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ABSTRACT 

Incorporating General Incident Knowledge into Automatic Incident Detection: A Markov 

Logic Network Method 

Min Liu 

Under the supervision of Professor Bin Ran 

At the University of Wisconsin-Madison 

 

Automatic incident detection (AID) algorithms have been studied for more than 50 years. 

However, due to the development in some competing technologies such as cell phone call 

based detection, video detection, the importance of AID in traffic management has been 

decreasing over the years.  In response to such trend, AID researchers introduced new universal 

and transferability requirements in addition to the traditional performance measures. Based on 

these requirements, the recent effort of AID research has been focused on applying new 

artificial intelligence (AI) models into incident detection and significant performance 

improvement has been observed comparing to earlier models. To fully address the new 

requirements, the existing AI models still have some limitations including 1) the black-box 

characteristics, 2) the overfitting issue, and 3) the requirement for clean, large, and accurate 

training data. Recently, Bayesian network (BN) based AID algorithm showed promising 

potentials in partially overcoming the above limitations with its open structure and explicit 

stochastic interpretation of incident knowledge. But BN still has its limitations such as the 
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enforced cause-effect relationship among BN nodes and its Bayesian type of logic inference. In 

2006, another more advanced statistical inference network, Markov Logic Network (MLN), 

was proposed in computer science, which can effectively overcome some limitations of BN and 

also bring the flexibility of applying various knowledge. In this study, an MLN-based AID 

algorithm is proposed. The proposed algorithm can interpret general types of traffic flow 

knowledge, not necessarily causality relationships. Meanwhile, a calibration method is also 

proposed to effective train the MLN.  The algorithm is evaluated based on field data, collected 

at I-894 corridor in Milwaukee, WI. The results indicate promising potentials of the application 

of MLN in incident detection.  

      Thesis Supervisor      Bin Ran 



iii 

 

ACKNOWLEDGEMENTS 

The pursuit of a master degree relies on not only the pursuer’s hard work but also the 

interactions and communications with advisors, professors, colleagues, researchers in the same 

field, and also with friends and families. At the completion of my research work, I am deeply 

thankful for all those wonderful people that contribute to the whole procedure. 

I would like to express the deepest gratitude to my advisor Dr. Bin Ran. This thesis work can 

never be accomplished without his guidance, supervision and encouragement throughout the 

years. I am also grateful for the suggestions and comments from Dr. Peter, Jin, and also 

appreciate his invitation and guidance at the beginning of this project. Further, I would like to 

thank all the members in my group for sharing me with the relevant knowledge and remarkable 

ideas. 

In terms of paper writing and revising, I sincerely appreciate any feedback and comments from 

Dr Bin Ran, Dr David Noyce and Dr Steven, Parker.  

This work cannot be done without the support of my parents. Their never-ending love, 

encouragement and confidence on me have accompanied me around all the up and down times 

during the research. 

 

  



iv 

 

TABLE OF CONTENTS 

ABSTRACT .......................................................................................................................................... i 

ACKNOWLEDGEMENTS .................................................................................................................. iii 

TABLE OF CONTENTS ..................................................................................................................... iv 

LIST OF TABLES ............................................................................................................................... vi 

LIST OF FIGURES ............................................................................................................................ vii 

1 INTRODUCTION ......................................................................................................................... 1 

1.1 Problem Statement ................................................................................................................. 2 

1.2 Research Objectives and Scope of Work ................................................................................ 4 

1.3 Organization of the Thesis ..................................................................................................... 6 

2 LITERATURE REVIEW .............................................................................................................. 7 

2.1 Introduction to Markov Logic Network .................................................................................. 7 

2.2 Overview of Freeway Incident Detection ............................................................................. 11 

2.3 Existing Algorithms on Freeway Automatic Incident Detection ............................................ 14 

2.3.1 California ..................................................................................................................... 15 

2.3.2 Bayesian ...................................................................................................................... 17 

2.3.3 DELOS Algorithm ....................................................................................................... 19 

2.4 Summary of Traffic Flow Features for Feature-Oriented AID Algorithms ............................ 20 

2.5 Overview of Incident Decision Making ................................................................................ 22 

3 PROPOSED METHODOLOGY ................................................................................................. 24 

3.1 From the Field Knowledge of Incidents to MLN .................................................................. 24 

3.2 The Proposed MLN Incident Detection Framework .............................................................. 30 

4 EXPERIMENTAL DESIGN ....................................................................................................... 32 

4.1 Performance Measures ......................................................................................................... 32 

4.2 Data Source and Data Processing Procedure ......................................................................... 34 

4.3 Model Calibration ................................................................................................................ 37 

4.3.1 Calibration of MLN ...................................................................................................... 37 

4.3.2 Calibration of Thresholds ............................................................................................. 37 



v 

 

4.3.3 Other Concerns ............................................................................................................ 38 

4.4 Model Validation ................................................................................................................. 38 

4.5 Model Evaluation................................................................................................................. 40 

4.5.1 Evaluation Criteria ....................................................................................................... 40 

4.5.2 Implementation Details for DR-FAR Curve and PR Curve ........................................... 41 

4.5.3 Implementation Details for California Algorithm .......................................................... 42 

4.5.4 Implementation Details for DELOS Algorithm ............................................................. 42 

4.5.5 Implementation Details for FD2 Algorithm .................................................................. 43 

4.5.6 Implementation Details for California No.8 Algorithm based on PUS ........................... 44 

5 EXPERIMENTAL RESULTS AND SENSITIVITY ANALYSIS ............................................... 44 

5.1 Model Validation Results ..................................................................................................... 44 

5.1.1 Validity of the Incident Pattern Detection ..................................................................... 44 

5.1.2 General Detection Results ............................................................................................ 45 

5.1.3 Details for False Alarms ............................................................................................... 45 

5.2 Model Calibration Results .................................................................................................... 46 

5.3 Model Evaluation Results .................................................................................................... 49 

5.4 Sensitivity Analysis ............................................................................................................. 50 

6 CONCLUSION AND FUTURE WORK ..................................................................................... 52 

6.1 Summary of Chapters .......................................................................................................... 52 

6.2 Conclusion Remarks ............................................................................................................ 53 

6.3 Recommendations to Agencies ............................................................................................ 53 

6.4 Suggested Future Work ........................................................................................................ 55 

6.4.1 Short-term Future Work ............................................................................................... 55 

6.4.2 Long-term Future Work ............................................................................................... 55 

REFERENCE ..................................................................................................................................... 57 

 



vi 

 

LIST OF TABLES 

Table 1.1  Comparison of Incident Detection Technologies ........................................................ 4 

Table 2.1  Weights for each state of A-B clique ........................................................................... 8 

Table 2.2  Predicates Used in the First-Order Logic .................................................................. 10 

Table 2.3  List of Common Incident Detection Features ............................................................ 15 

Table 2.4  List of Common Incident Detection Features ............................................................ 20 

Table 3.1  Incident impact traffic flow patterns ......................................................................... 28 

Table 3.2  First Oder Logic for traffic flow patterns .................................................................. 29 

Table 4.1  Type I and Type II Errors in Classification ............................................................... 34 

Table 4.2  Statistics of Incident Dataset by Number of Lanes Affected .................................... 36 

Table 4.3  Parameter Settings for Model Validation .................................................................. 39 

Table 4.4  Threshold Levels for California No.8 Algorithm Calibration ................................... 42 

Table 4.5  Threshold Levels for DELOS Algorithm Calibration ............................................... 43 

Table 4.6  Threshold Levels for FD2 Algorithm Calibration ..................................................... 43 

Table 4.7  Threshold Levels for the Calibration of California No.8 Algorithm based on PUS . 44 

Table 5.1  Detection Performance during Model Validation ..................................................... 45 

Table 5.2  Average Improvement Summary ............................................................................... 46 

Table 5.3  Calibrated Optimal Parameter Settings for Each Algorithm ..................................... 49 

Table 5.4  Summary of Evaluation Results ................................................................................ 49 

Table 5.5  Sensitivity Analysis Result for MLN Algorithm ....................................................... 51 

Table 5.6  Sensitivity Analysis Result for California-FD Algorithm ......................................... 51 



vii 

 

 

LIST OF FIGURES 

Figure 2.1  A Sample Markov Network ....................................................................................... 8 

Figure 2.2  Decision Tree for California No. 8 Algorithm ......................................................... 16 

Figure 2.3  Bayesian network method ........................................................................................ 18 

Figure 3.1  MLN Incident Detection Framework ....................................................................... 30 

Figure 4.1  Test Site for AID Algorithm Evaluation .................................................................. 35 

Figure 5.1  DR-FAR Curve for Each Algorithm ........................................................................ 46 

Figure 5.2  Precision-Recall Curve for Each Algorithm ............................................................ 48 



1 

 

1 INTRODUCTION 

Freeway incidents cause injury, traffic congestion, increased environmental pollution, and cost 

millions of dollars every year in user-delay, cost, vehicular damage, and personal injury. 

Engineers and transportation officials have dedicated substantial resources in the past years to 

find better ways of preventing freeway incidents from occurring and managing them when they 

do. When there is an incident, minimizing the response time (the time from when an incident 

occurs to the time that emergency crews arrive on the scene) is crucial in several aspects. The 

most important is the treatment of injuries. 

The faster treatment arrives, the greater the survival rate of serious injury during an incident. 

Second, clearing the incident quickly minimizes the traffic flow disruption and the potential for 

secondary incidents. 

Automatic incident detection (AID) has been considered a method for quickly detecting 

potential incidents. The technology has been in the research, development, and testing stages 

since the 1970s. During that time, many incident detection methods and algorithms were 

developed. Past experience has shown that when a traditional AID system is installed, the 

number of false alarms have become such a problem that traffic operations centers stop using 

them altogether. Other systems have a poor enough detection rate that operators are unable to 

rely on the system as their primary method of incident detection. 
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1.1 Problem Statement 

Automatic incident detection (AID) algorithms have been studied for more than 50 years. 

Despite the large number of algorithms proposed, their performance still cannot fully satisfy the 

requirements at traffic management centers (TMC). More recently, due to the implementation 

of E-911 mandate (FCC, 2005) in the US and the development in wireless communication, cell 

phone call based detection algorithms start to take place of the traditional roles of AID 

algorithms at TMCs, with their more reliable detection rate and extremely low false alarm rate 

(Skabardonis et al., 1998). Meanwhile, the increased availability of CCTV (closed-circuit 

television) monitoring system on freeway, the video-based incident detection also becomes a 

major incident detection method used at TMCs. Facing such serious challenges, researchers on 

AID algorithms introduced new universal and transferability requirements in addition to the 

traditional performance requirements, Detection Rate (DR), False Alarm Rate (FAR), and 

MTTD (Mean Time to Detect). Those new requirements include three major aspects, small 

calibration efforts, extremely low false alarms, and the output of incident probabilities 

(Abdulhai et al., 1999). To minimize the calibration efforts, an algorithm should either have 

transferrable parameters that can be used at different sites or times, or being easy and fast to 

calibrate  to allow periodic adjustment of model parameters to reflect time-of-day, day-to-day, 

month-to-month, or seasonal changes in traffic flow pattern. The high false alarm rate is a 

critical drawback of traditional AID algorithms, compared to cell phone call based and other 

competing methods. Hence, reducing the false alarm rate has been a major research focus in 

prevailing AID algorithm development. False alarm rate in AID can be caused by 1) loop 
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detector data quality issues due to the limitation in resources and maintenance, 2) static model 

parameters that cannot reflect dynamic traffic condition changes, and 3) the occurrence of 

incident-like events such as recurrent bottlenecks, and slow moving vehicles, and etc. The 

incorporation of probabilities is another important aspect of improving AID algorithms. 

Probability that comes with each incident alert can support further decision-making by field 

operators. Meanwhile, some valuable stochastic inputs such as the general incident rate or crash 

rate at a highway segment can also be incorporated.  

To meet these new requirements, several artificial intelligence or statistical AID algorithms 

have been proposed. Those algorithms include the classic and probabilistic neural network 

(Stephanedes and Liu, 1995; Cheu and Ritche, 1995; Abdulhai and Ritche, 1999; Adeli and 

Karim, 2000), Genetic algorithms (Roy and Abdulhai, 2003), Support Vector Machine (Yuan 

and Cheu, 2003), Wavelet Analysis (Teng and Qi, 2003), Bayesian Network (Zhang and Taylor, 

2004), and Partial Least Square Regression (Wang et al., 2008). These new algorithms 

significantly shows superior to earlier AID algorithms, while partially satisfying those new 

requirements. However, there are still some limitations. First, many of those algorithms require 

intensive computer science and statistical skills for traffic operators at TMC to implement, 

manage, or tune these algorithms. The direct consequence is that it is difficult for the operators 

to use their field knowledge and experiences to improve the algorithm performance. Second, 

most of them are black-box type of algorithms such as neural network, least square regression, 

support vector machine, or wavelet algorithms. The performance of these algorithms entirely 

depends on the cleanness and accuracy of the training data, which may not always be available 
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in the real world. Bayesian Network (BN) based algorithms. With their open statistical 

inference structure, field knowledge can be easily incorporated into the BN structure and can 

rely on some empirical input such as prior incident rates to reduce the dependence on accurate 

training data. Table 1.1 lists the summary comparison of different detection technologies. 

Table 1.1  Comparison of Incident Detection Technologies 

Detection Method  Pros.  Cons.  

Freeway Service 

Patrol  

Verification/ initial assistance 

upon detection  

Delay 

Labor-intensive  

Emergency Call-in Fast/On-site detection  Labor-intensive 

Delay in communication 

Human errors 

OnStar System 

(OnStar, 2009) 

True instantaneous detection Limited to OnStar equipped 

vehicles 

Require Electrical Control, GPS 

and Wireless System installed. 

CCTV 

Surveillance  

Verification upon detection  Vulnerable to weather, 

illumination etc. 

Cost 

Automatic Incident 

Detection  

•  Fast detection 

•  Passive detection 

 Long maintenance cost  

Accuracy 

Need verification  

 

1.2 Research Objectives and Scope of Work 

The focus of this research is to further improve the performance and explanatory power of 

statistical inference based AID algorithms by introducing another more general structure 

recently introduced in computer science, the Markov Logic Network (MLN) (Domingos et al., 

2009). The most critical benefit of MLN is its flexibility and openness in incorporating real-
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world knowledge compared to BN. BN assumes that between each two nodes within the 

structure should have explicit causality relationship and the entire network cannot allow cycles. 

Moreover, the inference in BN is based on conditional probabilities, which means that the 

inference of each node in the graph only concerns its direct parents, while the inference of 

MLN uses potential functions that can be any arbitrary functions and the inference of each node 

is based on its logically-related sub-graphs rather than the direct parents. With these relaxed 

constraint advantages, MLN has been used to model some complex real-world system with 

more flexibility and explanatory power (Richardson and Domingos, 2006). 

Based on the above status of current AID research, the objectives of my research is as follows:. 

1. Develop a freeway AID algorithm that has promising performance with the ability of 

applying different traffic flow knowledge, open structure, and limited calibrating 

parameters.  

2. Evaluate the performance of the proposed AID algorithm with legacy AID algorithms 

against field data. 

3. Minimize the modification effort when knowledge changes.  

Furthermore, the scope of my research is restrained by the following criteria. 

1. Focus on freeway incident detection. Incidents on arterials are not considered. 

2. Focus on mainline incidents. Incidents on ramps are not considered. 

3. Focus on traffic incidents whose impacts are noticeable in traffic flow. 
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1.3 Organization of the Thesis 

This paper is organized into six chapters. In Chapter 2, literature reviews of automatic incident 

detection and Markov Logic Network. Also, details of major AID algorithms are reviewed and 

summarized. The proposed methodology includes two parts, a knowledge-to-logic translation 

process and decision making module, which are described in details in Chapter 3. For 

knowledge-to-logic translation part, several summarized knowledge and features are translated 

to first order logic, and also the rationale is also clarified. While the decision making module 

illustrates the whole process of the system include input, learning process and data generation. 

In Chapter 4, the experimental design is presented, which includes the performance measures 

for AID algorithms, data source, data processing, model calibration, model validation and 

model evaluation. The model calibration includes the model parameters such as thresholds and 

other basic model parameters. The evaluation method is implementation-based methods using 

traditional evaluation indicators and diagrams. For the implementation, all comparison 

algorithms are calibrated using the same training and testing dataset. And the testing dataset is 

different from the training dataset.  In Chapter 5, results from the experiment are analyzed 

focusing on the learning capability and transferability. Additional analysis is also given to for 

the sensitivities of thresholds calibrated for the proposed models. And finally, in Chapter 6, the 

conclusions are drawn and recommendations for the deployment of the proposed AID models 

are presented.  
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2 LITERATURE REVIEW 

2.1 Introduction to Markov Logic Network 

A Markov logic network (or MLN), proposed by Richardson and Domingos (2006) is a 

statistical inference method similar to Bayesian Network. It combines the first-order logic with 

the Markov network. Markov network (also called Markov Random Field) is an undirected 

graphical representation of logic relations between entities. It is composed of an undirected 

graph 
, ,G X V= Φ

, where X = (X1, X2, …, Xn) ∈χ is the set of random variables 

corresponding to each node, V = (vij| 1 ≤ i, j ≤ n, i ≠ j ) are the set of edges that connects all 

nodes that have dependencies, and  ���·� is the non-negative real-valued potential function 

defined for each clique k. A clique is defined as a sub-graph of G in which every two nodes are 

connected by an edge. The state of a clique is determined by the state combination of its nodes. 

It should be noted that the edges in Markov network indicates an “OR”(∨) relationship, rather 

than, an inference (⇒) relationship in BN, in other words, not necessarily cause-effect 

relationships. The joint distribution for each network state x = (x1, x2, …, xn) of  a Markov 

network is given by  

 
( ) { }( )1

k k

k

P X x x
Z

φ= = ∏
 (0) 

where x{k} represents the state of all nodes in kth clique. Z is the partition function given by 

 
{ }( )k k

x k

Z x
χ

φ
∈

=∑∏
 (0) 
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Furthermore, Markov networks are often conveniently represented as log-linear models as the 

following. 

 ( ) ( )
1

exp j j

j

P X x f x
Z

ω
 

= =  
 
∑  (0) 

where fk (x) is the feature function defined for each network state, fj (x) ∈ {0, 1}, and ωj denotes 

the weight assigned to each feature function. There is one feature corresponding to each 

possible state x{k} of each clique k, with its weight being log φ k(x{k}). For example, consider a 

small clique A-B in a Markov Network shown in Figure 2.1.  

 

Figure 2.1  A Sample Markov Network 

f (x) is defined as the following. 

 
( )

1, if 

0, otherwise
i

A B
f x

¬ ∨
= 
  (1) 

If the weights for each state of the A-B clique are as listed in Table 2.1,   

Table 2.1  Weights for each state of A-B clique 

A B Ф(S,C) 

False False 4.5 

False True 4.5 
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True False 2.7 

True True 4.5 

 

Then the weight in the feature form ωi = log(4.5) = 1.5. Therefore, the probability of the 

outputs of the feature function defined in Equation 4 becomes P (X = x) = log(4.5) / 

(log(4.5)+log(4.5)+ log(2.7)+ log(4.5)) = 0.273. As illustrated in the example, the feature 

function can be defined with respect to only several limited number of variables regardless of 

the actual size of the Markov network. By specifying a small number of such feature functions, 

a more compact representation can be generated rather than the potential-function form 

(Equation 1), particularly when large cliques are present. Learning the weights for MN is an 

NP-Complete problem and the most widely used method for approximate inference in Markov 

networks is Markov chain Monte Carlo (MCMC), and in particular Gibbs sampling, which 

proceeds by sampling each variable in turn given the states of its neighboring nodes, or more 

precisely its Markov blanket. 

To construct a Markov network, the basic formation unit is a clique. Real-world knowledge can 

be used to define each clique by the first-order logic. First-order logic is a widely-used logical 

system using in computer science to interpret complicated real-world knowledge and logics 

into formulas that can be processed in computers. For example, for incident knowledge, 

“incident causes occupancy difference between upstream and downstream to increase”, its first-

order logic formula can be written as “Incident(x) ⇒ OCCDF(x, H)”, in which x is a variable 

indicates freeway segment, H is a constant denotes occupancy difference is high. Incident and 
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OCCDF are called predicates, which specify properties and relations, respectively. Furthermore, 

“Downstream(x)” which maps the current segment to its downstream segment is called a 

function which maps a variable to another variable. The difference between a predicate and a 

function is that the output of predicate is True or False, but the output of function is a variable. 

In this study, the following Predicates are defined to facilitate the interpretation of incident 

related traffic flow knowledge. 

Predicates Meaning 

Incident (x) 

Incident occurs to the upstream of detector station at location x at time interval 

t 

Spd(x, A), Occ(x, A), Flow(x, 

A) 

The level of speed, occupancy, flow of detector at location x equals A (A = H 

(High) or L (Low)). 

Up_Spd(x, A), Up_Occ(x, A), 

Up_Flow(x, A) 

The level of speed, occupancy, flow of the upstream detector of the detector at 

location x equals A (A = H (High) or L (Low)). 

Dn_Spd(x, A), Dn_Occ(x, A), 

Dn_Flow(x, A) 

The level of speed, occupancy, flow of the downstream detector of the detector 

at location x equals A (A = H (High) or L (Low)). 

Dif_Spd(x, A), Dif_Occ(x, A), 

Dif_Flow(x, A) 

The level of speed, occupancy, flow difference between the upstream and the 

downstream detector at location x equals A (A = H (High) or L (Low)). 

  

Table 2.2  Predicates Used in the First-Order Logic 

A formula in first-order logic consists of logical symbols, and connectors such as “¬” (not),  “∧” 

(and), “∨”(or), “⇒” (infer), “∀” (any), and “∃”(exists). In addition, any inference formulas can 

be converted into the Conjunctive Normal Form (CNF) based on “A ⇒ B” is equivalent to 

“¬A ∨ B” so that the clique with non-causal edges can be generated. These subsequent tasks 
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can be effectively implemented in computer programs so that the user can specify their real-

world knowledge with any forms of first-order logic formulas. MLN can be considered the 

template to create Markov network. The added first-order logic functionality provides 

significant convenience and openness to traffic operators to directly apply any field knowledge 

to the real-world decision making system.  

2.2 Overview of Freeway Incident Detection 

There are two critical steps in a typical AID algorithm; feature generation and decision making. 

At the feature generation step, raw traffic measurements are selected, processed or converted 

into features that can reflect the differences between incident conditions and normal conditions. 

At the decision making step, these features are put into pre-trained decision making models to 

decide the incident occurrence. Different algorithms have different methodological focuses on 

the two steps. Correspondingly, AID algorithms can be classified into two categories, feature-

oriented and learning-oriented algorithms. Feature-oriented algorithms focus on interpreting 

raw traffic measurements to incident-explanatory features. Their decision making part can be 

relatively simple, for example, to compare feature values with thresholds or confidence 

intervals. Based on feature characteristics, they can be further classified into deterministic and 

stochastic feature-oriented algorithms. Representative deterministic feature-oriented algorithms 

include California algorithms (Payne 1978, 1997), McMaster algorithms (Persaud 1990, Hall 

1993), and APID (All Purpose Incident Detection) algorithm (Masters etal. 1997). And 

representative stocastic feature-oriented algorithms include SND (Standard Normal Deviates) 

algorithm (Dudek etal. 1974), Bayesian algorithms (Levin and Krause 1978), Dynamic Model 
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based algorithms (Willsky etal. 1980), DELOS (Also called Minnesota) algorithms 

(Stephanedes etal. 1993a, 1993b, 1996). Learning-oriented algorithms focus on implementing 

the decision making module using sophisticated learning models available in computer science 

and statistics. Learning capability of those learning models allows them to “simulate” the 

recognition of an incident without knowing the exact mechanisms of incident impacts on traffic 

flow by tuning the model parameters based on historical traffic flow measurements and 

incident records. This type of algorithms dominates the AID research in the last decade. 

Representative algorithms include Artificial Neural Network (Abdulhai 1999a, 1999b, Cheu 

and Ritchie 1995, Stephanedes 1995, Dia and Rose 1997, Hsiao etal. 1997, Ishak and Al-Deek 

1998, 1999, Jin etal. 2002, Wen etal. 2002), Supporting Vector Machine (Yuan and Cheu 2003), 

Wavelet Analysis (Adeli 2000, Samant 2000, Karim 2002a, 2002b, 2003, Teng and Qi 2003b), 

Bayesian Network (Zhang and Taylor 2006), CUSUM (Cumulative Sum of Log-Likelihood 

Ratio) (Teng 1997, Teng and Qi 2003a), PLSR (Partial Least Square Regression) (Wang 2008) 

and etc.  

The major advantages of feature-oriented algorithms are their clear open structures and explicit 

traffic flow knowledge background. Therefore, feature-oriented algorithms are easy to 

understand, implement, maintain and adjust by TMC operators. The major drawback is that it 

cannot reach as high performance as learning-oriented algorithms. Nevertheless, due to their 

ease of implementation and acceptable performance, feature-oriented algorithms have already 

been widely deployed at many TMCs in United States in the past, while learning-oriented 

algorithms are not as popular (Williams and Guin 2007). Learning-oriented algorithms are 
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superior in performance to feature-oriented ones on the one hand. But on the other hand, they 

require advance computer science or statistical knowledge for TMC operators to understand, 

implement, calibrate or maintain the algorithms. Moreover, these algorithms require clean and 

accurate incident data and traffic flow data for model calibration, which may not always be 

available in practice. Another critical issue is “overfitting”. In computer science and statistics, 

many of the models used by learning-oriented algorithms are well-known for their overfitting 

problems when not tuned properly with clean data. Overfitting refers to the phenomenon that 

perfectly tuning a learning model with noisy or biased training data cause large performance 

drop when running the tuned model against testing data or in real applications (Mitchell 1997). 

These drawbacks make it difficult to transfer these algorithms from experimenting sites to 

implementation sites. Recent research work on learning-oriented algorithms tries to improve 

the generality and transferability of learning-oriented algorithms and some success has been 

achieved (Abdulhai etal. 1999, Zhang and Taylor 2006). Based on the above findings, also 

enlightened by recent progress in traffic flow theory, this research focuses on feature-oriented 

algorithms and tries to improve the performance but still preserves the simplicity and open 

characteristics of feature-oriented algorithms. 
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2.3 Existing Algorithms on Freeway Automatic Incident Detection 

In the following section, existing AID algorithms are summarized based on their performance. 

This research mainly focuses on comparing the current highly effective algorithm with 

proposed algorithm.  

Feature Description (Defined for detector station i and time interval t) 

OCC(i, t) Direct occupancy readings in percentage 

DOCC(i, t) OCC(i+1,t), used in some algorithms 

VOL(i, t) Direct flow rate readings 

SPD(i, t) VOL(i, t)/OCC(i, t), surrogate for speed, for single loop detectors. Or 

the actual spot speed measurement at the detector station for dual loop 

detectors. 

E(i, t) [VOL(i, t)]2/OCC(i, t), surrogate for kinetic energy. 

E′ (i, t)j [VOL(i, t)j]
2
/OCC(i, t)j, surrogate for kinetic energy at detector station i 

and time interval t for lane j. 

OCCDF (i, t) OCC(i, t) – OCC (i+1, t), spatial difference of occupancy readings at 

two adjacent detector stations i and (i+1) at time interval t. 

VOLDF(i, t) VOL(i,t) – VOL(i+1,t), spatial difference of flow rate. 

EDF(i, t) E(i, t) – E(i+1,t), spatial difference of energy 

OCCRDF(i, t) OCCDF(i, t) / OCC(i, t), relative spatial occupancy difference, that is, 

OCCDF normalizes by occupancy reading from upstream detector 

station i at time interval t. 

OCCTD (i, t) OCC(i, t-2) – OCC(i, t), temporal difference between two consecutive 

occupancy readings at detector station i. 

DOCCTD(i, t) OCC(i+1,t-2) – OCC(i+1,t) 

SPDTD(i, t) SPD(i,t-2) – SPD(i,t) 

OCCRTD (i, t) OCCTD(i, t)/ OCC(i, t-2), relative temporal occupancy difference, that 

is OCCTD normalized by occupancy readings at previous time interval.  

DOCCRTD(i,t) DOCCTD(i,t)/OCC(i+1, t-2), DOCCTD normalized by OCC(i+1, t-2) 

SPDRTD(i, t) SPDTD(i,t) / SPD(i+1,t-2) 

D(i, t) ( ) ( )
( )

( )
( )

22

,

,

,

,,












+











 −

tiOCC

tiOCC

tiSPD

tiSPDtiSPD

ff

f
, discontinuity at detector 
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station i and time interval t, where SPDf(i, t) and OCCf(i, t) are 

theoretical surrogated speed and occupancy at free flow. 

 

Table 2.3  List of Common Incident Detection Features 

2.3.1 California 

California algorithms are the most widely deployed AID algorithm. In 1978, Payne (1978) 

published the first paper about detecting incidents using decision trees with states. In this paper, 

a series of algorithms developed by California researchers are described and tested.  Afterwards, 

the algorithms are also evaluated by other researchers (Levin and Krause 1979) and the details 

about implementation are included in two FHWA reports prepared by Payne and his colleagues. 

The algorithm with the best performance in this series is found to be the Algorithm No.8.  The 

algorithm uses the following traffic flow features: OCC(i, t), DOCC(i, t), OCCDF(i, t), 

OCCRDF(i, t) and DOCCTD(i, t). And the decision tree is as follows: 
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Figure 2.2  Decision Tree for California No. 8 Algorithm 

There are several highlights in this decision tree, other than its rather complex structure. The 

first one is the shock wave detection. This is the first set of algorithms that targeting directly at 

the shock waves generated by incidents. The second one is the persistence checking. One 

critical problem caused by detecting shock waves is the false alarms caused by normal traffic 

condition e.g. bottleneck congestion, peak-hour congestion. The algorithm tries to reduce the 

false alarm rate by applying five-time-interval persistence checking for the “STATE” variable. 

 



17 

 

Overall, California No. 8 algorithm is simple, with clear traffic knowledge background and has 

very consistent performance. And it is still one of the few AID algorithms that have been 

deployed in reality. 

2.3.2 Bayesian 

Bayesian algorithms introduced by Levin and Krause (1978) can be considered as the first 

learning-oriented algorithm. Rather than introducing new features, Bayesian algorithms focus 

on optimizing comparison thresholds using stochastic inference. The statistical inference 

considers the conditional probabilities of actual incident occurrence with respect to the 

algorithm output z defined as: 





=
 tinterval  timei,station at condition incident    ,1

 tinterval  timei,station at condition  normal   ,0
z . 

Then the conditional probability for incident happened under z = 1 becomes P(Incident | z = 1), 

and also for normal traffic when z = 0 becomes P (Non-Incident | z = 0). 

The objective function proposed for threshold calibration is to maximize 

T(z) = P (Incident| z =1) + P (Non-Incident | z=0).    

To incorporate persistence checking, z can be further extended to a signal sequence for several 

consecutive time intervals, e.g. z = 001 for three consecutive time intervals with the first two to 

be incident free and the last one to be incident condition. In the proposed algorithm, the number 

of time intervals for persistence checking is set to be three. Figure 2.3 illustrates the basic 

network used in the implementation of Bayesian Network in this research, and it indicates that 

both incident and congestion will impact both the upstream and downstream traffic flow. Users 
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input the different flow state combinations to build a basic probability based relationship, and 

then output will be inferred from conditional probability equation. 

 

Figure 2.3  Bayesian network method 

The proposed procedure for calibrating an optimal threshold is as follows: 

• Fit a probability density functions for all conditional probabilities based on historical 

data. 

• Draw histogram of T(z) versus z. 

• Find the maximal point z
*
 of T(z). 

 

Calibration results presented in the paper show that Bayesian algorithm can reach 100% 

detection rate and 0% false alarm rate. However, again such perfect results are just for 

calibration. As like other early AID experiments, the evaluation is not based on training and 

testing framework.  
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2.3.3 DELOS Algorithm 

DELOS (Detection Logic with Smoothing) algorithm was proposed by Chassiakos and 

Stephanedes (1993). The algorithm has also been referred to as Minnesota Algorithms in some 

literatures. The primary focus of the algorithm is to process the raw occupancy measurements 

into two features; one is a congestion indicator, and the other an incident indicator. Feature 

generation includes the follows steps.  

1) Smooth the occupancy measurements for current and previous time intervals. The notation 

OCC(i, t1, t2, x) is used for the smoothing result of this step, where i is the detector station index, 

t1 and t2 are the starting and ending time interval for smoothing, and x indicates the smoothing 

method selected) 

2) Calculate spatial difference of smoothed occupancy values for current and previous time 

intervals as the following: 

∆OCC(i,t1,t2,x) = OCC(i,t1,t2,x)- OCC(i+1,t1,t2,x).      

3) Normalize the spatial difference by the larger maxOCC(i,t) between the smoothed current 

upstream and downstream occupancy. 

 

Two features are defined as follows: 

( ) ( )
( )

( ) ( ) ( )
( )tiOCC

ytntiOCCxkttiOCC
tiINC

tiOCC

xkttiOCC
ti

,max

,,,,,,
,

,max

,,,
,CON

−∆−+∆
=

+∆
=

     

  

There are three candidate smoothing methods.   
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x Method Formula 
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Table 2.4  List of Common Incident Detection Features 

The above notations are different from those published in the original papers to make it more 

understandable. Calibration results based on DR-FAR curve showed that DELOS algorithm has 

better learning capability than California algorithms.  

2.4 Summary of Traffic Flow Features for Feature-Oriented AID Algorithms 

Feature-oriented AID algorithms rely on incident-related features to detect incidents. In this 

section, a summary is given for the features of all major loop-based feature-oriented AID 

algorithms. Apart from their deterministic or stochastic characteristics, these features can also 

be classified based on how they are calculated temporally and spatially from raw traffic 

measurements.  

Spatially, depending on the number of detector stations involved in calculating the feature 

values, incident detection features can be classified into single-station or dual-station features. 

So far, features using measurements from more than two detector stations have not yet been 

presented. Single-station features are easy to calculate and are more robust to individual 

detector failures than dual-station features. But one critical problem for single-station features 

is that they cannot effectively distinguish incidents from congestion, even the normal traffic 

fluctuations. As a result, the usage of single-station features changes from early AID algorithms 
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to later ones. Such phenomenon reflects researchers’ awareness of the limitations of single-

station features. Dual-station features, calculated from measurements at two adjacent detector 

stations, can reflect the differences between upstream and downstream traffic flow. A typical 

example of dual-station features is the OCCDF, which is the occupancy difference between 

upstream and downstream detector stations. Dual-station features are found to be more 

effective than single-station features in detecting shock waves and congestion. But their 

problem is that if the road conditions (e.g. number of lanes, curvature, distance to the nearest 

on/off-ramp and etc.) or detector conditions (e.g. maintenance frequency, calibration accuracy) 

are different at upstream and downstream stations, it is difficult to make upstream and 

downstream measurements consistent. As a result, existing dual-station features can still 

produce false alarms. Some unifying techniques (e.g. in DELOS, the OCCDF is unified by the 

larger value of OCC between two stations) are introduced. However, they still cannot reduce 

the false alarms efficiently. 

Temporally, based on how many time intervals are used to calculate a single feature value, 

features can be classified into single-time-interval and multiple-time-interval features. Single-

time-interval features represent prevailing traffic conditions. However, except for some early 

algorithms, many feature-oriented algorithms do not solely depend on one-time-interval 

features. The reason is that one-time-interval feature has high random fluctuations due to 

measurement noise and random fluctuations often observed in raw traffic measurements. These 

fluctuations are a major source of false alarms. In many AID algorithms, they are usually used 

to derive multiple-time-interval features to describe the temporal changes of traffic flow 
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characteristics. There are two major generating methods of multiple-time-interval features. The 

first generating method is to apply smoothing or filtering techniques to multiple time intervals 

to estimate the trend of a feature (e.g. DELOS features). The second generating method is to 

directly calculate the temporal difference for a single feature value (e.g. DOCCTD used in 

California Algorithms).  

After reviewing traditional incident detection features, one critical limitation can be observed. 

That is, most features are generated based on single traffic flow characteristic (speed, flow or 

occupancy). Each characteristic has its own effective range, for example, flow is more sensitive 

to traffic condition changes in free-flow traffic, while occupancy and speed is more efficient to 

track changes in congested traffic flow and traffic breakdown. As a result, many algorithms can 

only detect incidents efficiently for certain levels of traffic conditions. Some early algorithms 

use the Euclidean distance of flow and occupancy on FDs. But, they were not found to be 

efficient. Some algorithms try to solve this problem by designing different detection logics for 

different traffic conditions (APID and McMaster). However, the classification of different 

traffic condition levels lacks enough theoretical or empirical support. For example, APID 

defines three traffic conditions, high, medium and low based on occupancy. It is difficult to 

validate such classification is effective especially for those traffic states near classification 

thresholds.  

2.5 Overview of Incident Decision Making 

The logic for incident decision making reflects researchers’ understanding about the difference 

between normal and incident traffic flow pattern. Most existing AID algorithms (including the 
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California algorithms, DELOS algorithm) assume that under incident condition certain feature 

(single or dual-station) values become significantly different from those under normal 

condition. Such assumption will systematically introduce false alarms caused by measurement 

noise and random traffic flow fluctuation.  

From the summary of previous AID algorithms, the researchers have difference views and use 

various traffic observation and knowledge to explain the incident pattern. However, one kind of 

knowledge is always not so adaptive to a specific location, and, also, applying different 

knowledge requires a huge amount of effort to implement previous work properly. Although 

BN algorithm has already brought in the idea of utilizing traffic knowledge, the original acyclic 

feature and its basic process of the algorithm actually increase the difficulty of exploring 

different knowledge. For instance, when a minimal structure change has made, the research has 

to recalculate all the previous input and output, which involved many unnecessary effort.   

In the proposed algorithm, a more knowledge changeable model is applied in incident detection. 

It is similar to the Bayesian Network detection, but the internal model would be much more 

flexible and with less constraint.  
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3 PROPOSED METHODOLOGY 

The methodology includes two parts. In the first part, a brief summary of selected traffic 

knowledge and express them in the first order logic format. In the second part, the whole MLN 

based AID framework are discussed. 

3.1 From the Field Knowledge of Incidents to MLN  

Traffic operators play important roles in managing traffic incidents and are intensively involved 

in the entire life cycle of an incident, the detection, confirmation, and clearance. Their rich 

experience and knowledge regarding the on-site conditions is valuable information for effective 

management of traffic incidents, however, cannot be easily incorporated into conventional AID 

algorithms because existing AID algorithms are either designed based on specific traffic flow 

knowledge (e.g. California, DELOS, and existing Bayesian algorithm) or with black-box types 

of models (e.g. ANN, Wavelet, or Regression). In computer science, the interpretation of real-

world knowledge is usually conducted using the first-order logic since many decision-making 

type of knowledge can be explicitly expressed in first-order logic formula. Taking incident 

detection as an example, two types of knowledge usually exists. One type is decisive 

knowledge, such as based on deciding an incident based on the upstream or downstream traffic 

conditions. The other type of knowledge is predictive, such as incidents are likely to occur 

during peak hours, near a horizontal curve, and in severe weather conditions. Both types of 

knowledge involve the observation of the states of certain objects and infer the condition of 

another object, which can be expressed in first-order logic efficiently. In the proposed MLN 

model, field knowledge from traffic operators can be expressed as first-order logic formula to 
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build the Markov Network and then the significance of each piece of knowledge can be 

explicitly calibrated through the weight learning for MLN. It should be noted that even though 

not covered in Abdulhai and Ritchie (1999)’s work, the first-order logic can also be used to 

build customized Bayesian network, however, Bayesian network does not have the same level 

of flexibility as MLN when incorporating traffic knowledge given its causality and cyclic 

constraints. Furthermore, the interpretation procedure can be accelerated by providing the 

operators with a list of traffic incident knowledge obtained from existing studies to choose from. 

Using the method introduced in Section 2, the MLN can be easily constructed out of the first-

order logic formula and decomposed into individual cliques whose weights are learned using 

Gibbs sampling.  

Typical incident patterns include both the spatial and temporal impact of incidents on traffic 

flow. Spatially, incidents temporarily create insufficient capacity over a short segment causing 

a non-recurrent bottleneck. Therefore, spatial traffic condition differences can be expected 

given similar travel demand upstream and downstream. Such spatial difference includes the 

speed differences, flow differences, and occupancy difference. The temporal impact of 

incidents can also be direct impact of incidents, for example, the changes of speed, flow, and 

occupancy at upstream or downstream detector stations. Combining both the temporal and 

spatial impact, some other patterns can be observed such as the traffic condition upstream of an 

incident becomes severer that pre-incident time intervals, while the downstream condition 

becomes lighter. The latter category is the possible causes of incidents. As illustrated in 

previous AID studies, neither category is in fact deterministic knowledge so the use of 
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statistical learning is critical in reducing the false alarms, which can be effectively handled in 

MLN. 

The most distinguishable incident pattern emerges from medium traffic flow and causes 

reduced capacity that is smaller than the upstream traffic volume, causing traffic congestion 

upstream. However its patterns can still be similar to the activation of recurrent bottleneck 

upstream.  A less distinguishable incident pattern occurs when the reduced capacity being still 

larger than the incoming traffic volume upstream.  In this case, no significant traffic breakdown 

can be observed as in the first pattern.  However the temporal difference can sometimes still be 

observable.   

In our investigated freeway, 90% of the traffic incidents in our investigated freeway follow the 

second pattern. In order to improve the detection rate and false alarm rate, a combination 

method of traffic knowledge and weight learning of all possible factors are used in the MLN 

model.  

The third type characterizes incidents that do not create considerable flow discontinuity, i.e.., 

when a car pulls over on the shoulder. These incidents usually do not create observable traffic 

shock waves and have limited or no noticeable impact on traffic operations. As a result, 

incident detection algorithms may not be expected to detect such incidents.  

The fourth type of incident occurs in heavy traffic when a freeway segment is already 

congested. The incident generally leads to a clearance in region downstream but a 

distinguishable traffic pattern develops only after several minutes, except in the case of a very 

severe blockage, which can be identified by the similar formula for the first type. However, due 
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to non-directional relationship feature in MLN, the incident detection model could introduce 

more complicated traffic incident knowledge, i.e., when traffic flow suffers fluctuation such as 

high speed difference or dramatic volume change, it is likely to increase the chance of incident 

occurrence.  

Effective incident detection requires the consideration of all major false alarm sources. In 

particular traffic flow presents a number of differences that are often hard to distinguish from 

those driven by incident, and this resemblance often leads to false alarms.  

To sum up, real-world traffic flow knowledge can be classified into two categories: incident 

impact and incident causes. Incident impact knowledge refers to the traffic flow pattern after 

the occurrence of incidents, which has been the major focus of early incident detection 

algorithms. Incidents typically cause temporary capacity reduction over a short road segment, 

resulting in heavier traffic condition upstream and lighter traffic condition downstream. Traffic 

condition changes can be described using the temporal differences of traffic states, for example, 

reduced speed and increased occupancy for heavier traffic. Since Incidents can occur in 

different upstream and downstream traffic conditions, the resulting traffic patterns can be quite 

different.  Table 3.1 listed all possible traffic flow patterns during incidents and some similar 

false alarm conditions. Some patterns can be easily distinguished from normal traffic 

conditions; while others can be quite similar to normal traffic conditions or bottleneck 

conditions.  

 

Pattern 
Pre-Incident Post-Incident 

False Alarm Patterns 
Upstream Downstream Upstream Downstream 
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1 F* F F F Random fluctuation 

2 F F C** F Upstream bottleneck activation 

3 F C F F 
Downstream bottleneck 

deactivation 

4 F C F C Random fluctuation 

5 F C C F 

Upstream bottleneck activation, 

Downstream bottleneck the 

activation 

6 F C C C Upstream bottleneck activation 

7 C F C F Random fluctuation 

8 C C C F 
Downstream bottleneck 

deactivation 

9 C C C C Random fluctuation 

Table 3.1  Incident impact traffic flow patterns 

* F: free flow or uncongested flow, **C: congested flow 

It should be noted that the over 7 possible combinations are not likely to happen during the 

instantaneous before and after incidents (e.g. upstream traffic becomes lighter, or downstream 

traffic becomes heavier after incidents), thus have been eliminated. To describe the above 9 

incident patterns, temporal differences of speed, flow, and occupancy are used. The false alarm 

patterns can sometimes be ruled out using other information such as the shock wave 

propagation status for bottleneck patterns and the smoothed trend prior to the incident for 

random fluctuation. Table 3.2 listed all of the logic describing each pattern and the 

corresponding first-order logic formula. 

Pattern First-Order Logic 

1[FFFF] Incident(x,t) ^ FF(x,t-1) => (SPDTD_F(x,t,L) V OCCTD_F(x, t,H)) 

2[FFCF] Incident(x,t) ^ FF(x,t-1) => CON(x,t) ^ (VOLTD(x, t-1,U) V VOLTD(x, t-1,L)) 

3[FCFF] Incident(x,t) ^ CON(x+1,t-1) => FF(x+1,t) ^ (VOLTD(x+1, t-1, U) V VOLTD(x+1, 

t-1, H)) 

4[FCFC] Incident(x,t) ^ FF(x,t) ^ CON(x+1,t)  

=> (SPDTD_F(x,t,L) V OCCTD_F(x, t,H)) ^ (SPDTD_C(x+1,t,H) V 

OCCTD_C(x+1, t,L)) 



29 

 

5[FCCF] Incident (x, t) ^ FF(x,t) ^ CON(x+1,t) => CON(x,t) ^ FF(x,t) ^ (VOLTD(x, t-1,U) 

V VOLTD(x, t-1,L)) ^ (VOLTD(x+1, t-1, U) V VOLTD(x+1, t-1, H)) 

6[FCCC] Incident (x, t) ^ FF(x,t) => CON(x,t) ^ (VOLTD(x, t-1,U) V VOLTD(x, t-1,L)) 

7[CFCF] Incident (x, t) ^ CON (x,t) ^ FF(x+1,t)  

=> (SPDTD_C(x,t,L) V OCCTD_C(x, t,H)) ^ (SPDTD_F(x+1,t,H) V 

OCCTD_F(x+1, t,L)) 

8[CCCF] Incident (x, t) ^ CON(x+1,t) => FF(x+1,t) ^ (VOLTD(x+1, t-1, U) V VOLTD(x+1, 

t-1, H)) 

9[CCCC] Incident (x, t) ^ CON(x,t) ^ CON(x+1,t)  

=> (SPDTD_C(x,t,L) V OCCTD_C(x, t,H)) ^ (SPDTD_C(x+1,t,H) V 

OCCTD_C(x+1, t,L)) 

Table 3.2  First Oder Logic for traffic flow patterns 

Upstream congestion activation can be identified by inspecting the continuing increasing rate of 

volume upstream. 

VOLTD(x,t-1,H) <=> 7 (VOLTD(x, t-1,U) V VOLTD(x, t-1,L)),  

Downstream congestion deactivation can be identified by inspecting whether shock waves 

propagates from upstream, or if there is a continuous decreasing of VOL: VOLTD(x+1,t-1,D) 

<=> 7 (VOLTD(x+1, t-1, U) V VOLTD(x+1, t-1, H)) 

FF(x,t) <=> SPD(x,t,H) V OCC(x,t,L) 

Through smoothing data and identifying compression wave, those patterns such as bottleneck, 

fluctuation and traffic pulse can be largely removed. However, from the observation of the 

incident data, huge number of non-severe impact incident, a proper window size should be 

selected. The corresponding traffic parameters difference is used to distinguish the congestion 

and incident pattern. In this model each and every piece of traffic information can be well 

utilized to update the incident probability and to estimate the probability distributions of the 

traffic parameters with unknown states. 
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3.2 The Proposed MLN Incident Detection Framework 

There are five major components in the proposed MLN incident detection framework (See 

Figure 2): data pre-processing, First-order logic formulas input, MLN generation and clique 

decomposition, weight learning, and decision making. Unlike traditional incident detection 

algorithms, the framework requires three different data sources including the traffic flow data, 

historical incident log, and also the field incident traffic flow knowledge from traffic operators.  

 

 

Figure 3.1  MLN Incident Detection Framework 

Traffic flow data needs to be pre-processed to remove high fluctuations and be discretized to be 

used in MLN model. Field incident knowledge will be converted into first order logic statement 

and then further decomposed into individual cliques for weight learning. The historical traffic 

flow data are used jointly with historical incident log to calibrate the MLN. Then the calibrated 

MLN can be used against real-time traffic flow data to produce incident alerts. 

The data pre-processing in the proposed model has two major purposes: eliminating the random 

fluctuations in raw traffic flow data and discretize the continuous traffic measurements into 

categories that can be used in MLN inference. To ensure both the real-time capability of the 
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proposed algorithm, the simple moving average method is used for data smoothing as the 

following.  
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where x(i, t) and x~ (i, t)  are the actual and smoothed traffic state (e.g. speed, flow, and 

occupancy) at detector station i and time t respectively. w is the size of the smoothing window. 

w = 2 is used in this study based on the previous experience with the experimental dataset (Jin 

and Ran, 2009) to avoid causing too much detection delay for incident detection. Meanwhile, 

for the discretization, each traffic state is converted into binary values (H-high, or L-low) using 

thresholds to be calibrated using historical data. It should be noted that depending on the 

experience of field operator, the number of levels can be adjusted to three or more levels, e.g. 

low, medium, and high. In this study, only two levels are used to avoid introducing too much 

complexity to the MLN model at the feature generation stage. Historical incident log should 

also be processed so that each incident record is converted to an incident flag at the upstream of 

detector station i and time interval t. The most significant feature in this model is the process of 

converting history log and traffic flow data to MLN input, because the decision of applying 

which knowledge are much more similar as an combination of possible factors, and also the 

result generation process merely require a query to illustrate in what aspects the operators are  

interested. Thus, the input module is designed to provide as many factors as possible to fulfill 

the whole flexibility of applying various knowledge. 
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4 EXPERIMENTAL DESIGN 

The experimental design includes details of model validation, calibration and evaluation.  

4.1 Performance Measures 

Performance measures are critical for the optimization of model parameters during model 

validation, calibration and evaluation. Performance measures used in this research adopts some 

traditional measures used by previous AID studies and also some from  machine learning 

literatures.  

Detection Rate (DR): The number of correctly detected incidents (true positive) over the total 

number of true incidents. The total number of true incidents is based on the operator log from 

the TMC center in our experiment. It may not equal the actual number of incidents occurred, 

however it is the best ground truth number we can usually get. 

 

False Alarm Rate (FAR): The number of false alarms (incorrectly detected incidents, false 

positives) over the total number of decisions made by an algorithm. The total number of 

decisions is calculated by multiplying the number time intervals in a day with number of days 

in the evaluation period and the number of detector station pairs. In some literature, false alarm 

rate is also calculated as number of false alarms per hour per mile. This is not adopted since we 

are looking at corridor-wise false alarm rate to get a good estimate of the amount of work load 

for incident verification for all incident alerts triggered by an algorithm. 
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Mean Time to Detect (MTTD): The average detection delay of all correctly detected incidents, 

where detection delay equals the difference between the algorithm detection time of an incident 

and the reporting time for the incident in the incident log. 

 

DR and FAR are usually the primary MOEs (Measures of Effectiveness) and MTTD serves as 

a complementary evaluation index. Because DR and FAR, in fact, contradict each other. DR 

and FAR values are usually plotted on the DR-FAR diagram or Precision-Recall diagram to 

evaluate the performance of an algorithm. 

 

DR-FAR Diagram: It is a diagram commonly used to evaluate the learning capability of AID 

algorithms. The horizontal axis of the diagram is the false alarm rate; and the vertical axis is the 

detector rate. Although “learning” is not the primary focus of feature-oriented AID algorithms, 

the “learning” capability determines the best performance that an algorithm can have during 

calibration. An ideal AID algorithm should have zero false alarms and 100% detection rate. As 

a result, if the DR-FAR curve of an algorithm lies to the left and top of another for some 

regions, the algorithm is better than the other one for those regions. DR-FAR curves are 

incorrectly used in the past as a main tool to compare the actual performance of different AID 

algorithms. Recent study becomes aware that the evaluation of AID algorithms should be based 

on the Training-Test framework and the DR-FAR curve can only be used to evaluate the 

calibration performance. 
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Precision-Recall (PR) Diagram: Another major drawback of DR-FAR curve is that the curves 

can look overly optimized because there are much more normal conditions than incident 

conditions in reality. To overcome such issue, in machine learning, the precision-recall curve is 

used to in addition to the DR-FAR curve to distinguish the learning capability of two 

algorithms more clearly. The terms, “precision” and “recall”, are defined based on the Type I 

and Type II errors in statistics.  

Table 4.1  Type I and Type II Errors in Classification 

 summarizes all four possible outputs of a typical classification algorithm. True positive and 

true negative are corrected classified items; and false negative and false positive are incorrect 

classifications. The precision in PR diagram is defined as the number of true positives over the 

total number of positives classified by an algorithm; and the recall is the number of true 

positives with respect to the total number of actually positive samples. In a diagram with 

multiple PR curves, the curve closer to the right top corner has the best performance. 

Table 4.1  Type I and Type II Errors in Classification 

Predicted       
Actual

 Incident Non-Incident 

Incident TP (true positive) FP (false positive) 

Non-Incident FN (false negative) TN(true negative) 

4.2 Data Source and Data Processing Procedure 

In order to evaluate the proposed algorithms, field data are collected for a freeway corridor on 

I-894 freeway between W. Greenfield Avenue and S. 27th Street in Milwaukee, WI (See Table 

4.1Error! Reference source not found.). The total length is 8.5-mile (about 13.7 km). A total 

of 27 detector stations (18 at west-to-north direction, 19 at south-to-east direction) are within 
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the corridor. Detector stations are located near or at the interchanges. The average spacing 

between detectors is about half a mile (805m).  

 

Figure 4.1  Test Site for AID Algorithm Evaluation 

In the experiment, we use the loop detector data and operator logs collected from Milwaukee 

STOC (State Traffic Operations Center). The frequency of traffic flow data is one minute and 

the data is aggregated across lanes. Incident logs contain incidents reported by local police 

authorities and STOC. Each incident record includes its ID, incident starting and ending time, 

the main street, the cross street, the direction, the severity, and detailed descriptions by 
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operators. The distance between two adjacent detector stations is under 0.6 miles and the 

prevailing speed is around 60 mph. Thus, the time difference between upstream and 

downstream is less than 42 seconds under free flow state. We assume it is a reason range of the 

backward traffic flow impact. The incident data set is processed to eliminate incidents that are 

outside of the testing corridor. And each incident location is correlated to its nearby detector 

stations. For some incidents, the direction information is missing. Then detector stations from 

both directions are considered as potential candidate stations. Furthermore, due to maintenance 

and quality issues, the availability of traffic flow data is around 80% to 90%. Hence, incidents 

that occur during those missing periods are eliminated from the incident dataset. 

The duration of the collected data is four months, from January to April 2008. A total of 287 

incidents were recorded during that period. The severity type and corresponding incident 

counts are in Table 4.2. Note that these incidents are unfiltered real incidents unlike in many 

other literatures. Incidents are not “selected” or “filtered” to retain those incidents that have 

“significant” impacts on traffic flow or only of certain types. Including all those incidents can 

help to determine the actual detect-ability of AID algorithms over the general types of incidents. 

Table 4.2  Statistics of Incident Dataset by Number of Lanes Affected 

Number of Lanes Affected Counts 

Long term 1 

Two Lanes 8 

One Lane 25 

Shoulder Blocked 54 

Unspecified 199 
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4.3 Model Calibration 

4.3.1 Calibration of MLN 

In the proposed AID model, MLN AID is calibrated by using a monthly-grained level at each 

detector station. This is based on the basic flexible feature of the model, because through 

incorporating the time information into the knowledge a better grained level can be fulfilled 

without modifying the input data. The calibration methodology is the Least Square Regression 

method, which is a common functionality in many statistical software and database 

management tools. In our application, all traffic flow data are archived in Oracle database. The 

calibration of incident detection MLN is done entirely in the database “view” (view is a 

relational database term, which refers to a virtual database object composed of the result set of 

a database query) without involving any external programs. For practical deployment of the 

proposed algorithm, MLN can be updated every week or even every day to make sure the FDs 

can capture the latest seasonal climate changes, travel demand and etc.  In this research, FDs 

are calibrated only once using one month data and then they will be used for evaluation tests 

over the months afterwards. 

4.3.2 Calibration of Thresholds 

Threshold calibration is the most time-consuming but very important step. The calibration 

procedure for thresholds includes three steps. The first step is to design a list of threshold sets 

which can efficiently cover the feasible vector space of all thresholds. In the second step, each 

threshold set is tested against the calibration data and MOEs (See Section 4.1) are calculated. 
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At the last step, the results of each threshold set are compared and the best threshold set is 

selected. It is sometimes necessary to iterate the above procedure for fine tuning. 

The best threshold setting should satisfy the follow criteria. 

• FAR should be less than the maximal tolerable value for TMC operations.  

• Within the tolerable FAR range, the threshold setting selected has the highest DR. 

• MTTD is also checked, however, it is not a critical evaluation index. 

4.3.3 Other Concerns 

In order to explore the possible solution space, we have tried a wide range of thresholds for 

each traffic parameter.  However, this wide range tuning results in fairly high complexity to 

solve the problem.  In a more practical way, since the incident knowledge are from literatures 

or operators’ experience, the thresholds could also be determined  by these knowledge. These 

empirical setups are also able to achieve a good level of detection performance because of the 

normalized traffic states used in this system and the fact that those thresholds, in a reasonable 

range, do not significantly impact the final result in this study. Thus, based on our observation, 

the MLN algorithm not only achieves an efficient way to apply the incident knowledge, but 

also avoids the chance to dramatically increase the complexity. 

4.4 Model Validation 

The proposed model needs to be validated on several aspects. First, it is necessary to show the 

validity of the weight learning method, whether it can generate statistics information for each 

traffic knowledge. Second, the validation for the decision making module should also be 
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conducted to illustrate the detect-ability of the proposed algorithms. The validation is based on 

the incident and traffic flow data collected in January and February, 2008. The January data are 

used to learn the weight and adjust all the parameters, and the February data are used for 

validation.  

Calibrated thresholds and other model parameter settings for the validation test are in Table 4.3. 

The current version of MLN requires a huge amount of memory for inference of all the 

relationship, so if the input data set size is too large, it would raise the requirements of the 

hardware. Thus a 5-miniute window size is chose to guarantee the program to work properly, 

and also this window size could fairly eliminate the fluctuation in the traffic flow. These 

parameter values have not yet been intensively calibrated using factorial design method.  

Table 4.3  Parameter Settings for Model Validation 

Parameter Setting 

Persistence Window Size 5 min 

Temporal Error Bound 10 min 
Tspd=30 30mph 
Tvol=700 700vph 
, Tocc=9 9% 

Tdif_occ/vol/spd 25% 

 

Other parameters such as the threshold for speed, occupancy and volume are mainly selected 

based on operators’ experience. In this research, the range has been set to a relatively large 

range , and through this way, even though we do not obtained the experience for a specific 

location, the thresholds are still able to be learned from MLN. 
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4.5 Model Evaluation 

4.5.1 Evaluation Criteria 

Two major evaluation criteria have been used in previous literatures: literature-based and 

implementation-based. Literature-based evaluation only uses the best reported performance 

measures available in existing literature to evaluate AID algorithms. It is simple and algorithms 

are all tuned at their best performance. But the problem is that different algorithms use different 

data sources and due to historical reasons some MOEs are inconsistent in different studies. 

Thus, it is not a “fair” comparison. Implementation-based evaluation tests AID algorithms 

against the same data set. Such comparison requires the implementation of all reference 

algorithms. However, researchers may not be as familiar with an algorithm as the original 

author. As a result, the performance of reference algorithms may not be tuned at their best. 

However, it is a fair comparison and has been adopted by most existing literatures.  

In this experiment, three algorithms are used as the reference algorithms for the 

implementation-based evaluation including California No.8, DELOS algorithms and Bayesian 

Network algorithms (For details of these three algorithms see Section 2.2). The first two are the 

most widely-deployed AID algorithms. BN is a representative learning-oriented algorithm. 

Each algorithm is calibrated using one-month and tested against field data from another month. 

The final evaluation is based on the testing results, not the calibration results (e.g. DR-FAR 

curve), so that the transferability and robustness of AID algorithms can be evaluated.  
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4.5.2 Implementation Details for DR-FAR Curve and PR Curve 

Learning capabilities of the proposed algorithms are compared by their relative locations on the 

DR-FAR curve and PR curve. Creating the DR-FAR curve and PR curve follows the standard 

procedure introduced in Davis and Goadrich (2006)’s paper. Each curve is created by two sub-

steps, 1) higher performance points selection, and 2) interpolation between selected points. At 

the first step, the left-top points (DR-FAR) or the right-top points (PR) are selected. Then these 

points are interpolated using corresponding interpolation methods for both curves. For DR-

FAR curve, linear interpolation is used. But for PR curve, the following interpolation formula 

is used (Davis and Goadrich, 2006).  
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Where  

TPA, TPB are the numbers of true positives for performance points A and B, 

FPA, FPB are the numbers of false positives for performance points A and B, 

FNA is the number of false negatives for performance points A, 

x is the interpolation index (1≤ x ≤ TPB - TPA). 

Each two performance points are interpolated with an increment of one false positive. 

 



42 

 

4.5.3 Implementation Details for California Algorithm 

California Algorithm No. 8 is chosen because it is reported to have the best performance among 

California Algorithms (Payne, 1997). There are five thresholds for California No.8 algorithm 

(See section 2.2.5). Based on trial runs, only T1 and T3 has significant impact on the output, 

while varying T2, T4 and T5 within their valid ranges, the algorithm performance does not 

change significantly. For T2, the range is around -0.2 to -0.8. For T4 and T5, the range is from 

1 to 1000. The tested levels for each threshold can be found in Table 4.4. The actual threshold 

set contains the full combination of the levels for each threshold. 

 

Table 4.4  Threshold Levels for California No.8 Algorithm Calibration 

T level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9 level 10 

T1 1 2 3 4 5 6 7 8 9 10 

T2 -0.60          

T3 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

T4 20          

T5 20          

4.5.4 Implementation Details for DELOS Algorithm 

Parameters for DELOS Algorithm is specified by DELOSx.y(k, n). x and y indicate the 

smoothing methodology for previous and current traffic conditions respectively. The smoothing 

method can be moving average, median and exponential smoothing. k and n are model 

parameters (smoothing window size for moving average and median or exponential factor 

value for exponential smoothing). Four recommended parameter settings in literature 

(Chassiakos and Stephanedes, 1993) are used as the candidate parameter settings. And the 
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evaluation study focuses on calibrating the two thresholds Tc and TI. The factorial design for 

DELOS Algorithm is in Table 4.5. 

Table 4.5  Threshold Levels for DELOS Algorithm Calibration 

Threshold  TC TI DELOSx,y(k,n)* 

Level 1 0.05 0.05 DELOS1.1(10,8) 

Level 2 0.10 0.10 DELOS2.2(9,9) 

Level 3 0.15 0.15 DELOS3.3(0.05,6) 

Level 4 0.20 0.20 DELOS3.1(0.05,6) 

Level 5 0.25 0.25  

Level 6 0.30 0.30  

* DELOSx.y(k,n) is the symbol to indicate smoothing method and window size, where x, y is the smoothing 

method for previous and current time intervals (1- moving average, 2-median, 3-exponential smoothing).The four 

selected configurations are the recommended configuration in Chassiakos and Stephanedes’s paper (1993). 

 

4.5.5 Implementation Details for FD2 Algorithm 

Among the proposed FD1, FD2, FD3, FD4 algorithms, based on trail tests, the FD2 structure 

has the best performance. In the evaluation test, FD2 decision tree is selected to be compared 

with other benchmark algorithms. FD2 has a total of four thresholds, but TTrans is considered to 

be twice the value of Ts. Thus, the thresholds to calibrate are Ts, Tu and Tc. Table 4.6 shows the 

levels tested for each threshold. Note that other model parameters are following those specified 

in Table 4.6. 

Table 4.6  Threshold Levels for FD2 Algorithm Calibration 

T level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9 level 10 

T1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

T2 100 200 300 400 500 600 700 800   

T3 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 
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4.5.6 Implementation Details for California No.8 Algorithm based on PUS 

In the evaluation, a modified version of California No.8 Algorithm is also tested. The new 

version is based on PUS instead of the occupancy in the original version. The purpose for 

testing this modified version is to check if the use of PUS can improve the performance of 

California No.8 algorithm. The threshold settings tested for California algorithm No.8 with 

PUS is in Table 4.7. 

Table 4.7  Threshold Levels for the Calibration of California No.8 Algorithm based on PUS 

T level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8 level 9 level 10 

T1 1 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 

T2 -0.6          

T3 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  

T4 20          

T5 20          

 

5 EXPERIMENTAL RESULTS AND SENSITIVITY ANALYSIS 

5.1 Model Validation Results 

5.1.1 Validity of the Incident Pattern Detection 

In order to validate the proposed decision making algorithms, one representative result is 

selected and tested against traffic flow and incident data of February, 2008. As mentioned in 

Section 4.3. Model parameters and thresholds are selected based on wide range estimation 

without intensive calibration. The proposed model is analyzed and validated according to the 

following measures or plots: 

1) The detection rate, false alarm rate and mean time to detect for all incidents. 



45 

 

2) The detection rate for incidents with different severity. 

3) Time series plots for all detected incidents, missed incidents and false alarms. 

And the proposed model is validated by its detection performance, detectable incident types, 

and detection details for detected, missed and falsely-reported incidents.  

5.1.2 General Detection Results 

The detection results for FD2 AID in model validation can be found in Table 5.1. 

Table 5.1  Detection Performance during Model Validation 

Evaluation Index Result 

Detection Rate (DR) 70.2% (59/84 Incidents) 

False Alarm Rate (FAR) 0.67% (6.7 per direction per hour) 

Mean Time to Detect (MTTD) - 2.8 minutes 

 

The results show that the proposed model can detect incidents with reasonable performance. 

The negative MTTD means that FD2 AID algorithm can detect incidents before their reporting 

time at TMC. However, the false alarm rate is still quite high. In order to further reduce the 

false alarm rate, more comprehensive calibration of model parameters and thresholds should be 

conducted. 

5.1.3 Details for False Alarms 

There are primarily three types of false alarms. The first type is smoothing related false alarms. 

Smoothing is applied for calculating pre-incident conditions to estimate the general traffic 

condition trend before incidents. Although smoothing is helpful in recognizing incident pattern, 

it does cause false alarms. For a time interval within highly-fluctuated traffic flow, the pre-
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incident conditions are smoothed, while current conditions are not and still highly-fluctuated. 

Then the detected incident pattern may be simply caused by a sudden stochastic jump or drop 

in the current traffic condition, rather than by an actual incident. The second type is false 

alarms related to events that have similar impacts as incidents, but are not incidents. Such 

events can be slow moving vehicles, sudden visibility change, weather changes, or incidents 

not logged by traffic management centers. The last type is related to threshold sensitivities. 

Some thresholds may be overly sensitive to traffic condition changes.  

5.2 Model Calibration Results 

 
Figure 5.1  DR-FAR Curve for Each Algorithm 

Algorithms Average of the improvment 

Bayes Network 10.7% 

DELOS 33.2.% 

FDAID 7.2% 

California 18.3% 

Table 5.2  Average Improvement Summary 

Figure 5.1 is the comparison diagram for DR-FAR curves of all five AID algorithms, and it is 

generated through changing the threshold of incident probability. The diagram is cut off at the 



47 

 

4.5% false alarm rate because in reality larger false alarm rate is un-acceptable for TMC 

operations. Based on the 2007 Gatech survey (Williams and Guin, 2007), TMC operators can 

only tolerate one false alarm every 10-15 minutes. However, the survey does not provide 

information about whether the false alarm rate is with respect to a detector station, a direction, a 

corridor or a network. For detector station, the allowable false alarm rate can go up to 7-10%. 

However, for one direction of a corridor, the allowable rate can be as low as 0.4~0.6%. And the 

false alarm rate can be extremely small if it is defined for an entire corridor or network. As a 

tradeoff between detector level and the corridor level, one percent is selected as the hard upper 

bound for false alarm rate. And in the diagram, the above boundary defines a reasonable false 

alarm rate region to the left of the black solid line. Within the region, when FAR is greater than 

0.3%, MLN shows superior performance to the other algorithms; while DELOS has the worst 

performance. Meanwhile, California algorithm has similar performance as Bayesian Network 

and FDAID. Based on this result, MLN has impressive detection performance than other 

algorithm, and this feature could be caused by the design difference between BN and MLN. In 

MLN detection model, more flexible relationship structures are allowed to more effectively 

describe the incident features, and based on the evidence learning, the incident detection model 

would better serve to specific testing node.  

Table 5.2 indicates the average improvement of MLN method compared to other algorithms. 

The average improvement percentages are gathered from calculating the average gap between 

MLN curve and other curve, and this kind of improvement is also observed from the 

comparison of every following month. 
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The precision-recall curve comparison reports similar results. Within the reasonable recall 

(detection rate) region (50% ~ 80%), MLN is significantly better than the other algorithms. 

The output of the calibration, the optimal parameter setting for each algorithm, is selected 

based on the criteria given in First, draw a hard boundary of 0.65% FAR. The 0.65% is selected 

so that the rounded FAR is less than 0.6%. Second, find the maximal detection rate within that 

boundary and use the corresponding parameter setting as the optimal parameter setting. Table 

5.3 shows the calibration results for all algorithms. 

 

When FAR is greater than 0.3%, MLN shows superior performance to the other algorithms; 

while DELOS has the worst performance. Meanwhile, the original version of California No.8 

algorithm has better performance than the modified version. 

 

Figure 5.2  Precision-Recall Curve for Each Algorithm 
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The precision-recall curve comparison reports similar results. Within the reasonable recall 

(detection rate) region (50% ~ 80%), MLN is significantly better than the other algorithms.  

The output of the calibration, the optimal parameter setting for each algorithm, is selected 

based on the criteria given in Section 4.3.2. First, draw a hard boundary of 0.65% FAR. The 

0.65% is selected so that the rounded FAR is less than 0.6%. Second, find the maximal 

detection rate within that boundary and use the corresponding parameter setting as the optimal 

parameter setting. Table 5.3 shows the calibration results for all algorithms. 

 

Table 5.3  Calibrated Optimal Parameter Settings for Each Algorithm 

AID Optimal Parameter Setting Performance Measure 

DR FAR MTTD(min) 

BN Tspd=38, Tvol=700, Tocc=9, 

Tdif_occ=0.35 
62.1% 0.60% -0.43 

DELOS TC=0.3, TI= 0.05, DELOS1.1(10,8) 35.7% 0.56% -2.54 

FDAID TS=0.5, TU=600, TC=0.5 61.2% 0.61% -0.92 

California T1=3.4, T2=-0.6, T3=0.6, T4=T5=20 52.4% 0.64% -1.09 

MLN Tspd=30, Tvol=700, Tocc=9,  

Tdif_occ/vol =0.35 Tdif_spd=0.25 
70%  0.61%  -2.84  

 

5.3 Model Evaluation Results 

The optimal parameter setting for each algorithm obtained during calibration is used as the 

model parameter for the testing. A summary table (Table 5.4) is built to analyze the 

performance changes from training to testing.  

Table 5.4  Summary of Evaluation Results 

AID 
Training Testing 

DR FAR MTTD (min) DR FAR MTTD (min) 

BN 62.1% 0.60% -0.43 63% 0.70% -1.65 

DELOS 35.7% 0.56% -0.92 37.3% 0.84% -0.55 
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FDAID 61.2% 0.61% -2.84 66.1% 0.93% -3.62 

California-FD 47.4% 0.64% -1.09 69.5 0.72% -2.13 

MLN 70%  0.61%  -2.54 71.1% 0.70% -2.75 

 

From the summary table, we can see that the original California have significant performance 

improvement from training to testing. The California increases 22% in detection rate and 0.1% 

in false alarm rate. This is different from expectations. However, it may indicate the proposed 

features may help enhance the transferability of the original California Algorithms. MLN and 

other algorithms do not have much change, and this illustrates the effectiveness and 

transferability of the proposed algorithm. Another thing to notice is that all AID algorithms can 

all detect incidents earlier than the reported incident time in operator log. This illustrates the 

AID algorithms’ fast detection capability and they can produce quite important preliminary 

information for the management of incidents.  

5.4 Sensitivity Analysis 

Sensitivity analysis focuses on the MLN algorithm. There are several categories of parameter 

settings to be analyzed, thresholds, averaging windows, and incident pattern interpretation. 

However, the most critical parameters are still the thresholds for each parameter. When 

deploying this algorithm in real world, their sensitivities are quite important for effective 

calibrating, tuning and maintaining the algorithm at TMC. Hence, we shall focus on a 

comprehensive sensitivity analysis for all the thresholds used by the algorithm. The sensitivity 

analysis on thresholds is conducted based on one-factor-at-a-time method. All thresholds are 

first fixed at the calibrated optimal settings. Then each threshold is change one-at-a-time to test 
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two ranges, the valid range and the optimal range. Within the valid range, the change of 

threshold values can affect the detection results, that is, the change of DR or FAR. Within the 

optimal range, the change of threshold value can only cause less than 10% change of DR. 10% 

is selected based on the performance variances between training and testing observed in the 

model evaluation. Table 5.5 shows the sensitivity of each threshold for MLN. And Table 5.6 

provides the sensitivity analysis result for modified California Algorithm (PUS based). 

Table 5.5  Sensitivity Analysis Result for MLN Algorithm 

Threshold Valid Range Optimal Range (Optimal) 

TSpd (0, 70] [25, 40]  (30) 

Tvol (0, 800] [300,800]  (700) 

Tocc (0, 20] [5, 15]]  (9) 

 

The sensitivity analysis reveals that the algorithm can keep near optimal performance around 

20-40% of the optimal values. 

Table 5.6  Sensitivity Analysis Result for California-FD Algorithm 

Threshold Valid Range Optimal Range (Optimal) 

T1 (0, 45] [2.6, 4.1] (3.4) 

T2 -- * -- * 

T3 (0.2, 100] [0.5, 0.9] (0.6) 

T4 -- * -- * 

T5 -- * -- * 

* Changing threshold values cannot change the AID performance. 

The sensitivity analysis results for California-FD algorithm indicate that three of California 

algorithm’s thresholds cannot effectively impact on the performance of incident detection. But 

the model performance is still sensitive to the remaining two thresholds.  
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6 CONCLUSION AND FUTURE WORK 

6.1 Summary of Chapters 

Chapter 1 introduces the background information of incident management, incident detection 

research and the roles of incident detection in the incident management and ATMS. Problem 

statement, the objectives and scope of research and major research contributions are also 

presented in this chapter. 

Chapter 2 is the literature review. It includes the review of AID algorithms and basic 

background of MLN. The potential connection between MLN and incident detection is also 

discussed. 

Chapter 3 presents the methodology. The methodology includes two parts: the incident feature 

translation and the incident decision making framework. For feature translation, a series of 

traffic knowledge are discussed and properly translated to first order logic form. For detection 

framework, the main process flow are illustrated, and several concerns in the different period 

are  also discussed. 

Chapter 4 discusses the experimental design. The chapter starts with the introduction of several 

important performance measures. Then data source and data processing procedure are 

described in details. And the model calibration, validation and evaluation methods are also 

presented in this chapter. The calibration is divided into two parts, the calibration of thresholds 

and the calibration of other minor model parameters. Model validation is based on  

a detection test conducted for February 2008 with MLN calibrated by January 2008 traffic flow 

data. And the evaluation criteria and framework are also introduced. 
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In Chapter 5, experimental results for model validation, calibration and evaluation are 

presented and data analysis is given. The results indicate superior performance of the proposed 

feature and the proposed AID algorithm. 

 

6.2 Conclusion Remarks 

This research proves that MLNs are good tools to convert the traditional traffic knowledge into 

a way that machine can understand to better describe the incident pattern. The MLN algorithm 

is significantly easy to train in a subjective way without employing a large set of field incident 

data. Operators’ experiences about a specific freeway environment are good enough to adapt 

the MLN algorithm to the site. This capability stems largely from the modular architecture of 

the algorithm and its general knowledge base for incident detection, which is clearly 

demonstrated in both algorithm performance test and transferability test. An important step 

towards algorithm universality has therefore been possible in this research. 

6.3 Recommendations to Agencies 

Based on the calibration and testing experience in this study, the following recommendations 

are made for the deployment AID algorithms in general.  

• AID algorithms are still important for incident management, due to its advantages in 

small detection delay and accurate location information in terms of detector pairs.  From 

our research, the MTTD are all negative for tested AID algorithms. Such results 

indicate that AID algorithm can actually detect incidents earlier than their report times. 
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On average, these AID algorithms can save about 2-3 minutes. This allows the traffic 

operators to get important preliminary information before handling the feedback from 

other detection methods such as cell-phone call in or freeway service patrol. The 

accurate location information in terms of upstream and downstream detectors and 

direction. Such locating accuracy cannot be reliably obtained other human based 

detection technologies such as cell-phone call and freeway service patrol. 

• Limit false alarm rate bound when calibrating AID algorithms. One critical issue of 

AID algorithms are their false alarms. Considering the possible increase of false alarm 

rate when transferring the calibrated model settings to field operations, during the 

training, the FAR bound should be at least 10-20% lower than the actual false alarm rate 

requirement at TMCs. 

• Treatment of duplicate incident alerts, incident continuation and incident off-set. 

It is also necessary to efficiently process duplicate incident alerts regarding the same 

incidents. Threshold for deciding incident continuation should be carefully selected for 

duplicate incident alerts. Sometimes, these duplicates provide information about the 

increasing severity of an incident. Other times, they are primarily due to shock wave 

effects cause by incidents. Another possible application for AID algorithms is to detect 

incident off-set in terms of the actual traffic flow recovery time. Such information is 

also critical for estimating the actual impact of incidents on traffic flow. However, 

tuning an AID algorithm for both incident onset and offset detection may negatively 
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affect its overall performance when compromising for both purposes. Running them as 

two separate applications may be a solution. 

6.4 Suggested Future Work 

6.4.1 Short-term Future Work 

Short-term future work for this research can focus on the extension of the proposed 

methodology. Extensions include the following directions. 

• Detecting Incident Severity 

The severity of an incident is also quite important information for TMC operators when 

inspecting an incident alert. According to the change of the traffic flow combined with 

relevant knowledge, the severity can also be estimated. 

• Detecting Incident Off-set 

Incident off-set is another important piece of traveler information as mentioned in 

Section 6.3. It can tell travelers when the impact of an incident is cleared. And this time 

is not necessarily the same as the reported incident clearance time by rescue crew. 

Sometimes, in peak hours, the impact of an incident can last long after the incident is 

cleared. Simple modifications of the detection logic can make the off-set detection 

possible. 

6.4.2 Long-term Future Work 

Long-term future work for incident detection in general includes the following research topics. 

• Incident detection based on probe vehicle technologies 
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The future of AID algorithm relies on the improvement of the accuracy and coverage of 

vehicle detection technologies. One growing technology is the probe vehicle 

technologies including GPS probe, cellular probe, AVI and etc. Although some efforts 

have been made, as mentioned at the beginning of the, the performance is still inferior 

to the performance of AIDs based on traditional loop detectors. 

• Feature-Oriented Arterial Incident Detection 

Existing arterial incident detection methods are primarily based on advanced learning 

tools from computer science or statistics. With the availability of probe data for arterials, 

it may be possible to develop incident detection methods based on more microscopic or 

macroscopic characteristics found for arterial traffic flow. 
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