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Abstract

We present a new algorithmic framework for solving unconstrained minimization problems
that incorporates a curvilinear linesearch. The search direction used in our framework is a
combination of an approximate Newton direction and a direction of negative curvature. Global
convergence to a stationary point where the Hessian matrix is positive semidefinite is exhibited
for this class of algorithms by means of a nonmonotone stabilization strategy. An implementa-
tion using the Bunch-Parlett decomposition is shown to outperform several other techniques on
a large class of test problems.

1 Introduction
In this work we consider the unconstrained minimization problem

min f(z),
where f is a real valued function on IR". We assume throughout that both the gradient g(z) :=
V f(z) and the Hessian matrix H(z) := V?f(x) of f exist and are continuous.

Many iterative methods for solving this problem have been proposed; they are usually descent
methods that generate a sequence {2} such that every limit point z, is stationary, i.e. g(z.) =0
or the weaker condition liminf,_, [|¢(zx)|| = 0. The condition g(z.) = 0 is only a necessary first
order optimality condition so it does not guarantee that z, is a local minimum point. In order
to increase the chances of obtaining a local minimum point, we try to detect only the stationary
points that satisfy the second order necessary conditions. The key idea is to define algorithms that
converge to a stationary point z. where the Hessian matrix H (z.) is positive semidefinite.

Algorithms with this property have been defined both in a trust region and a linesearch context.
In fact, guaranteeing convergence only to stationary points that satisfy second order conditions
depends heavily on the skill of the minimization method in escaping regions where the objective
function is not convex. Trust region algorithms intrinsically have this capability due to the fact
that they are based on the idea of minimizing the quadratic model of the objective function over
a sphere (see, for example [23]). Linesearch algorithms do not enjoy this particular feature. In
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fact, if linesearch algorithms are to produce a sequence of points converging towards stationary
points where the Hessian matrix is positive semidefinite, they must extract as much information as
possible about the curvature of objective function from the second order derivatives.

In this context some interesting results have been proposed in [15] and [17]. In these papers,
linesearch algorithms that generate sequences {x;} which converge to points . where the Hessian
H (z,) is positive semidefinite are defined. A key feature of these algorithms is the use of particular
directions of negative curvature, i.e. directions d such that d H (z)d < 0, along with a generalized
monotonic Armijo step size rule.

Unfortunately, after these two papers, little work has followed this approach. Most globally
convergent linesearch algorithms proposed in literature are based on the idea of perturbing the
Hessian matrix without directly exploiting curvature information of the objective function. This
could be due to the fact that the classical test problems (with standard starting points) do not
allow a real evaluation of algorithms which use negative curvature directions. This is because these
test problems present just a few points where the objective function has negative curvature, as was
noted in [16, 17]. The advent of the CUTE collection of test problems [2] allows us to obtain a good
evaluation of globally convergent algorithms, since it includes a variety of functions with negative
curvature.

The main aim of our work is to encourage the development of new research in this area. In par-
ticular, we believe that further investigation is needed to define efficient new linesearch algorithms
that exploit the curvature information of the objective function more deeply.

As a first step we show that the linesearch approach proposed in [17] can be embedded in a
general nonmonotone globalization strategy based on the model of [14]. This allows us to define a
general algorithm model that inherits the following properties:

e the capability to efficiently exploit potential local non convexity of the objective function

(from [17])

e the capability to efficiently solve highly nonlinear and ill-conditioned minimization problems
(from the nonmonotone approach of [14]).

As a second step we test the new algorithm against two Newton-type algorithms. The first
of these follows the algorithm model proposed in [14] which uses a classical perturbation of the
Newton direction (based on the modified Cholesky factorization [12]) as the search direction. Since
the new algorithm uses essentially the same stabilization technique, the comparison between these
two determines the effect of exploiting information on the curvature of the objective function via
the curvilinear linesearch. The second algorithm we compare against is LANCELOT [4], which is a
trust region based code. The numerical results which we report show that a significant improvement
in terms of the number of iterations and function-gradient evaluations can be obtained by using an
algorithm that exploits curvature effects.

Section 2 describes the general framework of our stabilization scheme and introduces conditions
that are required on the search directions for convergence. Section 3 proves that such an algorithmic
framework leads to a convergent algorithm. In Section 4 we describe a particular implementation
and show that this example algorithm satisfies the assumptions of Section 2. The implementation
is tested on a large set of standard test problems in Section 5 and is shown to have more efficient
and reliable convergence than standard Newton-type approaches.



2 Nonmonotone stabilization algorithm
We consider an iterative scheme of the form
Tpy1 = Tp + aGsg + agdy,

where si and dj are search directions and oy is a step size. We assume throughout that, for a given
xg € IR™, the level set

Qo ={zeR"| f(z) < flzo)},

is compact. In practice, we think of s; as an approximation of the Newton step and dj as a direction
of negative curvature. Both of these can be calculated using the Bunch—Parlett factorization [3];
this was first considered in [17]. In order that our convergence theorems remain applicable to more
general algorithms than the ones we test numerically, we list below the general conditions that we
require of the search directions. We assume that the directions {sy} and {dj} satisfy the following
conditions:

Condition 1. The direction {s;} and {dy} are bounded and satisfy
gle) sk <0 glap)Td, <0

g(xk)Tsk — 0 implies s, — 0.

g(zp)T (sp+dp) = 0 implies g(xx) — 0.

Condition 2. The directions {s;} and {dy} have the property that

[skll + [|dell = O implies  g(z1) — 0.

Condition 3. The direction {dy} satisfies
df H(xp)dy <0,

dLH (xg)dy, — 0 implies  min [0, A, (H(21))] =0 and dj, — 0,
where A\, (H) is the minimum eigenvalue of H.

In Section 4, we show that a particular implementation satisfies these conditions.

The key difference between our approach and that of [17] is in the line search acceptance crite-
rion. We allow possible increases to the sequence of function values by keeping track of a reference
value (which we label F) in order to relax the normal Armijo acceptance criterion. Typically, ¥
would be set to the maximum function value over the last few iterations as opposed to f(zj) in
the standard Armijo procedure. The nonmonotone line search procedure that we use can be
stated precisely, as follows.



Nonmonotone line search procedure
Data: xy, sg, di, g(xr), H(zg), F, v € (0, %)7 0<op <oy <.
Step 1: If necessary, modify s and dj to satisfy Condition 1 and Condition 3 and set o = 1.
Step 2: If f(z) + o?s + ady) < F 4+ va? {g(xk)Tsk + %dgH(xk)dk} set ap = a and stop.
Step 3: Choose o € [0y, 03], @« = oo and go to Step 2.

This approach has been tested in [13] and proven successful on many ill-conditioned problems.
However, it does enforce a monotonic decrease in the sequence {F;}. We wish to allow even greater
freedom for the function values, whereby we accept the “Newton-like” step without even checking
the function value at the new point provided the length of the step is not too large. This is motivated
by the fact that eventually the step length will decrease to zero when we converge to a solution and
by the fact that always enforcing the point xj to be located in nested level sets may deteriorate
the efficiency of the Newton-like method (see the discussion in Section 5.1 of [14]). Computational
results [14] have shown this technique to be even better than the standard nonmonotone line search.
This technique has also proven useful in other applications and extensions [6, 7, 8, 25, 26, 27]. Of
course, sometimes it may lead to regions where the function is poorly behaved. In these cases, a
backtracking scheme is incorporated into our algorithm. In effect, we backtrack to the last point
where the function was evaluated (which we denote by z;) and perform a nonmonotone line search
from that point. The avoidance of the evaluation of f is not the key point here; rather we believe
that robustness is increased by considering other factors crucial to the convergence.

The full details of our nonmonotone stabilization scheme are detailed below. Note that £ denotes
the index of the last accepted point where the objective function was evaluated.

Nonmonotone Stabilization Algorithm (NMS)
Data: xg, Ag >0, € (0,1), N >1and M > 0.
Step 1: Set k={(=j =0, A =Aq. Compute f(zq) and set Zy = Fy = f(x¢), m(0) = 0.
Step 2: Compute g(z). If ||g(2x)|| = 0 stop.
Step 3: If k = (4 N compute f(xy); then:
(a) if f(zx) > F}, replace z by z¢, set k = ¢ and go to Step 5;
(b) if f(zg) < Fj,set L=k, j=j+1, Z; = f(x}) and and update I} according to

F;= max Z;_;, where m(j) <min[m(j—1)+1, M]; (1)
0< i <m(j)

compute directions s and dj that satisfy Conditions 2 and 3;
if ||sg|l + [|del| < A, set 211 = a2 + s +di, k=k+ 1, A= SA and go to Step 2;
otherwise go to Step 5.

Step 4: If k # 04+ N compute directions s; and dj that satisfy Conditions 2 and 3; then:

(a) if ||sk|| + |ldi|l < A, set 2py1 = 2 + sk +dg, k= k+ 1, A= SA and go to Step 2;
(b) i fsell + ldel] > A, compute f(zy);

if f(xzy) > Fj, replace zy by 4, set k = (;

otherwise set { =k, j = j+ 1, Z; = f(x}) and update I} according to (1).



Step 5: Compute «p by means of a nonmonotone line search, set
Th41 :wk—l—azsk—l—akdk, k=k+1, =k,
update [} according to (1) and go to Step 2.

Note that in practice the most frequently taken step is Step 4(a). In this case, we do not have
to satisfy Condition 1, so that sp and dj may not even be descent directions for f. Furthermore,
note that if a nonmonotone line search is performed at Step 5, then s; and dp may have to be
modified to satisfy Condition 1, and hence may no longer satisfy Condition 2. However, at each
iteration, s; and dj must satisfy at least one of Conditions 1 or 2.

For later reference let {x,(;)} be the sequence of points where f was evaluated and let {F7} be
the corresponding sequence of reference values. We initially set 7 = 0 and increment j each time
we define £ = k.

As regards the reference value Fj for the objective function, it is initially set to f(zo) and
is updated whenever the function f is evaluated and the corresponding point is accepted. More
specifically, the updating takes into account a prefixed number m(j) < M of previous function
values, which is called the “memory”.

Remark Notice that if we set M = 0 and Ay = 0, we obtained the same algorithm proposed
in [17]. Moreover, it is important to note that we obtain the convergence results under weaker
conditions than those ones required in [17]. This small difference allows us to use a particular pair
of directions that do not satisfy the assumptions of [17], but do satisfy our conditions.

3 Convergence analysis

To establish the convergence properties of Algorithm NMS, we employ some technical lemmas. The
first of these establishes three important facts regarding the reference values and the iterates of the
algorithm. The proof of the first two lemmas easily follows, with minor modifications, from the
proof of Lemma 1 and Lemma 2 in [14].

Lemma 3.1 Assume that Algorithm NMS produces an infinite sequence {xy}; then:
(a) the sequence {F;} is non increasing and has a limit F,;

(b) for any index j we have
F, <F;, forall >34+ M,

that is, the reference value must decrease after at most M + 1 function evaluations;

(c) {zx} remains in a compact set.
However, note that the iterates need not remain in §2g.

Lemma 3.2 Assume that Algorithm NMS produces an infinite sequence {xx}; let {xy;)} be the
sequence of points where the objective function is evaluated.
Then, we can thin the sequence {$g(]‘)} so that it satisfies the following conditions:

(a) F] = f(xf(]))} fOTj =0,1,...



(b) for any integer k, there exists an index ji such that:
0<l(jy) =k <NM+1),  Fj, = fleg,) <
where Fy is the value of F; at the kth iteration of Algorithm NMS.

Note that limg_yeo Fi = lim ;o F; since {Fk} just “fills in” with values of Fj.

The following lemma is key to our development and shows that the function values on the whole
sequence converge. In the standard Armijo case, this is easy to establish. In the nonmonotone case,
the proof is somewhat more involved.

Lemma 3.3 Assume that Algorithm NMS produces an infinite sequence {xy}.
Then, we have:

@ g, S (ew) = Ji B = i B =
(b) lim o ||sg]| = 0, lim ay [|dg|| = 0, implying that lim ||zgy1 — 24| = 0.
k—oc0 k—oc0 k—o0

Proof Note that in Step 3(b) and Step 4(a) of Algorithm NMS we may accept a step without
performing a line search. Let {2}, denote the set of points where a line search is performed. Then

Isill + lldil| < Aof,  for k¢ L, (2)

where the integer t increases with k ¢ L£; when k ¢ L we set, for convenience, o = 1. It follows
from (2) that if we do not perform a line search an infinite number of times, then

lim of ||sgl| =0, and lim ay||dx|| = 0. (3)
k—oo k—ro0
k¢ L k¢ L

Let £(7) be the indices defined in Lemma 3.2. We show by induction that, for any fixed integer
1> 1, we have:

. 2 _ . _
Jim gy s =0, Jim aug—i iy —i] =0, (4)
and
lim f(eqy-) = lim fzyg) = lim Fj = F.. (5)

(Here and in the sequel we assume that the index j is large enough to avoid the occurrence of
negative subscripts.) Assume first that ¢ = 1 and consider two subsequences of {{(j) — 1}, corre-
sponding to whether £(j) — 1 is in £ or not. If either of these subsequences are finite, then we can
discard the corresponding elements. Otherwise, for ¢(j) — 1 ¢ £, then (4) holds with ¢ = 1. Now
consider the other subsequence, where ((j) — 1 € L. Recalling the acceptability criterion of the
nonmonotone line search, we have

1
Foy—1 = Fy 2 ve) 1 |9(@e)-1) " seiy—1 + 5 i) H (@ey-1) ey |- (6)

Therefore, if £(j) — 1 € £ for an infinite subsequence, from Lemma 3.1(a) and (6) and the observa-
tions that g($g(]‘)_1)TSg(]‘)_1 < 0 and dz;j)_lH($g(]‘)_1)dg(]‘)_1 <0, we get

04?(]‘)_19(wé(j)—l)TSZ(j)—l — 07 and 0‘?(]‘)_1d£]‘)_1H(wé(j)—l)dé(j)—l — 0. (7)



Now, (7) implies that either cy;y_y — 0 or g(zy(;)— s, o()-1 — 0, dZT(j)_lH(xg(j)_l)dg(j)_l — 0.
In the first case we have oeé _ilIsey=1ll = 0 and ayy; Hd( H — 0. In the second case, by

Condition 1 we have oeé 1H34 _1]] = 0 (taking a < 1) and by Condition 3, avy; Hdg 1H — 0.

It can be concluded that (4) holds for + = 1. Moreover since

Flaog) = Feagy—1 + adyo15iG)-1 + @y-1degy—1),
(4) and the uniform continuity of f on the compact set containing {z} imply that equation (5)
also holds for 2 = 1.
Assume now that (4) and (5) hold for a given 7 and consider the point z4;)_;_;. Reasoning as
before, we can again distinguish the case ¢(j) —i—1 ¢ £, when (2) holds with £ = {(j) — ¢ — 1,
and the case ((j) — ¢ — 1 € £, where we have:

1
Foy—ic1 — f($é(j)—i) > 704?(]‘)—2'—1 9(904(]‘)—2'—1)%4(]‘)—2'—1 + §dzT(j)_¢_1H($4(j)—i—1)dZ(]‘)—z’—1 - (8)

Using (3), (5), (8) and recalling Conditions 1 and 3, we can assert that equations (4) hold with ¢
replaced by ¢+ 1. By (4) and the uniform continuity of f, it follows that (5) is also satisfied with
1 replaced by ¢ + 1, which completes the induction.
Now let z be any given point produced by the algorithm. Then by Lemma 3.2 there is an

index ji such that

0 < ((jy) — k < (M +1)N. 9)
Then we can write:

ik)—k

Tk = Tan) T [0‘?<jk>—i54<m—i+ V(i) =ie(in)=i |
=1

and this implies, by (4) and (9), that:

hm ka To)| = 0-
It follows from the uniform continuity of f that
Jim flog) = lim flreg,) = lim Fj = lim F, (10)

and (a) is proved.

If k € £, we obtain f(zp11) < Fy +yaig(ap) sy + %aid{H(xk)dk and hence we have that:

Fi— f(oann) 2 vd |o(en) Tsi + Sl H(z)dy]. (1)
By (10) and (11)
ajg(er) sk + %OéidgH(ﬂfk)dk — 0,
for £ — oo, k € L. Since both terms in this expression are non positive, it follows that
atg(zr) sy — 0, oddl H (z1)dy, — 0.

Now by using Condition 1 we have o? ||sg|| = 0 for k& — oo, k € £. By using Condition 3 we obtain
ay ||dg|] = 0 for k — oo, k € L. Therefore by (3) we can conclude that:

lim af [|sk]| = 0, lim oy ||dg|| =0,
k—oo k—o0

which establishes (b). O



Now we can prove our main theorem.

Theorem 3.4 Let f be twice continuously differentiable, xq be given and suppose that the level set
Qo at zg is compact. Let xy, k= 0,1,... be the points produced by Algorithm NMS. Then, either
the algorithm terminates at some x, such that g(x,) = 0 and H(z,) is positive semidefinite, or it
produces an infinite sequence such that:

(a) {xk} remains in a compact set, and every limit point z. belongs to Qo and satisfies g(z.) = 0.
Further, H(z.) is positive semidefinite and no limit point of {x} is a local mazimum of f;

(b) if there exists a limit point where H is non-singular, the sequence {x} converges to a local
minimum point.

Proof By Lemma 3.1, the points 23, & = 0,1,... remain in a compact set. If the algorithm
terminates, the assertion is obvious. Therefore, let z, be any limit point of {z;} and relabel {z;}
a subsequence converging to z.. By Lemma 3.3, we have

lim af [|sk]] =0 and lim ay ||dg|| = 0. (12)
k—oo k—o0
Thus, either
lim [|sg]] =0 and lim ||dg|| =0,
k—o0 k—co

or there exists a subsequence {zj}x, of {a;} such that ay — 0 for k — oo, k € K.
In the first case, taking into account the fact that s satisfies either Condition 1 or 2, we
have klim llg(zx)|| = 0 and, by continuity, g(z.) = 0; moreover, since lim_., d} H (x4)d), = 0 by
—+00

Condition 3 and continuity

0 = lim min [0, A, (H (2))] = min [0, Ay, (H (24))].

k—oc0

In the second case, the point zp4q, & € Kj, is produced by the nonmonotone line search
procedure, and hence there exists an index k such that, for all £ > k ke Ky:

2 2
f (ﬂﬁk + (Z—:) sk + i—:dk) > flar) +7 (j—:) [g($k)T3k + %dzH(ﬂﬁk)dk ; (13)

for some o}, € [0y, 09]. By the Mean Value Theorem, we can find, for any & > l%, k € Kq, a point
up = T + wi ((oek/ak)Q sL + (oek/ak)dk) with wy € (0,1) such that:

2
f (ﬂﬁk + (i—:) Sk + i—:dk) (14)

< flag) + (Z—:)Z g(xe)T (i + di) + % K%)Z sk + i—:dk] H (ug) K?)Z sk + ?dk] )

k

It follows from (13) and (14) that
fla) +7 (U—k) [g(wk) (sk +di) + §dkH(xk)dk]

< flag)+ (i—:)zg(xk)T [sk + di] + % [(%)2 Sk + i—:dk]

k



2
Dividing both sides by (a—k) and by simple manipulation we obtain

Tk

(= 1) oten) o de) + 3 H (@)

1 1 /a2 o
< gl () - He)de+ 5 (55) s s+ ZalH s (15)
oL oL

where v < 1/2. Now let {2}k, C {zr}K, be a subsequence such that

lim zp =2,, lim s =ws,, lim dp=d,.
k— 00 k—oo k—oo
keEK, keEK, keEK,

By (12) we have uy — @ as k — oo,k € K. Since v —1 <0, g(zg)Ts, <0, g(zp)Tdy <0 and
dT H(zy)dy <0 for all k € Ky, it follows from (15) that

) 1
kh_{go (v = 1) |g(xp) s, + glap) i + §d£H($k)dk =0,
i

and hence

g(@)" (se+d) =0,  dTH(z.)d. =0.

Condition 1 now implies that g(z.) = 0 and Condition 3 gives H(z,) is positive semidefinite.
Moreover, by Lemma 3.1 and Lemma 3.3, we have that z. € Q. The proof of assertion (a) can be
easily completed similar to the proof of Theorem 1 of [14].

Finally, assertion (b) follows from known results [19, p.478], by taking into account Lemma 3.3(b).
OJ

4 Computation of the search directions

In this section, we describe an example of how to determine search directions that satisfy our
assumptions using the Bunch-Parlett decomposition. Of course, the use of this decomposition is
expensive, but as we stated in the introduction, the scope of this work is to understand the effect
of incorporating negative curvature directions in algorithms via curvilinear linesearch.

The Bunch-Parlett decomposition is very easy to implement and it gives information about the
distribution of the eigenvalues of the Hessian matrix (for details, see [3, 17]). We recall that (at
iteration k) the Bunch-Parlett decomposition gives

H=WDWT,

where W is a n X n non singular matrix and D is a symmetric n x n block diagonal matrix with
one by one and two by two diagonal blocks. If we diagonalize the two by two blocks of the matrix
D, we obtain the following representation

H=VAVT,

where V is a n X n non singular matrix and A is a diagonal matrix which has the same number of
negative (positive) diagonal elements as the Hessian matrix H has negative (positive) eigenvalues.
As a first step, we consider the following vector

d=-v-TA vl



Here A = diag {)\;},7=1,...,n and ), is given by
AF{& TP

A it [N >80
where A;, i = 1,...,n are the diagonal elements of A. The vector d can be split as
d=d, —d_.
Here
dy = -V ITB,Vv™ly and d_=Vv-TB_V7ly, (16)
with By = diag {b;»"}, B_ = diag {b;}, i=1,...n and the elements by and b7 are defined in the

following manner

/\I\/

10 if/:\g R L | Y

¢ 1//\2' ift A, >0 P 1//\2' if A
Proposition 4.1 The vectors dy and d_, defined in (16) satisfy Conditions 1 and 2 of Section 2
with s =dy and d=d_.

Proof The proof follows immediately from the definitions of dy and d_. O

On the basis of this result, we set s = d in our algorithm. In order to find a negative curvature
direction d satisfying Condition 3, we recall the following direction from [17]:

dars = —sgn (70) Ao (D)0, (17)
where v is the solution of the following system
Wl =z,

Here, z is the eigenvector of D corresponding to the minimum eigenvalue A, (D). It is shown in [17]
that dpsg satisfies Condition 3. However, our numerical experience indicates that a better choice is

d=d_+n (—sgn (gTu) u) )

where u is the solution of the following system

p
Wy = Z ;.
i=1
Here, {z; : 5 =1,...,p} are the eigenvectors of D corresponding to the negative eigenvalues A;,

j=1,...,pand
y=min {1 T H}mm{l A (D)}

Of course, if A, (D) > 0 we set d = 0; moreover if dTHd > 0 we set 7 = 0. Using Proposition 4.1
and Lemma 4.3 of [17], it can be easily proved that this direction satisfies Condition 3.

The motivating property of our direction d is as follows. If the norm of the gradient is large
then d almost coincides with d_ and hence approximately minimizes the quadratic model of the
objective function. Otherwise, when the norm of the gradient is small (and hence d_ is small too),
d almost coincides with djss and hence is closely related to the minimum eigenvalue of the Hessian
matrix.



5 Computational Results

In order to evaluate the behavior of our new algorithm, we have used the Bunch-Parlett decomposi-
tion as discussed in the previous section and we have tested the resulting algorithm on all the small
unconstrained problems available from the CUTE collection [2]. This test set covers the classical
test problems along with a large number of nonlinear optimization problems of various difficulty
representing both “academic” and “real world” applications.

We have compared the results with those obtained by the algorithm proposed in [14]. For
both the methods the stopping criterion is ||g]] < 107° and also the parameters of the stabilization
scheme are the same: M = 20, N = 20 and Ay = 10%. The other parameters required by the
algorithm have been set in the following way: 8 = 1072 and ¢ equal to the machine precision. All
the runs were carried out on an IBM RISC System /6000 375 using Fortran in double precision with
the default optimization compiler option.

For comparison, we consider only the test problems coherently solved by at least one of the
two methods, namely all the problems where the algorithms converge to the same stationary point
within 5000 iterations; the resulting test set consists in 177 functions. In this comparison, the
results of two runs are considered equal if they differ by at most 5% .

In the Appendix we report the complete results of both the algorithms on all the test problems.
In order to give a summary of this extensive numerical testing, in Table 1 we report the number
of times each method performs the best in terms of number of iterations, function and gradient
evaluations:

NEW ALGORITHM | ALGORITHM [14] | tie
iterations 69 17 91
function evaluations 155 18 4
gradient evaluations 69 17 91

Table 1: number of times each method performs the best

Table 2 shows the cumulative results for all the problems solved by both algorithms. In this
table iterations stands for the total number of iterations needed to solve all these problems; the
same for function and gradient evaluations.

NEW ALGORITHM | ALGORITHM [14]
iterations 3979 10330
function evaluations 4293 17678
gradient evaluations 4148 10499

Table 2: cumulative results

Moreover, there are 8 problems solved by our new algorithm while the algorithm proposed in
[14] fails on these problems. The failures are caused by excessive number of iterations or functions
evaluations.

On the basis of these results, the new method generates a considerable computational savings,
along with an increase in robustness.



We have also compared our algorithm to LANCELOT [4], a trust region based code for large—
scale nonlinear optimization, written in Fortran. We believe that LANCELQOT is close to the state
of the art for nonlinear optimization codes. We ran this code, with default parameters, on the same
177 problems as mentioned above and have included the complete set of results in the Appendix.
Below, we give two summary tables that compare our new algorithm to LANCELOT. Of course,
in this comparison it should be taken into account that LANCELOT does not solve the Newton
linear system exactly.

In Table 3 we report the number of times each method performs the best in terms of number of
function and gradient evaluations for the complete suite of test problems, where ties denote results
that differ by less than 5%. We have not included the 3 problems where LANCELOT and the
new algorithm converge to different points (in the tables of the Appendix brackets around numbers
indicate that LANCELOT converges to different points).

NEW ALGORITHM | LANCELOT | tie
function evaluations 122 42 10
gradient evaluations 85 50 39

Table 3: number of times each method performs the best

Table 4 shows the cumulative results for all the problems solved by both algorithms. We
have not included the 3 problems that LANCELOT failed on, the 3 problems where LANCELOT
converges to different points, and the largest MSQRTBLS problem (which could be considered a
failure for the new algorithm). In this table function evaluations stands for the total number of
function evaluations needed to solve all the remaining problems; the same for gradient evaluations.

NEW ALGORITHM | LANCELOT
function evaluations 4741 7915
gradient evaluations 4136 6809

Table 4: cumulative results

While these results might indicate that the new algorithm performs better than LANCELOT in
terms of function and gradient evaluations, it should be pointed out that the linear algebra carried
out by the new algorithm is considerably more expensive than that performed by LANCELOT.
The corresponding CPU times for LANCELOT are therefore generally better than those of the
new algorithm. This indicates that more research is required to develop a computationally fast
technique for extracting the information required by the new algorithm. The results above show
that this should lead to more robust and faster solution of these minimization problems.

6 Conclusions

In this work we propose an algorithmic model based on a modified Newton method [17] and a non-
monotone stabilization strategy [14]. This model exploits interesting features of both approaches,
namely the global convergence towards points that satisfy second order conditions and more reliable
and efficient solution of highly nonlinear and ill-conditioned problems.



We have implemented an algorithm that is based on the proposed algorithmic model and uses
the Bunch-Parlett decomposition for computing the search directions. We have compared this
algorithm on a large set of test problems to a similar one proposed in [14] that does not use
any curvature information of the objective function. The results indicate that the new algorithm
outperforms the old one. We believe that they should rekindle interest in defining new methods
based on the curvilinear linesearch approach and using directions of negative curvature.

The scope of this work was to understand how to incorporate directions of negative curvature
within linesearch algorithms and to determine whether such algorithms are effective at solving
practical, unconstrained problems. Although our computational results show our method out-
performs the default algorithm implemented in LANCELOT package on small problems, further
investigation is needed to define a practical and efficient algorithm for large scale problems, where
the Newton linear system can not be solved exactly and linear algebra costs become important.
Such work should ascertain the best way to compute a negative curvature direction satisfying the
conditions required for convergence. The most natural way to obtain such directions is to extract
information on the curvature of the objective function during the iterative processes that com-
putes the Newton-type direction. We believe that some promising approaches to compute both a
Newton-type direction and a negative curvature direction are

e the use of the conjugate gradient method [1, 5, 24],
e the use of Lanczos decomposition [18, 20],

e and several new modifications of Cholesky factorization [9, 10, 11, 21, 22].
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Appendix

NEW ALGORITHM ALGORITHM [14] LANCELOT
PROBLEM n ITER | FUN | GRAD || ITER | FUN | GRAD || ITER | FUN | GRAD
ALLINITU 4 7 10 8 7 8 8 9 10 9
ARWHEAD 100 5 4 6 5 8 6 5 6 6
BARD 3 8 6 9 8 11 9 7 8 8
BDQRTIC 100 9 3 10 9 8 10 11 12 12
BEALE 2 7 4 8 5 6 6 7 8 8
BIGGS6 6 30 38 31 81 155 82 56 57 46
BOX3 3 7 5 8 7 11 8 7 8 8
BRKMCC 2 2 3 3 2 9 3 3 4 4
BROWNAL 10 7 3 8 7 5 8 5 6 6
BROWNBS 2 8 6 9 12 35 13 34 35 34
BROWNDEN | 4 8 5 9 8 10 9 11 12 12
BRYBND 10 12 8 13 12 8 13 11 12 11
BRYBND 100 12 14 13 9 7 10 12 13 12
CHNROSNB 10 20 10 21 20 15 21 29 30 27
CLIFF 2 27 12 28 27 21 28 27 28 28
CRAGGLVY 4 17 7 18 15 8 16 16 17 16
CRAGGLVY | 100 14 3 15 14 6 15 14 15 15
CUBE 2 23 20 24 5 11 6 36 37 33
DENSCHNA 2 5 4 6 5 9 6 5 6 6
DENSCHNB 2 6 12 7 6 7 7 3 4 4
DENSCHNC 2 10 6 11 10 11 11 9 10 10
DENSCHND 3 30 20 31 39 59 40 33 34 33
DENSCHNE 3 11 16 12 12 15 13 11 12 11
DENSCHNF 2 6 4 7 6 9 7 6 7 7
DIXMAANA 15 5 4 6 6 13 7 5 6 6
DIXMAANA | 90 5 4 6 6 13 7 5 6 6
DIXMAANB 15 11 13 12 16 46 17 6 7 7
DIXMAANB 90 16 30 17 36 137 37 8 9 9
DIXMAANC 15 9 8 10 17 46 18 9 10 9
DIXMAANC 90 18 36 19 68 275 69 9 10 9
DIXMAAND 15 10 11 11 22 74 23 9 10 9
DIXMAAND | 90 25 71 26 47 182 48 10 11 10
DIXMAANE 15 10 9 11 9 30 10 6 7 7
DIXMAANE 90 16 45 17 35 188 36 6 7 7
DIXMAANF 15 8 8 9 22 69 23 10 11 10
DIXMAANF 90 20 31 21 62 236 63 10 11 10
DIXMAANG | 15 7 7 8 19 57 20 11 12 10
DIXMAANG | 90 25 68 26 73 281 74 16 17 15
DIXMAANH 15 11 17 12 24 63 25 13 14 12
DIXMAANH | 90 25 44 26 75 293 76 19 20 18
DIXMAANI 15 7 6 8 9 29 10 5 6 6
DIXMAANI 90 15 25 16 40 211 41 6 7 7




NEW ALGORITHM | ALGORITHM [14] LANCELOT
PROBLEM | n |[ITER [ FUN | GRAD | ITER | FUN | GRAD | ITER | FUN | GRAD
DIXMAANJ | 15 || 12 15 13 21 62 22 12 13 11
DIXMAANJ | 90 || 30 | 64 31 88 | 291 89 20 21 18
DIXMAANK | 15 || 27 | 32 28 38 | 84 39 16 17 14
DIXMAANK | 90 || 35 | 67 36 86 | 304 | 87 18 19 17
DIXMAANL | 15 || 13 17 14 40 | 78 41 15 16 13
DIXMAANL | 90 || 36 | 71 37 74 | 292 75 42 | 43 35
DIXON3DQ | 10 1 2 2 1 8 2 2 3 3
DJTL 2 72 | 201 73 1978 | 2013 | 1979 | 135 | 134 | 113
DQDRTIC 10 1 2 2 1 8 2 2 3 3
DQDRTIC | 100 || 1 2 2 1 8 2 2 3 3
DQRTIC 10 | 16 17 17 16 9 17 17 18 18
DQRTIC 100 | 24 | 25 25 24 9 25 26 27 27
EDENSCH | 36 || 12 5 13 12 10 13 12 13 13
EIGENALS | 110 || 22 | 43 23 28 | 59 29 24 | 25 22
EIGENBLS | 110 || 67 | 143 68 120 | 571 | 121 171 | 172 | 140
EIGENCLS | 30 || 31 59 32 98 | 430 99 58 59 50
ENGVAL1 2 7 4 8 7 9 8 7 8 8
ENGVALL | 100 || 7 3 8 7 8 8 7 8 8
ERRINROS | 10 || 18 10 19 21 28 22 (53) | (54) | (47)
ERRINROS | 50 || 21 21 22 53 | 137 | 54 4 | 75 64
EXPFIT 2 8 7 9 11 | 46 12 13 14 12
EXTROSNB | 10 || 74 | 38 75 74 | 49 75 521 | 522 | 441
EXTROSNB | 50 || 97 | 49 98 82 | 49 83 867 | 868 | 711
EXTROSNB | 100 || 85 | 42 86 82 | 49 83 934 | 935 | 764
FLETCBV2 | 100 | 1 2 2 1 8 2 1 2 2
FLETCHBV | 10 || 373 | 394 | 374 449 | 447 | 450 336 | 337 | 297
FLETCHCR | 10 || 20 11 21 21 21 22 34 | 35 30
FLETCHCR | 100 || 138 | 105 | 139 139 | 140 | 140 227 | 228 | 191
FMINSURF | 16 || 24 | 63 25 * * * 17 18 15
FMINSURF | 121 19 | 63 20 * * * 83 84 70
FREUROTH | 2 6 5 7 6 10 7 9 10 10
FREUROTH | 50 || 31 19 32 12 | 26 13 10 11 10
FREUROTH | 100 || 27 9 28 16 | 44 17 10 11 10
GENROSE | 10 || 27 18 28 23 | 46 24 41 42 36
GENROSE | 100 | 86 | 130 87 128 | 471 | 129 120 | 121 97
GROWTHLS | 3 83 | 87 84 32 | 48 33 173 | 174 | 143
GULF 3 21 28 22 33 | 106 34 35 36 32
HAIRY 2 45 | 56 46 411 | 1806 | 412 104 | 105 86
HATFLDD 3 14 10 15 16 12 17 19 20 20
HATFLDE 3 17 14 18 20 | 24 21 22 23 21
HEART6LS | 6 || 320 | 466 | 321 347 | 1009 | 348 * * *
HELIX 3 18 17 19 19 13 20 12 13 12
HILBERTA | 2 1 2 2 1 8 2 2 3 3
HILBERTB | 5 1 2 2 1 8 2 2 3 3
HIMMELBB | 2 12 14 13 19 | 25 20 12 13 12
HIMMELBF | 4 98 | 101 99 3156 | 3133 | 3157 || 209 | 210 | 190




NEW ALGORITHM | ALGORITHM [14] LANCELOT
PROBLEM n |[ITER | FUN | GRAD || ITER | FUN | GRAD | ITER | FUN | GRAD
HIMMELBG | 2 1 1 5 6 7 7 8 9 8
HIMMELBH | 2 5 12 6 4 7 5 1 2 2
JENSMP 2 9 6 10 9 16 10 9 10 10
KOWOSB 4 10 | 16 11 8 11 9 10 11 8
LIARWHD 36 | 10 3 11 10 8 11 10 12 11
LIARWHD | 100 || 10 3 11 10 8 11 13 14 14
MANCINO [ 100 || 5 3 6 5 9 6 15 16 16
MOREBV 10 2 3 3 2 8 3 2 3 3
MOREBV 100 1 2 2 1 8 2 1 2 2
MSQRTALS | 4 12 7 13 8 14 9 15 16 15
MSQRTALS | 49 || 2482 | 4980 | 2483 * * * (19) | (20) | (16)
MSQRTALS | 100 || 112 | 341 | 113 * * * 17 | 18 16
MSQRTBLS | 9 14 | 23 15 21 | 57 22 13 14 12
MSQRTBLS | 49 || 62 | 151 | 63 * * * 17 | 18 16
MSQRTBLS | 100 || 415 | 1516 | 416 * * * 25 | 26 22
NCB20B 50 | 12 | 21 13 15 | 84 16 27 | 28 23
NCB20B 100 14 | 20 15 28 | 79 29 22 | 23 18
NONDIA 50 6 9 7 10 8 11 19 | 20 17
NONDIA 100 | 6 8 7 9 8 10 19 | 20 18
NONDQUAR | 100 || 15 3 16 15 8 16 15 16 16
OSBORNEA | 5 30 | 35 31 22 | 32 23 37 | 38 35
OSBORNEB | 11 || 30 | 39 31 * * * (19) | (20) | (18)
PALMERIC | 8 1 2 2 1 8 2 17 | 18 18
PALMERID | 7 1 2 2 1 8 2 14 | 15 15
PALMER2C | 8 1 2 2 1 8 2 12 13 13
PALMER3C | 8 1 2 2 1 8 2 13 14 14
PALMER4C | 8 1 2 2 1 8 2 46 | 47 A7
PENALTY1 | 4 16 7 17 16 | 12 17 36 | 37 32
PENALTY1 | 10 || 23 9 24 23 | 14 24 40 | 41 35
PENALTY1 | 50 || 28 8 29 28 | 13 29 69 | 70 59
PENALTY1 | 100 || 32 9 33 32 | 14 33 48 | 49 44
PENALTY2 | 4 8 5 9 8 10 9 8 9 9
PENALTY2 | 10 | 29 | 14 30 29 | 19 30 98 | 99 82
PENALTY2 | 50 || 21 9 22 21 14 22 39 | 40 36
PENALTY2 | 100 || 19 7 20 19 | 12 20 19 | 20 20
PENALTY3 | 50 || 17 | 27 18 18 | 16 19 21 | 22 21
PENALTY3 | 100 || 16 9 17 17 | 38 18 * * *
PFITILS 3 | 168 | 238 | 169 48 | 36 49 433 | 434 | 351
PFIT2LS 3 36 | 34 37 42 | 35 43 249 | 250 | 220
PFIT3LS 3 38 | 38 39 79 | 76 80 155 | 156 | 130
PFIT4LS 3 57 | 58 58 229 | 630 | 230 386 | 387 | 317
POWELLSG | 4 15 5 16 15 | 10 16 15 16 16
POWELLSG | 20 || 16 3 17 16 8 17 15 16 16
POWELLSG | 100 || 16 3 17 16 8 17 15 16 16




NEW ALGORITHM ALGORITHM [14] LANCELOT
PROBLEM n ITER | FUN | GRAD || ITER | FUN | GRAD || ITER | FUN | GRAD
POWER 10 17 4 18 17 9 18 16 17 17
POWER 50 21 3 22 21 8 22 19 20 20
POWER 100 23 4 24 23 9 24 22 23 23
QUARTC 25 19 20 20 19 8 20 21 22 22
QUARTC 100 24 25 25 24 9 25 26 27 27
ROSENBR 2 5 5 6 5 11 6 30 31 26
5308 2 9 6 10 9 11 10 10 11 10
SCHMVETT | 3 3 3 4 3 13 4 3 4 4
SCHMVETT | 10 3 3 4 3 13 4 3 4 4
SCHMVETT | 100 3 3 4 3 13 4 3 4 4
SINQUAD 5 11 4 12 11 9 12 11 12 12
SINQUAD 50 11 3 12 11 8 12 38 39 35
SINQUAD 100 11 3 12 11 8 12 56 57 50
SISSER 2 12 5 13 12 10 13 12 13 13
SNAIL 2 118 129 119 129 311 130 90 91 77
SPMSRTLS 28 21 28 22 28 87 29 12 13 11
SPMSRTLS 100 27 65 28 111 444 112 14 15 13
SROSENBR 10 5 4 6 5 10 6 6 7 7
SROSENBR | 50 5 4 6 5 10 6 6 7 7
SROSENBR | 100 5 4 6 5 10 6 6 7 7
TOINTGOR | 50 6 3 7 6 9 7 9 10 10
TOINTGSS 10 1 2 2 1 8 2 2 3 3
TOINTGSS 50 1 2 2 1 8 2 2 3 3
TOINTGSS 100 1 2 2 1 8 2 2 3 3
TOINTPSP 50 112 78 113 71 246 72 23 24 21
TOINTQOR | 50 1 2 2 1 8 2 6 7 7
TQUARTIC 5 1 2 2 1 8 2 1 2 2
TQUARTIC 50 1 2 2 1 8 2 10 11 9
TQUARTIC | 100 1 2 2 1 8 2 12 13 12
TRIDIA 10 1 2 2 1 8 2 1 2 2
TRIDIA 50 1 2 2 1 8 2 2 3 3
TRIDIA 100 1 2 2 1 8 2 2 3 3
VARDIM 10 14 4 15 14 9 15 14 15 15
VARDIM 50 22 4 23 22 9 23 22 23 23
VARDIM 100 25 4 26 25 9 26 25 26 26
VAREIGVL 10 12 7 13 50 48 51 18 19 14
VAREIGVL 50 13 4 14 13 9 14 13 14 14
VAREIGVL | 100 12 3 13 12 8 13 12 13 13
VIBRBEAM 8 23 34 24 38 84 39 * * *
WATSON 12 8 5 9 9 12 10 8 9 9
WATSON 31 147 349 148 * * * 11 12 12
WOODS 4 16 10 17 16 15 17 15 16 16
WOODS 100 17 8 18 17 13 18 15 16 16
YFITU 3 20 22 21 17 20 18 94 95 80
ZANGWIL2 2 1 2 2 1 8 2 1 2 2




