
THE ILL-POSED LINEAR COMPLEMENTARITY PROBLEM
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Abstract. A regularization of the linear complementarity problem (LCP) is proposed that
leads to an exact solution, if one exists, otherwise a minimizer of a natural residual of the problem is
obtained. The regularized LCP (RLCP) turns out to be a linear program with equilibrium constraints
(LPEC) that is always solvable. For the case when the underlying matrix M of the LCP is in the
class Q0 (LCP solvable if feasible), the RLCP can be solved by a quadratic program, which is convex
if M is positive semidefinite. An explicitly exact penalty of the RLCP formulation is also given when
M ∈ Q0 and implicitly exact otherwise. Error bounds on the distance between an arbitrary point to
the set of LCP residual minimizers follow from LCP error bound theory. Computational algorithms
for solving the RLCP consist of solving a convex quadratic program for positive semidefinite M,

otherwise a generally nonconvex quadratic program when M ∈ Q0, for which a potentially finitely
terminating Frank-Wolfe method is proposed. For a completely general M, a parametric method is
proposed wherein for each value of the parameter a Frank-Wolfe algorithm is carried out.
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1. Introduction. We consider the possibly unsolvable classical linear comple-
mentarity problem (LCP) [3, 9, 4]

0 ≤ x ⊥Mx + q ≥ 0,(1)

for a given n×n real matrix M and a given n× 1 vector q, where ⊥ denotes orthogo-
nality, that is xT (Mx+ q) = 0. In general problem (1) may not have a solution. This
may be due to corruption of the problem data (M, q) or to other factors. We shall call
instances of (1) when it has no solution, the ill-posed linear complementarity problem
(ILCP). It is well known [10, 4] and easy to verify that (1) is equivalent to

x− (x−Mx− q)+ = 0,(2)

where (·)+ denotes max{·, 0} componentwise. Our regularization of the LCP (1) will
consist of minimizing some norm of the left hand side of (2). We shall choose the 1-
norm, because that will lead to a linear program with equilibrium constraints (LPEC),
which in turn will enable us to obtain exact penalty formulations. We shall therefore
solve the following problem:

min
x,y
{‖y‖1

∣

∣x + y − (x−Mx− q)+ = 0}(3)

This is equivalent to the following LPEC [5], which we take as our regularized LCP
(RLCP):

min
(x,y,z)∈S

eT z, where S := {(x, y, z)
∣

∣0 ≤ x + y ⊥Mx + y + q ≥ 0, −z ≤ y ≤ z},(4)
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where e is a vector of ones of appropriate dimension. It is easy to show that the RLCP
(4) always has a solution and that its minimum value is zero if and only the LCP (1)
is solvable (Theorem 2.1).

Another justification for the particular choice of the regularization (4) is that for
M ∈ Q0, the intuitive greedy sequential procedure of first generating a nonempty
feasible region: {x

∣

∣0 ≤ x + ŷ, Mx + ŷ + q ≥ 0} for some “minimal” ŷ, and then mini-
mizing the complementarity condition (x+ ŷ)T (Mx+ ŷ+q) on this nonempty feasible
region, leads, in fact, to an exact solution of the RLCP (4) (Theorem 2.2). This result
for Q0 matrices for the LCP also leads to an exact penalty formulation of the RLCP
(4) (Theorem 2.3a). When M is not in Q0, an asymptotic penalty formulation of
the RLCP (4) exists (Theorem 2.3b) from which an exact solution to the RLCP (4)
can be extracted (Theorem 2.3c), and hence the terminology: “asymptotically exact”.
Section 3 of the paper extends classical error bounds of solvable LCPs [8, 7] to ILCPs.
These results, summarized in Table 1, give bounds, in terms of residuals of arbitrary
points, on the distance to the solution set of the RLCP (4). Section 4 of the paper
gives computational algorithms for solving the RLCP (4). A quadratic programming
algorithm (Algorithm 4.1) is given for the case when M ∈ Q0, for which the quadratic
program is convex when M is positive semidefinite, otherwise it is nonconvex, but
solvable by a finite number of steps of the Frank-Wolfe algorithm, if the iterates ac-
cumulate to a solution of the RLCP (4). For a completely general M, a parametric
algorithm (Algorithm 4.3) is proposed wherein for each value of the algorithm param-
eter a Frank-Wolfe algorithm is solved. The latter is finite if its iterates accumulate
to a zero objective function value.

Although the 1-norm was used in (3) to formulate the RLCP (4), the 2-norm
can be used as well. For the 2-norm formulation, most of the results of this paper
go through with appropriate minor modifications, with the exception of Theorem 2.3
and Algorithm 4.3, which rely on the RLCP (4) being an LPEC. When the 2-norm
is used the RLCP (4) is not an LPEC.

A word about our notation now. For a vector x in the n-dimensional real space
Rn, x+ will denote the vector in Rn with components (x+)i := max {xi, 0}, i =
1, . . . , n. The notation A ∈ Rm×n will signify a real m×n matrix. For such a matrix,
AT will denote the transpose and Ai will denote row i. For two vectors x and y in Rn,
xT y will denote the scalar product, and x ⊥ y will denote xT y = 0. A vector of ones in
a real space of arbitrary dimension will be denoted by e. The notation argmin

x∈S
f(x) will

denote the set of minimizers of f(x) on the set S, and the notation arg vertexmin
x∈S

f(x)

will denote the set of vertices of S that minimize f on S. An arbitrary norm on Rn

will be denoted by ‖ ·‖, and the 1-norm will be denoted by ‖ ·‖1. A matrix M ∈ Rn×n

is in Q0 if nonemptiness of the feasible region {0 ≤ x, Mx+q ≥ 0} implies solvability
of the LCP (1); M is in R0 if the LCP (1) with q = 0 is uniquely solvable by 0 ∈ Rn;
M is row sufficient if each Karush-Kuhn-Tucker point of the quadratic program

min
x
{xT (Mx + q)

∣

∣Mx + q ≥ 0, x ≥ 0}(5)

solves the LCP (1) [4]. A positive definite matrix is referred to as pd, and psd refers
to a positive semidefinite matrix. The notations := and =: define a quantity on the
colon side by a quantity on the equality side. For f : Rn → R, ∇f(x) is the 1 × n

gradient vector.
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2. The Regularized Linear Complementarity Problem. We begin by show-
ing that the RLCP (4) always has a solution.

Theorem 2.1. (Existence of solution to the RLCP) The RLCP (4) has a
solution for any matrix M ∈ Rn×n and any vector q ∈ Rn. The LCP (1) is solvable
if and only if the RLCP (4) has a zero minimum.

Proof. The feasible region S of the RLCP (4) is nonempty, because it contains
the point

(

x = 0, y = (−q)+, z = (−q)+
)

. Since S is the union of a finite number
of polyhedral sets on which the linear objective function is bounded below by zero, it
follows that the minimum of the minima on each polyhedral set is the global minimum.
The last statement of the theorem holds because eT z = 0 if and only if the LCP (1)
is solvable.

It will be convenient now to define a penalty problem (PLCP) associated with
the RLCP (4) with a feasible region T containing S as follows:

min
(x,y,z)∈T

P (x, y, z, α) := min
(x,y,z)∈T

eT z + α(x + y)T (Mx + y + q),(6)

where

T :=

{

(x, y, z)

∣

∣

∣

∣

0 ≤ x + y, Mx + y + q ≥ 0,

−z ≤ y ≤ z

}

(7)

Here α is some positive penalty parameter. With the help of this penalty parameter
we establish the fact when M ∈ Q0, the RLCP (4), which is an LPEC, can be solved
by solving a quadratic program.

Theorem 2.2. (The RLCP as a quadratic program) Let M ∈ Q0 (in
particular M may be positive semidefinite or row sufficient), and let

(x̂, ŷ, ẑ) ∈ arg min
(x,y,z)∈T

eT z := arg min
(x,y,z)

{

eT z

∣

∣

∣

∣

0 ≤ x + y, Mx + y + q ≥ 0,

−z ≤ y ≤ z

}

(8)

Then each solution of the quadratic program (QP)

min
x
{(x + ŷ)T (Mx + ŷ + q)

∣

∣0 ≤ x + ŷ, Mx + ŷ + q ≥ 0}(9)

solves the RLCP (4).
Proof. Note first that the QP (9) is solvable, because it is feasible and its objective

function is bounded below by zero. We next show that its minimum is zero as a
consequence of M ∈ Q0. Consider the transformed variable

s = x + ŷ,(10)

where ŷ is defined by (8). The QP (9) is related to the LCP

0 ≤ s ⊥Ms + (I −M)ŷ + q ≥ 0(11)

This LCP is feasible (take s = x̂ + ŷ) and hence solvable because M ∈ Q0. Conse-
quently, the QP (9) has a zero minimum, that is
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0 = (x̄ + ŷ)T (Mx̄ + ŷ + q)
= minx{(x + ŷ)T (Mx + ŷ + q) | 0 ≤ x + ŷ, Mx + ŷ + q ≥ 0}

(12)

Let x̄ be a solution of the QP (9) and let α > 0. Then

min
(x,y,z)∈T

P (x, y, z, α)

≥ min
(x,y,z)∈T

eT z + min
(x,y,z)∈T

α(x + y)T (Mx + y + q)

= eT ẑ

= eT ẑ + α(x̄ + ŷ)T (Mx̄ + ŷ + q) = P (x̄, ŷ, ẑ, α)

(13)

The first equality above follows from (8) and the fact that by Theorem 2.1 S 6= ∅ and
hence (x + y)T (Mx + y + q) = 0 for some (x, y, z) ∈ T. The second equality above
follows from the fact that the QP (9) has a zero minimum for M ∈ Q0. Consequently,
(x̄, ŷ, ẑ) ∈ S, and (x̄, ŷ, ẑ) is feasible for RLCP (4). It follows from (13) that

eT ẑ ≤ min
(x,y,z)∈T

P (x, y, z, α) ≤ min
(x,y,z)∈S

P (x, y, z, α) = min
(x,y,z)∈S

eT z(14)

Hence (x̄, ŷ, ẑ) solves the RLCP (4).

We show now that when M ∈ Q0 the penalty function formulation PLCP (6) for
the RLCP (4) can be made exact. That is, a solution of the PLCP (6) for a finite
value of the penalty parameter α, also solves the RLCP (4). For a general M, an exact
solution to the RLCP (4) can also be obtained from the PLCP (6) for sufficiently large
α as indicated in the following theorem.

Theorem 2.3. (Exact penalty for the RLCP)

a) For M ∈ Q0, each solution of the PLCP (6) for α > 0, solves the RLCP (4).
b) For a general M, there exists ᾱ > 0 such that for any fixed α ≥ ᾱ :





x(α)
y(α)
z(α)



 =







ai

α
+ xi

0
bi

α
+ yi

0
ci

α
+ zi

0






, for some i ∈ {1, . . . , ℓ}(15)

where

(x(α), y(α), z(α)) ∈ arg min
(x,y,z)∈T

P (x, y, z, α)(16)

Here ℓ and the vectors ai, bi, ci, xi
0, yi

0, zi
0, i = 1, . . . , ℓ, depend on the prob-

lem data (M, q) only. Furthermore, (xi
0, yi

0, zi
0), i = 1, . . . , ℓ, solve the

RLCP (4) and such that for any fixed α ≥ ᾱ, the following holds for some
i ∈ {1, . . . , ℓ}:

(x(α) + y(α))T (Mx(α) + y(α) + q) =
(ai + bi)T (Mai + bi)

α2
(17)
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c) For a general M , let α2 > α1 ≥ ᾱ, where ᾱ is defined in part b) above.
Let the two solutions (x(α2), y(α2), z(α2)) and (x(α1), y(α1), z(α1)) to the
PLCP (6) have the same basis in the primal-dual space. Then (xi

0, yi
0, zi

0)
solves the RLCP (4) where

xi
0 = α2x(α2)−α1x(α1)

α2−α1

yi
0 = α2y(α2)−α1y(α1)

α2−α1

zi
0 = α2z(α2)−α1z(α1)

α2−α1

(18)

Proof.
a) From (12) and (13) it follows that for all α > 0:

eT ẑ + α · 0
= P (x̄, ŷ, ẑ, α)
= min(x,y,z)∈T P (x, y, z, α)
= eT z(α) + α(x(α) + y(α))T (Mx(α) + y(α) + q)

(19)

Hence by (8) and (12) we have that:

eT z(α) = min
(x,y,z)∈T

eT z(20)

0 = (x(α) + y(α))T (Mx(α) + y(α) + q)
= min(x,y,z)∈T (x + y)T (Mx + y + q)

(21)

Consequently by Theorem 2.2, x(α) solves the RLCP (4).
b) This follows from the proof of [6, Theorem 3.2].
c) This follows from the proof of [6, Corollary 3.3].

We turn our attention to error bounds for the RLCP (4).

3. Error Bounds. In this section we show that standard error bounds for the
linear complementarity problems given in [8, 7] extend to the RLCP (4) for the cases
when M ∈ Q0, M ∈ Q0 ∩ R0, M positive semidefinite or positive definite. The key
to this extension lies in the fact that when M ∈ Q0, the LCP (11), where ŷ is defined
in (8) and s in (10), is solvable and any of its solutions s̄ generates an x̄ := s̄− ŷ that
solves the RLCP (4). Hence error bounds for (11) can be taken as error bounds for
the RLCP (4). By taking into account the following relations between the variables
s and x :

s = x + ŷ

Ms + (I −M)ŷ + q = Mx + ŷ + q,
(22)

we can translate natural residuals in terms of s for the LCP (11) to residuals in terms
of x. Indeed, with ŷ defined as in (8) we have:

‖s− (s−Ms− (I −M)ŷ − q)+‖ = ‖x + ŷ − (x−Mx− q)+‖ =: r(x, ŷ)

‖(−s, −Ms− (I −M)ŷ − q, sT (Ms + (I −M)ŷ + q))+‖
= ‖(−x− ŷ, −Mx− ŷ − q, (x + ŷ)T (Mx + ŷ + q))+‖ =: s(x, ŷ)

(23)
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Thus, given an arbitrary point x ∈ Rn we can find a point x̄(x, ŷ) in the solution set
of the RLCP (4) such that ‖x− x̄(x, ŷ)‖ is bounded by some norm-dependent constant

σ(M, q) multiplied by the residuals r(x, ŷ), s(x, ŷ) + s(x, ŷ)
1

2 , or r(x, ŷ) + s(x, ŷ). If
the bound is local, then x needs to be sufficiently close to a solution x̄(x, ŷ) of the
RLCP (4). These error bounds are summarized in Table 1 and are based on a similar
table given in [8, Table 1].

Table 1
Residuals (23) as Error Bounds for RLCP (4)

Multiply Residual by Appropriate Norm-Dependent Constant σ(M, q)
Residual

M r(x, ŷ) s(x, ŷ) + s(x, ŷ)
1

2 r(x, ŷ) + s(x, ŷ)
Q0 local ? local
psd local global global

Q0 ∩R0 global global global
pd global global global

We note that we cannot state, as was done in [8, Table 1] for an arbitrary matrix,

that the residual s(x, ŷ) + s(x, ŷ)
1

2 is not a local error bound for M ∈ Q0, and hence
the question mark in Table 1. This is so because the following matrix used to establish
the non-local-error property of this residual for a general matrix [8, Remark 3.1] is
not in Q0:





0 1 0
0 0 0
0 0 1



 .(24)

We turn now to computational algorithms for solving the RLCP (4).

4. Computational Algorithms for the RLCP. For the case when M is pos-
itive semidefinite, solution of a single linear program (8) followed by the solution of
a single convex quadratic program (9) leads to a solution of the LPEC that consti-
tutes RLCP (4). We turn our attention now to the cases when M is not positive
semidefinite.

For the case when M ∈ Q0 we again propose solving the linear program (8) to
obtain a ŷ followed by the solution of the nonconvex quadratic program (9) by a
Frank-Wolfe method, which terminates finitely if its iterates accumulate to a zero of
the objective function. We state the algorithm and establish its convergence.

Algorithm 4.1. (Finite Frank-Wolfe algorithm for M ∈ Q0)
(i) Solve the linear program (8) to determine (x̂, ŷ, ẑ).
(ii) Use a Frank-Wolfe algorithm on the QP (9) transformed to the variable s =

x + ŷ as follows:

min
s
{sT (Ms + (I −Mŷ + q))|0 ≤ s, Ms + (I −M)ŷ + q ≥ 0} =: min

s∈X
f(s)

Compute si+1 from si, starting with s0 = x̂ + ŷ, as follows:
(a) vi ∈ arg vertexmin

s∈X
∇f(si)s
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(b) Stop if ∇f(si)vi = ∇f(si)si

(c) si+1 = (1− λi)si + λivi where
λi ∈ arg min

0≤λ≤1
f((1− λ)si + λvi)

Theorem 4.2. (Finite termination of Algorithm 4.1 for M ∈ Q0) Let
M ∈ Q0. The sequence {si} of the Algorithm 4.1 accumulates to an s̄ ∈ X. If
f(s̄) = 0, which must be the case if M is row sufficient, then one of the vertices {vi}
of X generated by the algorithm is a solution. Else x̄ satisfies the minimum principle
necessary optimality condition:

∇f(s̄)(s− s̄) ≥ 0 ∀s ∈ X(25)

Proof. Follows from [2, Theorem A.2].
For an arbitrary M, we propose a parametric solution method for solving the

RLCP (4), similar to that proposed in [6, Equations (40)-(41)], and successfully im-
plemented in [1]. Define the parametric minimization problem based on the RLCP
(4) as follows:

θ(ν) := minx,y,z (x + y)T (Mx + y + q)
s.t. 0 ≤ x + y, Mx + y + q ≥ 0 − z ≤ y ≤ z, eTz ≤ ν

(26)

The function θ(ν) is a nonincreasing function of ν, for ν ≥ 0, and equals zero for
ν ≥ eT (−q)+ (just take x = 0, z = y = (−q)+). The problem then is to find the
smallest nonnegative ν̄ such that θ(ν̄) = 0, that is:

ν̄ = min
ν≥0
{ν|θ(ν) = 0}(27)

Obviously, if ν̄ = 0, then the LCP (1) is solvable. We now state our parametric
approach for approximately determining a sufficiently small interval containing ν̄.

Algorithm 4.3. (Parametric algorithm for arbitrary M) Choose δ > 0,

an acceptably small interval length containing ν̄. (Note: ν̄ ∈ [ν1, ν2].)
(i) Set ν1 = 0, ν2 = eT (−q)+, j = 0 (Note: θ(ν2) = 0.)
(ii) Stop if ν2 − ν1 ≤ δ

(iii) νj = ν1+ν2

2
(iv) Determine θ(νj) or an approximation thereof, by applying a Frank-Wolfe pro-

cedure to (26)
(v) ν1 ← νj if θ(νj) > 0

ν2 ← νj if θ(νj) = 0
(vi) j ← j + 1. Go to (ii)
The “approximation” in step (iv) of Algorithm 4.3 refers to the fact that there

is no guaranteed way for solving the nonconvex problem (26) short of total vertex
enumeration. However, efficient solution of a very similar problem in [1] leads us to
believe that this approach may be effective here as well.

5. Conclusion. We have proposed a regularization of the ill-posed linear com-
plementarity problem that led to a linear program with equilibrium constraints. We
have shown that the regularized problem always has a solution and have cast it as
an explicitly or implicitly exact penalty problem or a quadratic program. We have
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also given error bounds on the distance from an arbitrary point to the solution set
of the regularized problem. Computational algorithms have been proposed that are
based on solving a quadratic program, which in general may be nonconvex. However,
computational testing of these algorithms is warranted, as well as further theoreti-
cal and computational investigation of the proposed regularization and other possible
reformulations of the ill-posed linear complementarity problem.
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