
Absolute Value Equation Solution via Dual Complementarity

Olvi L. Mangasarian ∗

Abstract

By utilizing a dual complementarity condition, we propose an iterative method for solving the NP-
hard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm
makes no assumptions on the AVE other than solvability and consists of solving a succession of linear
programs. The algorithm was tested on 500 consecutively generated random solvable instances of
the AVE with n =10, 50, 100, 500 and 1,000. The algorithm solved 90.2% of the test problems to an
accuracy of 10−8 .
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1 Introduction

We consider the absolute value equation (AVE):

Ax − |x| = b, (1.1)

where A ∈ R
n×n and b ∈ R

n are given, and | · | denotes absolute value. A slightly more general form
of the AVE, Ax + B|x| = b was introduced in [14] that was investigated algorithmically in [15] and
in a more general context in [8]. The AVE (1.1) was investigated in detail theoretically in [11], and a
bilinear program in the primal space of the problem was prescribed there for the special case when the
singular values of A are not less than one. No computational results were given in either [11] or [8]. In
contrast in [7], computational results were given for a linear-programming-based successive linearization
algorithm utilizing a concave minimization model and a primal-dual bilinear model in [10]. As was
shown in [11], the general NP-hard linear complementarity problem (LCP) [2, 3, 1], which subsumes
many mathematical programming problems, can be formulated as an AVE (1.1). This implies that
(1.1) is NP-hard in its general form. More recently a generalized Newton method was proposed for
solving the AVE (1.1) [9], while a uniqueness result for the AVE (1.1) is presented in [16] and for a more
general version of the AVE (1.1) in [17]. Finally, existence and convexity results are given in [4], while
an algorithm for computing all solutions of an AVE (1.1) is given in [18], and equivalent formulations
of the AVE (1.1) are given in [13].

Our present approach consists of formulating the AVE (1.1) as a linear program with a certain
requirement on its dual. This requirement ensures, through the dual complementarity condition, that
the linear program generates a solution to the AVE (1.1). This requirement on the dual linear program
is achieved by successively modifying the primal linear program based on a prior dual program. In most
instances this approach eventually obtains a solution to the AVE (1.1). In Section 2 we outline the
theory behind our approach and in Section 3 we state our iterative algorithm that consists of solving
a succession of linear programs with modified objective functions. In Section 4 we give computational
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results that show the effectiveness of our approach by solving 90.2% of a sequence of 500 randomly
generated consecutive AVEs in R

10 to R
1,000 to an accuracy of 10−8 . Section 5 concludes the paper.

We describe our notation now. All vectors will be column vectors unless transposed to a row vector
by a prime ′. For a vector x ∈ R

n the notation xj will signify the j-th component. The scalar (inner)
product of two vectors x and y in the n-dimensional real space R

n will be denoted by x′y. For x ∈ R
n,

‖x‖∞ will denote the ∞-norm: max
i=1,...,n

|xi|. The notation A ∈ R
m×n will signify a real m×n matrix. For

such a matrix, A′ will denote the transpose of A. A vector of ones in a real space of arbitrary dimension
will be denoted by e, while I will denote the identity matrix. Thus for e ∈ R

m and y ∈ R
m the notation

e′y will denote the sum of the components of y. A vector of zeros in a real space of arbitrary dimension
will be denoted by 0. The abbreviation “s.t.” stands for “subject to”.

2 AVE Solution via Dual Based Successive Linear Programs

We begin with the linear program:

min
y,z

h′(y + z) s.t. A(y − z) − (y + z) = b, y ≥ 0, z ≥ 0, (2.2)

and its dual:
max

u
b′u s.t. (A′ − I)u ≤ h, −(A′ + I)u ≤ h, (2.3)

where the variable x of AVE (1.1) is represented as x = y − z with y ≥ 0, z ≥ 0. Here h is an
appropriately chosen vector in R

n that will play a key role in our linear programming formulation. We
note immediately that the following proposition gives sufficient conditions for the choice of h, in terms
of an optimal dual variable u, that will ensure that a solution of the linear program (2.2) indeed solves
AVE (1.1).

Proposition 2.1. Let (y, z) be a solution of the primal problem (2.2) and u be a solution of the
corresponding dual problem (2.3). Then:

h + u > 0 =⇒ Ax − |x| = b, where x = y − z. (2.4)

Proof From the dual complementarity condition we have that:

y′(h − (A′ − I)u) + z′(h + (A′ + I)u) = 0. (2.5)

Hence, if h−(A′−I)u+h+(A′+I)u = 2(h+u) > 0, it follows that either yi = 0, or zi = 0, for i = 1, . . . , n.
Hence, setting x = y − z it follows that y + z = |x| and from the constraint A(y − z) − (y + z) = b, it
follows that Ax − |x| = b. �

We note that Proposition 2.1 is based on a fundamental idea first utilized in [6, Lemma 1] for solving
a general linear complementarity problem by a single linear program.

Based on Proposition 2.1 we have that if h + u > 0 then x = y − z solves AVE (1.1). This leads to
the following choice of for h:

h = max{−u + ǫe, ǫe} > 0, (2.6)

for some small positive ǫ. The inclusion of the last ǫe term in the above expression ensures against the
possibility when the term −u+ ǫe includes some negative components which may lead to a primal linear
program (2.2) that is unbounded below. Since condition (2.6) cannot be imposed a priori because of the
lack of knowledge of what the optimal dual variable u will be, this leads us immediately to the iterative
procedure that we are proposing in the next section, where u is a dual optimal u of a previous linear
programming iteration.



3 Successive Linear Programming Algorithm for the Absolute Value Equation

We begin by stating our successive linear programming algorithm as follows.

Algorithm 3.1. Choose parameter value ǫ for the constraint of (2.6) (typically ǫ = 10−6), tolerance
(typically tol=10−8), and maximum number of iterations itmax (typically itmax= 20).

(I) Initialize the algorithm by determining an initial optimal primal (y0, z0) and its corresponding dual
solution u0 by solving the following linear program:

min
y,z

e′(y + z)

s.t. A(y − z) − (y + z) = b

(y, z) ≥ 0.

(3.7)

Set iteration number i = 0.

(II) Set xi = yi − zi. While ‖Axi − |xi| − b‖∞ > tol and i < itmax perform the following two

steps.

(III) Obtain a dual optimal variable ui+1 by solving the following primal linear program:

min
y,z

max{−ui + ǫ, ǫe}′(y + z)

s.t. A(y − z) − (y + z) = b

(y, z) ≥ 0.

(3.8)

(IV) Set i = i + 1 and go to Step (II).

We note that since the feasible region of (3.8) has a finite number of vertices, then for an infinite
sequence {ui} in the above algorithm, one such vertex of (3.8) must appear an infinite number of times
if itmax = ∞. Hence the corresponding uī to that vertex is repeated an infinite number of times also.
Thus uī is an accumulation of the sequence {ui}. This fact in itself does not necessarily ensure that
uī leads to a solution of AVE (1.1). However, if at any iteration i in the above algorithm, including ī,
ui+1 = ui, then xi+1 = yi+1 − zi+1 solves AVE (1.1). This is so because for h = max{−ui + ǫe, ǫe}, we
have that:

h + ui+1 = max{−ui + ǫe, ǫe} + ui ≥ ǫe > 0. (3.9)

Hence it follows by Proposition 2.1 that xi+1 = yi+1−zi+1 solves AVE (1.1). We thus have the following
proposition.

Proposition 3.2. If for some i in Algorithm 3.1, ui+1 = ui, then xi+1 = yi+1 − zi+1 solves AVE (1.1)
and Algorithm 3.1 terminates at this solution.

This proposition does not always guarantee termination of Algorithm 3.1 at an AVE (1.1) solution.
However, computationally this appears to be the case in most instances, as demonstrated in the next
section where exact solutions are obtained for over 90% of 500 randomly generated problems to an
accuracy of 10−8.



4 Computational Results

We implemented our algorithm by solving 500 solvable random instances of the absolute value equation
(1.1) consecutively generated. Elements of the matrix A were random numbers picked from a uniform
distribution in the interval [−5, 5]. A random solution x with random components from [-.5,.5] was
generated and the right hand side b was computed as b = Ax− |x|. All computation was performed on
4 Gigabyte machine with a 3159MHz CPU running i386 rhe15 Linux. We utilized the CPLEX linear
programming code [5] within MATLAB [12] to solve our linear programs.

Of the 500 test problems, over 90% were solved exactly to an ∞-norm tolerance of 10−8. The
maximum number of iterations was set at 20 for n = 10, 50, 100, 500 and at 40 for n = 1, 000. The
computational results are summarized in Table 1 and are better in the number of problems solved
accurately and in total solution time than those given in [10] for a similar set of problems where a
bilinear minimization approach was used but only 88.6% of the problems were solved to a lower accuracy
of 10−6. Furthermore, the present approach is much more general than that of [9] which is applicable
only to AVEs with singular values of A greater than 1.

It is interesting to note that an average of 90.2% solution rate was achieved among the 500 problems
described in Table 1 even though Proposition 3.2 does not guarantee a solution of AVE (1.1) by
Algorithm 3.1 unless ui+1 = ui. One possible justification for our solution rate is that all our test
problems have a solution and it is not a simple matter to generate an AVE (1.1) that has no solution,
to test our algorithm on, nor can our algorithm determine with any certainty that no solution exists for
such a problem.

Problem Size Number of AVEs out of 100 Solved Average # of Time in Seconds for
n with ∞-norm Error ≤ tol = 10−8 Iterations per Problem Solving 100 AVEs

10 92 6.29 1.7356

50 93 9.15 3.1598

100 91 9.38 13.560

500 85 8.68 2,128.9

1,000 90 7.91 17,053

Table 1: Computational Results for 500 Randomly Generated Consecutive AVEs

5 Conclusion and Outlook

We have proposed a dual-complementarity-based linear programming formulation for solving the NP-
hard absolute value equation. The method consists of solving a succession of linear programs. In
90.2% of 500 consecutive instances of solvable random test problems, the proposed algorithm solved the
problem to an accuracy of 10−8. Possible future work may consist of precise sufficient conditions under
which the proposed formulation and solution method is guaranteed to terminate in a finite number of
steps.
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