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Abstract

We introduce a class of linear programs with constraints in the form

of implications. Such linear programs arise in support vector machine

classification, where in addition to explicit datasets to be classified, prior

knowledge such as expert’s experience in the form of logical implications,

are imposed on the classifier. The overall problem can be viewed either

as a semi-infinite linear program or as a linear program with equilibrium

constraints which, in either case, can be solved by an equivalent simple

linear program under mild assumptions.

1 Introduction

Recently support vector machines (SVMs) [15, 3, 16, 14, 4, 13], which consti-
tute the method of choice for classification and other approximation problems,
were applied to problems where prior expert knowledge, such as doctors’ expe-
rience, was incorporated into the classification problem in order to improve the
correctness of the classifier generated [5, 6]. This resulted in a linear program
where constraints corresponding to prior knowledge were made up of logical
implications. In this work, we generalize this type of constraint and call the
corresponding linear program a knowledge-based linear program. It is interest-
ing to note that such knowledge-based logical implications are equivalent to an
infinite number of constraints, thus resulting in a semi-infinite linear program
[7], or alternatively they can be represented as constraints in a linear program
with equilibrium constraints [8]. However, we will show that in Section 3 that
such logical implications can be be replaced by a finite number of inequality con-
straints, thus leading to a simple linear programming formulation. In Section
2 of the paper we state our general knowledge-based linear program (KBLP)
and motivate it by a knowledge-based linear support vector machine classifier.
In Section 4 we establish equivalence of KBLP to a single linear program, give
some duality results, and establish equivalence of KBLP to a linear program
with equilibrium constraints. Section 5 concludes the paper with a summary
and an outlook.
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A word about our notation. All vectors will be column vectors unless trans-
posed to a row vector by a prime superscript ′. The scalar product of two vectors
x and y in the n-dimensional real space Rn will be denoted by x′y. For x ∈ Rn

and p ∈ [1,∞), the norm ‖x‖p will denote the p-norm: (

n
∑

i=1

|xi|
p)

1
p and ‖x‖∞

will denote max
1≤i≤n

|xi|. For x ∈ Rn, (x+)i = max {0, xi}, i = 1, . . . , n, while the

sign function sign(x) is defined as sign(x)i = 1 if xi > 0 else sign(x)i = −1 if
xi ≤ 0, for i = 1, . . . , n. For x ∈ Rn and y ∈ Rn, x ⊥ y denotes orthogonality,
that is x′y = 0. For an m×n matrix A, Ai will denote the ith row of A, A·j will
denote the jth column of A and Aij will denote the element in row i and column
j. The identity matrix in a real space of arbitrary dimension will be denoted by
I, while a column vector of ones of arbitrary dimension will be denoted by e.

2 The Knowledge-Based Linear Program (KBLP)

We consider the following linear program with a logical implication constraint:

min
x

c′x

s.t. Hx ≥ h,

Ls ≤ d =⇒ (Ex − a)′s ≥ µ.

(1)

Here, H ∈ Rm×n, L ∈ R`×k and E ∈ Rk×n, are given matrices, c ∈ Rn,
h ∈ Rm, d ∈ R` and a ∈ Rk, are given vectors, and µ is a given real number.
An alternate way to write this problem is the following semi-infinite program:

min
x

c′x

s.t. Hx ≥ h,

(Ex − a)′s ≥ µ ∀ : s ∈ {s|Ls ≤ d}.

(2)

We describe now knowledge-based classification problems [5] that lead to
the knowledge-based linear program (1)-(2). These problems, in addition to
classifying conventional datasets consisting of a finite number of points in Rn,
attempt to classify polyhedral sets in Rn which are known to belong to one
of two classes. We thus consider the problem of classifying m points in the
n-dimensional input space Rn, represented by the m × n matrix A, according
to membership of each point Ai in the class A+ or A− as specified by a given
m×m diagonal matrix D with plus ones or minus ones along its diagonal. For
this problem, the linear programming support vector machine [11, 1] with a
linear kernel, which is a variant of the standard support vector machine [16, 2],
is given by the following linear program with parameter ν > 0:

min
(w,γ,y,t)∈Rn+1+m

νe′y + e′t

s.t. D(Aw − eγ) + y ≥ e

t ≥ w ≥ −t

y ≥ 0.

(3)
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Here, w is the normal to the bounding planes:

x′w = γ + 1
x′w = γ − 1,

(4)

that bound most of the points belonging to the sets A+ and A− respectively.
The constant γ determines their location relative to the origin. When the two
classes are strictly linearly separable, that is when the error variable y = 0 in
(3), the plane x′w = γ + 1 bounds all of the class A+ points, while the plane
x′w = γ − 1 bounds all of the class A− points as follows:

Aiw ≥ γ + 1, for Dii = 1
Aiw ≤ γ − 1, for Dii = −1.

(5)

Consequently, the plane:

x′w = γ, (6)

midway between the bounding planes (4), is a separating plane that separates
points belonging to A+ from those belonging to A− completely if y = 0, else
only approximately. The 1-norm term ‖w‖1 in (3), that is the term e′t at a
solution point, which is half the reciprocal of the distance 2

‖w‖1
measured using

the ∞-norm distance [10] between the two bounding planes of (4), maximizes
this distance, often called the “margin”. Maximizing the margin enhances the
generalization capability of a support vector machine [16, 2]. If the two classes
are linearly inseparable, then the two planes bound the two classes with a “soft
margin” (i.e. bound approximately with some error) determined by the non-
negative error variable y, that is:

Aiw + yi ≥ γ + 1, for Dii = 1
Aiw − yi ≤ γ − 1, for Dii = −1.

(7)

The 1-norm of the error variable y is minimized parametrically with weight ν

in (3), resulting in an approximate separating plane. This plane acts as a linear
classifier as follows:

sign(x′w − γ )

{

= 1, then x ∈ A+

= −1, then x ∈ A−,
(8)

where sign(·) is the sign function defined in the Introduction. Suppose now that
we have prior information of the following type. All points x ∈ Rn lying in the
polyhedral set determined by the linear inequalities:

Bx ≤ b, (9)

where B ∈ Rk×n and b ∈ Rk, belong to class A+. Such inequalities generalize
simple box constraints such as a ≤ x ≤ d. Looking at the inequalities (9) we
conclude that the following implication must hold:

Bx ≤ b =⇒ x′w ≥ γ + 1. (10)
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That is, the knowledge set {x | Bx ≤ b} lies on the A+ side of the bounding
plane x′w = γ + 1. This leads to the following knowledge-based support vector
machine classification problem:

min
(w,γ,y,t)∈Rn+1+m

νe′y + e′t

s.t. D(Aw − eγ) + y ≥ e

t ≥ w ≥ −t

y ≥ 0
Bs ≤ b =⇒ s′w ≥ γ + 1,

(11)

which is a special case of the knowledge-based linear program (1) upon mak-
ing the appropriate identifications for x, c, H, h, L, d, E, a, µ in (1) in terms of
w, γ, y, t, ν, D, A, B, b of (11).

We show now that the implication constraint (10) is equivalent to a finite
number of inequality constraints and hence KBLP (1) is equivalent to a simple
linear program.

3 Equivalence of KBLP to a Linear Program

with a Finite number of Linear Inequalities

The equivalence result can be obtained as a direct consequence of the set con-
tainment characterizations on [12, Proposition 2.1] or more directly by Motzkin’s
Theorem of the Alternative [9, Theorem 2.4.2] which we utilize here.

Proposition 3.1 Implication Constraint as Linear Inequalities Let the
set {s |Ls ≤ d} be nonempty. Then, for for a fixed x ∈ Rn, the implication
constraint:

Ls ≤ d =⇒ (Ex − a)′s ≥ µ, (12)

is equivalent to the following system of linear inequalities having a solution u ∈
R`:

L′u+ Ex = a

−d′u ≥ µ

u ≥ 0.

(13)

Proof For a fixed x ∈ Rn, the implication (12) is equivalent to the following
system having no solution (s, ζ) ∈ Rk+1 :

Ls − dζ ≤ 0, (Ex − a)′s − µζ < 0, −ζ < 0. (14)

By Motzkin’s Theorem [9, Theorem 2.4.2] this is equivalent to the following
system having a solution (u, ξ, η) ∈ R`+2:

L′u + (Ex − a)ξ = 0, −d′u − µξ − η = 0, (u, ξ, η) ≥ 0, (ξ, η) 6= 0. (15)
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If ξ = 0, then η > 0 and the system (15) having such a solution contradicts
the nonemptiness assumption on {s |Ls ≤ d}, because for s ∈ {s |Ls ≤ d} we
obtain the contradiction:

0 = s′L′u ≤ u′d = −η < 0. (16)

Hence the system (15) must have a solution with ξ > 0. Dividing throughout
by ξ, and redefining u

ξ
→ u, η

ξ
→ η, the system (15) becomes:

L′u + (Ex − a) = 0, −d′u − µ = η ≥ 0, u ≥ 0, (17)

which is equivalent to (13).2
With the above proposition the following equivalence becomes evident.

Corollary 3.2 Equivalent KBLP Under the assumption that the set {s |Ls ≤
d} is nonempty, the KBLP (1) is equivalent to the following linear program with
a finite number of linear inequalities:

min
x,u

c′x

s.t. Hx ≥ h

Ex+ L′u = a

−d′u ≥ µ

u ≥ 0.

(18)

We turn now to establishing existence of solution to KBLP (1) through the
above equivalence and to some duality results.

4 Existence of Solution and Duality for KBLP

We will first establish that KBLP (1) has a solution provided that it is feasible
and that the underlying linear program without the knowledge constraint is
solvable.

Proposition 4.1 Existence of Solution to KBLP Let KBLP (1) be feasible,
that is:

X = {x |Hx ≥ h, (Ex − a)′s ≥ µ, ∀s : Ls ≤ d} 6= ∅, (19)

and that the underlying linear program:

min
x

c′x

s.t. Hx ≥ h,
(20)

is solvable, then KBLP (1) is solvable.

Proof The dual of the underlying linear program (20) is:

max
t

h′t

s.t. H ′t = c,

t ≥ 0,

(21)
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while the dual of the equivalent KBLP (18) is:

max
v,r,ζ

h′v+ a′r+ µζ

s.t. H ′v+ E′r = c

Lr− dζ ≤ 0
(v, ζ) ≥ 0.

(22)

The assumption that KBLP (1) is feasible, that is X 6= ∅, is equivalent to the
fact the equivalent KBLP (18) is feasible. Since the underlying linear program
(20) is solvable, its dual (21) is feasible. It follows that the dual (22) of the
equivalent KBLP (18) is also feasible by taking v = t, r = 0, ζ = 0. Hence
the equivalent KBLP (18) is solvable because it is feasible and its dual (22) is
feasible. Hence KBLP (1) is solvable. 2

Having established existence of solution to KBLP (1), we pose the question:
When is the dual (22), to the equivalent KBLP (18), also a KBLP? That is,
can the constraints of (22) be reduced to logical implication constraints and
linear inequalities? In its present general form, the dual problem does not
seem to be amenable to such a reduction. However if we take a special case of
h = 0, d = 0, µ = 0, then indeed both the primal KBLP (1) and its dual (22)
are KBLPs as follows.

Proposition 4.2 Dual KBLPs Let

Y = {x |Hx ≥ 0, (Ex − a)′s ≥ 0, ∀s : Ls ≤ 0} 6= ∅. (23)

Then the following problems are dual knowledge-based linear programs for which
standard linear programming duality results hold:

min
x

c′x

s.t. Hx ≥ 0
Ls ≤ 0 =⇒ (Ex − a)′s ≥ 0.

(24)

max
r

a′r

s.t. Lr ≤ 0
Hy ≤ 0 =⇒ (−E′r + c)′y ≤ 0.

(25)

Proof Since (24) is a special case of KBLP (1), its dual is given as a special
case of (22), the dual of KBLP (1): as:

max
v,r,ζ

a′r

s.t. H ′v+ E′r = c

Lr ≤ 0
v ≥ 0.

(26)

For a fixed r ∈ Rk it follows, by the Farkas Theorem [9, Theorm 2.4.6], that
the first and last constraints of (26) are equivalent to the following system not
having a solution y ∈ Rn:

Hy ≤ 0, (c − E′r)′y > 0, (27)
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which in turn is equivalent to the implication:

Hy ≤ 0, =⇒, (−E′r + c)′y ≤ 0. (28)

Hence if we replace the first and last constraints of (26) by the equivalent im-
plication of (28), we obtain the desired KBLP dual (25). 2

One final interesting result is a connection to linear programs with equilib-
rium constraints (LPEQs) [8]. We will show that our KBLP (1) can be rewritten
as an LPEQ that can be solved as a single linear program (18). To set the KBLP
as an LPEQ note that KBLP (1) can be written in the equivalent form:

min
x

{c′x |Hx ≥ h, min
s

{(Ex − a)′s |Ls ≤ d} ≥ µ}. (29)

The dual to the inner linear program in (29) is given by:

max
u

− d′u s.t. − L′u = Ex − a, u ≥ 0. (30)

Hence the formulation (29) can be rewritten, using the KKT conditions for the
inner linear program as the following LPEQ:

min
x,s,u

{c′x |Hx ≥ h, Ex + L′u = a, d′u + µ ≤ 0, 0 ≤ u ⊥ (−Ls + d) ≥ 0}. (31)

However, as we have established in Corollary 3.2, that the orthogonality condi-
tion u ⊥ (−Ls + d) ≥ 0 is not needed and can be dropped. So the LPEQ (31)
can be solved as the single linear program (18). A possible intuitive justification
for this is that primal and dual feasibility for the inner linear program of (29)
is sufficient, without the orthogonality condition u ⊥ (−Lu + d) ≥ 0, to induce
the condition (Ex− a)′s ≥ −d′u ≥ µ for any s ∈ Rk such that Ls ≤ d, which is
the implication constraint of KBLP (1).

5 Conclusion

We have established the equivalence of linear programs with logical implication
constraints to conventional linear programs with a finite number of inequal-
ities. We refer to such linear programs as knowledge-based linear programs
(KBLPs) because they arise naturally in classification problems where these
implication constraints are generated by prior knowledge. Since KBLPs can
also be written as semi-infinite linear programs or as linear programs with equi-
librium constraints, it follows from our equivalence result that such semi-infinite
linear programs and linear programs with equilibrium constraints can be solved
as single linear programs with a finite number of constraints. KBLPs can be
generalized in a number of ways including the handling implication constraints
involving nonlinear terms in the primal variable x. One such generalization us-
ing nonlinear kernels has been proposed in [6]. Another interesting application
is to approximation problems where prior knowledge can be used to obtain bet-
ter approximations. This avenue of research is currently being investigated. It
would be interesting to find other real world applications that can be modeled
as knowledge-based linear or convex programs.
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