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ABSTRACT
Increasingly, middleboxes are being deployed as software
components and, with the advent of software defined net-
working, can be deployed at arbitrary locations. However,
existing approaches for controlling the operations of mid-
dleboxes continue to be rudimentary and ad hoc. As such,
a variety ofdynamicnetwork control scenarios that are cru-
cial to enhancing the security, availability and performance
of enterprise applications cannot be realized today.

In this paper, we ask: what is the right way to exercise
unified control over the actions of middlebox that enables so-
phisticated dynamic network control scenarios? Inspired by
SDN, we argue that asoftware-defined middlebox network-
ing (SDMBN) framework—which provides fine-grained, pro-
grammatic control overall MB statein concert with control
over the network—is the answer to this question. Thus, we
present the design and implementation of OpenMB. OpenMB
consists of slightly modified middleboxes that expose a south-
bound API for importing/exporting middlebox state, a mid-
dlebox controller that implements a northbound API to de-
fine how state can be accessed or placed, and scenario-speci-
fic control applications that orchestrate middlebox and net-
work changes in tandem.

1. INTRODUCTION
Middleboxes (MBs) are network components operating at

layers 4-7 through which network traffic passes for inspec-
tion and/or modification. As recent quantitative studies have
shown, MBs are used widely, for security, facilitating net-
work access, or providing other novel functionality [27, 30].

Modern MB deployments are driven by two trends. First,
MBs are increasingly deployed as software components: as
VMs, in hypervisors, on end-hosts [19], or as collections of
processes [27]. Second, the advent of software defined net-
working (SDN) has enabled MBs to be deployed at arbitrary
locations. These trends align well with the flexibility en-
abled by recent advances in compute and network virtualiza-
tion, making it possible to offer novel services, e.g., enabling
the creating of rich virtual network topologies.

However, existing approaches for controlling the opera-
tions of MBs continue to be rudimentary and ad hoc. As
such, a variety ofdynamicnetwork control scenarios that

are crucial to enhancing the security, availability and perfor-
mance of enterprise applications cannot be realized today.

MB operations are determined by configuration policies
and parameters, traffic streams flowing to them, and their
internal algorithms and state. A variety of heterogeneous
mechanisms are used today to affect the first two factors:
e.g., tweaking routing configurations and MB-specific con-
figuration engines [11]. As for the third factor, there is no
way today to directly access and modify internal MB algo-
rithms and state, because most MBs are closed systems.

This apparent lack of unified fine-grained control over MBs
and their state precludes correct and performant implementa-
tion of control scenarios that require re-allocating live flows
across MBs. Examples include live migration of enterprise
applications for security reasons or resource constraints, elas-
tic scaling up/down of MBs to meet cost-performance trade-
offs, and transparent MB failure recovery (§2).

In this paper, we ask: what is the right way to exercise
unified control over the actions of MBs that enables sophisti-
cated dynamic network control scenarios? Inspired by SDN,
we argue that asoftware-defined MB networking(SDMBN)
framework is the answer to this question.

An ideal SDMBN framework offersuseful abstractions
for unified software-driven controlof MB functions across a
range of MBs (perhaps from different vendors). At the same
time, the framework should not wrest too much control away
from the MBs themselves so that vendors can continue to
innovate and improve their MB offerings. Such a carefully
balanced SDMBN framework can simplify management of
complex MB deployments and engender a wide-variety of
rich dynamic MB control applications. We believe that it
can also help create new hitherto unseen MBs.

Based on an analysis of key scenarios, we argue that SDMBN
requires fine-grained, programmatic control overall MB state
happening in concert with control over the network (§2).
There are two key roadblocks to realizing this.

First, compared to switch forwarding state, MB state is
highly diverse. We survey of a wide range of MBs and find
that there exist coarse commonalities in the structure of MB
state. Based on this, we present a comprehensive taxonomy
of MB state and argue for the use of a novel scheme to repre-
sent state. We then show how to use the taxonomy and rep-
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Figure 1: Overview of the elements OpenMB encompasses

resentation to design appropriate state control mechanisms
for different types of state.

Second, internal MB logic is complex, and as such, rip-
ping it out of MBs is challenging; it also restricts innovation
in the design of MBs themselves. We argue for a novel divi-
sion of functionality whereby MBs are largely autonomous
and continue to be responsible for creating and modifying
crucial internal state according to proprietary logic, whereas
the location of, and consistency across, these pieces of state
is externally controlled. MBs also provide limited external
introspection of their actions.

We present the design and implementation ofOpenMB, an
SDMBN framework driven by these insights. Our architec-
ture (§3) consists of an MB controller, control applications
and slightly modified MBs as shown in Figure 1.

We design an MB-facing (“southbound”) API that defines
how MBs receive and export state (§4). The semantics of
state operations (e.g., Should an operation be disallowed in
some cases?) and representation of state (e.g., Should state
be encrypted? Exported per flow?) are tied to the type of
state in question. We argue that this API must be augmented
with a properly detailed event abstraction that allows MBs
to notify the MB controller of the occurrence of, but not the
reason behind, internal state establishment or manipulation
actions. This helps ensure consistent operation at no loss
of performance, and enables rich cross-MB actions, while
preserving MB autonomy.

We design a control (“northbound”) API for MB state that
defines how MB state can be accessed and placed or changed
by applications (§5). We carefully trade-off richness of the
API for enabling simple and correct application designs. The
API helps control applications make network state changes
in sync with MB state changes. We design corresponding
functionality in the controller for translating between north-
bound and southbound API calls; these help prevent applica-
tions from issuing illicit actions to MBs while also limiting
the amount of extra functionality MBs must implement (in
addition to the southbound API) to support OpenMB.

We implement the northbound API as a module in Flood-
light [5] and modify several MBs—Bro [24], SmartRE [16],
and PRADS [10]—to implement the southbound API (§7).
We also construct two control applications—live migration
and elastic scaling—(§6) that leverage both our northbound
API for MBs and OpenFlow [23].

We evaluate the OpenMB framework using these control
applications, along with traffic traces captured from an oper-
ational enterprise network. In particular, we show that using
OpenMB preserves the correctness and performance of MBs
in the presence of dynamic changes to an MB deployment:
the output of both unmodified MBs and OpenMB-enabled

Figure 2: Live migration between data centers

MBs in a live migration scenario is the same, and there is at
most a 2% increase in packet processing latency only while
MBs are processing southbound API calls. This contrasts
with existing techniques which can cause upwards of 9% of
flows to be mishandled and up to a 100x increase in packet
latency while MB state is being moved.

2. MOTIVATING SCENARIOS
We now describe a few dynamic enterprise scenarios in-

cluding, live data center migration, elastic MB scaling and
load balancing, and MB failure recovery. With each sce-
nario, we derive key requirements that need to be satisfied to
support it effectively. We argue that alternate state-of-the-art
approaches address some but not all requirements. In partic-
ular, because MB state is complex and closed in nature (see
§3.1 for a taxonomy of MB state), and these approaches only
offer rudimentary and/or indirect control over the state, they
can lead to correctness issues or performance degradations
(§2.1). We conclude that supporting such dynamic scenar-
ios requires fine-grained, programmatic control over all MB
state in tandem with control over the network.
Live Migration Between Data Centers. Enterprises may
desire to live migrate application virtual machines (VMs) be-
tween private, public, and cloud data centers for reasons of
performance, cost, security, resource availability, etc.MBs
must be considered as part of the migration process to en-
sure the security and performance of these applications is
preserved, both during and after migration.1

MB migration is particularly complex when only a sub-
set of the VMs of an application are migrated, because it
requires changes to the configuration and/or internal state
residing at MBs; we show an example in Figure 2. In partic-
ular, new instances of the appropriate MBs, e.g., an intrusion
prevention system (IPS) and a load balancer (LB), should be
launched in the new data center and loaded with the internal
state for the specific flows or flow groups associated with
the migrated app VMs; this state should be derived from the
original MB instances in the old data center. In other words:

R1: We need the ability tomoveinternal MB
state atfine-granularity.

In some cases it may be necessary to copy, rather than
move, the internal state from existing MB instances. For ex-
ample, consider replacing the IPS in Figure 2 with a redun-
dancy elimination (RE) decoder [16]. When the RE decoder

1Live network migration was considered in LIME [22], but the fo-
cus was solely on network forwarding state.
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Figure 3: Dynamic scaling and load balancing

is migrated to a new location, it needs the appropriate cache
entries to correctly decode received packets. This means:

R2: We need the ability tocloneinternal state.

The new and old MBs should operate with the same se-
mantics (high level policy) during and after live migration.
Additionally, live migration may require MB configuration
changes to ensure correct MB operation: e.g., the load bal-
ancer instances in both the new and original data centers
should be reconfigured to balance traffic only among the app
VMs in the respective data centers. This means:

R3: We need the ability toclone and dynamically
modify MB configurations.

When shifting flows to a new MB, the transfer of cor-
responding internal MB state must happen in tandem with
modifying network routing (to route traffic to the new MB).
Migrating internal state without regard to routing changesor
failing to migrate internal state can cause serious correctness
issues: e.g., a load balancer will assign an in-progress trans-
action to a different server (when the routing update happens
before state is moved), and an intrusion prevention system
(IPS) may miss (when state has moved and the routing up-
date did not yet take effect) or generate false alerts. Thus:

R4: We need the ability to coordinate MB state
migration and configuration update with changes
to network forwarding state.

Dynamic Scaling and Load Balancing.Deploying MBs as
software components makes it easy to add and remove MB
instances as network load changes. Recent work has devel-
oped techniques to determine when MBs should be scaled
and how many instances should be added or removed [20].

However, making such scaling effective requires meeting
the above requirements, plus a few new requirements. As
Figure 3 shows, scaling up requires copying (and potentially
modifying) the configuration state (requirement R3) from
an existing MB instance. For some MBs (e.g., RE), scal-
ing up also requires cloning internal state (requirement R2)
from an existing MB instance. On the other hand, scaling
down requires consolidating several MB instances into fewer
instances, or running multiple MB instances in parallel on
the same compute resource with fewer resources assigned to
each instance. In both cases, unless we have a way of com-
bining state, we will not be able to operate correctly within
the new resource constraints. Thus:

R5: We need the ability tomergeinternal state
from multiple MBs.

Second, scale up/down must happen in concert with load
balancing among MB replicas, as it helps maximize MB ef-
ficiency and reduces the need for additional instances [20].

When flows are short-lived, load can be balanced by care-
fully assigning new flows to specific MB instances. How-
ever, when flows are long-lived, in-progress flows needs to
be reassigned to different MB instances to achieve an opti-
mal load distribution. This requires moving the appropriate
state (R1) and updating routing (R4).
Failure Recovery.Deploying MBs as software components
enables replacement (failover) instances to be launched more
quickly. However, since most MBs are stateful, replacement
MBs must be loaded with the requisite internal state.

There a few possible approaches for this. One option is to
run two instances of the same MB in parallel, with a copy of
each packet sent to both instances. But, this requires twice
as many compute and network resources. A second option
is to create a copy of all MB state in real-time to bootstrap
a replacement instance.This is computationally expensive.
While the overhead can be reduced by snapshotting at set
intervals, some state may still be lost when a failure occurs.
A more viable option which is as effective as the first ap-
proach, without the overhead or cost, is to keep (and move
upon failure) aminimal live snapshot of only critical state
(e.g., IP address and port mappings from a NAT), with non-
critical state (e.g., mapping timeouts) set to default values
when a failed MB instance is replaced.

Thus, to support efficient failure recovery across a range
of MBs, it helps greatly to know when an MB created such
criticial state, and what the state created was. In other words:

R6: We need support for providing introspection
into MB operations.

2.1 Existing Techniques are Insufficient
Existing techniques can address a subset of the require-

ments, or offer alternative options for some of the scenarios
discussed above. However, these approaches have limited
applicability, tend to waste resources, reduce performance,
or lead to correctness issues. We provide qualitative argu-
ments below and present quantitative evidence in§8.
Virtual Machine Snapshots. Running MBs as VMs (or
Linux containers) enables the use of VM snapshots [17] as a
mechanism for moving and cloning MB state in its entirety.
In the live migration scenario, for example, each MB will
have the necessary internal state for flows in its data center.
However the MBs will also have unneeded state (for flows
in the other data center). This wastes MB memory, but more
crucially, it can cause incorrect MB behavior, e.g., an IDS
might generate false alerts. VM snapshots cannot be used
when state from multiple MBs must be moved and merged,
e.g., in the case of scale down.
Configuration Protocols.SIMCO [11] is an attempt to pro-
vide a standardized MB configuration protocol that can help
dynamically modify MB configuration. Unfortunately, it is
limited to firewalls and NATs due to its very specific syntax.
SIMCO also does not help manage internal state.
Controlling MB Configuration and Routing. Partial con-
trol can be achieved by performing MB configuration (using
existing interfaces) and routing (using SDN) in tandem [28].
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By periodically probing topology, traffic patterns, and MB
constraints, a controller can automatically compute an opti-
mal configuration of MBs and the network to satisfy a high
level policy. However, this is incomplete: re-routing in-
progress flows according to the new configuration without
moving, cloning, and merging internal state from MBs that
the traffic had touched in the old configuration can impact
correctness: e.g., an IPS will have no record of earlier pack-
ets from the flows. Only re-routing new flows avoids in-
correct MB operations, but prohibits the new configuration
from fully taking effect until all existing flows have finished:
e.g., a scaled down MB cannot be destroyed until all flows
passing through it have completed.
Application-level Libraries. In Split/Merge [25] MBs are
modified to use an application-level library which (i) pro-
vides methods for MBs to allocate, free, and reference in-
ternal state, (ii ) exposes the internal state to a controller so
it can be migrated between MBs, and (iii ) leverages SDN
to control the flow of traffic as state is moved. However,
Split/Merge abstractions fall short in generality: the abstrac-
tions are focused on scaling specific MB types, and it is un-
clear if they can apply to other MBs/scenarios. A key reason
is that there is no way to handle shared internal state, e.g.,
moving or cloning the cache on a RE decoder, or achieve
introspection into MB operations.

3. OpenMB ARCHITECTURE
OpenMB achieves the requirements highlighted in§2 by

introducing: (1) programmatic, fine-grained control over all
forms of MB state and (2) unifying this control with exist-
ing SDN frameworks for controlling L2 and L3 network el-
ements. Together these enable the design of rich control ap-
plications to support the scenarios in§2.

In SDMBN, programmatic control (#1) is achieved through
the introduction of an MB controller (see Figure 1) and two
novel APIs. Unification of MB and network control (#2)
is achieved by having the control applications coordinate
the control functions they invoke at the SDN and MB con-
trollers. We illustrate these through the example in Figure4.
A control application running on SDMBN, e.g.,migrate, op-
erates on a view of network switches, links and MBs. To
achieve control over MB state, the application invokes the
control API —this defines how MB state can be accessed
and changed by control applications—e.g.,migrate issues
move(k) to transfer a subset of state, identified by the key
k, from MB A to MB B. The MB controller relays these ac-
tions to the appropriate physical MBs using theMB-facing
API—this defines how MBs export and receive state—e.g.,
the MB controller issuesget(k), receives states, and is-
suesput(s) to move state.The MB-facing API also defines
when MBs need to notify the MB controller that they have
established/manipulated state internally to ensure atomicity
and provide introspection into MB actions, e.g., an event to
re-process packetp is raised by MB A; the controller passes
it to MB B. Whenmove returns successfully, the application

Figure 4: Example API calls and notifications

triggers an update of network forwarding state, e.g.,migrate
issuesroute(k,r) to the SDN controller to change the
forwarding for flows identified by keyk to the router. Fi-
nally, the MB controller issues adelete(k) to MB A after
a set time has passed sinceput(s) returned.

There are two basic roadblocks in designing OpenMB:

• MB state is highly diverse. The ability to program-
matically control all MB state hinges on identifying
commonalities in the structure and semantics of a di-
verse range of MB state. In§3.1, we argue that such
commonalities do exist and present a state taxonomy
that forms the basis of our APIs.

• Internal MB logic is complex. Indeed, each MB fea-
tures intricate and unique packet processing logic that
is closely tied to internal state. In§3.2, we argue that
ripping this logic out—akin to SDN—is difficult, and
also undesirable. We then describe an appropriate split
of responsibility between MBs and the controller/app-
lications. This defines the richness of our APIs and of
the functionality at the controller/applications.

Building upon these insights, in§4 and§5, we describe
our design choices for the MB-facing and control APIs, re-
spectively. We describe the design of control applications
that use these APIs in§6.

3.1 MB State Taxonomy
In contrast with SDN where switches have a forwarding

information base, MBs in SDMBN rely on complex pieces
of state that serve diverse purposes. A single MB may re-
ceive dozens of configuration inputs, and its internal logic
may establish and manipulate hundreds of pieces of in-depth
state based on received traffic whose structure and semantics
varies significantly across MB types and vendors.

We reviewed several types of MBs from a variety of vendors—
firewalls [8, 3], intrusion detection systems [24, 26, 21], load
balancers [1], WAN optimizers2[15, 4, 7], proxies [13], and
monitoring systems [10, 9]—to identify commonalities in
the structure, semantics, and purpose of their state. We make
a few key observations:

• Each piece of MB state fulfills one of three purposes:
specifying policies and parameters, supporting packet
processing, or reporting MB observations/decisions.

• Each piece of MB state applies either to a specific “flow”3

or all traffic at the MB.
2This includes MBs that perform caching, compression, and redun-
dancy elimination.
3We use “flow” to loosely refer to a transport connection, an appli-
cation session, a pair of communicating hosts, etc.
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Role Description Partitioning MB Ops
Configuring Policies and parameters that

define and tune MB behavior
Shared Only MB reads

Supporting Details on past traffic to guide
MB decisions and actions

Per-Flow &
Shared

MB reads
& writes

Reporting Quantify observations and de-
cisions

Per-Flow &
Shared

MB writes

Table 1: Taxonomy of MB state

• The same basic data structure tends to be used across
different MBs for pieces of state with the same seman-
tics, e.g., MBs maintain an index of current transport
connections using a hash table, tuning parameters are
specified as key/value pairs, etc.

Based on this, we classify MB state along two dimen-
sions: its role in MB operation—configuring, supporting,
or reporting—and its partitioning—per-flow or shared (Ta-
ble 1). We also consider a key property for MB state: is it
read, written, or read & written by the MB? This has implica-
tions for whether the controller should be allowed to modify
the state, and whether state should be moved, cloned, and/or
merged when moving flows between MBs.

3.2 Division of Responsibility
MBs examine and modify network traffic according to

complex internal logic. At launch time, this logic may parse
configuration inputs (e.g., rule definitions), initialize sup-
porting and reporting state structures (e.g., connection index,
timer manager, etc.), or perform other startup tasks. As the
MB runs and examines traffic, the logic may: read configura-
tion state; access, establish, and manipulate supporting state;
create or update reporting state; and drop, forward, modify,
and/or generate network traffic.

In contrast, the internal logic of network switches, and the
writing and reading of forwarding state, is cleanly divided
between a control plane and a data plane [23]. SDN lever-
ages this to divide responsibility between network switches
and a controller/applications: All forwarding state4 is estab-
lished by the SDN controller, and network switches simply
forward packets based on this state.

The complexity of internal MB logic makes the “SDN
model”—i.e., the controller makes all state changes—unsuit-
able for MBs. The majority of internal MB logic would es-
sentially need to be re-implemented in the controller; since
this removes too much control from MBs themselves, it could
constrain innovation in the design of MBs. Additionally,
MBs which make complex state updates as they process ev-
ery packet (e.g., an IPS) would need to send almost all MB-
received traffic to the controller.

OpenMB thus divides responsibility for state changes be-
tween MBs and the MB controller/control applications. MBs
are responsible forcreating and modifying supporting and
reporting state, as they do today. The MB controller, un-
der direction from the control application, is responsiblefor
manipulating where (i.e., on which MB) specific pieces of

4Excluding timers and packet/byte counters.

supporting and reporting state reside. Additionally, the con-
troller is responsible forcreating and updating all configura-
tion state. With this division of responsibility, the way MBs
access, create, and update state is unchanged.

4. MB-FACING API
The MB-facing (“southbound”) API defines (i) how MBs

import and export state, and (ii ) when MBs need to signal
that they have created or updated state internally.

4.1 State Interface
Providing programmatic, fine-grained control over all forms

of MB state requires individual MBs to expose an external
interface for reading and writing state. This should comple-
ment the state operations (read, update, add, and remove)
performed by internal MB logic (§3.2). The key question
is at what granularity and in what form should MBs allow
state to be externally read/written?We rely on our state tax-
onomy (§3.1) to help address this question. Since the answer
is subtly different for the three classes of MB state, we talk
about the interface for each class separately.

4.1.1 Configuration State

Today, MBs support a variety of interfaces for setting, up-
dating or querying configuration state. Unfortunately, the
syntax used varies across MB types and vendors, e.g., ipt-
ables [8] vs. Cisco IOS Firewall [3] rules. Prior attempts
at standardizing MB configuration interfaces have been nar-
rowly focused. For example, SIMCO [11] only targets fire-
walls and NATs, and VRT rules [12] are only designed for
IPSs [12, 14, 2]. Even with SDN, non-routing-related switch
configuration (e.g., managing VLANs, configuring ports) oc-
curs using vendor-specific syntax. These issues make cloning
and dynamically modifying MB configuration state complex.

In SDMBN, we ask: how should configuration state be
logically organized to enable fine-grained control? Based on
our state taxonomy (§3.1), we advocate organizing config-
uration state as a hierarchy of keys and values. Each value
is a single unit of configuration state, e.g.: a single parame-
ter (e.g., cache size, replacement algorithm), a single policy
item (e.g., firewall rule, IPS rule), etc. Each key is associ-
ated with either an unordered set of sub-keys or an ordered
set of values. The exact hierarchy, key names, and value
syntax/semantics is unique to each MB. The API for access-
ing/updating configuration state then is:
getConfig(〈HierarchicalKey〉)
setConfig(〈HierarchicalKey〉,

[〈ConfigurationValue〉, 〈ConfigurationValue〉,...])
delConfig(〈HierarchicalKey〉)

4.1.2 Supporting State

Supporting state guides MB decisions and actions (§3.1).
Correspondingly, the contents and structure of supporting
state depend on the functions the MB provides. Typically,
supporting state contains deep, detailed information, includ-
ing: portions of the headers/payloads of received traffic, e.g.,
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IP addresses, TCP flags, HTTP header fields; actions to ap-
ply to received traffic, e.g., forward traffic to a specific IP,
re-write the internal IP address to a specific public-facingIP
address, drop all traffic from a specific host; meta-data for lo-
cating pieces of state, e.g., hashes of flow identifiers, hashes
of packet payloads; and other important data. Each MB de-
fines its own organizational structure for this information.
E.g., Bro [24] defines more than 100 different structures for
storing supporting state.

One option is to share the syntax of these structures, and
the semantics of the data they contain, with control applica-
tions so that they can inspect/modify/create supporting state
in sophisticated ways. This has crucial disadvantages: (i)
Control applications may modify or create supporting state
in a way that is inconsistent with MB logic, leading to un-
expected or incorrect MB behavior. (ii ) MB mendors may
be unlikely to share the syntax and semantics of internal MB
structures for proprietary reasons (§3.2).

Thus, we must reconcile the desire of MBs to conceal and
protect the integrity of supporting state with the requirement
of being able to move, clone, and merge supporting state at
fine granularity (§2). We address this challenge separately
for per-flow supporting state and shared supporting state.
Per-Flow Supporting State. Per-flow state is intrinsically
organized into self-contained chunks, one for each flow. Ex-
posing state at the granularity of these per-flow chunks re-
veals nothing about an MB’s internal structures that could
not already be deduced from knowledge of the MB’s func-
tionality. More crucially, MBs can encrypt (decrypt) chunks
of per-flow supporting state before exporting (after import-
ing) to protect the state. The nature of per-flow state also
provides an inherent mechanism for identifying a specific
state chunk: We can simply use the same identifiers that
are used by the MB to determine to which network traffic
the per-flow state applies, e.g., IP addresses, ports, protocol
numbers.

Thus, MBs should export/import pieces of per-flow sup-
porting state as a key/value pair:
[〈HeaderFieldList〉:〈EncryptedChunk〉].

Additionally, MBs should support three basic operations for
controlling which per-flow supporting state resides at an MB:

getSupportPerflow(〈HeaderFieldList〉)
putSupportPerflow([〈HeaderFieldList〉:〈EncryptedChunk〉])
delSupportPerflow(〈HeaderFieldList〉)

Note that the identifiers which an MB uses to determine
which per-flow supporting state applies to which packets
also determines the finest granularity at which per-flow sup-
porting state for that MB can be accessed. For example,
Balance [1] only maintains a chunk of per-flow state based
on source IP/ port, since the destination IP/port is the same
for all connections, namely, the IP/port of the load balancer.
We do not preclude requesting per-flow supporting state at a
coarser granularity than the MB uses, e.g., identifying based
only on source IP. Such a request will always return all match-
ing pieces of per-flow supporting state at the finest granular-

ity. However, requests for per-flow state at a granularity finer
than the MB uses will return an error.
Shared Supporting State.Shared state requires a different
interface because it applies to all traffic passing through a
MB. The key constraints imposed by shared supporting state
are: we cannot move it out of an MB if any flows will remain
on the MB (e.g., during live migration) as the MB will not
have the necessary state for the flows that remain, and we
cannot move to an MB which already has flows (e.g., dur-
ing scale down) as this would overwrite the shared state that
already exists on the MB to where the flows are moved.

Alternate ways of managing shared state may not face the
above issues to start with: e.g., one possibility is to main-
tain one global copy of each piece of shared supporting state
across all instances of a specific type of MB. However, this
requires MBs’ internal logic to be significantly modified to
read/write shared supporting state differently, e.g., using a
distributed hash table.

The approach we adopt eliminates the need for complex
modifications to MB logic. We synchronize MBs’ shared
state only when flows move, allowing the state to diverge
independently in the interim. In the case where a subset
of flows are moved to a new MB (e.g., live migration), the
shared state on the new and original MBs can be synchro-
nized bycloning the shared state from the original MB. In
the case where all flows are moved to an existing MB (e.g.,
scale down), the shared state from the two MBs must be
merged. Because shared supporting state applies to all traf-
fic, all shared state must be cloned/merged, and hence MBs
should export/import shared supporting state in a single chunk.

Thus, the MB-facing API for shared supporting state con-
tains two operations:
getSupportShared()
putSupportShared(〈EncryptedChunk〉)

Cloning/merging can be implemented using these calls (§5).
Note that the merge operation at the MB can be complex

and dependent on the semantics of the shared state, which we
do not want to expose to the controller (§3.2). Thus, the MB
must implement the needed logic for merging (invoked when
put is called at an MB that is already maintaining shared
supporting state ): E.g., if two content caches (e.g., redun-
dancy elimination (RE) decoders) are being merged, the MB
may require extra meta-data (e.g., hit counts) for each cache
entry to determine from which piece of state a particular en-
try should be retained.

4.1.3 Reporting State

Reporting state is intended to quantify observations or de-
cisions that have already happened. Internal MB logic does
not rely on reporting state for packet processing functions
and decision making; MBs solely maintain this state for use
by external entities, e.g, a network-wide alarm system.

Reporting state must be carefully managed to avoid “dou-
ble reporting”. E.g., packet counters on one MB should not
be duplicated on another MB when traffic is moved, oth-
erwise summing the counters from both MBs will double-
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count packets which traversed the original MB prior to du-
plication. Avoiding double reporting of per-flow informa-
tion is straightforward and we adopt techniques similar to
per-flow supporting state.

However, dealing with shared reporting state is less straight-
forward. In particular, when a subset of flows are moved to a
new MB, shared reporting state shouldnotbe cloned (unlike
shared supporting state) as it leads to double reporting; in-
stead, we start tracking fresh reporting state at the new MB.
When consolidating two MBs, moving all traffic away from
an MB without doing anything with reporting state will re-
sult in under reporting, since the reporting state will be lost
when the MB is deprecated. In such cases, the consolidated
MB can decide to merge the shared reporting state using ap-
propriate logic if possible (e.g., for aggregate traffic coun-
ters), or it may decide to start afresh when the state does not
permit merge (e.g., for traffic volume percentiles).

Thus, the MB-facing API for reporting supporting state
contains the following operations:
getReportPerflow(〈HeaderFieldList〉)
putReportPerflow([〈HeaderFieldList〉:〈EncryptedChunk〉])
delReportPerflow(〈HeaderFieldList〉)
getReportShared()
putReportShared(〈EncryptedChunk〉)

4.2 State Events
The operations discussed above enable the controller to

move state in and out of MBs. But MB themselves may
locally initiate/change state (§3.2) unbeknownst to the con-
troller, i.e., establish, update, or remove both supporting and
reporting state when either apacket is receivedor a timer
fires. For example, an IPS updates a connection record when
a packet is received, a load balancer creates a new connection-
to-server mapping when the first packet of a flow is received,
and a NAT removes an IP address/port mapping when no
matching packets are received for some time period. The
southbound API “hides” both thelogic behindandthe occu-
rance ofsuch actions from the controller.

In SDN, forwarding state at switches may change as a re-
sult of the same triggers. But switches don’t change state
themselves; they raise an event in response to the trigger
which the controller views as arequest for a change in for-
warding stateand makes necessary state changes.

We argue that limited support for “SDN-like” events can
prove quite useful OpenMB. The architectural difference from
SDN, rooted in how we divide functionality, is that events in
OpenMB are raisedwhen an MB establishes or updates state
in response to a trigger, not when the trigger itself (packet
received or timer fires) occurs. Thus, the events augment the
southbound API to provide visibility into occurance of a spe-
cific set of MB actions, but the underlying logic is still hid-
den. This helps ensure correct operations at no loss of per-
formance as state is moved or cloned across MBs (§4.2.1),
and supporting rich functionality (§4.2.2).

4.2.1 Atomicity Without Loss in Performance

Changes that involve both a controller-initiated state op-
eration and a network update (or other non-MB change) typ-
ically need to happen atomically to ensure the correctness of
MB operations. For example, shifting flows from a particu-
lar subnet from one MB to another requires moving per-flow
supporting state and updating network routing as a single
logical transaction. Such a transaction occurs atomicallyif:

(i) all affected packets are received and processed by at
least one of the MBs (old or new),

(ii ) external side-effects from packet processing—e.g, a packet
is injected back into the network, or an alert is generated—
only occur once for each packet,

(iii ) no state creations or updates are lost, and
(iv) a complete, up-to-date copy of the state involved in the

controller-initiated state action resides at the appropri-
ate MB (s) when the transaction is finished.

Guaranteeing atomicity is complicated by our desire to
minimize delay or suspension of MB operations.

One option for guaranteeing atomicity is to suspend the
flow of traffic to MBs while a transaction is occurring. This
requires identifying which traffic may trigger modifications
to the state involved in the operation, and temporarily buffer-
ing this traffic at network switches. Additionally, packets
that are already in transit to the affected MBs must be dropped
upon arrival. The flow of traffic can be resumed only af-
ter the operation and network update have both completed.
While this approach is straightforward, it requires suspend-
ing the processing of some flows for significant periods of
time (up to several 100s of ms to a few seconds ) which
can lead to, e.g., user applications timing out. Conducting
state operations and network updates at small granularity,
e.g., one flow at a time, can minimize such downtime, but
this only works for per-flow MB state and requires installing
many fine-grained forwarding entries in network switches.

Instead, OpenMB allows MBs to continue processing traf-
fic while a transaction is occurring, and useevents to “re-
play” state processing that occurs during (and slightly after)
the state action and network update. This avoids delaying
packet processing for significant periods of time and does
not require network switches or end hosts to buffer (poten-
tially) large volumes of packets.

To understand how this approach works, consider the sce-
nario in Figure 4: Since the flow of traffic is not suspended
in OpenMB, packets corresponding to the state being moved
may continue to arrive at MB A during the move. Further-
more, aftermove returns and the applications proceeds to
update network state, packets corresponding to moved state
may arrive at MB A until routing change kicks in, plus for
a short time after this change (as packets may already have
been in transit to MB A when the routing change occurred).

There are several possible approaches for dealing with
these two sets of packets:

• Discard the packets.violates requirement(i) above.
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• Process the packets at MB A and re-send the af-
fected state to MB B.This avoids a violation of atom-
icity requirement(iv). However, once the routing change
takes effect, MB B may begin receiving packets cor-
responding to the moved state and the internal MB
logic may update the supporting state that was orig-
inally transfered from MB A. A transfer of updated
state from MB A will wipe out the updates made on
MB B and violate atomicity requirement(iii) .

• Redirect the packets to MB B.Processing all packets
for the state being moved on MB B ensures atomic-
ity requirements(i), (ii) , and(iv) are met. However, if
the redirected packets arrive at MB B before the state
from MB A, MB B will establish a new piece of per-
flow supporting state. This will result in incorrect MB
operation, and the state established by MB B will be
lost when the state from MB A finally arrives, vio-
lating atomicity requirement(iii) . MB A must there-
fore buffer the packets until MB B has acknowledged
the corresponding per-flow supporting state has been
installed; this unnecessarily delays packet processing.
More crucially, redirection is unsuitable in the case of
a clone action, since both MBs need to process the
packet to keep the clone up-to-date while the transac-
tion is in progress (§6.1).

OpenMB both guarantees atomicity and avoids processing
delay using three steps: (1) These packets are processed at
MB A as normal, including the occurrence of external side-
effects, e.g., forwarding of the packet and, (2) If a piece of
state that was moved or cloned is updated while the packet
is being processed, MB A sends apacket re-processevent,
which includes a copy of the packet, to MB B.

(3) When MB B receives the event, it processes the packet
as normal to update state,except it does not perform exter-
nal side-effects. Processing the packet in this manner at MB
A preserves atomicity requirementsii , iii , and iv. MB A
stops raising packet re-process events when it stops receiv-
ing packets which trigger updates to moved or cloned state.

One caveat of this approach is later packets in the flow
may already have arrived at and been processed by MB B
before the event arrived. This is not a problem for MBs that
can handle such out-of-order arrivals by design. Some MBs,
e.g., an RE decoder [16], cannot handle reordering; this is
an intrinsic limitation of the MB and SDMBN does not in-
troduce new complications.

4.2.2 Introspection

MBs also raise events to provide introspection into their
operations. For example, a control application may be in-
terested in knowing when a NAT has created a new IP ad-
dress/port mapping or when a load balancer has a assigned
a new flow to a server. These events are broadly triggered
when an MB creates or updates supporting or reporting state;
the exact triggers for these events are MB-specific. The
events always include a key that identifies the relevant state

Figure 5: Sequence of actions formoveInternal.

and an event code; additional MB-specific values (e.g., the
server to which a flow was assigned) may be included to
provide more information. For example, a NAT could gen-
erate an event to announce the creation of a new mapping.
The event would include both the header fields of the af-
fected flow and the new mapping. Generally, points in inter-
nal MB logic where information is written to a log file are
likely places for triggering events.

To ensure that the controller, network, and MB are not
at risk for overload, OpenMB makes it possible to enable or
disable the generation of introspection events based on event
codes and keys. For example, a controller application can
request to receive events only when a load balancer assigns
new flows for a specific subnet to a server, or receive all
events only for a limited period of time.

5. CONTROL API
The application-facing (“northbound”) API encapsulates

the intricacies of state operations on individual MBs. We
discuss in§ 6 how control applications leverage this API.
The API consists of six operations:
readConfig(〈SrcMB〉,〈HierarchicalKey〉)
writeConfig(〈DstMB〉,〈HierarchicalKey〉,

[〈ConfigurationValue〉,〈ConfigurationValue〉,...])
stats(〈SrcMB〉,〈HeaderFieldList〉)
moveInternal(〈SrcMB〉,〈DstMB〉,〈HeaderFieldList〉)
cloneSupport(〈SrcMB〉,〈DstMB〉)
mergeInternal(〈SrcMB〉,〈DstMB〉)

The controller serves as a broker for all of these operations.
Controller’s Actions. We now discuss what sequence of
steps the controller executes when applications call the func-
tions above. ThereadConfig andwriteConfig opera-
tions are simple: The controller issues aget-config or
set-config call to the appropriate MB. We could also in-
clude acloneConfig operation that would be a compo-
sition of thereadConfig and writeConfig calls. The
stats operation is used for informational purposes. It al-
lows applications to query how much shared and per-flow
supporting and reporting state exists for a given key.

ThemoveInternal,cloneSupportandmergeInternal
operations are more complex because they involve events,
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in addition toget, put, anddel calls. Figure 5 illustrates
moveInternal: the controller begins the operation by call-
ing both thegetSupportPerflowand thegetReportPerflow
operations on theSrcMB, using theHeaderFieldListpro-
vided to themoveInternal operation. TheSrcMBwill be-
gin returning pieces of per-flow state to the controller. The
controller will subsequently call theputSupportPerflow
or putReportPerflow operation theDstMB, providing the
piece of per-flow state that came from theSrcMB. TheDstMB
will send an ACK to the controller after each put operation
completes successfully, and theSrcMB will send an ACK
to the controller after both get operations complete success-
fully. In parallel, the controller receives and forwardsreprocess

events. TheSrcMBmay begin generating events as soon as it
sends the first piece of per-flow state to the controller. When
the events arrive at the controller they are buffered until the
DstMBhas not ACK’d the put for the piece of per-flow state
to which the event applies. ThemoveInternal operation
returns once all puts have been ACK’d. However, the con-
troller may continue to process events related to this oper-
ation. When no events have been received from theSrcMB
for a fixed amount of time (e.g., 5 seconds), it is assumed the
routing change has taken place. At this time, the controller
calls both thedelSupportPerflowanddelReportPerflow
operations on theSrcMBto complete the move.

The sequence of actions performed by the controller for
thecloneSupport andmergeInternal operations is sim-
ilar, except: (i) the get and put operations for shared support-
ing (and reporting, in the case of merge) state are called on
theSrcMBandDstMB, and (ii ) no delete operation is called
when events stop arriving.

The above discussion and§4 imply that the controller ac-
tively intervenesall exchange of state and events. Alterna-
tively, MBs can exchange state and events directly, based on
a request (move, clone, or merge) from the controller. We
did not adopt the latter approach as it means that the MBs
must include the appropriate communication logic, carefully
order puts and events, and handle failure cases. In our de-
sign, this logic only needs to be implemented once (at the
controller) and processing burden of MBs is not increased.
Why A Separate API. Exposing a separate API, operating
at a higher level of abstraction, to control applications has
several benefits over directly exposing the MB-facing API:

First, decoupling the two APIs helps evolution: e.g., the
MB-facing API can evolve without control applications chang-
ing. This is vital given the rapid pace of MB innovation.

Second, it simplifies the design of applications. For ex-
ample, a move operation requires issuinggets to one MB,
puts to another MB, and forwarding events from one MB
to the other; these are now handled by the controller. Fur-
ther, the controller can implement appropriate disciplines
for scheduling the finer-grained actions comprising multiple
northbound API calls to ensure, e.g., that northbound calls
complete in a reasonable time-frame; application logic is un-
burdened by these considerations.

(a) Live migration with RE (b) Scaling PRADS

Figure 6: Control application examples

Third, it limits the potential for control applications to
make state changes that will lead to correctness or perfor-
mance issues. For example, the restrictive API prohibits
control applications from retrieving per-flow supporting state
from one MB but failing to it to another MB.

It is still up to control applications to issue multiple MB
state control operations, and SDN control operations, in the
correct sequence. For example, a move operation must be is-
sued and completed before initiating a network routing change.
Note that exposing supporting state as an encrypted blob
(§ 4.1) also helps eliminate illicit state changes.

6. CONTROL APPLICATIONS
We describe two scenarios below, which face different

challenges due to the nature of state resident at the MBs in
question and the interaction between network and middle-
box state. While these challenges are tricky to overcome in
general, we show how our northbound API helps, making
control application design simple and easy to reason about.

6.1 Live Migration
We first consider a live migration scenario involving re-

dundancy elimination (RE) MBs (Figure 6(a)). Initially, all
application VMs reside in a single data center (DC A). Traf-
fic destined for these VMs passes through an RE encoder at
a remote site, traverses the WAN to reach DC A, and passes
through an RE decoder. At some point, half of the appli-
cation VMs are migrated to a new data center (DC B). Fol-
lowing the migration, traffic destined for the VMs in DC B
passes through the same RE encoder at the remote site, tra-
verses the WAN to reach DC B, and passes through a new
RE decoder in DC B; traffic destined for the VMs remaining
in DC A follow the same path as before.

Both the RE encoder and decoder rely only on shared
supporting state. The encoder adds each received packet to
a packet cache (implemented as a ring buffer) and inserts
hashes of the packets’ contents into a fingerprint table (im-
plemented as a hash table) [16]. Redundant portions of a
packet are replaced by a small shim that specifies the loca-
tion of the original content within the packet cache. The
decoder reconstructs the original packet from its own packet
cache, which is implemented and updated exactly the same
as the packet cache in the encoder.
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The control application must carefully manage the state at
the encoder and decoders to ensure packets can be appropri-
ately decoded when they arrive at a decoder. RE’s assump-
tion that the encoder and decoder’s packet caches are tightly
synchronized [16] makes this especially challenging.5

The simplest solution would be to launch the new decoder
with an empty cache (and create a corresponding empty cache
at the encoder). However, packets which have been encoded
based on the encoder’s new cache may be routed to the old
decoder, which will be unable to reconstruct the packets (§8.1.2).
This situation can occur due to a delay between the encoder
switching to use the new cache and the routing update. Us-
ing OpenMB avoids both of these issues.

When application VMs are migrated, ourmigratecontrol
application performs the following actions:

1. Launch a new RE decoder in DC B; duplicate the con-
figuration of the original RE decoder:
values = readConfig(OrigDec,"*")
writeConfig(NewDec,"*",values)

2. Clone the original decoder’s cache:
cloneSupport(OrigDec,NewDec)

3. Add a second cache to the encoder:
writeConfig(Enc,"NumCaches",[2])

Internally, the encoder will clone its original cache to
create a new second cache.

4. Update the network routing by making the appropriate
calls to the SDN controller.

5. Tell the encoder to start using the second cache for traf-
fic going to the VMs in DC B and the first cache for
traffic going to the VMs in DC A:writeConfig(Enc,
"CacheFlows",["1.1.1.0/24","1.1.2.0/24"])

6.2 Scaling
We now consider a scaling scenario involving monitor-

ing (PRADS [10]) MBs (Figure 6(b)). When network load
is high, additional MB instances are added to process the
traffic. In-progress flows are redistributed across the new
instance(s) to balance load. The additional instances are
scaled down when the traffic volume reduces, and flows are
re-balanced among the remaining instance(s).

The collective monitoring behavior of the PRADS instances
should remain the same regardless of any scaling, i.e., there
should be no over-reporting or under-reportingof packet/flow
counters. This requires carefully controlling both the per-
flow and shared reporting state associated with PRADS.

When the control application determines scale up should
occur, it performs the following actions:

1. Launch a new PRADS instance and duplicate the con-
figuration from an existing instance:
values = readConfig(Prads1,"*")

writeConfig(Prads2,"*",values)

5We assume the encoder maintains a separate packet cache and
fingerprint table for each decoder.

2. Query how much per-flow state exists for specific sub-
nets to determine how in-progress flows should be re-
balanced:stats(Prads1,[nw src=1.1.1.0/24])

3. Move a subset of the per-flow state:moveInternal(

Prads1,Prads2,[nw src=1.1.1.0/24])

4. Route the moved flows to the new instance.

A slightly different set of actions occur during scale down:

1. Transfer the per-flow reporting state for all flows:
moveInternal(Prads2,Prads1,[])

2. Merge the shared reporting state:
mergeInternal(Prads2,Prads1)

3. Route flows to the remaining instance(s).
4. Terminate the unneeded instance.

7. IMPLEMENTATION
Our OpenMB prototype consists of an MB controller that

implements our control API (§5), three MBs—IPS, monitor,
and RE—modified to support our MB-facing API (§4), and
the control applications discussed in§6.

Our MB controller is a module running atop Floodlight [5]
(≈1600 lines of Java code). The controller listens for con-
nections from MBs and, for each MB, launches one thread
for handling state operations and one thread for handling
events. Additionally, the controller maintains a hash table
for each MB to buffer re-process events (raised due to a get)
and track acknowledgements (of puts). JSON messages are
exchanged by the controller and MBs to invoke operations,
send/receive state, and raise/forward events.

We modified three different MBs to support our MB-facing
API (§4): Bro [24], Prads [10], and SmartRE [16]. Each MB
relies on a common code base for MB-controller commu-
nications (≈500 LOC); the code leverages standard UNIX
sockets and the JSON-C library. Additional MB-specific
modifications are made to retrieve, insert, and remove per-
flow/shared state and to generate and process events.
Bro. Bro maintains aConnection object, and a tree of as-
sociated objects, for each flow. TheConnection objects are
stored in one of three hash tables (depending on whether the
flow is TCP, UDP, or ICMP). WhengetPerflowSupport
is invoked, we perform a linear search6 of the hash table(s) of
Connection objects to identify and send all matching per-
flow state. We added serialization functions to theConnection

class and all referenced classes (>100 classes), using lib-
boost’s serialization library, to allow the state for a given
flow to be moved. Additionally, we added amoved flag to
a subset of these classes—to prevent Bro from logging er-
rors when the state for a flow is deleted, following a suc-
cessful move—and a mutex to theConnection class—to
prevent Bro from modifying aConnection object, or an
object it references, while serialization is occurring. When
putPerflowSupport is invoked, we reverse the serializa-
tion and insert theConnection object into the appropriate
6Techniques used by network switches for wildcard matches on
packet headers could be adopted here for improved performance.
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hash table. Lastly, we made two additions to Bro’s main
packet processing loop: lock/unlock theConnection object
with which a packet is associated while the packet is being
processed, and raise an event (that includes the packet) when
themoved flag is set in theConnection object.
PRADS. PRADS maintains aconnection object for each
flow as well as aprads stat object that is shared across all
flows. Theconnection objects are stored in buckets, where
each bucket is a doubly-linked list ofconnection objects.
The handling ofgetPerflowReport andputPerflowReport
calls is similar to the handling of thegetPerflowSupport
and putPerflowSupport calls in Bro. The only differ-
ence is that there is no need for complex serialization be-
cause there is only a single structure for each flow. To han-
dle putSharedReport, we add the counter values stored
in theprads stat structure provided in the put call to the
counter values stored in theprads stat structure already
residing at the PRADS instance. We modify PRADS main
packet processing loop the same as we did for Bro. In total,
we added≈200 lines of C code (1.5% increase).
RE. RE maintains acache object that includes cached con-
tent,size of cache state, a pointercurrent pos indicat-
ing where to insert a new cache entry, and amax reached

indicating if cache is full. Thecache object is shared by all
flows. An encoder maintains multiplecache objects. Each
of them corresponds to a decoder. An encoder also maintains
a num of decoder to remember the number of caches that
need to be maintained and afingerprint table for each
decoder.cloneSupport call clones original cache content
andcurrent pos to a new decoder. We usewriteConfig
call to tell an encoder the number of existing decoders; the,
the encoder creates a new cache for a new decoder. Origi-
nal content andfingerprint table are cloned to the new
cache. We also usewriteConfig to tell the encoder when
to switch to a new bucket. In total, we added 140 lines of
C++ code, excluding the OpenMB common code base.

8. EVALUATION
In this section, we evaluate our OpenMB prototype in a

variety of scenarios using both real and synthetic workloads.
Our goals are to examine the following issues:

• Are OpenMB abstractions useful to construct rich net-
work control applications that can achieve fine-grained
control over MB deployments in a wide variety of dy-
namic scenarios?

• What are the advantages of OpenMB relative to exist-
ing point solutions for achieving control over MBs in
these scenarios?

• Does OpenMB interfere with correct functioning of
MBs? What is the impact of OpenMB on both the im-
plementation and processing performance of MBs?

• What is the performance of our OpenMB controller?
What aspects of OpenMB’s design constrain its per-
formance the most?

Figure 7: MB actions duringscale upscenario

We use a testbed consisting of an OpenFlow-enabled HP
ProCurve 5400 switch, a mid-range server (dual 2.7GHz Quad-
Core Intel Xeon, 12GB, 1Gbps NIC) that runs the controller,
and six low-end desktops (2.4GHz Quad-Core Intel Core 2,
4GB RAM, 1Gbps NIC) that run the modified MBs. The
traffic used in our experiments comes from three different
network traces: (i) all traffic exchanged between a large uni-
versity campus and two major cloud providers (Amazon EC2
and Microsoft Azure), captured at the campus network bor-
der for≈15 minutes; (ii ) a subset of traffic exchanged in a
university data center over≈1 hour [18]; and (iii ) a high-
redundancy trace constructed from traffic exchanged in a
campus network [29].

8.1 Control Application Design
We first present snapshots of OpenMB actions when run-

ning thescalingcontrol application (§6.2), illustrating how
OpenMB helps achieve dynamic fine-grained control in this
scenario. We then present a qualitative evaluation of why
some state-of-the-art alternatives are unsuitable for theelas-
tic scaling and live migration scenarios.

8.1.1 OpenMB Behavior at Run Time

We capture the actions occurring at MBs for thescale-
up scenario discussed in§6.2. Figure 7 shows the packet
processing, event raising/processing, and operation handling
that occurs over a 3-second window at the original (bottom)
and new (top) Prads MBs. (We exclude the configuration
operations for brevity.) The solid lines indicate the start
and end of thegetPerflowReport operation at the orig-
inal MB, and the dashed lines indicate the start of the first
and the end of the lastputPerflowReport operations at
the new MB. First, we observe that HTTP packets are pro-
cessed by the original MB until slightly after the final put
operation completes at the new MB, at which point all HTTP
packets are processed by the new MB. This is due to the con-
troller returning from themoveInternal operation, and the
migratecontrol application issuing a routing update via the
SDN controller. OpenMB enables this careful sequencing of
MB state changes and routing updates. Second, we observe
that the original MB begins raising re-process events soon
after the get operation begins, and continue to be raised un-
til slightly after the get operation completes. These events
are received and processed by the new MB after the corre-
sponding state has been put. This highlights OpenMB’s use
of events to ensure state updates are not lost the new MB
while waiting for the routing change to take effect.

8.1.2 Other Alternatives
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Scale up Scale Down Migration
SDMBN X X X

Snapshot ≈ X ≈

Controlling Config & Routing ≈ ≈ ≈

Split/Merge X ≈ X

Table 2: Applicability of different schemes for MB con-
trol to different dynamic scenarios:X fully supported,≈
partially supported,X not supported. We separate scale
up/down to show some approaches support one but not both.
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Figure 8: Time required for flows completion

We now consider the alternatives in§2.1 in terms of their
basic ability to support elastic scaling and live migration,
how efficiently resources are used and the overall correctness
of MB operations. Our results are summarized in Table 2.
Virtual Machine Snapshots.We study if VM snapshotting
is applicable to cloning or otherwise moving state. When
state at an MB needs to move/clone to a new MB, we simply
create the new MB from a snapshot of the old. We then
update routing to send traffic to it for the migrated flows.

We experiment with this approach in the context of the
live migration scenario using a Bro MB (variation of Fig-
ure 6(a), top). We compared OpenMB against an approach
where the MB we use in DC B is a snapshot of the Bro VM
in DC A. As argued in§2.1, both Bro MBs have unneeded
state. We quantify this by comparing (byte-by-byte) a base
image of Bro, i.e., a snapshot without any traffic (“BASE”)
against a memory snapshot taken at the instant of migration
(“FULL”), and two snapshots with just the HTTP and other
traffic substreams taken at the instant of migration (“HTTP”
and “OTHER”). BASE and FULL differed by 22MB. HTTP
and OTHER differed from base by 19MB and 4MB, respec-
tively; these numbers indicate the overhead imposed by the
unneeded state at the two Bro instances. In contrast, we
found that the amount of state moved by SDMBN (i.e., per-
flow supporting state for all HTTP flows) was 8.1MB. But
more interesting are the correctness implications of the un-
needed state: We found that this state results in 3173 and 716
incorrect entries in the conn.log at the two MBs; these arise
because the migrated HTTP (other) flows terminate abruptly
at the old (new) Bro MB, which Bro considers an anomaly.

VM snapshotting does not apply to scale down (Table 2).
Controlling MB configuration and routing. SDN provides
a reasonable solution for achieving control over MB config-
uration and routing. However, this is insufficient because of
lack of fine-grained MB state control. We illustrate this for
both scale down and live migration.

One way to support scale down (Figure 6(b), bottom) is to
carefully manage configuration and routing: Active HTTP
flows are left for processing in the MB to be deprecated (the
MB on top), whereas only new HTTP flows are forwarded to

Encoded Bytes (MB) Undecodable bytes (MB)
SDMBN 148.42 0
Config + routing 97.33 97.33

Table 3: Performance of RE in live migration.

the consolidated MB (the MB on the bottom). However this
approach unnecessarily “holds up” the MB to be deprecated
as long as flows stay active. In Figure 8 we show a CDF
of the duration of flow lengths for HTTP traffic in traces:
we see that around 9% of flows take more than 1500 secs to
complete. Indeed, we saw in our trace-driven experiments
that the deprecated MB was held up for over 1500s!

We also evaluate the migration scenario using an RE de-
coder MB (Figure 6(a)). To support migration of the de-
coder, we create a new decoder in DC B with anempty
cache; correspondingly, we create an empty encoder at the
remote site. All HTTP traffic eventually traverses the new
pair of RE MBs, while all other traffic traverses the old pair.

An interesting quirk of the RE decoder is that it assumes
that packet contents are stored locally at the exact same mem-
ory locations as they are stored at the encoder. Thus, without
the ability to clone the cache, starting with the empty cache
is necessary to minimize the potential for correctness issues
(i.e., all encoded packets need to be decoded, which requires
caches to be in perfect sync).7 Even with empty caches, en-
suring correctness is fundamentally hard in this approach.
This is because the encoder, decoderand the router need to
be in perfect sync: e.g., if the new encoder starts being used
for HTTP traffic, but routing has not been updated yet, then
the encoded traffic reaches the old decoder where it cannot
be recovered. Since this causes the new decoder to miss out
on some packets from its encoder, the two caches get out of
sync and stay that way even after routing has been updated.

The difference in performance and the potential correct-
ness issues in this approach w.r.t. OpenMB are illustrated
in Table 3; the cache sizes we use are modest (500MB).
We assume that the routing change takes effect after the en-
coder has sent 10 packets. We see that this approach en-
coded 51MB fewer redundant bytes (34% during the cache
warmup time) relative to OpenMB. More importantly,none
of the encoded bytes can be decoded. The caches need to be
forcefully evicted in full and started afresh.
Split/Merge. Split/Merge is designed specifically for elastic
scaling, but its mechanism for providing atomicity—halting
all traffic while state is moved—introduces latency costs.

We experiment with this approach in the context of the
scale up scenario using Bro MBs (variation of Figure 6(a),
top). We assume 1000 pieces of per-flow state need to be
moved and packets are arriving at a rate of 1000 packets/second.
We observe that 244 packets must be buffered while the
move operation is occurring. More crucially, the average
processing latency of these packets increases by 863ms as a
result of this buffering.

Split/Merge is insufficient for some cases of scale down

7Using VM snapshot is difficult because we need synchronized
snapshots for both the encoder and the decoder.
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(e.g., when using RE or Prads MBs), since it lacks support
for merging shared state (Table 2).

8.2 MB Correctness and Performance
We now evaluate the impact of OpenMB on the correct-

ness and performance of individual MBs to ensure neither
is sacrificed. Additionally, we measure the time required to
process get/put operations, and the number of events gener-
ated during these operations, to understand how the imple-
mentation of the southbound API on individual MBs affects
the overall performance of OpenMB.
Correctness. We verify the correctness of MB operations
by comparing the output produced by a single, unmodified
MB versus the output produced by an OpenMB-capable MB
while running themigratecontrol application. For Bro, we
replayed the cloud traffic trace for both scenarios and com-
pared the conn.log and http.log files, which reflect connec-
tion state/statistics and HTTP requests/replies; we observed
no differences in either log file. Similarly, we compared the
statistics output by Prads under both scenarios and found no
discrepancies. We verified the correctness of RE’s operation
by comparing the high-redundancy trace with the packets
output by the decoder(s); all packets were properly decoded.
Performance.We evaluated the impact of OpenMB on MB
performance by comparing the average per-packet process-
ing latency (including queueing time) during normal MB op-
eration and when an MB is processing a get call. For Bro,
there is no significant change in the average per-packet pro-
cessing latency: 6.93ms during normal operation and 7.06ms
when processing a get call. For RE, there is no significant
change in the average time from when a packet leaves the en-
coder to when it leaves the decoder: 0.781ms during normal
operation and 0.790ms when processing a get call.
API Call Processing. The time required to process get/put
operations has a direct influence on how quickly a move,
clone, or merge operation completes, and, subsequently, how
long a control application must wait before updating network
routing. A longer time window between the start of a con-
trol API call and the corresponding routing update taking ef-
fect, means more packets may arrive at the original MB and
trigger re-processing events. These events in turn introduce
additional processing work for the new MB.

Figures 9(a) and 9(b) show the time required to complete a
single get and all corresponding puts, respectively, as a func-
tion of the number of chunks of per-flow state involved. For
both Prads and Bro, we observe a linear increase in get and
puts processing time as the number of per-flow state chunks
increases. Additionally, the collective put processing time is
≈6x lower than get; we attribute this difference to the inef-
ficient linear search that is performed by both Prads and Bro
for get calls (§7). Overall, the processing time is higher for
Bro because of the size and complexity of the per-flow state.
We also measured the get processing time for RE: it takes
34.8 seconds to retrieve a 500 MB cache.

Figures 9(c) and 9(d) show the number of re-processing
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Figure 10: Time per move operation.

events generated by Prads and Bro, respectively, as a func-
tion of the packet rate and the number of chunks of per-flow
state involved in the get operation that caused the events to
be raised. For both Prads and Bro, we observe a linear in-
crease in the number of events as the packet rate increase.
This intuitively makes sense because more packets will ar-
rive in the time window between the start of a control API
call and the corresponding routing update taking effect.

8.3 MB Controller Performance
In this section, we analyze the performance and scala-

bility of our prototype MB controller. Recall that the MB
controller brokers all MB state operations (§5), making the
controller’s performance a key contributor to the overall per-
formance of the OpenMB framework. We focus on two im-
portant questions: (i) how quickly can the controller execute
state operations and process events? and (ii ) how many si-
multaneous operations can the controller support?

To isolate the performance and scalability of the MB con-
troller from the performance of individual MBs, we use “dum-
my” MBs that simply replay traces of past state in response
to gets, send acks in response to puts, and infinitely generate
events during the lifetime of the experiment. The traces we
use are derived from actual state and events sent by Prads
while processing our cloud traffic trace. All state and events
are small (202 bytes and 128 bytes, respectively) for consis-
tency, and to maximize the processing demand at the con-
troller and minimize the impact due to network transfer.
Single Operation. We first analyze how quickly the con-
troller can process a single operation (moveInternal). Fig-
ure 10(a) shows the time required to complete this operation,
relative to the number of chunks of per-flow state processed
as part of the operation, both with and without the controller
receiving and forwarding events. We observe that both the
amount of migrated state and the presence of events impact
performance. Crucially, even at high rates, events increase
operation processing time by at most 9%.

Concurrent operations. Next, we evaluate how well our
controller can handle many northbound API calls issued si-
multaneously. We use a similar setup as before except that
multiple pairs of MBs are involved inmove operations. Fig-
ure 10(b) shows the average time per move operation as a
function of the number of simultaneous operations. We ob-
serve that the average time per move operation increases lin-
early with both the number of simultaneous operations and
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Figure 9: MBs performance.

the number of state chunks per operation.
To better understand the cause of the observed perfor-

mance, and identify potential techniques for reducing opera-
tion processing latency, we profiled our MB controller using
HPROF [6]. We analyzed CPU usage using both time and
samples profiling. First, time profiling revealed that, with
2 (4, 8) simultaneous operations, 49% (40%, 29%) of CPU
time is spent context switching between threads and lock-
ing shared objects. However, we cannot distinguish whether
this is a result of our MB controller implementation or an
artifact of the core Floodlight [5] code base. Regardless, this
time could be reduced by using finer grained synchroniza-
tion primitives in our MB controller module. Second, sam-
ples profiling revealed that, with 2 (4, 8) simultaneous op-
erations, threads are busy reading from sockets 47% (62%,
76%) of the time. We believe this is the main cause of in-
creased operation latency when then are more state chunks.
This can be improved by optimizing the size of state trans-
fers using compression. We ran a simple experiment and
observed that, for a move operation with 500 chunks states,
state can be compressed by 38%, decreasing the operation
execution latency from 110ms to 70ms.

9. CONCLUSION
Effectively supporting sophisticated dynamic enterprise

scenarios requires the introduction of a software-defined MB
networking framework that useful abstractions for unified
software-driven control of MB functions across a range of
MBs. As we have shown, designing such a framework re-
quires coping with highly diverse MB state and complex in-
ternal MB logic. OpenMB addresses these challenges through
two novel APIs: an MB-facing API that defines how MBs
receive/export state and a control API that defines how MB
state can be accessed and placed. Our implementation of an
MB controller, several control applications, and OpenMB-
enabled MBs allow a variety of dynamic scenarios to be re-
alized without affecting the correctness or performance of
MBs. Going forward, we believe that a framework like OpenMB
is crucial to continued innovation in MBs and the network.
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