur during scale down:
at the encoder). However, packets which have been encoded
based on the encoder’s new cache may be routed to the old
decoder, which will be unable to reconstruct the pack@&<(2).
This situation can occur due to a delay between the encoder
switching to use the new cache and the routing update. Us- mer gel nt ernal (Prads2, Prads1)
ing OpenMB avoids both of these issues. 3. Route flows to the remaining instance(s).
When application VMs are migrated, oenigratecontrol 4. Terminate the unneeded instance.
application performs the following actions:

Move a subset of the per-flow stataivel nt er nal (

1. Transfer the per-flow reporting state for all flows:
novel nternal (Prads2, Prads1,[])
2. Merge the shared reporting state:

7. IMPLEMENTATION

Our OpenMB prototype consists of an MB controller that
implements our control APKG), three MBs—IPS, monitor,
and RE—modified to support our MB-facing ARJ4(), and
the control applications discussedgé.

Our MB controller is a module running atop Floodlight [5]
3. Add a second cache to the encoder: (~1600 lines of Java code). The controller listens for con-

wri t eConfi g(Enc, " NumCaches"”, [2]) nections from MBs and, for each MB, launches one thread

Internally, the encoder will clone its original cache to for handling state operations and one thread for handling

create a new second cache. events. Additionally, the controller maintains a hasheabl

4. Update the network routing by making the appropriate for each MB to buffer re-process events (raised due to a get)
calls to the SDN controller. and track acknowledgements (of puts). JSON messages are

5. Tell the encoder to start using the second cache for traf- exchanged by the controller and MBs to invoke operations,

fic going to the VMs in DC B and the first cache for Send/receive state, and raise/forward events. _
traffic going to the VMs in DC Awr i t eConf i g(Enc, We modified three different MBs to support our MB-facing

"CacheFl ows", ["1.1.1. 0/ 24", "1. 1. 2. 0/ 24"]) AP_I (84): Bro [24], Prads [10], and SmartRE [16]. Each MB
relies on a common code base for MB-controller commu-
. nications &500 LOC); the code leverages standard UNIX
6.2 Scaling sockets and the JSON-C library. Additional MB-specific
We now consider a scaling scenario involving monitor- modifications are made to retrieve, insert, and remove per-
ing (PRADS [10]) MBs (Figure 6(b)). When network load flow/shared state and to generate and process events.
is high, additional MB instances are added to process theBro. Bro maintains &onnect i on object, and a tree of as-
traffic. In-progress flows are redistributed across the new sociated objects, for each flow. T@ennect i on objects are
instance(s) to balance load. The additional instances arestored in one of three hash tables (depending on whether the
scaled down when the traffic volume reduces, and flows areflow is TCP, UDP, or ICMP). Wheget Per f | owSuppor t
re-balanced among the remaining instance(s). is invoked, we perform a linear seafaif the hash table(s) of
The collective monitoring behavior of the PRADS instancesConnect i on objects to identify and send all matching per-
should remain the same regardless of any scaling, i.eg ther flow state. We added serialization functions to@enect i on
should be no over-reporting or under-reporting of packet/fl class and all referenced classeslQ0 classes), using lib-
counters. This requires carefully controlling both the-per boost’s serialization library, to allow the state for a give
flow and shared reporting state associated with PRADS. flow to be moved. Additionally, we addednaved flag to
When the control application determines scale up should a subset of these classes—to prevent Bro from logging er-
occur, it performs the following actions: rors when the state for a flow is deleted, following a suc-
cessful move—and a mutex to ti@ennecti on class—to
prevent Bro from modifying a&onnect i on object, or an
object it references, while serialization is occurring. &ih
put Per f | owSupport is invoked, we reverse the serializa-
tion and insert th&onnect i on object into the appropriate

1. Launch a new RE decoder in DC B; duplicate the con-
figuration of the original RE decoder:
val ues = readConfig(OigDec,"*")
wri t eConfi g(NewDec, "*", val ues)
2. Clone the original decoder’s cache:
cl oneSupport (Oi ghec, NewDec)

1. Launch a new PRADS instance and duplicate the con-
figuration from an existing instance:
val ues = readConfi g(Pradsi, "*")
writeConfig(Prads2,"*", val ues)

SWe assume the encoder maintains a separate packet cache an®Techniques used by network switches for wildcard matches on
fingerprint table for each decoder. packet headers could be adopted here for improved perfagnan

10

hash table. Lastly, we made two additions to Bro’s main
packet processing loop: lock/unlock thennect i on object
with which a packet is associated while the packet is being
processed, and raise an event (that includes the packet) whe
thenoved flag is set in theConnect i on object.

PRADS. PRADS maintains @aonnect i on object for each
flow as well as @r ads_st at object that is shared across all
flows. Theconnect i on objects are stored in buckets, where
each bucket is a doubly-linked list obnnect i on objects.
The handling ofjet Per f | owReport andput Per f | owReport
calls is similar to the handling of theet Per f | owSuppor t

and put Per f | owSupport calls in Bro. The only differ-
ence is that there is no need for complex serialization be-
cause there is only a single structure for each flow. To han-
dle put Shar edReport, we add the counter values stored
in theprads_st at structure provided in the put call to the
counter values stored in th® ads_st at structure already
residing at the PRADS instance. We modify PRADS main
packet processing loop the same as we did for Bro. In total,
we addecd=200 lines of C code (1.5% increase).

RE. RE maintains @ache object that includes cached con-
tent,si ze_of _cache state, a pointecur r ent _pos indicat-

ing where to insert a new cache entry, angea _r eached
indicating if cache is full. Theache object is shared by all
flows. An encoder maintains multipteache objects. Each

of them corresponds to a decoder. An encoder also maintain
anumof _decoder to remember the number of caches that
need to be maintained and anger pri nt _t abl e for each
decodercl oneSupport call clones original cache content
andcur r ent _pos to a new decoder. We usei t eConfi g

call to tell an encoder the number of existing decoders; the,
the encoder creates a new cache for a new decoder. Origi
nal content andli nger pri nt _t abl e are cloned to the new
cache. We also use i t eConfi g to tell the encoder when

to switch to a new bucket. In total, we added 140 lines of
C++ code, excluding the OpenMB common code base.

8. EVALUATION

In this section, we evaluate our OpenMB prototype in a
variety of scenarios using both real and synthetic workdoad
Our goals are to examine the following issues:

e Are OpenMB abstractions useful to construct rich net-
work control applications that can achieve fine-grained
control over MB deployments in a wide variety of dy-
namic scenarios?

What are the advantages of OpenMB relative to exist-
ing point solutions for achieving control over MBs in
these scenarios?

Does OpenMB interfere with correct functioning of
MBs? What is the impact of OpenMB on both the im-
plementation and processing performance of MBs?
What is the performance of our OpenMB controller?
What aspects of OpenMB’s design constrain its per-
formance the most?

11

S

HTTP Packet
Event Received

Other Packet
Event Raised

L
[
Figure 7: MB actions duringcale upscenario

Original MB New MB

We use a testbed consisting of an OpenFlow-enabled HP
ProCurve 5400 switch, a mid-range server (dual 2.7GHz Quad-
Core Intel Xeon, 12GB, 1Gbps NIC) that runs the controller,
and six low-end desktops (2.4GHz Quad-Core Intel Core 2,
4GB RAM, 1Gbps NIC) that run the modified MBs. The
traffic used in our experiments comes from three different
network traces:ij all traffic exchanged between a large uni-
versity campus and two major cloud providers (Amazon EC2
and Microsoft Azure), captured at the campus network bor-
der fora215 minutes; if) a subset of traffic exchanged in a
university data center overl hour [18]; and i{i) a high-
redundancy trace constructed from traffic exchanged in a
campus network [29].

8.1 Control Application Design

We first present snapshots of OpenMB actions when run-
ning thescalingcontrol application §6.2), illustrating how
OpenMB helps achieve dynamic fine-grained control in this
scenario. We then present a qualitative evaluation of why
some state-of-the-art alternatives are unsuitable foe e
tic scaling and live migration scenarios.

8.1.1 OpenMB Behavior at Run Time

We capture the actions occurring at MBs for theale-
up scenario discussed i6.2. Figure 7 shows the packet

processing, event raising/processing, and operationlingnd
that occurs over a 3-second window at the original (bottom)
and new (top) Prads MBs. (We exclude the configuration
operations for brevity.) The solid lines indicate the start
and end of theyet Per f | owReport operation at the orig-
inal MB, and the dashed lines indicate the start of the first
and the end of the lagtut Per f | owReport operations at

the new MB. First, we observe that HTTP packets are pro-
cessed by the original MB until slightly after the final put
operation completes at the new MB, at which pointall HTTP
packets are processed by the new MB. This is due to the con-
troller returning from therovel nt er nal operation, and the
migrate control application issuing a routing update via the
SDN controller. OpenMB enables this careful sequencing of
MB state changes and routing updates. Second, we observe
that the original MB begins raising re-process events soon
after the get operation begins, and continue to be raised un-
til slightly after the get operation completes. These event
are received and processed by the new MB after the corre-
sponding state has been put. This highlights OpenMB'’s use
of events to ensure state updates are not lost the new MB
while waiting for the routing change to take effect.

8.1.2 Other Alternatives

Scale ug Scale Dowr| Migration Encoded Bytes (MB) Undecodable bytes (MB)

SDMBN 7 7 7 SDMBN 148.42 0
) Snapshot . ~ X = Config + routing 97.33 ‘97.33
Controlling Config & Routing ~ ~ ~ Table 3: Performance of RE in live migration.
SplittMerge v ~ v
Table 2: Applicability of different schemes for MB con-)]
trol to different dynamic scenariosz fully supported,~ the consolidated MB (the MB on the bottom). However this

partially supported,X not supported. We separate scale approach unnecessarily “holds up” the MB to be deprecated

up/down to show some approaches support one but not both@S 0ng as flows stay active. In Figure 8 we show a CDF
of the duration of flow lengths for HTTP traffic in traces:

0; [] we see that around 9% of flows take more than 1500 secs to
o6 | complete. Indeed, we saw in our trace-driven experiments
that the deprecated MB was held up for over 1500s!

0.4
02 We also evaluate the migration scenario using an RE de-

0

CDF

University Dataceter

0 300 600 900 1200 1500 coder MB (Figure 6(a)). To support migration of the de-
Duration (s) coder, we create a new decoder in DC B with empty

Figure 8: Time required for flows completion cache; correspondingly, we create an empty encoder at the

remote site. All HTTP traffic eventually traverses the new

pair of RE MBs, while all other traffic traverses the old pair.
An interesting quirk of the RE decoder is that it assumes

that packet contents are stored locally at the exact same mem

) X) _ ory locations as they are stored at the encoder. Thus, withou
Virtual Machine Snapshots. We study if VM snapshotting e apjlity to clone the cache, starting with the empty cache

is applicable to cloning or otherwise moving state. When g hecessary to minimize the potential for correctneseissu

state at an MB needs to move/clone to a new MB, we simply (; o 4| encoded packets need to be decoded, which require
create the new MB from a snapshot of the old. We then ¢4ches 1o be in perfect synt)Even with empty caches, en-
update routing to send traffic to it for the migrated flows. g rjing correctness is fundamentally hard in this approach.
We experiment with this approach in the context of the s s pecause the encoder, decaatedthe router need to
live migration scenario using a Bro MB (variation of Fig- e i perfect sync: e.g., if the new encoder starts being used
ure 6(a), top). We compared OpenMB against an approacho, LTp traffic, but routing has not been updated yet, then
where the MB we use in DC B is a snapshot of the Bro VM 5 ancoded traffic reaches the old decoder where it cannot
in DC A. As argued irf2.1, both Bro MBs have unneeded o recovered. Since this causes the new decoder to miss out
state. We quantify this by comparing (byte-by-byte) a base ¢, some packets from its encoder, the two caches get out of
image of Bro, i.e., a snapshot without any traffic ("BASE”) = qync and stay that way even after routing has been updated.
against a memory snapshot taken at the instant of migration ~tpe gitference in performance and the potential correct-
(‘FULL"), and two snapshots with just the HTTP and other ¢4 jsses in this approach w.r.t. OpenMB are illustrated
traffic substreams taken at the instant of migration ("HTTP” ;1 14pje 3; the cache sizes we use are modest (500MB).

and "OTHER"). BASE and FULL differed by 22MB. HTTP v a5sume that the routing change takes effect after the en-
and OTHER differed from base by 19MB and 4MB, respec- qqqer has sent 10 packets. We see that this approach en-

tively; these numbers indicate the overhead imposed by the.,4eq 51MB fewer redundant bytes (34% during the cache
unneeded state at the two Bro instances. In contrast, Wewarmup time) relative to OpenMB. More importanthone
found that the amount of state moved by SDMBN (i.e., per- ot the encoded bytes can be decoded. The caches need to be
flow supporting state for all HTTP flows) was 8.1MB. But forcefully evicted in full and started afresh.

more interesting are the correctness implications of the un gy jiynverge. Split/Merge is designed specifically for elastic
needed state: We found that this state results in 3173 and 71C§caling but its mechanism for providing atomicity—hain

incorrect entries in the conn.log at the two MBS; these arise 5| raffic while state is moved—introduces latency costs.
because the migrated HTTP_ (other) flow_s terminate abruptly \ye experiment with this approach in the context of the
at the old (new) Bro MB, which Bro considers an anomaly. gcaie yp scenario using Bro MBs (variation of Figure 6(a),
VM snapshotting does not apply to scale down (Table 2). (5) \we assume 1000 pieces of per-flow state need to be
Controlling MB configuration and routing. SDN provides ,4yed and packets are arriving at a rate of 1000 packetsideco
a reasonable solution for achieving control over MB config- \yia gbserve that 244 packets must be buffered while the
uration and routing. However, this is insufficient because 0 ,5ve operation is occurring. More crucially, the average

lack of fine-grained M.B stajte cqntrol. We illustrate this for processing latency of these packets increases by 863ms as a
both scale down and live migration. result of this buffering.

One way to support scale down (Figure 6(b), bottom)is o gjimerge is insufficient for some cases of scale down
carefully manage configuration and routing: Active HTTP

flows are left for processing in the MB to be deprecated (the 7ysing VM snapshot is difficult because we need synchronized
MB on top), whereas only new HTTP flows are forwarded to snapshots for both the encoder and the decoder.

We now consider the alternativesja.1 in terms of their
basic ability to support elastic scaling and live migration
how efficiently resources are used and the overall correstne
of MB operations. Our results are summarized in Table 2.

12

(e.g., when using RE or Prads MBs), since it lacks support 1200 Yy — 1400 1005 chunks —+—
. % 1000 with events = é 2000 ghﬂﬂk: o
for merging shared state (Table 2). § - P : Lz)gg 3000 ch /k///
g 60 - g 800 /
8.2 MB Correctness and Performance 2 o g
£ 2 T
We now evaluate the impact of OpenMB on the correct- = ** g o

. .. . 0 o]
ness and performance of individual MBs to ensure neither 05000 10000 15000 20000 25000 °o 5 10 15 20

. Number of state chunk Number of simult:
is sacrificed. Additionally, we measure the time required to pbereSEE e preresmEness moves

process get/put operations, and the number of events gener- (a) Single operation. (b) Concurrent operations.
ated during these operations, to understand how the imple- Figure 10: Time per move operation.

mentation of the southbound API on individual MBs affects

the overall performance of OpenMB. events generated by Prads and Bro, respectively, as a func-

Correctness. We verify the correctness of MB operations tion of the packet rate and the number of chunks of per-flow
by comparing the output produced by a single, unmodified state involved in the get operation that caused the events to
MB versus the output produced by an OpenMB-capable MB be raised. For both Prads and Bro, we observe a linear in-
while running themigrate control application. For Bro, we crease in the number of events as the packet rate increase.
replayed the cloud traffic trace for both scenarios and com- This intuitively makes sense because more packets will ar-
pared the conn.log and http.log files, which reflect connec- rive in the time window between the start of a control API
tion state/statistics and HTTP requests/replies; we ebsger call and the corresponding routing update taking effect.
no differences in either log file. Similarly, we compared the
statistics output by Prads under both scenarios and found n08'3 MB Controller Performance
discrepancies. We verified the correctness of RE’s operatio In this section, we analyze the performance and scala-
by comparing the high-redundancy trace with the packets bility of our prototype MB controller. Recall that the MB
output by the decoder(s); all packets were properly decoded controller brokers all MB state operatiorf5], making the
Performance. We evaluated the impact of OpenMB on MB controller’s performance a key contributor to the overal-p
performance by comparing the average per-packet processformance of the OpenMB framework. We focus on two im-
ing latency (including queueing time) during normal MB op- portant questionsi)Y how quickly can the controller execute
eration and when an MB is processing a get call. For Bro, state operations and process events? ahthgw many si-
there is no significant change in the average per-packet pro-multaneous operations can the controller support?
cessing latency: 6.93ms during normal operationand 7.06ms To isolate the performance and scalability of the MB con-
when processing a get call. For RE, there is no significant troller from the performance of individual MBs, we use “dum-
change in the average time from when a packet leaves the enmy” MBs that simply replay traces of past state in response
coder to when it leaves the decoder: 0.781ms during normalto gets, send acks in response to puts, and infinitely generat
operation and 0.790ms when processing a get call. events during the lifetime of the experiment. The traces we
API Call Processing. The time required to process get/put use are derived from actual state and events sent by Prads
operations has a direct influence on how quickly a move, while processing our cloud traffic trace. All state and esent
clone, or merge operation completes, and, subsequently, ho are small (202 bytes and 128 bytes, respectively) for censis
long a control application must wait before updating networ tency, and to maximize the processing demand at the con-
routing. A longer time window between the start of a con- troller and minimize the impact due to network transfer.
trol API call and the corresponding routing update taking ef Single Operation. We first analyze how quickly the con-
fect, means more packets may arrive at the original MB and troller can process a single operationyel nt er nal). Fig-
trigger re-processing events. These events in turn int®du ure 10(a) shows the time required to complete this operation
additional processing work for the new MB. relative to the number of chunks of per-flow state processed
Figures 9(a) and 9(b) show the time required to complete a as part of the operation, both with and without the controlle
single get and all corresponding puts, respectively, asafu receiving and forwarding events. We observe that both the
tion of the number of chunks of per-flow state involved. For amount of migrated state and the presence of events impact
both Prads and Bro, we observe a linear increase in get andoerformance. Crucially, even at high rates, events inereas
puts processing time as the number of per-flow state chunksoperation processing time by at most 9%.
increases. Additionally, the collective put processinggtis Concurrent operations. Next, we evaluate how well our
~6x lower than get; we attribute this difference to the inef- controller can handle many northbound API calls issued si-
ficient linear search that is performed by both Prads and Bro multaneously. We use a similar setup as before except that
for get calls §7). Overall, the processing time is higher for multiple pairs of MBs are involved inove operations. Fig-
Bro because of the size and complexity of the per-flow state. ure 10(b) shows the average time per move operation as a
We also measured the get processing time for RE: it takesfunction of the number of simultaneous operations. We ob-
34.8 seconds to retrieve a 500 MB cache. serve that the average time per move operation increases lin
Figures 9(c) and 9(d) show the number of re-processing early with both the number of simultaneous operations and

13

1000 250 chunks

500 chunks
1000 chunks ===

250 chunks
500 chunks
1000 chunks ==

140
120
100
80
60
40
20
0

o ©
=3 o
o o

Time for get (ms)
B
(=3
o
Events Generated

Time for put (ms)

N
=}
s}

m(T]

Prads

0

Prads Bro Bro

(a) get Per f | owSupport time(b) put Perfl owSupport time(c) Events generated by Prads d(d} Events generated by Bro during
per operation on Prads and Bro. per operation on Prads and Bro. ing novel nt er nal

1000 1000 250 chunks —e—
500 chunks

1000 chunks ——

250 chunks —e—
500 chunks
1000 chunks ——

800 800

600 600

400 400

Events Generated

0
0 500 1000 1500 2000 2500

Packet Rate (pkts/s) Packet Rate (pkts/s)

novel nt er nal .

Figure 9: MBs performance.

the number of state chunks per operation. [4]

To better understand the cause of the observed perfor- [
mance, and identify potential techniques for reducingaper g
tion processing latency, we profiled our MB controller using -
HPROF [6]. We analyzed CPU usage using both time and (g
samples profiling. First, time profiling revealed that, with -
2 (4, 8) simultaneous operations, 49% (40%, 29%) of CPU [10]
time is spent context switching between threads and lock- 11]
ing shared objects. However, we cannot distinguish whether

this is a result of our MB controller implementation or an [ig
artifact of the core Floodlight [5] code base. Regardldss, t |14

time could be reduced by using finer grained synchroniza- 1151
tion primitives in our MB controller module. Second, sam-
ples profiling revealed that, with 2 (4, 8) simultaneous op- [16
erations, threads are busy reading from sockets 47% (62%17,
76%) of the time. We believe this is the main cause of in-
creased operation latency when then are more state chunkg™®
This can be improved by optimizing the size of state trans- [19]
fers using compression. We ran a simple experiment and
observed that, for a move operation with 500 chunks states,[20]
state can be compressed by 38%, decreasing the operation
execution latency from 110ms to 70ms. [21]

9. CONCLUSION
[23]

Effectively supporting sophisticated dynamic enterprise
scenarios requires the introduction of a software-definBd M
networking framework that useful abstractions for unified
software-driven control of MB functions across a range of 2°
MBs. As we have shown, designing such a framework re- [26]
quires coping with highly diverse MB state and complex in- 7
ternal MB logic. OpenMB addresses these challenges through
two novel APIs: an MB-facing API that defines how MBs 28]
receive/export state and a control API that defines how MB [29]
state can be accessed and placed. Our implementation of an,
MB controller, several control applications, and OpenMB-
enabled MBs allow a variety of dynamic scenarios to be re-
alized without affecting the correctness or performance of
MBs. Going forward, we believe that a framework like OpenMB
is crucial to continued innovation in MBs and the network.

]fl(i)'BalaB:gll:t%:/RllEnll\leglfzi'&bal ance. htm .

[2] Check Point IPS Software Blade.

ht t p: / / checkpoi nt. cont product s/ i ps- sof t war e- bl ade.
[3] Cisco IOS Firewall.

http://cisco.conl en/ US/ product s/ sw secur sw ps1018.

[22]

[24]

14

CloudOpt.ht t p: // cl oudopt . com

Floodlight OpenFlow Controller.

http://floodlight.openflowhub. org.

Hprof. ht t p: / / docs. or acl e. coni j avase/ 7/ docs/ t echnot es/
sanpl es/ hprof. htm .

HyperlP.ht t p: / / net ex. coni hyperi p.

iptables.

ht t ps: // hel p. ubunt u. coml conmuni ty/ | pt abl esHowTo.
nDPI.htt p: // nt op. or g/ product s/ ndpi .

Passive real-time asset detection system.

http://prads. projects.|inpro.no.

RFC 4540: NEC'’s Simple Middlebox Configuration (SIMCB¥otocol Version
3.0.http://tools.ietf.org/htm/rfc4540.
Snort.http://snort.org.

Squid.ht t p: // squi d- cache. org.

Suricataht t p: / / openi nf osecf oundat i on. or g/ i ndex. php/
downl oad- suri cat a.

A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjeed@edancy in
Network Traffic: Findings and Implications. BIGMETRICS2009.

A. Anand, V. Sekar, and A. Akella. SmartRE: An Archite for Coordinated
Network-wide Redundancy Elimination. 5iGCOMM 2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HarrisHa, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualizatiom. $OSP 2003.

T. Benson, A. Akella, and D. Maltz. Network Traffic Chataristics of Data
Centers in the Wild. IfMC, 2010.

C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderscand

A. Krishnamurthy. ETTM: A Scalable Fault Tolerant Networlkakbger. In
NSDI, 2011.

A. Gember, R. Grandl, A. Anand, T. Benson, and A. AkeB&atos: Virtual
Middleboxes as First-Class Entities. Technical Report TR1 University of
Wisconsin-Madison, 2012.

Y. Gu, A. McCallum, and D. Towsley. Detecting AnomaliesNetwork Traffic
Using Maximum Entropy Estimation. IfMC, 2005.

E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Livigidtion of an Entire
Network (and its Hosts). lilotNets 2012.

N. McKeown, T. Anderson, H. Balakrishnan, G. ParulkarPeterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enablingvation in
campus networksACM SIGCOMM CCR38(2), 2008.

V. Paxson. Bro: a system for detecting network intrsdarreal-time. In
USENIX Security Symposium (SSY1898.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. WarfiGglit/Merge:
System Support for Elastic Execution in Virtual Middlebex&é NSDI, 2013.
S. E. Schechter, J. Jung, and A. W. Berger. Fast Deteofi@canning Worm
Infections. INRAID, 2004.

V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi.igreand
Implementation of a Consolidated Middlebox ArchitectureNSD|, 2012.

V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. ReitertiWak-Wide
Deployment of Intrusion Detection and Prevention Systdm&oNEXT 2010.
S.-H. Shen, A. Gember, A. Anand, and A. Akella. REfagtay Content
Overhearing to Improve Wireless PerformanceMiobiCom 2011.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Reamy, and V. Sekar.
Making Middleboxes Someone Else’s Problem: Network Prsiogsas a Cloud
Service. INSIGCOMM 2012.

500 1000 1500 2000 2500

