
Nonmonotone Curvilinear Line Search Methods for UnconstrainedOptimizationM.C. Ferris� S. Lucidiy M. RomayMarch 20, 1995AbstractWe present a new algorithmic framework for solving unconstrained minimization problemsthat incorporates a curvilinear linesearch. The search direction used in our framework is acombination of an approximate Newton direction and a direction of negative curvature. Globalconvergence to a stationary point where the Hessian matrix is positive semide�nite is exhibitedfor this class of algorithms by means of a nonmonotone stabilization strategy. An implementa-tion using the Bunch-Parlett decomposition is shown to outperform several other techniques ona large class of test problems.1 IntroductionIn this work we consider the unconstrained minimization problemminx2IRn f(x);where f is a real valued function on IRn. We assume throughout that both the gradient g(x) :=rf(x) and the Hessian matrix H(x) := r2f(x) of f exist and are continuous.Many iterative methods for solving this problem have been proposed; they are usually descentmethods that generate a sequence fxkg such that every limit point x� is stationary, i.e. g(x�) = 0or the weaker condition lim infk!1 kg(xk)k = 0. The condition g(x�) = 0 is only a necessary �rstorder optimality condition so it does not guarantee that x� is a local minimum point. In orderto increase the chances of obtaining a local minimum point, we try to detect only the stationarypoints that satisfy the second order necessary conditions. The key idea is to de�ne algorithms thatconverge to a stationary point x� where the Hessian matrix H(x�) is positive semide�nite.Algorithms with this property have been de�ned both in a trust region and a linesearch context.In fact, guaranteeing convergence only to stationary points that satisfy second order conditionsdepends heavily on the skill of the minimization method in escaping regions where the objectivefunction is not convex. Trust region algorithms intrinsically have this capability due to the factthat they are based on the idea of minimizing the quadratic model of the objective function overa sphere (see, for example [23]). Linesearch algorithms do not enjoy this particular feature. In�Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706. The work of this authorwas based on research supported by the National Science Foundation grant CCR-9157632, the Air Force O�ce ofScienti�c Research grant F49620-94-1-0036 and the Department of Energy grant DE-FG03-94ER61915.yDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", Roma, Italy. These authors werepartially supported by Agenzia Spaziale Italiana, Roma, Italy.1
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fact, if linesearch algorithms are to produce a sequence of points converging towards stationarypoints where the Hessian matrix is positive semide�nite, they must extract as much information aspossible about the curvature of objective function from the second order derivatives.In this context some interesting results have been proposed in [15] and [17]. In these papers,linesearch algorithms that generate sequences fxkg which converge to points x� where the HessianH(x�) is positive semide�nite are de�ned. A key feature of these algorithms is the use of particulardirections of negative curvature, i.e. directions d such that dTH(x)d < 0, along with a generalizedmonotonic Armijo step size rule.Unfortunately, after these two papers, little work has followed this approach. Most globallyconvergent linesearch algorithms proposed in literature are based on the idea of perturbing theHessian matrix without directly exploiting curvature information of the objective function. Thiscould be due to the fact that the classical test problems (with standard starting points) do notallow a real evaluation of algorithms which use negative curvature directions. This is because thesetest problems present just a few points where the objective function has negative curvature, as wasnoted in [16, 17]. The advent of the CUTE collection of test problems [2] allows us to obtain a goodevaluation of globally convergent algorithms, since it includes a variety of functions with negativecurvature.The main aim of our work is to encourage the development of new research in this area. In par-ticular, we believe that further investigation is needed to de�ne e�cient new linesearch algorithmsthat exploit the curvature information of the objective function more deeply.As a �rst step we show that the linesearch approach proposed in [17] can be embedded in ageneral nonmonotone globalization strategy based on the model of [14]. This allows us to de�ne ageneral algorithm model that inherits the following properties:� the capability to e�ciently exploit potential local non convexity of the objective function(from [17])� the capability to e�ciently solve highly nonlinear and ill-conditioned minimization problems(from the nonmonotone approach of [14]).As a second step we test the new algorithm against two Newton-type algorithms. The �rstof these follows the algorithm model proposed in [14] which uses a classical perturbation of theNewton direction (based on the modi�ed Cholesky factorization [12]) as the search direction. Sincethe new algorithm uses essentially the same stabilization technique, the comparison between thesetwo determines the e�ect of exploiting information on the curvature of the objective function viathe curvilinear linesearch. The second algorithm we compare against is LANCELOT [4], which is atrust region based code. The numerical results which we report show that a signi�cant improvementin terms of the number of iterations and function-gradient evaluations can be obtained by using analgorithm that exploits curvature e�ects.Section 2 describes the general framework of our stabilization scheme and introduces conditionsthat are required on the search directions for convergence. Section 3 proves that such an algorithmicframework leads to a convergent algorithm. In Section 4 we describe a particular implementationand show that this example algorithm satis�es the assumptions of Section 2. The implementationis tested on a large set of standard test problems in Section 5 and is shown to have more e�cientand reliable convergence than standard Newton-type approaches.2



2 Nonmonotone stabilization algorithmWe consider an iterative scheme of the formxk+1 = xk + �2ksk + �kdk;where sk and dk are search directions and �k is a step size. We assume throughout that, for a givenx0 2 IRn, the level set 
0 = fx 2 IRn j f(x) � f(x0)g ;is compact. In practice, we think of sk as an approximation of the Newton step and dk as a directionof negative curvature. Both of these can be calculated using the Bunch{Parlett factorization [3];this was �rst considered in [17]. In order that our convergence theorems remain applicable to moregeneral algorithms than the ones we test numerically, we list below the general conditions that werequire of the search directions. We assume that the directions fskg and fdkg satisfy the followingconditions:Condition 1. The direction fskg and fdkg are bounded and satisfyg(xk)Tsk � 0 g(xk)Tdk � 0g(xk)Tsk ! 0 implies sk ! 0:g(xk)T (sk + dk)! 0 implies g(xk)! 0:Condition 2. The directions fskg and fdkg have the property thatkskk+ kdkk ! 0 implies g(xk)! 0:Condition 3. The direction fdkg satis�es dTkH(xk)dk � 0;dTkH(xk)dk ! 0 implies min [0; �m (H(xk))]! 0 and dk ! 0;where �m(H) is the minimum eigenvalue of H.In Section 4, we show that a particular implementation satis�es these conditions.The key di�erence between our approach and that of [17] is in the line search acceptance crite-rion. We allow possible increases to the sequence of function values by keeping track of a referencevalue (which we label F ) in order to relax the normal Armijo acceptance criterion. Typically, Fwould be set to the maximum function value over the last few iterations as opposed to f(xk) inthe standard Armijo procedure. The nonmonotone line search procedure that we use can bestated precisely, as follows. 3



Nonmonotone line search procedureData: xk, sk , dk, g(xk), H(xk), F , 
 2 (0; 12), 0 < �1 < �2 < 1.Step 1: If necessary, modify sk and dk to satisfy Condition 1 and Condition 3 and set � = 1.Step 2: If f(xk + �2sk + �dk) � F + 
�2 hg(xk)Tsk + 12dTkH(xk)dki set �k = � and stop.Step 3: Choose � 2 [�1; �2], � = �� and go to Step 2.This approach has been tested in [13] and proven successful on many ill-conditioned problems.However, it does enforce a monotonic decrease in the sequence fFjg. We wish to allow even greaterfreedom for the function values, whereby we accept the \Newton{like" step without even checkingthe function value at the new point provided the length of the step is not too large. This is motivatedby the fact that eventually the step length will decrease to zero when we converge to a solution andby the fact that always enforcing the point xk to be located in nested level sets may deterioratethe e�ciency of the Newton{like method (see the discussion in Section 5.1 of [14]). Computationalresults [14] have shown this technique to be even better than the standard nonmonotone line search.This technique has also proven useful in other applications and extensions [6, 7, 8, 25, 26, 27]. Ofcourse, sometimes it may lead to regions where the function is poorly behaved. In these cases, abacktracking scheme is incorporated into our algorithm. In e�ect, we backtrack to the last pointwhere the function was evaluated (which we denote by x`) and perform a nonmonotone line searchfrom that point. The avoidance of the evaluation of f is not the key point here; rather we believethat robustness is increased by considering other factors crucial to the convergence.The full details of our nonmonotone stabilization scheme are detailed below. Note that ` denotesthe index of the last accepted point where the objective function was evaluated.Nonmonotone Stabilization Algorithm (NMS)Data: x0, �0 > 0, � 2 (0; 1), N � 1 and M � 0.Step 1: Set k = ` = j = 0; � = �0. Compute f(x0) and set Z0 = F0 = f(x0), m(0) = 0.Step 2: Compute g(xk). If kg(xk)k = 0 stop.Step 3: If k = `+N compute f(xk); then:(a) if f(xk) � Fj , replace xk by x`, set k = ` and go to Step 5;(b) if f(xk) < Fj , set ` = k, j = j + 1, Zj = f(xk) and and update Fj according toFj = max0� i�m(j)Zj�i; where m(j) � min[m(j � 1) + 1;M ]; (1)compute directions sk and dk that satisfy Conditions 2 and 3;if kskk+ kdkk � �, set xk+1 = xk + sk + dk, k = k + 1, � = �� and go to Step 2;otherwise go to Step 5.Step 4: If k 6= `+N compute directions sk and dk that satisfy Conditions 2 and 3; then:(a) if kskk+ kdkk � �, set xk+1 = xk + sk + dk, k = k + 1, � = �� and go to Step 2;(b) if kskk+ kdkk > �, compute f(xk);if f(xk) � Fj , replace xk by x`, set k = `;otherwise set ` = k, j = j + 1, Zj = f(xk) and update Fj according to (1).4



Step 5: Compute �k by means of a nonmonotone line search, setxk+1 = xk + �2ksk + �kdk; k = k + 1; ` = k;update Fj according to (1) and go to Step 2.Note that in practice the most frequently taken step is Step 4(a). In this case, we do not haveto satisfy Condition 1, so that sk and dk may not even be descent directions for f . Furthermore,note that if a nonmonotone line search is performed at Step 5, then sk and dk may have to bemodi�ed to satisfy Condition 1, and hence may no longer satisfy Condition 2. However, at eachiteration, sk and dk must satisfy at least one of Conditions 1 or 2.For later reference let fx`(j)g be the sequence of points where f was evaluated and let fFjg bethe corresponding sequence of reference values. We initially set j = 0 and increment j each timewe de�ne ` = k.As regards the reference value Fj for the objective function, it is initially set to f(x0) andis updated whenever the function f is evaluated and the corresponding point is accepted. Morespeci�cally, the updating takes into account a pre�xed number m(j) � M of previous functionvalues, which is called the \memory".Remark Notice that if we set M = 0 and �0 = 0, we obtained the same algorithm proposedin [17]. Moreover, it is important to note that we obtain the convergence results under weakerconditions than those ones required in [17]. This small di�erence allows us to use a particular pairof directions that do not satisfy the assumptions of [17], but do satisfy our conditions.3 Convergence analysisTo establish the convergence properties of Algorithm NMS, we employ some technical lemmas. The�rst of these establishes three important facts regarding the reference values and the iterates of thealgorithm. The proof of the �rst two lemmas easily follows, with minor modi�cations, from theproof of Lemma 1 and Lemma 2 in [14].Lemma 3.1 Assume that Algorithm NMS produces an in�nite sequence fxkg; then:(a) the sequence fFjg is non increasing and has a limit F�;(b) for any index j we have Fi < Fj ; for all i > j +M;that is, the reference value must decrease after at most M + 1 function evaluations;(c) fxkg remains in a compact set.However, note that the iterates need not remain in 
0.Lemma 3.2 Assume that Algorithm NMS produces an in�nite sequence fxkg; let fx`(j)g be thesequence of points where the objective function is evaluated.Then, we can thin the sequence fx`(j)g so that it satis�es the following conditions:(a) Fj = f(x`(j)), for j = 0; 1; : : :; 5



(b) for any integer k, there exists an index jk such that:0 < `(jk)� k � N(M + 1); Fjk = f(x`(jk)) < F̂k;where F̂k is the value of Fj at the kth iteration of Algorithm NMS.Note that limk!1 F̂k = limj!1 Fj since fF̂kg just \�lls in" with values of Fj .The following lemma is key to our development and shows that the function values on the wholesequence converge. In the standard Armijo case, this is easy to establish. In the nonmonotone case,the proof is somewhat more involved.Lemma 3.3 Assume that Algorithm NMS produces an in�nite sequence fxkg.Then, we have:(a) limk!1 f(xk) = limk!1 F̂k = limj!1Fj = F�;(b) limk!1�2k kskk = 0; limk!1�k kdkk = 0; implying that limk!1 kxk+1 � xkk = 0:Proof Note that in Step 3(b) and Step 4(a) of Algorithm NMS we may accept a step withoutperforming a line search. Let fxkgL denote the set of points where a line search is performed. Thenkskk+ kdkk � �0�t; for k =2 L; (2)where the integer t increases with k =2 L; when k =2 L we set, for convenience, �k = 1. It followsfrom (2) that if we do not perform a line search an in�nite number of times, thenlimk!1k=2L �2k kskk = 0; and limk!1k=2L �k kdkk = 0: (3)Let `(j) be the indices de�ned in Lemma 3.2. We show by induction that, for any �xed integeri � 1, we have: limj!1�2̀(j)�i 


s`(j)�i


 = 0; limj!1�`(j)�i 


d`(j)�i


 = 0; (4)and limj!1 f(x`(j)�i) = limj!1 f(x`(j)) = limj!1Fj = F�: (5)(Here and in the sequel we assume that the index j is large enough to avoid the occurrence ofnegative subscripts.) Assume �rst that i = 1 and consider two subsequences of f`(j)� 1g, corre-sponding to whether `(j)� 1 is in L or not. If either of these subsequences are �nite, then we candiscard the corresponding elements. Otherwise, for `(j)� 1 =2 L, then (4) holds with i = 1. Nowconsider the other subsequence, where `(j) � 1 2 L. Recalling the acceptability criterion of thenonmonotone line search, we haveF̂`(j)�1 � Fj � 
�2̀(j)�1 ����g(x`(j)�1)Ts`(j)�1 + 12dT̀(j)�1H(x`(j)�1)d`(j)�1���� : (6)Therefore, if `(j)� 1 2 L for an in�nite subsequence, from Lemma 3.1(a) and (6) and the observa-tions that g(x`(j)�1)T s`(j)�1 < 0 and dT̀(j)�1H(x`(j)�1)d`(j)�1 � 0, we get�2̀(j)�1g(x`(j)�1)Ts`(j)�1 ! 0; and �2̀(j)�1dT̀(j)�1H(x`(j)�1)d`(j)�1 ! 0: (7)6



Now, (7) implies that either �`(j)�1 ! 0 or g(x`(j)�1)Ts`(j)�1 ! 0, dT̀(j)�1H(x`(j)�1)d`(j)�1 ! 0:In the �rst case we have �2̀(j)�1ks`(j)�1k ! 0 and �`(j)�1 


d`(j)�1


 ! 0. In the second case, byCondition 1 we have �2̀(j)�1ks`(j)�1k ! 0 (taking �k � 1) and by Condition 3, �`(j)�1 


d`(j)�1


! 0.It can be concluded that (4) holds for i = 1. Moreover sincef(x`(j)) = f(x`(j)�1 + �2̀(j)�1s`(j)�1 + �`(j)�1d`(j)�1);(4) and the uniform continuity of f on the compact set containing fxkg imply that equation (5)also holds for i = 1.Assume now that (4) and (5) hold for a given i and consider the point x`(j)�i�1. Reasoning asbefore, we can again distinguish the case `(j)� i� 1 =2 L, when (2) holds with k = `(j)� i � 1,and the case `(j)� i� 1 2 L, where we have:F̂`(j)�i�1 � f(x`(j)�i) � 
�2̀(j)�i�1 ����g(x`(j)�i�1)T s`(j)�i�1 + 12dT̀(j)�i�1H(x`(j)�i�1)d`(j)�i�1���� : (8)Using (3), (5), (8) and recalling Conditions 1 and 3, we can assert that equations (4) hold with ireplaced by i+ 1. By (4) and the uniform continuity of f , it follows that (5) is also satis�ed withi replaced by i+ 1, which completes the induction.Now let xk be any given point produced by the algorithm. Then by Lemma 3.2 there is anindex jk such that 0 < `(jk)� k � (M + 1)N: (9)Then we can write: xk = x`(jk) � `(jk)�kXi=1 h�2̀(jk)�is`(jk)�i + �`(jk)�id`(jk)�ii ;and this implies, by (4) and (9), that: limk!1 


xk � x`(jk)


 = 0:It follows from the uniform continuity of f thatlimk!1 f(xk) = limk!1 f(x`(jk)) = limj!1Fj = limk!1 F̂k; (10)and (a) is proved.If k 2 L, we obtain f(xk+1) � F̂k + 
�2kg(xk)Tsk + 
2�2kdTkH(xk)dk and hence we have that:F̂k � f(xk+1) � 
�2k ����g(xk)T sk + 12dTkH(xk)dk���� : (11)By (10) and (11) �2kg(xk)Tsk + 12�2kdTkH(xk)dk ! 0;for k !1; k 2 L. Since both terms in this expression are non positive, it follows that�2kg(xk)Tsk ! 0; �2kdTkH(xk)dk ! 0:Now by using Condition 1 we have �2k kskk ! 0 for k !1; k 2 L. By using Condition 3 we obtain�k kdkk ! 0 for k !1; k 2 L. Therefore by (3) we can conclude that:limk!1�2k kskk = 0; limk!1�k kdkk = 0;which establishes (b). 7



Now we can prove our main theorem.Theorem 3.4 Let f be twice continuously di�erentiable, x0 be given and suppose that the level set
0 at x0 is compact. Let xk; k = 0; 1; : : : be the points produced by Algorithm NMS. Then, eitherthe algorithm terminates at some xp such that g(xp) = 0 and H(xp) is positive semide�nite, or itproduces an in�nite sequence such that:(a) fxkg remains in a compact set, and every limit point x� belongs to 
0 and satis�es g(x�) = 0.Further, H(x�) is positive semide�nite and no limit point of fxkg is a local maximum of f ;(b) if there exists a limit point where H is non-singular, the sequence fxkg converges to a localminimum point.Proof By Lemma 3.1, the points xk ; k = 0; 1; : : : remain in a compact set. If the algorithmterminates, the assertion is obvious. Therefore, let x� be any limit point of fxkg and relabel fxkga subsequence converging to x�. By Lemma 3.3, we havelimk!1�2k kskk = 0 and limk!1�k kdkk = 0: (12)Thus, either limk!1 kskk = 0 and limk!1 kdkk = 0;or there exists a subsequence fxkgK1 of fxkg such that �k ! 0 for k !1; k 2 K1.In the �rst case, taking into account the fact that sk satis�es either Condition 1 or 2, wehave limk!1 kg(xk)k = 0 and, by continuity, g(x�) = 0; moreover, since limk!1 dTkH(xk)dk = 0 byCondition 3 and continuity0 = limk!1min [0; �m (H(xk))] = min [0; �m (H(x�))] :In the second case, the point xk+1, k 2 K1, is produced by the nonmonotone line searchprocedure, and hence there exists an index k̂ such that, for all k � k̂, k 2 K1:f  xk + ��k�k �2 sk + �k�k dk! > f(xk) + 
 ��k�k �2 �g(xk)Tsk + 12dTkH(xk)dk� ; (13)for some �k 2 [�1; �2]. By the Mean Value Theorem, we can �nd, for any k � k̂, k 2 K1, a pointuk = xk + !k �(�k=�k)2 sk + (�k=�k)dk� with !k 2 (0; 1) such that:f  xk + ��k�k�2 sk + �k�k dk! (14)� f(xk) + ��k�k �2 g(xk)T (sk + dk) + 12 "��k�k�2 sk + �k�k dk#TH(uk) "��k�k �2 sk + �k�k dk# :It follows from (13) and (14) thatf(xk) + 
 ��k�k�2 �g(xk)T (sk + dk) + 12dTkH(xk)dk�� f(xk) + ��k�k�2 g(xk)T [sk + dk] + 12 "��k�k �2 sk + �k�k dk#T H(uk) "��k�k�2 sk + �k�k dk# :8



Dividing both sides by ��k�k �2 and by simple manipulation we obtain(
 � 1) �g(xk)T (sk + dk) + 12dTkH(xk)dk�� 12dTk [H(uk)�H(xk)]dk + 12 ��k�k�2 sTkH(uk)sk + �k�k dTkH(uk)sk (15)where 
 � 1=2. Now let fxkgK2 � fxkgK1 be a subsequence such thatlimk!1k2K2 xk = x�; limk!1k2K2 sk = s�; limk!1k2K2 dk = d�:By (12) we have uk ! x� as k ! 1; k 2 K2. Since 
 � 1 < 0, g(xk)Tsk � 0, g(xk)Tdk � 0 anddTkH(xk)dk � 0 for all k 2 K2, it follows from (15) thatlimk!1k2K2 (
 � 1) �g(xk)Tsk + g(xk)Tdk + 12dTkH(xk)dk� = 0;and hence g(x�)T (s� + d�) = 0; d�TH(x�)d� = 0:Condition 1 now implies that g(x�) = 0 and Condition 3 gives H(x�) is positive semide�nite.Moreover, by Lemma 3.1 and Lemma 3.3, we have that x� 2 
0. The proof of assertion (a) can beeasily completed similar to the proof of Theorem 1 of [14].Finally, assertion (b) follows from known results [19, p.478], by taking into account Lemma 3.3(b).4 Computation of the search directionsIn this section, we describe an example of how to determine search directions that satisfy ourassumptions using the Bunch-Parlett decomposition. Of course, the use of this decomposition isexpensive, but as we stated in the introduction, the scope of this work is to understand the e�ectof incorporating negative curvature directions in algorithms via curvilinear linesearch.The Bunch-Parlett decomposition is very easy to implement and it gives information about thedistribution of the eigenvalues of the Hessian matrix (for details, see [3, 17]). We recall that (atiteration k) the Bunch-Parlett decomposition givesH = WDWT ;where W is a n � n non singular matrix and D is a symmetric n � n block diagonal matrix withone by one and two by two diagonal blocks. If we diagonalize the two by two blocks of the matrixD, we obtain the following representation H = V �V T ;where V is a n� n non singular matrix and � is a diagonal matrix which has the same number ofnegative (positive) diagonal elements as the Hessian matrix H has negative (positive) eigenvalues.As a �rst step, we consider the following vectored = �V �T ���1V �1g:9



Here �� = diag ���i	, i = 1; : : : ; n and ��i is given by��i = � � if j�ij < ��i if j�ij > � ;where �i, i = 1; : : : ; n are the diagonal elements of �. The vector ed can be split ased = d+ � d�:Here d+ = �V �TB+V �1g and d� = V �TB�V �1g; (16)with B+ = diag nb+i o, B� = diag nb�i o, i = 1; : : :n and the elements b+i and b�i are de�ned in thefollowing manner b+i = ( 0 if ��i � 01=��i if ��i > 0; b�i = ( 0 if ��i � 01=��i if ��i < 0:Proposition 4.1 The vectors d+ and d�, de�ned in (16) satisfy Conditions 1 and 2 of Section 2with s = d+ and d = d�.Proof The proof follows immediately from the de�nitions of d+ and d�.On the basis of this result, we set s = d+ in our algorithm. In order to �nd a negative curvaturedirection d satisfying Condition 3, we recall the following direction from [17]:dMS = �sgn �gTv� j�m (D)j1=2 v; (17)where v is the solution of the following systemWT v = z:Here, z is the eigenvector of D corresponding to the minimum eigenvalue �m(D). It is shown in [17]that dMS satis�es Condition 3. However, our numerical experience indicates that a better choice isd = d� + � ��sgn�gTu�u� ;where u is the solution of the following systemWTu = pXj=1 zj :Here, fzj : j = 1; : : : ; pg are the eigenvectors of D corresponding to the negative eigenvalues �j ,j = 1; : : : ; p and � = min�1; �kgk�min f1; j�m (D)jg :Of course, if �m (D) � 0 we set d = 0; moreover if dTHd > 0 we set � = 0. Using Proposition 4.1and Lemma 4.3 of [17], it can be easily proved that this direction satis�es Condition 3.The motivating property of our direction d is as follows. If the norm of the gradient is largethen d almost coincides with d� and hence approximately minimizes the quadratic model of theobjective function. Otherwise, when the norm of the gradient is small (and hence d� is small too),d almost coincides with dMS and hence is closely related to the minimum eigenvalue of the Hessianmatrix. 10



5 Computational ResultsIn order to evaluate the behavior of our new algorithm, we have used the Bunch-Parlett decomposi-tion as discussed in the previous section and we have tested the resulting algorithm on all the smallunconstrained problems available from the CUTE collection [2]. This test set covers the classicaltest problems along with a large number of nonlinear optimization problems of various di�cultyrepresenting both \academic" and \real world" applications.We have compared the results with those obtained by the algorithm proposed in [14]. Forboth the methods the stopping criterion is kgk � 10�5 and also the parameters of the stabilizationscheme are the same: M = 20, N = 20 and �0 = 103. The other parameters required by thealgorithm have been set in the following way: � = 10�3 and � equal to the machine precision. Allthe runs were carried out on an IBM RISC System/6000 375 using Fortran in double precision withthe default optimization compiler option.For comparison, we consider only the test problems coherently solved by at least one of thetwo methods, namely all the problems where the algorithms converge to the same stationary pointwithin 5000 iterations; the resulting test set consists in 177 functions. In this comparison, theresults of two runs are considered equal if they di�er by at most 5% .In the Appendix we report the complete results of both the algorithms on all the test problems.In order to give a summary of this extensive numerical testing, in Table 1 we report the numberof times each method performs the best in terms of number of iterations, function and gradientevaluations: NEW ALGORITHM ALGORITHM [14] tieiterations 69 17 91function evaluations 155 18 4gradient evaluations 69 17 91Table 1: number of times each method performs the bestTable 2 shows the cumulative results for all the problems solved by both algorithms. In thistable iterations stands for the total number of iterations needed to solve all these problems; thesame for function and gradient evaluations.NEW ALGORITHM ALGORITHM [14]iterations 3979 10330function evaluations 4293 17678gradient evaluations 4148 10499Table 2: cumulative resultsMoreover, there are 8 problems solved by our new algorithm while the algorithm proposed in[14] fails on these problems. The failures are caused by excessive number of iterations or functionsevaluations.On the basis of these results, the new method generates a considerable computational savings,along with an increase in robustness. 11



We have also compared our algorithm to LANCELOT [4], a trust region based code for large{scale nonlinear optimization, written in Fortran. We believe that LANCELOT is close to the stateof the art for nonlinear optimization codes. We ran this code, with default parameters, on the same177 problems as mentioned above and have included the complete set of results in the Appendix.Below, we give two summary tables that compare our new algorithm to LANCELOT. Of course,in this comparison it should be taken into account that LANCELOT does not solve the Newtonlinear system exactly.In Table 3 we report the number of times each method performs the best in terms of number offunction and gradient evaluations for the complete suite of test problems, where ties denote resultsthat di�er by less than 5%. We have not included the 3 problems where LANCELOT and thenew algorithm converge to di�erent points (in the tables of the Appendix brackets around numbersindicate that LANCELOT converges to di�erent points).NEW ALGORITHM LANCELOT tiefunction evaluations 122 42 10gradient evaluations 85 50 39Table 3: number of times each method performs the bestTable 4 shows the cumulative results for all the problems solved by both algorithms. Wehave not included the 3 problems that LANCELOT failed on, the 3 problems where LANCELOTconverges to di�erent points, and the largest MSQRTBLS problem (which could be considered afailure for the new algorithm). In this table function evaluations stands for the total number offunction evaluations needed to solve all the remaining problems; the same for gradient evaluations.NEW ALGORITHM LANCELOTfunction evaluations 4741 7915gradient evaluations 4136 6809Table 4: cumulative resultsWhile these results might indicate that the new algorithm performs better than LANCELOT interms of function and gradient evaluations, it should be pointed out that the linear algebra carriedout by the new algorithm is considerably more expensive than that performed by LANCELOT.The corresponding CPU times for LANCELOT are therefore generally better than those of thenew algorithm. This indicates that more research is required to develop a computationally fasttechnique for extracting the information required by the new algorithm. The results above showthat this should lead to more robust and faster solution of these minimization problems.6 ConclusionsIn this work we propose an algorithmic model based on a modi�ed Newton method [17] and a non-monotone stabilization strategy [14]. This model exploits interesting features of both approaches,namely the global convergence towards points that satisfy second order conditions and more reliableand e�cient solution of highly nonlinear and ill-conditioned problems.12



We have implemented an algorithm that is based on the proposed algorithmic model and usesthe Bunch-Parlett decomposition for computing the search directions. We have compared thisalgorithm on a large set of test problems to a similar one proposed in [14] that does not useany curvature information of the objective function. The results indicate that the new algorithmoutperforms the old one. We believe that they should rekindle interest in de�ning new methodsbased on the curvilinear linesearch approach and using directions of negative curvature.The scope of this work was to understand how to incorporate directions of negative curvaturewithin linesearch algorithms and to determine whether such algorithms are e�ective at solvingpractical, unconstrained problems. Although our computational results show our method out-performs the default algorithm implemented in LANCELOT package on small problems, furtherinvestigation is needed to de�ne a practical and e�cient algorithm for large scale problems, wherethe Newton linear system can not be solved exactly and linear algebra costs become important.Such work should ascertain the best way to compute a negative curvature direction satisfying theconditions required for convergence. The most natural way to obtain such directions is to extractinformation on the curvature of the objective function during the iterative processes that com-putes the Newton-type direction. We believe that some promising approaches to compute both aNewton-type direction and a negative curvature direction are� the use of the conjugate gradient method [1, 5, 24],� the use of Lanczos decomposition [18, 20],� and several new modi�cations of Cholesky factorization [9, 10, 11, 21, 22].AcknowledgementWe thank the referees for their constructive comments and remarks that helped improve the paper.
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Appendix NEW ALGORITHM ALGORITHM [14] LANCELOTPROBLEM n ITER FUN GRAD ITER FUN GRAD ITER FUN GRADALLINITU 4 7 10 8 7 8 8 9 10 9ARWHEAD 100 5 4 6 5 8 6 5 6 6BARD 3 8 6 9 8 11 9 7 8 8BDQRTIC 100 9 3 10 9 8 10 11 12 12BEALE 2 7 4 8 5 6 6 7 8 8BIGGS6 6 30 38 31 81 155 82 56 57 46BOX3 3 7 5 8 7 11 8 7 8 8BRKMCC 2 2 3 3 2 9 3 3 4 4BROWNAL 10 7 3 8 7 5 8 5 6 6BROWNBS 2 8 6 9 12 35 13 34 35 34BROWNDEN 4 8 5 9 8 10 9 11 12 12BRYBND 10 12 8 13 12 8 13 11 12 11BRYBND 100 12 14 13 9 7 10 12 13 12CHNROSNB 10 20 10 21 20 15 21 29 30 27CLIFF 2 27 12 28 27 21 28 27 28 28CRAGGLVY 4 17 7 18 15 8 16 16 17 16CRAGGLVY 100 14 3 15 14 6 15 14 15 15CUBE 2 23 20 24 5 11 6 36 37 33DENSCHNA 2 5 4 6 5 9 6 5 6 6DENSCHNB 2 6 12 7 6 7 7 3 4 4DENSCHNC 2 10 6 11 10 11 11 9 10 10DENSCHND 3 30 20 31 39 59 40 33 34 33DENSCHNE 3 11 16 12 12 15 13 11 12 11DENSCHNF 2 6 4 7 6 9 7 6 7 7DIXMAANA 15 5 4 6 6 13 7 5 6 6DIXMAANA 90 5 4 6 6 13 7 5 6 6DIXMAANB 15 11 13 12 16 46 17 6 7 7DIXMAANB 90 16 30 17 36 137 37 8 9 9DIXMAANC 15 9 8 10 17 46 18 9 10 9DIXMAANC 90 18 36 19 68 275 69 9 10 9DIXMAAND 15 10 11 11 22 74 23 9 10 9DIXMAAND 90 25 71 26 47 182 48 10 11 10DIXMAANE 15 10 9 11 9 30 10 6 7 7DIXMAANE 90 16 45 17 35 188 36 6 7 7DIXMAANF 15 8 8 9 22 69 23 10 11 10DIXMAANF 90 20 31 21 62 236 63 10 11 10DIXMAANG 15 7 7 8 19 57 20 11 12 10DIXMAANG 90 25 68 26 73 281 74 16 17 15DIXMAANH 15 11 17 12 24 63 25 13 14 12DIXMAANH 90 25 44 26 75 293 76 19 20 18DIXMAANI 15 7 6 8 9 29 10 5 6 6DIXMAANI 90 15 25 16 40 211 41 6 7 716



NEW ALGORITHM ALGORITHM [14] LANCELOTPROBLEM n ITER FUN GRAD ITER FUN GRAD ITER FUN GRADDIXMAANJ 15 12 15 13 21 62 22 12 13 11DIXMAANJ 90 30 64 31 88 291 89 20 21 18DIXMAANK 15 27 32 28 38 84 39 16 17 14DIXMAANK 90 35 67 36 86 304 87 18 19 17DIXMAANL 15 13 17 14 40 78 41 15 16 13DIXMAANL 90 36 71 37 74 292 75 42 43 35DIXON3DQ 10 1 2 2 1 8 2 2 3 3DJTL 2 72 201 73 1978 2013 1979 135 134 113DQDRTIC 10 1 2 2 1 8 2 2 3 3DQDRTIC 100 1 2 2 1 8 2 2 3 3DQRTIC 10 16 17 17 16 9 17 17 18 18DQRTIC 100 24 25 25 24 9 25 26 27 27EDENSCH 36 12 5 13 12 10 13 12 13 13EIGENALS 110 22 43 23 28 59 29 24 25 22EIGENBLS 110 67 143 68 120 571 121 171 172 140EIGENCLS 30 31 59 32 98 430 99 58 59 50ENGVAL1 2 7 4 8 7 9 8 7 8 8ENGVAL1 100 7 3 8 7 8 8 7 8 8ERRINROS 10 18 10 19 21 28 22 (53) (54) (47)ERRINROS 50 21 21 22 53 137 54 74 75 64EXPFIT 2 8 7 9 11 46 12 13 14 12EXTROSNB 10 74 38 75 74 49 75 521 522 441EXTROSNB 50 97 49 98 82 49 83 867 868 711EXTROSNB 100 85 42 86 82 49 83 934 935 764FLETCBV2 100 1 2 2 1 8 2 1 2 2FLETCHBV 10 373 394 374 449 447 450 336 337 297FLETCHCR 10 20 11 21 21 21 22 34 35 30FLETCHCR 100 138 105 139 139 140 140 227 228 191FMINSURF 16 24 63 25 * * * 17 18 15FMINSURF 121 19 63 20 * * * 83 84 70FREUROTH 2 6 5 7 6 10 7 9 10 10FREUROTH 50 31 19 32 12 26 13 10 11 10FREUROTH 100 27 9 28 16 44 17 10 11 10GENROSE 10 27 18 28 23 46 24 41 42 36GENROSE 100 86 130 87 128 471 129 120 121 97GROWTHLS 3 83 87 84 32 48 33 173 174 143GULF 3 21 28 22 33 106 34 35 36 32HAIRY 2 45 56 46 411 1806 412 104 105 86HATFLDD 3 14 10 15 16 12 17 19 20 20HATFLDE 3 17 14 18 20 24 21 22 23 21HEART6LS 6 320 466 321 347 1009 348 * * *HELIX 3 18 17 19 19 13 20 12 13 12HILBERTA 2 1 2 2 1 8 2 2 3 3HILBERTB 5 1 2 2 1 8 2 2 3 3HIMMELBB 2 12 14 13 19 25 20 12 13 12HIMMELBF 4 98 101 99 3156 3133 3157 209 210 19017



NEW ALGORITHM ALGORITHM [14] LANCELOTPROBLEM n ITER FUN GRAD ITER FUN GRAD ITER FUN GRADHIMMELBG 2 4 4 5 6 7 7 8 9 8HIMMELBH 2 5 12 6 4 7 5 1 2 2JENSMP 2 9 6 10 9 16 10 9 10 10KOWOSB 4 10 16 11 8 11 9 10 11 8LIARWHD 36 10 3 11 10 8 11 10 12 11LIARWHD 100 10 3 11 10 8 11 13 14 14MANCINO 100 5 3 6 5 9 6 15 16 16MOREBV 10 2 3 3 2 8 3 2 3 3MOREBV 100 1 2 2 1 8 2 1 2 2MSQRTALS 4 12 7 13 8 14 9 15 16 15MSQRTALS 49 2482 4980 2483 * * * (19) (20) (16)MSQRTALS 100 112 341 113 * * * 17 18 16MSQRTBLS 9 14 23 15 21 57 22 13 14 12MSQRTBLS 49 62 151 63 * * * 17 18 16MSQRTBLS 100 415 1516 416 * * * 25 26 22NCB20B 50 12 21 13 15 84 16 27 28 23NCB20B 100 14 20 15 28 79 29 22 23 18NONDIA 50 6 9 7 10 8 11 19 20 17NONDIA 100 6 8 7 9 8 10 19 20 18NONDQUAR 100 15 3 16 15 8 16 15 16 16OSBORNEA 5 30 35 31 22 32 23 37 38 35OSBORNEB 11 30 39 31 * * * (19) (20) (18)PALMER1C 8 1 2 2 1 8 2 17 18 18PALMER1D 7 1 2 2 1 8 2 14 15 15PALMER2C 8 1 2 2 1 8 2 12 13 13PALMER3C 8 1 2 2 1 8 2 13 14 14PALMER4C 8 1 2 2 1 8 2 46 47 47PENALTY1 4 16 7 17 16 12 17 36 37 32PENALTY1 10 23 9 24 23 14 24 40 41 35PENALTY1 50 28 8 29 28 13 29 69 70 59PENALTY1 100 32 9 33 32 14 33 48 49 44PENALTY2 4 8 5 9 8 10 9 8 9 9PENALTY2 10 29 14 30 29 19 30 98 99 82PENALTY2 50 21 9 22 21 14 22 39 40 36PENALTY2 100 19 7 20 19 12 20 19 20 20PENALTY3 50 17 27 18 18 16 19 21 22 21PENALTY3 100 16 9 17 17 38 18 * * *PFIT1LS 3 168 238 169 48 36 49 433 434 351PFIT2LS 3 36 34 37 42 35 43 249 250 220PFIT3LS 3 38 38 39 79 76 80 155 156 130PFIT4LS 3 57 58 58 229 630 230 386 387 317POWELLSG 4 15 5 16 15 10 16 15 16 16POWELLSG 20 16 3 17 16 8 17 15 16 16POWELLSG 100 16 3 17 16 8 17 15 16 1618



NEW ALGORITHM ALGORITHM [14] LANCELOTPROBLEM n ITER FUN GRAD ITER FUN GRAD ITER FUN GRADPOWER 10 17 4 18 17 9 18 16 17 17POWER 50 21 3 22 21 8 22 19 20 20POWER 100 23 4 24 23 9 24 22 23 23QUARTC 25 19 20 20 19 8 20 21 22 22QUARTC 100 24 25 25 24 9 25 26 27 27ROSENBR 2 5 5 6 5 11 6 30 31 26S308 2 9 6 10 9 11 10 10 11 10SCHMVETT 3 3 3 4 3 13 4 3 4 4SCHMVETT 10 3 3 4 3 13 4 3 4 4SCHMVETT 100 3 3 4 3 13 4 3 4 4SINQUAD 5 11 4 12 11 9 12 11 12 12SINQUAD 50 11 3 12 11 8 12 38 39 35SINQUAD 100 11 3 12 11 8 12 56 57 50SISSER 2 12 5 13 12 10 13 12 13 13SNAIL 2 118 129 119 129 311 130 90 91 77SPMSRTLS 28 21 28 22 28 87 29 12 13 11SPMSRTLS 100 27 65 28 111 444 112 14 15 13SROSENBR 10 5 4 6 5 10 6 6 7 7SROSENBR 50 5 4 6 5 10 6 6 7 7SROSENBR 100 5 4 6 5 10 6 6 7 7TOINTGOR 50 6 3 7 6 9 7 9 10 10TOINTGSS 10 1 2 2 1 8 2 2 3 3TOINTGSS 50 1 2 2 1 8 2 2 3 3TOINTGSS 100 1 2 2 1 8 2 2 3 3TOINTPSP 50 112 78 113 71 246 72 23 24 21TOINTQOR 50 1 2 2 1 8 2 6 7 7TQUARTIC 5 1 2 2 1 8 2 1 2 2TQUARTIC 50 1 2 2 1 8 2 10 11 9TQUARTIC 100 1 2 2 1 8 2 12 13 12TRIDIA 10 1 2 2 1 8 2 1 2 2TRIDIA 50 1 2 2 1 8 2 2 3 3TRIDIA 100 1 2 2 1 8 2 2 3 3VARDIM 10 14 4 15 14 9 15 14 15 15VARDIM 50 22 4 23 22 9 23 22 23 23VARDIM 100 25 4 26 25 9 26 25 26 26VAREIGVL 10 12 7 13 50 48 51 18 19 14VAREIGVL 50 13 4 14 13 9 14 13 14 14VAREIGVL 100 12 3 13 12 8 13 12 13 13VIBRBEAM 8 23 34 24 38 84 39 * * *WATSON 12 8 5 9 9 12 10 8 9 9WATSON 31 147 349 148 * * * 11 12 12WOODS 4 16 10 17 16 15 17 15 16 16WOODS 100 17 8 18 17 13 18 15 16 16YFITU 3 20 22 21 17 20 18 94 95 80ZANGWIL2 2 1 2 2 1 8 2 1 2 219


