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Abstract

We propose a finitely terminating primal-dual bilinear programming algorithm for the solution of
the NP-hard absolute value equation (AVE): Ax − |x| = b, where A is an n × n square matrix. The
algorithm, which makes no assumptions on AVE other than solvability, consists of a finite number of
linear programs terminating at a solution of the AVE or at a stationary point of the bilinear program.
The proposed algorithm was tested on 500 consecutively generated random instances of the AVE with
n =10, 50, 100, 500 and 1,000. The algorithm solved 88.6% of the test problems to an accuracy of
1e − 6 .
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1 INTRODUCTION

We consider the absolute value equation (AVE):

Ax − |x| = b, (1.1)

where A ∈ Rn×n and b ∈ Rn are given, and | · | denotes absolute value. A slightly more general form
of the AVE, Ax + B|x| = b was introduced in [14] and investigated in a more general context in [9].
The AVE (1.1) was investigated in detail theoretically in [11], and a bilinear program in the primal
space of the problem was prescribed there for the special case when the singular values of A are not less
than one. No computational results were given in either [11] or [9]. In contrast in [8], computational
results were given for a linear-programming-based successive linearization algorithm utilizing a concave
minimization model. As was shown in [11], the general NP-hard linear complementarity problem (LCP)
[3, 4, 2], which subsumes many mathematical programming problems, can be formulated as an AVE
(1.1). This implies that (1.1) is NP-hard in its general form. More recently a generalized Newton
method was proposed for solving the AVE [10], while a uniqueness result for the AVE is presented in
[15] and for a more general version of the AVE in [16], and finally existence and convexity results are
given in [6].

Our point of departure here is to look at the AVE in its primal and dual spaces of the problem
and formulate an algorithm that minimizes a bilinear function (that is the scalar product of two linear
functions) in the combined primal-dual space which has a global minimum of zero that yields an exact
solution of the AVE. In Section 2 we describe our bilinear formulation of the AVE and show that a
zero minimum of the bilinear program yields a solution to the AVE. In Section 3 of the paper we state
our algorithm for the bilinear program consisting of a succession of linear programs that terminate at
a global solution of the the AVE or at a stationary point of the bilinear program. In Section 4 we give
computational results that show the effectiveness of our approach by solving 88.6% of a sequence of 500
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randomly generated consecutive AVEs in R10 to R1,000 to an accuracy of 1e − 6 . Section 5 concludes
the paper.

We describe our notation now. All vectors will be column vectors unless transposed to a row vector
by a prime ′. For a vector x ∈ Rn the notation xj will signify the j-th component. The scalar (inner)
product of two vectors x and y in the n-dimensional real space Rn will be denoted by x′y. For x ∈ Rn,

‖x‖ denotes the 2-norm: (
n∑

i=1

(xi)
2)

1

2 . The notation A ∈ Rm×n will signify a real m×n matrix. For such

a matrix, A′ will denote the transpose of A. A vector of ones in a real space of arbitrary dimension will
be denoted by e. Thus for e ∈ Rm and y ∈ Rm the notation e′y will denote the sum of the components
of y. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. The abbreviation
“s.t.” stands for “subject to”.

2 Bilinear Formulation of the Absolute Value Equation

We begin with the linear program:

min
x,y

h′y s.t. Ax − y = b, x + y ≥ 0, −x + y ≥ 0, (2.2)

and its dual:
max
u,v,w

b′u s.t. A′u + v − w = 0, −u + v + w = h, (v, w) ≥ 0, (2.3)

where h is some vector in Rn that will play a key role in a bilinear programming formulation. We now
state the following simple lemma.

Lemma 2.1. Let (x, y) be a solution of the primal problem (2.2) and (u, v, w) be a solution of the
corresponding dual problem (2.3). Then:

v + w > 0 =⇒ Ax − |x| = b (2.4)

Proof From the complementarity condition we have that:

v′(x + y) + w′(−x + y) = 0. (2.5)

Hence, if v + w > 0 it follows that either (x + y)i = 0, or (−x + y)i = 0, for i = 1, . . . , n. Hence y = |x|
and from the constraint Ax − y = b it follows that Ax − |x| = b. �

Based on this lemma it follows that for a primal-dual optimal solution (x, y, u, v, w), if v + w ≥ ǫe
for a positive ǫ, then Ax−|x| = b. Furthermore, from the dual constraints we have that h = −u+v +w
and hence the difference between the primal and dual objective functions evaluated at a primal-dual
feasible point becomes:

h′y − b′u = (−u + v + w)′y − b′u ≥ 0, (2.6)

where the inequality of (2.6) follows from the fact that at a primal-dual feasible point, the primal
objective function exceeds or equals the dual objective function. At a primal-dual optimal point this
difference is zero. Hence combining these statements with Lemma 2.1 and the extra imposed condition
that v + w ≥ ǫe, we have the following proposition.



Proposition 2.2. Equivalence of AVE and Zero Minimum of the Bilinear Program At a zero
minimum of the following bilinear program:

min
x,y,u,v,w

y′(−u + v + w) − b′u

s.t. Ax − y = b
x + y ≥ 0

−x + y ≥ 0
A′u + v − w = 0

v + w ≥ ǫe
(v, w) ≥ 0

(2.7)

we have that y = |x| and Ax − |x| = b for any solution point (x, y, u, v, w).

We establish now the existence of a zero-minimum solution to the bilinear program (2.7) under the
assumption that AVE (1.1) is solvable.

Proposition 2.3. Existence of a Zero-Minimum Solution to the Bilinear Program Under
the assumption that the absolute value equation (1.1) is solvable, the bilinear program (2.7) has a zero
minimum solution (x, y, u, v, w) such that x solves the absolute value equation (1.1).

Proof Since AVE (1.1) has a solution, say x, then the feasible region of the bilinear program (2.7) is
nonempty because the point (x, y = |x|, u = 0, v = w = ǫe/2) satisfies the constraints of (2.7). Hence
the quadratic bilinear objective function of (2.7) which by Proposition 2.2 is bounded below by zero
must by [5] have a solution. Since by Proposition 2.2 a zero-minimum solution solves AVE, and AVE is
solvable by assumption, such a zero-minimum solution exists that solves AVE. �

We now present a computational algorithm for solving the bilinear program (2.7) that consists of
solving a finite number of linear programs.

3 Bilinear Programming Algorithm for the Absolute Value Equation

We begin by stating our bilinear algorithm as follows.

Algorithm 3.1. Choose parameter value ǫ for the constraint of (2.7) (typically ǫ = 1e − 2), tolerance
(typically tol=1e − 6), and maximum number of iterations itmax (typically itmax= 40).

(I) Initialize the algorithm by determining an initial (x0, y0) by solving the following linear program:

min
x,y

e′y

s.t. Ax − y = b
x + y ≥ 0

−x + y ≥ 0

(3.8)

Set iteration number i = 0.

(II) While ‖Axi − |xi| − b‖ > tol, the bilinear objective function of (2.7) is decreasing, and
i ≤ itmax perform the following three steps.

(III) Solve the following linear program for (ui+1, vi+1, wi+1):

min
u,v,w

yi′(−u + v + w) − b′u

s.t. A′u + v − w = 0
v + w ≥ ǫe
(v, w) ≥ 0

(3.9)



(IV) Solve the following linear program for (xi+1, yi+1):

min
x,y

(−ui+1 + vi+1 + wi+1)′y

s.t. Ax − y = b
x + y ≥ 0

−x + y ≥ 0

(3.10)

(V) i = i + 1. Go to Step (II).

We establish now finite termination of our bilinear algorithm.

Proposition 3.2. Finite Termination of the Bilinear Algorithm Under the assumption that
the absolute value equation (1.1) is solvable and the maximum number of iterations itmax is suf-
ficiently large, the Bilinear Algorithm 3.1 terminates in a finite number of iterations at a global
zero-minimum point that solves the absolute value equation (1.1), or at iteration i with a solution
(xi+1, yi+1, ui+1, vi+1, wi+1) that satisfies the following minimum principle necessary optimality condi-
tion for the bilinear program (2.7):

(−ui+1 + vi+1 + wi+1)′(y − yi+1) − (yi+1 + b)′(u − ui+1) + yi+1′(v − vi+1) + yi+1′(w − wi+1) ≥ 0,
∀x ∈ X, (u, v, w) ∈ U,

(3.11)
where

X = {(x, y) | Ax − y = b, x + y ≥ 0, −x + y ≥ 0}, (3.12)

U = {(u, v, w) | A′u + v − w = 0, v + w ≥ ǫe, (v, w) ≥ 0}. (3.13)

Proof Note first that the sets X and U defined above are nonempty because as pointed out earlier that
under the assumption that AVE has a solution x then (x, |x|) ∈ X and (0, ǫe/2, ǫe/2) ∈ U . To keep the
proof simple we shall assume that neither X nor U have straight lines going infinity in both directions.
This assumption which allows us to utilize [13, Corollary 32.3.4], can be easily achieved by defining
x = xI − xII , xI ≥ 0, xII ≥ 0 and u = uI − uII , uI ≥ 0, uII ≥ 0. Hence, the bilinear program
(2.7) with an objective function bounded below by zero, which is equivalent to a concave function
minimization [1, Proposition 2.2], has a vertex solution on the polyhedral set X × U . If for some ith
iteration the bilinear objective function does not decrease, then each of the linear programs of steps
(III) and (IV) of the algorithm must have returned (xi+1, yi+1) and (ui+1, vi+1, wi+1) such that:

yi+1′(−u+v+w)−b′u ≥ yi+1′(−ui +vi +wi)−bui = yi+1′(−ui+1 +vi+1 +wi+1)−bui+1, ∀(u, v, w) ∈ U,
(3.14)

and

(−ui+1 + vi+1 + wi+1)′y ≥ (−ui+1 + vi+1 + wi+1)′yi = (−ui+1 + vi+1 + wi+1)′yi+1, ∀(x, y) ∈ X. (3.15)

Combining the inequalities of (3.14) and (3.15) gives the minimum principle necessary optimality
condition (3.11). Since there are a finite number of vertices of the set X × U , and since each vertex
visited by Algorithm 3.1 gives a lesser value for the bilinear objective than the previous vertex, no vertex
is repeated. Thus our algorithm must terminate at either a global zero minimum solution or a point
satisfying the minimum principle necessary optimality condition. �

We turn now to our computational results.



4 Computational Results

We implemented our algorithm by solving 500 solvable random instances of the absolute value equation
(1.1) consecutively generated. Elements of the matrix A were random numbers picked from a uniform
distribution in the interval [−5, 5]. A random solution x with random components from [-.5,.5] was
generated and the right hand side b was computed as b = Ax− |x|. All computation was performed on
4 Gigabyte machine running i386 rhe15 Linux. We utilized the CPLEX linear programming code [7]
within MATLAB [12] to solve our linear programs.

Of the 500 test problems, 88.6% were solved exactly to a tolerance set to tol = 1e−6. The maximum
number of iterations was set at 40. The computational results are summarized in Table 1.

Problem Size Number of AVEs out of 100 Time in Seconds for
n with 2-norm error ≤ tol=1e-6 Solving 100 Equations

10 90 1.805

50 87 5.725

100 88 20.605

500 88 1,996.6

1,000 90 19,008

Table 1: Computational Results for 500 Randomly Generated Consecutive AVEs

5 Conclusion and Outlook

We have proposed a bilinear programming formulation for solving the NP-hard absolute value equation.
The bilinear program was solved by a finite succession of linear programs. In 88.6% of 500 instances, for
each solvable random test problem, the proposed algorithm solved the problem to an accuracy of 1e−6.
Possible future work may consist of precise sufficient conditions under which the proposed formulation
and solution method is guaranteed to solve this NP-hard problem exactly.
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