
MODULAR DESIGN OF HIGH-THROUGHPUT,
LOW-LATENCY SORTING UNITS

by

Amin Farmahini-Farahani

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Master of Science

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Minds@University of Wisconsin

https://core.ac.uk/display/10596963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Copyright by Amin Farmahini-Farahani 2012
All Rights Reserved

i

To my mother and father

ii

acknowledgments

I have been lucky to have the possibility of working with two advisors. My
advisors are Professor Michael Schulte and Professor Katherine Compton,
who have always been most generous with their time and encouragement. I
wish to express my greatest thanks to them to give me the opportunity of
learning from two different perspectives.

I thank Professor Wesley Smith and Engineer Thomas Gorski for giving
me a chance to work on intriguing projects for the Large Hadron Collider
and letting me have the privilege of living in the high-energy physics world.
I would like to extend my gratitude to Robert Fobes for technical, cultural,
and amusing things he taught me.

I also thank my fellow graduate students at the Madison Embedded
Systems and Architecture (MESA) and Predictive High-Performance Ar-
chitecture Research Mavens (PHARM) labs for creating and sharing an
excellent group atmosphere. I have made many friends in the past four
years. Jake Adriaens, Paula Aguilera, Ben Buchli, Daniel Chang, Henry
Duwe, Philip Garcia, Syed Zohaib Gilani, Tony Gregerson, Mitch Hayenga,
Jung-Seob Lee, Steve Naumov, Andrew Nere, David Palframan, Kyle Rup-
now, Charles Tsen, and Hsiang-Kuo Tang are a few, but there are more
than I can name.

I thank my fellow Iranian friends for sharing this experience with me,
particularly Hamid Reza Ghasemi, Peiman Hematti, Shayda Malekpour,
Shirin Malekpour, Shirzad Malekpour, Somayeh Sardashti, and Arsham
Shahlari.

Finally, I would like to express my deep gratitude to my mother, father,
and brother for supporting me. Their encouragement and love were the
great power for me to overcome all troubles I faced.

iii

contents

Contents iii

List of Tables v

List of Figures vii

Abstract ix

1 Introduction 1

2 Parallel Sorting Networks 5
2.1 Bitonic Sorting Networks 6
2.2 Odd-even Merge Sorting Networks 9
2.3 Designing Large Sorting Networks 12

3 Proposed Partial Sorting and Max-set-selection Units 14
3.1 4-Output Max-set-selection and Partial Sorting Units 15

3.1.1 8-to-4 Max-set-selection Units 15
3.1.2 BM-8-to-4 and 8-to-4 Partial Sorting Units 17
3.1.3 2n-to-4 Max-set-selection and Partial Sorting Units . 20

3.2 2n-to-2m Max-set-selection and Partial Sorting Units 28
3.2.1 Modular Max-set-seletion Units 28
3.2.2 Modular Partial Sorting Units 29

3.3 Other Extensions 30
3.3.1 Other Input Quantities 30
3.3.2 Other Output Quantities 30

3.4 Analysis 31

4 Results 35
4.1 ASIC Implementation 35

iv

4.2 FPGA Implementation 39
4.3 Comparison with Other Approaches 39
4.4 Customized Units Used in the CMS L1 Trigger 41

5 Iterative Max-set-selection Units 45
5.1 Discussion 47

5.1.1 Comparison with Parallel Max-set-selection Units . . 49
5.1.2 Iterative Partial Sorting Units 49

5.2 Results 50

6 Related Research 52
6.1 Sorting Networks 53
6.2 Partial Sorting and Max-set-selection Units 54

7 Conclusions 57

References 59

v

list of tables

2.1 The required number of CAE blocks and CAE stages for 2n-input
bitonic and odd-even merge sorting units 12

3.1 Sub-units used in 2n-to-4 max-set-selection and 2n-to-2n sorting
units (10-bit unsigned data width) 25

3.2 Structure and number of CAE stages and CAE blocks for 2n-to-4
and 2n-to-8 bitonic and odd-even merge max-set-selection units
made up of smaller merging units. The numbers in parentheses
under "Structure" show the required number of each unit. 26

3.3 The structure, the number of CAE stages, and resource require-
ments for 256-to-4 max-set-selection units made up of smaller
max-set-selection units. The numbers in parentheses show the
required number of each max-set-selection unit. 27

4.1 Performance and resource requirements of 2n-to-4 bitonic and
odd-even merge max-set-selection units with 10-bit unsigned
CAE blocks using a TSMC 65-nm standard-cell library 36

4.2 Performance and resource requirements of 2n-to-8 bitonic and
odd-even merge max-set-selection units with 10-bit unsigned
CAE blocks using a TSMC 65-nm standard-cell library 37

4.3 Performance and resource requirements of 2n-to-4 bitonic max-
set-selection units with 10-bit unsigned CAE blocks on an XC5VTX240T-
2FF1759 FPGA . 40

4.4 Performance and resource requirements of customized 2n-to-4
max-set-selection units with 10-bit unsigned energy vectors on
an XC5VTX240T-2FF1759 FPGA. Each of the 2n inputs has an
associated n-bit position vector (index). 44

vi

5.1 Performance and resource requirements of iterative max-set-
selection units used to find the four largest data values from
N = 256 data inputs with 10-bit unsigned CAE blocks using a
TSMC 65-nm standard-cell library 51

6.1 Complexity of sorting algorithms (N: Total number of inputs,
M: Number of outputs, P: Number of new elements per cycle) . 56

vii

list of figures

2.1 The high-level implementation (left) and schematic symbol (right)
of building blocks for sorting networks. 6

2.2 An increasing 8-input bitonic merging unit (⊕BM-8) that is
composed of four parallel CAE blocks followed by two parallel
BM-4 units. The bitonic input sequence {2, 3, 6, 7, 5, 4, 1, 0} is
the concatenation of the increasing sequence {2, 3, 6, 7} and the
decreasing sequence {5, 4, 1, 0}. 7

2.3 The CAE network for an 8-input bitonic sorting unit with six
CAE stages and 24 CAE blocks, made up of increasing (⊕)
and decreasing () bitonic merging units. Arrows point in the
direction of increasing values. 8

2.4 An 8-input odd-even merge unit (OEM-8) that is composed of
two OEM-4 units and a level of three parallel CAE blocks. . . . 10

2.5 The CAE network for an 8-input odd-even merge sorting unit
with six CAE stages and 19 CAE blocks. 11

3.1 The CAE network for an 8-to-4 bitonic max-set-selection unit
with four CAE stages and 16 CAE blocks. 16

3.2 The CAE network for an 8-to-4 odd-even merge max-set-selection
unit with four CAE stages and 14 CAE blocks. 17

3.3 The CAE network for an 8-to-4 bitonic partial sorting unit with
six CAE stages and 20 CAE blocks. 18

3.4 The CAE network for an 8-to-4 odd-even merge partial sorting
unit with six CAE stages and 18 CAE blocks. 19

3.5 A 16-to-4 bitonic max-set-selection unit. 20
3.6 A 32-to-4 bitonic max-set-selection unit. 21
3.7 A 32-to-32 bitonic sorting unit. 21
3.8 A 32-to-4 odd-even merge max-set-selection unit. 22

viii

3.9 A 32-to-4 bitonic partial sorting unit. 22
3.10 A 128-to-16 odd-even merge max-set-selection unit. 28
3.11 The number of CAE stages for 2n-to-2m partial sorting ($) and

max-set-selection (*) units. 31
3.12 The number of CAE blocks for 2n-to-2m bitonic partial sorting

($) and max-set-selection (*) units. 32
3.13 The number of CAE blocks for 2n-to-2m bitonic and odd-even

merge max-set-selection units. 33
3.14 The number of CAE blocks for 2n-to-2m bitonic and odd-even

merge partial sorting units. 34

5.1 Iterative max-set-selection unit. 47

ix

abstract

High-throughput and low-latency sorting is a key requirement in many
applications that deal with large amounts of data. Searching and high-
energy physics systems require a considerable number of sorting units. The
particle detectors in CERN’s Large Hadron Collider require hundreds of
fast sorting units. To provide the performance and flexibility needed in
high-energy physics experiments, these sorting units are often implemented
using high-end FPGA devices. This thesis presents efficient techniques
for designing high-throughput, low-latency sorting units. Our sorting ar-
chitectures utilize modular design techniques that hierarchically construct
large sorting units from smaller building blocks. The sorting units are
optimized for situations in which only the M largest numbers from N inputs
are needed, since this situation commonly occurs in many applications for
scientific computing, data mining, network processing, digital signal process-
ing, and high-energy physics. We utilize our proposed techniques to design
parameterized, pipelined, and modular sorting units. A detailed analysis of
these sorting units indicates that as the number of inputs increases their
resource requirements scale linearly, their latencies scale logarithmically, and
their frequencies remain almost constant. When synthesized to a 65-nm
TSMC technology, a single pipelined 256-to-4 sorting unit with 19 stages
can perform more than 2.7 billion sorts per second with a latency of about 7
ns per sort. When implemented on a Virtex-5 FPGA, the same sorting unit
can perform roughly 200 million sorts per second with a latency of about 95
ns per sort. We also propose iterative sorting techniques, in which a small
sorting unit is used several times to find the largest values.

1

1 introduction

Sorting is an important operation in a wide range of applications including
data mining, databases [7, 19, 31], digital signal processing [47, 48], network
processing, communication switching systems [4, 58], scientific computing
[15], searching, scheduling [51], pattern recognition, robotics [10], image and
video processing [11, 12, 17, 49], and high-energy physics (HEP) [23, 55].
For applications that require very high-speed sorting, hardware sorting units
are often implemented using either ASICs or FPGAs to meet performance
requirements [13, 28, 31, 33, 38, 41, 49]. Based on target applications,
hardware sorting units vary greatly not only in architecture but also in
the number of inputs and the width of inputs that they can process. For
instance, only 9 to 25 inputs need to be processed in certain filters [11, 12],
while the number of inputs can vary from 25 to 81 (or even higher) in
certain image processing applications [45]. High-speed sorters on FPGAs in
HEP applications deal with 128 to 256 data samples in 100 ns processing
cycles [18, 23]. Thousands of inputs are sorted in video [49] and database
applications [20, 31]. In general, inputs can be b-bit integers (8 6 b 6 64),
floating-point numbers, or even compressed data values.

Most previous research on sorting units has focused on the situation in
which the sorting unit must produce all of its inputs in sorted (increasing
or decreasing) order. In many applications, however, only the M largest
(or smallest) output values need to be selected from a total of N input
values, where M < N. For example, in many HEP applications, only the M
most energetic particles may be of interest. Similarly, in signal processing
applications, only the M strongest signals or M closest points in space may
need to be analyzed. In data mining, searching, and database systems, only
top query outputs that score the most with respect to a given search key may
need further processing. Furthermore, depending on the application, the M
largest (smallest) outputs may not need to be in order. We refer to units

2

that only return the M largest (smallest) outputs, but do not guarantee
that these M outputs are sorted, as max(min)-set-selection units. We refer
to units that only return the M largest (smallest) outputs in sorted order
as partial sorting units.

This thesis focuses on the design of partial sorting and max-set-selection
units that return the M = 2m largest values from N = 2n inputs, where m
and n are each whole numbers and 1 6M < N1. We refer to these units as
N-to-M partial sorting and max-set-selection units. Our units discard small
inputs as early as possible to reduce the sorting units’ latency and hardware
complexity. We investigate the design and VLSI implementations of partial
sorting and max-set-selection units with low latency, high throughput, and
modest resource requirements. Our designs are based on Batcher’s bitonic
and odd-even merge sorting networks [8, 21], which are widely used in
VLSI and FPGA implementations due to their simplicity, regularity, and
parallelism. The proposed units are scalable in terms of both the number of
inputs and the number of outputs. We also present a generalized platform-
independent methodology for designing high-performance pipelined partial
sorting and max-set-selection units for which the width of the data to be
sorted and the pipeline depth can easily be varied.

This research is an extension of our previous work on FPGA-based sorting
units in the Large Hadron Collider (LHC) [18]. The main contributions of
this dissertation and [18] are:

• Modular techniques for designing N-to-M partial sorting and max-
set-selection units. The units are composed of small and regular
building blocks connected in a modular fashion, thereby reducing
verification time and simplifying the design process. Our designs have
low latency, high throughput, and modest resource requirements, can

1Straightforward modifications to our designs allow theM smallest values, rather than
the M largest values, to be output. It is also feasible to remove the current restriction
that M and N are integer powers of two using techniques similar to those presented in
[4, 25, 32, 37, 40].

3

be pipelined easily, have parameterized pipeline depth and data widths,
and scale well to large values of N and M. Moreover, our techniques
are independent of the bit-width and type of input values.

• A detailed analysis of our proposed partial sorting and max-set-
selection units that includes both theoretical and synthesis estimates
of our units’ latency, throughput, and resource requirements. This
analysis indicates that for a given number of outputs, resource re-
quirements scale linearly with the number of inputs, latency scales
logarithmically with the number of inputs, and the frequency remains
nearly constant. Compared to conventional sorting units, which return
all of their inputs in sorted order, our N-to-M partial sorting and
max-set-selection units have much lower latency and area.

• A discussion of how the proposed max-set-selection units may be
utilized iteratively to find the largest values from a set of data. This
approach may lower resource requirements, storage cost, and I/O
requirements at the cost of increased latency and decreased throughput.

To the best of our knowledge, this is the first time that N-to-M partial
sorting networks have been presented and analyzed. In this work, we
propose fast parallel sorting algorithms for finding/sorting the M largest
values from N inputs and then design scalable architectures based on the
proposed algorithms. Our N-to-M partial sorting networks have lower
latency than any previous sorting designs when producing only the M
largest values. Furthermore, our N-to-M max-set-selection units further
decrease the latency and resource requirements by not producing their
outputs in sorted order. Our parallel units target applications that require
very low-latency sorting. Our iterative units target applications that require
moderate-latency sorting by trading increased latency for reduced area and
I/O bandwidth. Although our sorting units were originally designed for
HEP experiments in the Large Hadron Collider, our methodology can be

4

utilized to design high-speed sorting and max-set selection units for a wide
range of applications.

The remainder of this dissertation is organized as follows. Chapter 2
describes previous sorting networks and provides background information
for our work. Chapter 3 presents our new partial sorting and max-set-
selection units. Chapter 4 gives synthesis results for our proposed units.
Chapter 5 shows how these units are used iteratively to sort data. Chapter 6
discusses related research on sorting algorithms and architectures. Chapter 7
concludes the dissertation.

5

2 parallel sorting networks

A sorting network is a collection of interconnected compare-and-exchange
(CAE) blocks that guides a parallel set of inputs to a parallel set of outputs
in sorted order. Each CAE block has two inputs and two outputs. If the
input values are already in order, they are directed to the corresponding
outputs; otherwise, they are swapped.

There are two types of CAE blocks, called increasing and decreasing
CAE blocks, used in hardware-based sorting units. Fig. 2.1 shows the
high-level implementations (left) and schematic symbols (right) for three
building blocks used in previous sorting units and in our designs. Fig. 2.1(a)
shows an increasing CAE block, which outputs its two inputs in ascending
order. A decreasing CAE block, shown in Fig. 2.1(b), outputs its inputs
in descending order. Decreasing and increasing CAE blocks are identical,
except for their wiring. Each CAE block contains a comparator and two
multiplexers. We also define Max units which are used in our designs. A
Max unit, shown in Fig. 1(c), takes two inputs and returns the larger input.
Note that the ⊕ and 	 symbols determine the type of the block in Fig. 2.1.

A sorting network usually consists of a series of stages in which each
stage contains a number of CAE blocks that operate in parallel. The latency
of a sorting network is proportional to its depth (the number of consecutive
CAE blocks). Two popular parallel sorting networks that currently have
the lowest known latency for hardware implementation are the bitonic and
odd-even merge sorting networks proposed by Batcher [8]. The structure
of a sorting network is fixed, regardless of the value of the numbers being
sorted and the results of the comparisons. Sorting networks are a common
solution for hardware-based sorting. Their parallel nature allows them to
perform sorting much faster than the O(N × log(N)) time achievable by
the fastest sequential software-based sorting algorithms. A sorting network
may also be pipelined to further increase throughput.

6

A

B

S0 = min{A, B}

S1 = max{A, B}

A
A<B

B

S0 = min{A, B}

S1 = max{A, B}

0
1

0
1

A

B

S0 = max{A, B}

S1 = min{A, B}

A
A<B

B

S0 = max{A, B}

S1 = min{A, B}

0
1

0
1

A

B S1 = max{A, B}

A
A<B

B

S1 = max{A, B}
0
1

(a)

(b)

(c)

Figure 2.1: The high-level implementation (left) and schematic symbol
(right) of building blocks for sorting networks.

2.1 Bitonic Sorting Networks

Concatenating an ascending and a descending sequence forms a single bitonic
sequence. A bitonic sorting network recursively merges an ascending and
a descending sequences each of length N/2 to make a sorted sequence of
length N [8]. Each bitonic sorting network is composed of a number of
bitonic merging units to merge bitonic sequences.

A K-input bitonic merging unit (denoted as BM-K) contains log2(K)

stages of parallel CAE blocks, where each stage corresponds to a CAE
stage with K/2 CAE blocks. Therefore, a BM-K requires log2(K) × K/2

7

A0

A1

A2

A3

B3

B2

B1

B0

S0

S1

S2

S3

S4

S5

S6

S7

Four parallel CAEs
BM-4 used to sort

lower half of inputs

BM-4 used to sort

upper half of inputs

2

3

6

7

5

4

1

0

2

3

1

0

5

4

6

7

1

0

2

3

5

4

6

7

0

1

2

3

4

5

6

7

Figure 2.2: An increasing 8-input bitonic merging unit (⊕BM-8) that is
composed of four parallel CAE blocks followed by two parallel BM-4 units.
The bitonic input sequence {2, 3, 6, 7, 5, 4, 1, 0} is the concatenation of the
increasing sequence {2, 3, 6, 7} and the decreasing sequence {5, 4, 1, 0}.

8

S0

S1

S2

S3

S4

S5

S6

S7

A0

A1

A2

A3

A4

A5

A6

A7

Four parallel

BM-2 units

Two parallel BM-4

units
One BM-8 unit

6

7

3

2

5

0

1

4

0

1

2

3

4

5

6

7

6

7

3

2

0

5

4

1

3

2

6

7

4

5

0

1

2

3

6

7

5

4

1

0

Figure 2.3: The CAE network for an 8-input bitonic sorting unit with six
CAE stages and 24 CAE blocks, made up of increasing (⊕) and decreasing
() bitonic merging units. Arrows point in the direction of increasing values.

CAE blocks. For instance, an increasing BM-8 (denoted as ⊕BM-8) unit
has three CAE stages and requires 3× (8/2) = 12 CAE blocks, as shown
in Fig. 2.2. In this figure, the arrows point in the direction of increasing
numbers and the dashed lines separate CAE stages. A BM-K unit is itself
composed of a level of K/2 parallel CAE blocks followed by two parallel
BM-(K/2) units. The ⊕BM-8 is constructed from a level of four parallel
CAE blocks followed by two parallel BM-4 units that have four CAE blocks
each. A decreasing BM-8 (denoted as 	BM-8) has a similar structure to
an increasing BM-8, but it is only constructed from decreasing CAE blocks
and the sorted outputs are in descending order.

An 8-input bitonic sorting unit has four parallel BM-2 units, two parallel

9

BM-4 units, and one BM-8 unit, as shown in Fig. 2.3. Thus, this sorting unit
has 1 + 2 + 3 = 6 CAE stages. Assuming the unit is pipelined so each stage
takes one clock cycle, it can generate the sorted outputs in 6 cycles and can
begin a new sort each cycle. In an N-input bitonic sorting unit, there are
equal numbers of increasing and decreasing BM units in each level, excluding
the last level, which has only either an increasing BM-N unit or a decreasing
BM-N unit. In general, an N-input bitonic sorting unit is composed of
N/2 BM-2 units, N/4 BM-4 units, N/8 BM-8 units, …, two BM-N/2 units,
and one BM-N unit. In this design, BM-K units are followed by BM-(2K)
unit(s), where K = 2, 4, 8, ...,N/2,N, 2 6 K 6 N and K and N are integer
powers of 2. Therefore, since an N-input bitonic sorting unit has log2(N)

consecutive BM-K units, where each BM-K unit has log2(K) CAE stages,
an N-input bitonic sorting unit has log2(N)× (log2(N) + 1)/2 CAE stages.
Since each stage has N/2 CAE blocks, the total number of CAE blocks in an
N-input bitonic sorting unit is N× log2(N)× (log2(N)+ 1)/4. For example,
16-input, 32-input, and 256-input bitonic sorting units require 10, 15, and
36 CAE stages and have 80, 240, and 4,608 CAE blocks, respectively.

2.2 Odd-even Merge Sorting Networks

An odd-even merge sorting network recursively merges two ascending se-
quences of length K/2 to make a sorted sequence of length K. Each odd-even
merge sorting network is composed of a number of odd-even merging units.
A K-input odd-even merging unit (OEM-K) merges two ascending input
sequences into a single ascending output sequence. It contains log2(K) CAE
stages, where each stage has between K/4 and K/2 CAE blocks. An OEM-K
takes two length K/2 ascending sequences, A and B. The OEM-K merges
the input values having odd indices in A with the input values having
odd indices in B, and also merges input values in A and B having even
indices. The result is a sorted sequence of values with odd indices (SO) and

10

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

S4

S5

S6

S7

SE0

SO0

SE1

SO1

SE2

SO2

SE3

SO3

OEM-4 used to sort values with

even indices in A and B inputs

OEM-4 used to sort values with

odd indices in A and B inputs

A level of three

parallel CAEs

2

3

6

7

0

1

4

5

0

1

4

5

2

3

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 2.4: An 8-input odd-even merge unit (OEM-8) that is composed of
two OEM-4 units and a level of three parallel CAE blocks.

a sorted sequence of values with even indices (SE). SO and SE are generated
recursively, separately, and in parallel. In the final stage, the SO and SE
sequences are merged to generate a sorted sequence with K values, S0 to
SK−1. The merging process is simply a compare-and-exchange of values in
the SO and SE sequences.

An 8-input odd-even merging unit is shown in Fig. 2.4. An OEM-K unit
is composed of two parallel OEM-K/2 units, followed by a level of (K/2− 1)
parallel CAE blocks. Unlike BM units, OEM units are only built from

11

S0

S1

S2

S3

S4

S5

S6

S7

A0

A1

A2

A3

A4

A5

A6

A7

Four parallel

OEM-2 units

Two parallel

OEM-4 units
One OEM-8 unit

6

7

3

2

5

0

1

4

6

7

2

3

0

5

1

4

2

3

6

7

0

5

1

4

2

3

6

7

0

1

5

4

0

1

2

3

4

5

6

7

Figure 2.5: The CAE network for an 8-input odd-even merge sorting unit
with six CAE stages and 19 CAE blocks.

increasing CAE blocks. The total number of CAE blocks for an OEM-K
unit is (K/2)× (log2(K) − 1) + 1 = log2(K/2)× (K/2) + 1. Thus, an OEM-8
unit has three CAE stages and 2× 4 + 1 = 9 CAE blocks. It is constructed
from two parallel OEM-4 units that each have three parallel CAE blocks
followed by a level of three parallel CAE blocks.

An 8-input odd-even merge sorting unit has four OEM-2 units, two
OEM-4 units, and one OEM-8 unit, as shown in Fig. 2.5. It requires four
parallel OEM-2 units, two parallel OEM-4 units, and a single OEM-8 unit,
leading to a sorting unit with 1 + 2 + 3 = 6 CAE stages. Assuming the
unit is pipelined with one stage per clock cycle, it can generate the sorted
outputs in six cycles. In general, an N-input odd-even merge sorting unit is

12

Table 2.1: The required number of CAE blocks and CAE stages for 2n-input
bitonic and odd-even merge sorting units

of inputs
and outputs
(N=M=2n)

of
CAE
Stages

of CAE blocks

Bitonic Odd-even Difference

8 6 24 19 5

16 10 80 63 17

32 15 240 191 49

64 21 672 543 129

128 28 1,792 1,471 321

256 36 4,608 3,839 769

composed of N/2 OEM-2 units1, N/4 OEM-4 units, N/8 OEM-8 units, …,
two OEM-N/2 units, and one OEM-N unit. In this design, OEM-K units
are followed by OEM-2K unit(s), where K = 2, 4, 8, ...,N/2,N, and K and N
are integers power of 2. Therefore, since an N-input odd-even merge sorting
unit is composed of log2(N) consecutive OEM-K units, where each OEM-K
unit has log2(K) CAE stages, an N-input odd-even merge sorting unit has
(log2(N))× (log2(N) + 1) stages. This is equivalent to the number of CAE
stages in an N-input bitonic sorting unit. In addition, since an OEM-K has
log2(K/2)× (K/2) + 1 CAE blocks, an N-input odd-even merge sorting unit
has N/4× (log2(N))× (log2(N) − 1) +N− 1 CAE blocks.

2.3 Designing Large Sorting Networks

Based on the idea behind the bitonic and odd-even merge algorithms, large
sorting units can be built using large merging units [8] that consist of multiple

1BM-2 and OEM-2 units have the same structure.

13

CAE stages of increasingly larger size. Table 2.1 summarizes the required
number of CAE blocks and stages for bitonic and odd-even merge sorting
units. Both N-input bitonic and odd-even merge sorting units have a time
complexity (depth) of O(log2

2(N)) CAE stages and have an area complexity
of O(N× log2

2(N)) CAE blocks. An N-input, N-output bitonic or odd-even
merge complete sorting unit is composed of (log2N)× (log2N+ 1)/2 CAE
stages, where N = 2n. However, the required number of CAE blocks differs
for each type of sorting unit. Bitonic and odd-even merge sorting unit with
2n inputs and 2n outputs have 2n−2×n×(n+1) and 2n−2×n×(n−1)+2n−1
CAE blocks, respectively. Thus, odd-even merge sorting units have lower
resource requirements than bitonic sorting units, but may have more complex
wiring. The difference in the number of CAE blocks between bitonic and
odd-even merge sorting units is 2n−1 × (n− 2) + 1, which shows that the
difference in the number of CAE blocks increases linearly with the number
of inputs.

14

3 proposed partial sorting and
max-set-selection units

In many applications, it is not necessary to return all of the sorted inputs.
Applications often only need to determine the M largest or M smallest
numbers from N inputs, where M < N and M and N are both integer
powers of two (M = 2m, N = 2n). Partial sorters provide the 2m largest
values in sorted order, and max-set-selection units provide the 2m largest
values in arbitrary order. Partial sorters and max-set-selection units are key
components in many applications such as HEP and multimedia applications.
For example, in the Large Hadron Collider [35], built by the European
Organization for Nuclear Research (CERN), low-latency max-set-selection
units identify important particle interactions that correspond to high-energy
collisions [18, 55]. In multimedia applications, partial sorting units speed up
data sorting algorithms [17]. Moreover, auxiliary max-set-selection units can
cooperate with general-purpose processing units in embedded and database
management systems to accelerate data search and sort algorithms. In cases
such as this, Batcher’s algorithms can be optimized to generate only the
2m largest numbers from 2n inputs with less latency and fewer CAE blocks
than a complete sorting network.

In this chapter, we propose a modular technique based on Batcher’s
algorithms to design units that return only the 2m largest values from 2n

inputs. In Chapter 3.1, we focus on the case that only the four largest values
are produced by the max-set-selection unit without regard to output order.
We also extend our technique to partial sorting units to return outputs in
ascending order. In Chapter 3.2, we generalize our method so the proposed
algorithm is applicable for any number of outputs that is an integer power
of two and where results can be returned either in arbitrary or ascending
order.

15

3.1 4-Output Max-set-selection and Partial
Sorting Units

We first discuss 8-to-4 max-set-selection units and then extend our technique
to larger 2n-to-4 max-set-selection and partial sorting units. To design
2n-to-4 max-set-selection units, we take advantage of the fact that only
the four largest inputs are needed, in no particular order, to decrease the
resource requirements and the number of CAE stages.

3.1.1 8-to-4 Max-set-selection Units

To illustrate our technique, we first present the design of a refined 8-input
bitonic sorting unit, called an 8-to-4 bitonic max-set-selection unit, that only
returns the four largest numbers. A special feature of bitonic sequences is
that performing Max operations on two sorted sequences (one increasing and
the other one decreasing) each of K numbers, generates two new sequences
of K numbers in which numbers in one sequence are all less than numbers
in the other sequence. In BM-K units, the first level of parallel CAE blocks
partitions the input numbers into two (K/2)-number sub-sets: the smaller
numbers and the larger numbers. However, the first level of parallel CAE
blocks in OEM units must be rewired to correctly generate the smaller and
larger subsets of numbers. Figs. 3.1 and 3.2 show 8-to-4 max-set-selection
units that use bitonic and odd-even merge algorithms, respectively. As
shown in Fig. 3.1, the BM-8 unit in Fig. 2.3 is replaced with a level of Max
units that has the same wiring as the first level of parallel CAE blocks in the
BM-8 unit. Fig. 3.2 illustrates that the OEM-8 unit in Fig. 2.5 is replaced
with a level of Max units with wirings that differ from the first level of
parallel CAE blocks in the OEM-8 unit. These modifications decrease the
required number of CAE stages from six in 8-input sorting units to four in
8-to-4 max-set-selection units.

16

H0

H1

H2

H3

A0

A1

A2

A3

A4

A5

A6

A7

Four parallel

BM-2 units

Two parallel BM-4

units

One level of Max

Units

6

7

3

2

5

0

1

4

6

7

3

2

0

5

4

1

2

3

6

7

5

4

1

0

5

4

6

7

Figure 3.1: The CAE network for an 8-to-4 bitonic max-set-selection unit
with four CAE stages and 16 CAE blocks.

17

H0

H1

H2

H3

A0

A1

A2

A3

A4

A5

A6

A7

Four parallel

OEM-2 units

Two parallel

OEM-4 units

One level of Max

Units

6

7

3

2

5

0

1

4

6

7

2

3

0

5

1

4

2

3

6

7

0

1

5

4

7

6

5

4

Figure 3.2: The CAE network for an 8-to-4 odd-even merge max-set-selection
unit with four CAE stages and 14 CAE blocks.

3.1.2 BM-8-to-4 and 8-to-4 Partial Sorting Units

The 8-to-4 max-set-selection units, however, cannot be used directly to form
larger sorting or max-set-selection units, because the outputs of the 8-to-4
max-set-selection units in Fig. 3.1 and Fig. 3.2 are not in a specific order.
Since inputs to BM units should be a bitonic sequence and inputs to OEM
units should be two ascending sequences, these designs cannot be connected
directly to other BM or OEM units when desiging larger sorters.

18

S0

S1

S2

S3

A0

A1

A2

A3

A4

A5

A6

A7

Four parallel

BM-2 units

Two parallel BM-

4 units
One BM-8-to-4 unit

6

7

3

2

5

0

1

4

6

7

3

2

0

5

4

1

2

3

6

7

5

4

1

0

4

5

6

7

Figure 3.3: The CAE network for an 8-to-4 bitonic partial sorting unit with
six CAE stages and 20 CAE blocks.

To solve this problem, we have designed a new merging unit called a
BM-8-to-4 unit, shown as the right-most block in Figs. 3.3 and 3.4. A
BM-8-to-4 unit is an 8-input bitonic merging unit that outputs only the
four largest values in either ascending ⊕ or descending 	 order. Fig. 3.3
depicts our proposed 8-to-4 bitonic partial sorting unit that returns the four
largest values from its eight inputs in ascending order. Compared to the
8-input bitonic sorting unit shown in Fig. 2.3, it needs fewer CAE blocks
and the BM-8 unit is replaced with a BM-8-to-4 unit. A descending 8-to-4
partial sorting unit has a similar structure. A BM-8-to-4 unit has a level of
four parallel CAE blocks followed by a BM-4 unit. With this approach, the
output of an 8-to-4 bitonic partial sorting unit can be fed to other bitonic
merging units.

19

A0

A1

A2

A3

A4

A5

A6

A7

Four parallel

OEM-2 units

Two parallel

OEM-4 units
One rewired BM-8-to-4 unit

S0

S1

S2

S3

6

7

3

2

5

0

1

4

6

7

2

3

0

5

1

4

2

3

6

7

0

1

5

4

4

5

6

7

Figure 3.4: The CAE network for an 8-to-4 odd-even merge partial sorting
unit with six CAE stages and 18 CAE blocks.

Fig. 3.4 depicts our proposed 8-to-4 odd-even merge partial sorting unit
that returns the four largest values from its eight inputs in ascending order.
Compared to the 8-input odd-even merge sorting unit in Fig. 2.5, it needs
fewer CAE blocks and the OEM-8 unit is replaced with a BM-8-to-4 unit.
In fact, the partial sorting unit shown in Fig. 3.4 is a hybrid unit composed
of bitonic and odd-even merging units. Since a bitonic merging unit takes
only a bitonic sequence, the inputs to the BM-8-to-4 unit in Fig. 3.4 are
rewired to convert the two sorted sequences to a bitonic sequence. This
way, the output of odd-even merging units can be fed to bitonic merging
units. We could also propose an OEM-8-to-4 unit to avoid the rewiring
technique. However, since an OEM-8-to-4 unit requires more registers than
a BM-8-to-4, only BM-2k+1-to-2k units are used throughout the thesis. Note

20

+ BM-2
- BM-2

+ BM-4

+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2

- BM-4

+ BM-4

- BM-4

+ BM-8-to-4

- BM-8-to-4

Max-4

Make bitonic sequences Discard smaller values and select

larger values

Figure 3.5: A 16-to-4 bitonic max-set-selection unit.

that only increasing BM-8-to-4 units are used in our proposed odd-even
merge sorting unit, while both increasing and decreasing BM-8-to-4 units
are used in the bitonic sorting unit.

3.1.3 2n-to-4 Max-set-selection and Partial Sorting
Units

To design larger 2n-to-4 max-set-selection units, we can take advantage
of the fact that BM-8-to-4 units can be combined to make larger units.
Since BM-8-to-4 units generate sorted outputs, these outputs can feed other
BM-8-to-4 units. We can build larger 2n-to-4 bitonic max-set-selection
units using BM-2, BM-4, BM-8-to-4, and Max-4 units. We can also build
larger 2n-to-4 odd-even merge max-set-selection units using OEM-2, OEM-4,
BM-8-to-4, and Max-4 units. BM-2, BM-4, BM-8, BM-8-to-4, and Max-4
units require 1, 4, 12, 8, and 4 CAE blocks, respectively. OEM-4 and OEM-8
units require 3 and 9 CAE blocks, respectively.

Figs. 3.5 shows the structures of 16-to-4 bitonic max-set-selection units
that utilize multiple BM-8-to-4 units. Fig. 3.6 shows the structure of a
32-to-4 bitonic max-set-selection unit that has 10 CAE stages. Fig. 3.7
shows the structure of a 32-to-32 bitonic sorting unit that has 15 CAE

21

+ BM-2
- BM-2

+ BM-4

+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2

- BM-4

+ BM-4

- BM-4

+ BM-4

- BM-4

+ BM-4

- BM-4

+ BM-8-to-4

- BM-8-to-4

+ BM-8-to-4

- BM-8-to-4

Max-4

+ BM-8-to-4

- BM-8-to-4

Make bitonic sequences Discard smaller values and select larger values

Figure 3.6: A 32-to-4 bitonic max-set-selection unit.

+ BM-2

- BM-2
+ BM-4

+ BM-2

- BM-2

+ BM-2

- BM-2

+ BM-2

- BM-2

+ BM-2

- BM-2

+ BM-2

- BM-2

+ BM-2

- BM-2

+ BM-2

- BM-2

- BM-4

+ BM-4

- BM-4

+ BM-4

- BM-4

+ BM-4

- BM-4

+ BM-8

- BM-8

+ BM-8

- BM-8

+ BM-16

- BM-16

+ BM-32

Figure 3.7: A 32-to-32 bitonic sorting unit.

22

OEM-2
OEM-2

OEM-4

OEM-4

OEM-4

OEM-4

OEM-4

OEM-4

OEM-4

OEM-4

+ BM-8-to-4

- BM-8-to-4

Max-4

+ BM-8-to-4

- BM-8-to-4

OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2
OEM-2

R
e
w

irin
g

R
e
w

irin
g

+ BM-8-to-4

- BM-8-to-4

R
e
w

irin
g

R
e
w

irin
g

Make ascending sequences Discard smaller values and select larger values

Figure 3.8: A 32-to-4 odd-even merge max-set-selection unit.

+ BM-2
- BM-2

+ BM-4

+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2
+ BM-2
- BM-2

- BM-4

+ BM-4

- BM-4

+ BM-4

- BM-4

+ BM-4

- BM-4

+ BM-8-to-4

- BM-8-to-4

+ BM-8-to-4

- BM-8-to-4

+ BM-

8-to-4

+ BM-8-to-4

- BM-8-to-4

Make bitonic sequences Discard smaller values and sort larger values

Figure 3.9: A 32-to-4 bitonic partial sorting unit.

23

stages. In these designs, smaller numbers are discarded in stages as early
as possible to reduce the total number of CAE stages and CAE blocks. A
16-to-4 bitonic max-set-selection unit has one level of parallel BM-8-to-4
units, while a 32-to-4 bitonic max-set-selection unit employs two levels of
parallel BM-8-to-4 units.

Fig. 3.8 depicts the high-level structure of a 32-to-4 odd-even merge max-
set-selection unit that utilizes several OEM and BM-8-to-4 units. Unlike
bitonic max-set-selection and partial sorting units, odd-even merge units only
use increasing merging units, which is an advantage in terms of simplicity of
design. On the other hand, as shown in Fig. 3.8, the outputs of OEM-4 units
are rewired to feed BM-8-to-4 units, which is a disadvantage. In general,
2n-to-4 max-set-selection units have n− 3 levels of parallel BM-8-to-4 units
for n > 3.

To make a 2n-to-4 partial sorting unit, the last level of a 2n-to-4 max-
set-selection unit, which is a Max-4 unit, is replaced by a BM-8-to-4 unit to
generate outputs in sorted order. This increases the number of CAE stages
and the number of CAE blocks by 2 and 4, respectively. Fig. 3.9 shows the
structure of a 32-to-4 bitonic partial unit (compare this with Fig. 3.6).

Table 3.1 compares the resource requirements of sub-units used in 2n-to-4
max-set-selection and 2n-to-2n sorting units. Table 3.2 shows the resource
requirements and the number of CAE stages for our proposed 2n-to-4 and
2n-to-8 max-set-selection units. The required number of CAE stages for a
2n-to-4 bitonic max-set-selection unit can be calculated based on the fact
that it is composed of a level of parallel BM-2 units, a level of parallel BM-4
units, n− 3 levels of parallel BM-8-to-4 units, and a Max-4 unit. Similarly,
the required number of CAE blocks can be calculated based on the fact that
there are 2n−1 BM-2 units, 2n−2 BM-4 units, 2n−2 − 2 BM-8-to-4 units, and
one Max-4 unit in a 2n-to-4 bitonic max-set-selection unit. Both 2n-to-4
bitonic and odd-even merge max-set-selection units have 3 × n − 5 CAE
stages for n > 3. 2n-to-4 bitonic and odd-even merge max-set-selection units

24

require 7× 2n−1 − 12 and 13× 2n−2 − 12 CAE blocks, respectively. Thus,
2n-to-4 max-set-selection and partial sorting units require many fewer CAE
stages and CAE blocks than conventional 2n-input complete sorting units for
large values of n. For example, while a 256-input sorting unit has 36 CAE
stages, a 256-to-4 max-set-selection unit has 19 CAE stages, and a 256-to-4
partial sorting unit has 21 CAE stages. As shown in Table 2.1, a 256-input
bitonic sorting units requires 4,608 CAE blocks. However, a 256-to-4 bitonic
max-set-selection unit and a 256-to-4 bitonic partial sorting unit require
884 and 888 CAE blocks, respectively. Similarly, as shown in Table 2.1, a
256-input odd-even merge sorting unit requires 3,839 CAE blocks. However,
a 256-to-4 odd-even merge max-set-selection unit and a 256-to-4 odd-even
merge partial sorting unit require 820 and 824 CAE blocks, respectively.
This indicates significant improvements of max-set-selection compared to
the conventional sorting units in terms of both the number of CAE stages
and the required number of CAE blocks.

Table 3.2 shows how max-set-selection units can be built from BM/OEM
and Max units. For instance, to implement a 256-to-4 max-set-selection unit,
128 BM-2/OEM-2 units, 64 BM-4/OEM-4 units, 62 BM-8-to-4 units, and a
Max-4 unit are needed. In general, odd-even merge max-set-selection units
need fewer CAE blocks than the corresponding bitonic max-set-selection
units, but bitonic max-set-selection units have more regular structures and
are easier to design. Table 3.2 indicates that the fastest 256-to-4 max-set-
selection units have a latency of 19 clock cycles (assuming each CAE stage
takes one clock cycle). In comparison, conventional 256-input sorting units
require 36 clock cycles to sort all 256 data values.

We also investigated constructing 256-to-4 max-set-selection units using
8-to-4, 16-to-4, 32-to-4, 64-to-4, and 128-to-4 max-set-selection units, as
shown in Table 3.3. Tables 3.2 and 3.3 indicate that the fastest 256-to-4
max-set-selection units have a latency of 19 clock cycles (assuming each
stage takes one clock cycle). In comparison, conventional 256-input sorting

25

Table 3.1: Sub-units used in 2n-to-4 max-set-selection and 2n-to-2n sorting
units (10-bit unsigned data width)

Sub-unit CAE Blocks CAE Stages Slice LUTs Slice Regs

BM-2 1 1 30 20

Max-4 4 1 60 40

BM-4 4 2 100 80

BM-8 12 3 300 240

BM-8-to-4 8 3 160 120

BM-16 32 4 800 640

BM-32 80 5 2,000 1,600

BM-64 192 6 4,800 3,840

BM-128 448 7 11,200 8,960

BM-256 1,024 8 25,600 20,480

units require 36 clock cycles to sort all 256 data values. In addition, the odd-
even merge max-set-selection unit design shown in the last row of Table 3.2
requires fewer CAE blocks than the designs introduced in Table 3.3. In
general, odd-even merge max-set-selection units need fewer CAE blocks
than bitonic max-set-selection units, but bitonic max-set-selection units
have more regular structures and are easier to design.

26

Ta
bl

e
3.

2:
St

ru
ct

ur
e

an
d

nu
m

be
r

of
C

A
E

st
ag

es
an

d
C

A
E

bl
oc

ks
fo

r
2n

-t
o-

4
an

d
2n

-t
o-

8
bi

to
ni

c
an

d
od

d-
ev

en
m

er
ge

m
ax

-s
et

-s
el

ec
tio

n
un

its
m

ad
e

up
of

sm
al

le
r

m
er

gi
ng

un
its

.
T

he
nu

m
be

rs
in

pa
re

nt
he

se
s

un
de

r
"S

tr
uc

tu
re

"s
ho

w
th

e
re

qu
ire

d
nu

m
be

r
of

ea
ch

un
it.

M
ax

-s
et

-
se

le
ct

io
n

St
ru

ct
ur

e
#

of
C

A
E

St
ag

es

#
of

C
A

E
B

lo
ck

s

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-

ev
en

8-
to

-4
B

M
-2

(4
)→

B
M

-4
(2

)→
M

ax
-4

(1
)

O
EM

-2
(4

)→
O

EM
-4

(2
)→

M
ax

-4
(1

)
4

16
14

16
-t

o-
4

B
M

-2
(8

)→
B

M
-4

(4
)→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)
O

E
M

-2
(8

)→
O

E
M

-4
(4

)→
B

M
-8

-t
o-

4(
2)
→

M
ax

-4
(1

)
7

44
40

16
-t

o-
8

B
M

-2
(8

)→
B

M
-4

(4
)→

B
M

-8
(2

)→
M

ax
-

8(
1)

O
E

M
-2

(8
)→

O
E

M
-4

(4
)→

O
E

M
-8

(2
)→

M
ax

-8
(1

)
7

56
46

32
-t

o-
4

B
M

-2
(1

6)
→

B
M

-4
(8

)→
B

M
-8

-t
o-

4(
4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)
O

EM
-2

(1
6)
→

O
EM

-4
(8

)→
B

M
-8

-t
o-

4(
4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)
10

10
0

92

32
-t

o-
8

B
M

-2
(1

6)
→

B
M

-4
(8

)→
B

M
-8

(4
)→

B
M

-1
6-

to
-8

(2
)→

M
ax

-8
(1

)
O

E
M

-2
(1

6)
→

O
E

M
-4

(8
)→

O
E

M
-8

(4
)→

B
M

-1
6-

to
-8

(2
)→

M
ax

-8
(1

)
11

14
4

12
4

64
-t

o-
4

B
M

-2
(3

2)
→

B
M

-4
(1

6)
→

B
M

-8
-t

o-
4(

8)
→

B
M

-8
-t

o-
4(

4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)

O
E

M
-2

(3
2)
→

O
E

M
-4

(1
6)
→

B
M

-8
-t

o-
4(

8)
→

B
M

-8
-t

o-
4(

4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)
13

21
2

19
6

64
-t

o-
8

B
M

-2
(3

2)
→

B
M

-4
(1

6)
→

B
M

-8
(8

)→
B

M
-

16
-t

o-
8(

4)
→

B
M

-1
6-

to
-8

(2
)→

M
ax

-8
(1

)
O

E
M

-2
(3

2)
→

O
E

M
-4

(1
6)
→

O
E

M
-8

(8
)→

B
M

-1
6-

to
-8

(4
)→

B
M

-1
6-

to
-8

(2
)→

M
ax

-8
(1

)
15

32
0

28
0

12
8-

to
-4

B
M

-2
(6

4)
→

B
M

-4
(3

2)
→

B
M

-8
-t

o-
4(

16
)→

B
M

-8
-t

o-
4(

8)
→

B
M

-8
-t

o-
4(

4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)

O
E

M
-2

(6
4)
→

O
E

M
-4

(3
2)
→

B
M

-8
-t

o-
4(

16
)→

B
M

-8
-t

o-
4(

8)
→

B
M

-8
-t

o-
4(

4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)
16

43
6

40
4

12
8-

to
-8

B
M

-2
(6

4)
→

B
M

-4
(3

2)
→

B
M

-8
(1

6)
→

B
M

-
16

-t
o-

8(
8)
→

B
M

-1
6-

to
-8

(4
)→

B
M

-1
6-

to
-

8(
2)
→

M
ax

-8
(1

)

O
EM

-2
(6

4)
→

O
EM

-4
(3

2)
→

O
EM

-8
(1

6)
→

B
M

-1
6-

to
-8

(8
)→

B
M

-1
6-

to
-8

(4
)→

B
M

-1
6-

to
-8

(2
)→

M
ax

-8
(1

)
19

67
2

59
2

25
6-

to
-4

B
M

-2
(1

28
)→

B
M

-4
(6

4)
→

B
M

-8
-t

o-
4(

32
)→

B
M

-8
-t

o-
4(

16
)→

B
M

-8
-t

o-
4(

8)
→

B
M

-8
-t

o-
4(

4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)

O
E

M
-2

(1
28

)→
O

E
M

-4
(6

4)
→

B
M

-8
-t

o-
4(

32
)→

B
M

-8
-t

o-
4(

16
)→

B
M

-8
-t

o-
4(

8)
→

B
M

-8
-t

o-
4(

4)
→

B
M

-8
-t

o-
4(

2)
→

M
ax

-4
(1

)
19

88
4

82
0

25
6-

to
-8

B
M

-2
(1

28
)→

B
M

-4
(6

4)
→

B
M

-8
(3

2)
→

B
M

-
16

-t
o-

8(
16

)→
B

M
-1

6-
to

-8
(8

)→
B

M
-1

6-
to

-
8(

4)
→

B
M

-1
6-

to
-8

(2
)→

M
ax

-8
(1

)

O
EM

-2
(1

28
)→

O
EM

-4
(6

4)
→

O
EM

-8
(3

2)
→

O
E

M
-1

6-
to

-8
(1

6)
→

O
E

M
-1

6-
to

-8
(8

)→
O

E
M

-1
6-

to
-8

(4
)→

O
E

M
-1

6-
to

-8
(2

)→
M

ax
-8

(1
)

23
13

72
12

16

27

Ta
bl

e
3.

3:
T

he
st

ru
ct

ur
e,

th
e

nu
m

be
ro

fC
A

E
st

ag
es

,a
nd

re
so

ur
ce

re
qu

ire
m

en
ts

fo
r2

56
-t

o-
4

m
ax

-s
et

-s
el

ec
tio

n
un

its
m

ad
e

up
of

sm
al

le
r

m
ax

-s
et

-s
el

ec
tio

n
un

its
.

T
he

nu
m

be
rs

in
pa

re
nt

he
se

s
sh

ow
th

e
re

qu
ire

d
nu

m
be

r
of

ea
ch

m
ax

-s
et

-s
el

ec
tio

n
un

it.

25
6-

to
-4

M
ax

-
se

t-
se

le
ct

io
n

St
ru

ct
ur

e
#

of
C

A
E

St
ag

es

#
of

C
A

E
B

lo
ck

s

B
ito

ni
c

O
dd

-e
ve

n

U
sin

g
8-

to
-4

8-
to

-4
(3

2)
→

8-
to

-4
(1

6)
→

8-
to

-4
(8

)→
8-

to
-4

(4
)→

8-
to

-4
(2

)→
8-

to
-4

(1
)

6
×

4
=

24
63
×

16
=

10
08

63
×

14
=

88
2

U
sin

g
16

-t
o-

4
16

-t
o-

4(
16

)→
16

-t
o-

4(
4)
→

16
-t

o-
4(

1)
3
×

7
=

21
21
×

44
=

92
4

21
×

40
=

84
0

U
sin

g
32

-t
o-

4
32

-t
o-

4(
8)
→

32
-t

o-
4(

1)
2
×

10
=

20
9
×

10
0
=

90
0

9
×

92
=

82
8

U
sin

g
64

-t
o-

4
64

-t
o-

4(
4)
→

16
-t

o-
4(

1)
13

+
7
=

20
4
×

21
2
+

44
=

93
6

4
×

19
6
+

40
=

82
4

U
sin

g
12

8-
to

-4
12

8-
to

-4
(2

)→
8-

to
-4

(1
)

16
+

4
=

20
2
×

43
6
+

16
=

88
8

2
×

40
4
+

14
=

82
2

28

OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8
OEM-8

R
e
w
irin
g

R
e
w
irin
g

R
e
w
irin
g

R
e
w
irin
g

32

Parallel

OEM-4

Units

64

Parallel

OEM-2

Units

Figure 3.10: A 128-to-16 odd-even merge max-set-selection unit.

3.2 2n-to-2m Max-set-selection and Partial
Sorting Units

Our proposed techniques can be extended to cover a wide range of sorting and
max-set-selection units. In the previous section, 2n-to-4 max-set-selection
units (with n > 3) utilize BM-8-to-4 units to select the four largest values
out of a bitonic sequence with eight values. The sorted outputs of BM-8-to-4
units are then combined to form bitonic sequences that are fed to the next
stage of BM-8-to-4 units or a Max-4 unit. The smallest values are discarded
in the earlier stages to reduce resources and latency.

3.2.1 Modular Max-set-seletion Units

A similar approach can be used to design 2n-to-2m max-set-selection units
with BM-2m+1-to-2m merging units. Starting from unsorted inputs and by
following Batcher’s algorithms, small sorted sequences are constructed using
either BM or OEM units. When 2n−m sorted sequences of length 2m are
generated, each pair of sorted sequences of length 2m is fed to a BM-2m+1-
to-2m unit to produce the 2m largest values in sorted order and discard
the 2m smallest values. Using BM-2m+1-to-2m units, this process continues

29

until only two sorted sequences of length 2m are left. These two sorted
sequences contain the 2m+1 largest values from the 2n input values. In the
final stage, a Max-2m unit returns the 2m largest values in arbitrary order.
With this approach, a 2n-to-2m bitonic or odd-even merge max-set-selection
unit with n > m has a total of (2n−m − 2) BM-2m+1-to-2m merging units
in n−m− 1 levels, where each BM-2m+1-to-2m unit is composed of a level
of 2m parallel CAE blocks and a BM-2m unit1. For example, a bitonic
128-to-16 max-set-selection unit has 64 BM-2, 32 BM-4, 16 BM-8, eight
BM-16, six BM-32-to-16, and one Max-16 units, where each BM-32-to-16
unit has a level of 16 parallel CAE blocks and a BM-16 unit. Similarly, a
128-to-16 odd-even merge max-set-selection unit, shown in Fig. 3.10, has
64 OEM-2, 32 OEM-4, 16 OEM-8, eight OEM-16, six BM-32-to-16, and
one Max-16 unit. Table 3.2 shows the structure of 2n-to-4 and 2n-to-8
max-set-selection units.

3.2.2 Modular Partial Sorting Units

We can easily modify max-set-selection units to produce their outputs in
ascending order rather than arbitrary order. To design a 2n-to-2m partial
sorting unit that takes 2n inputs and returns 2m sorted outputs, the Max-2m

unit in a 2n-to-2m max-set-selection unit is replaced with a BM-2m+1-to-
2m unit, producing outputs in ascending order. Thus, a 2n-to-2m partial
sorting unit has a total of (2n−m − 1) BM-2m+1-to-2m merging units. This
increases the number of CAE stages and the number of CAE blocks for a
2n-to-2m sorting unit over its corresponding max-set-selection unit by m
and 2m−1 ×m, respectively.

1A BM-2-to-1 is basically a Max-1 unit

30

3.3 Other Extensions

3.3.1 Other Input Quantities

In situations where the number of inputs, N, is not an integer power
of two, two approaches can be taken to design customized merging and
max-set-selection units. The easier approach is to use a max-set-selection
unit with 2n inputs, where 2n is the smallest integer power of two larger
than N. The unused inputs can be set to zero so that the synthesis tool
eliminates unnecessary logic. The other approach, which does not sacrifice
area for simplicity, is to use design techniques proposed in [4, 25, 32, 37, 40].
Although these techniques are not straight-forward, they can be applied to
the design of max-set-selection units. Since these techniques are based on
an algorithmic approach, they are able to further reduce logic, leading to a
more area-efficient designs.

3.3.2 Other Output Quantities

In situations where the number of outputs, M, is not an integer power
of two, a straight-forward approach is to design merging units with 2m

outputs, where 2m is the smallest integer power of two larger than M. The
intermediate stages for this approach are the same as those for the regular
2m-output max-set-selection units. However, the the difference is that only
the M largest outputs are produced in the final stage. The other approach,
which has fewer resource requirements, is to design merging units with M
outputs. In this approach, BM-2M-to-M units should be designed, which
for each different value of M, designers need to devise a new CAE structure
for the given merging unit. Using either approaches, the latency of a 2n-to-
M max-set-selection unit is the same as that of a 2n-to-2m max-set-selection
unit, where (2×M) > 2m >M.

31

24

29

34

S
ta
ge
s

256 inputs ($)

256 inputs (*)

128 inputs ($)

128 inputs (*)

64 inputs ($)

4

9

14

19

1 2 4 8 16 32 64 128

N
u
m
b
e
r
o
f
C
A
E

 S

Number of Outputs

64 inputs ($)

64 inputs (*)

32 inputs ($)

32 inputs (*)

16 inputs ($)

16 inputs (*)

Figure 3.11: The number of CAE stages for 2n-to-2m partial sorting ($) and
max-set-selection (*) units.

3.4 Analysis

We can analyze the number of CAE stages and CAE blocks for 2n-to-2m

max-set-selection and sorting units using our proposed approach. Fig. 3.11
shows the number of CAE stages for bitonic and odd-even merge max-set-
selection and partial sorting units. In this figure, * indicates the required
number of CAE stages when outputs have arbitrary order (max-set-selection
units) and $ indicates the number of stages when outputs are sorted (sorting
units). In all cases, bitonic and odd-even merge units have the same number
of CAE stages. The number of CAE stages in max-set-selection units and
partial sorting units is n(m + 1) −m(m + 3)/2 and (2n −m)(m + 1)/2,
respectively. Thus, N-to-M max-set-selection and partial sorting units have
a time complexity of O(log2N× log2M), where N = 2n and M = 2m. For
a 2m-output max-set-selection or partial sorting unit, doubling the number
of inputs increases the number of CAE stages by m + 1. For a 2n-input

32

480

960

1920

3840
o
ck
s
(L
o
g
2
)

256 inputs ($)

256 inputs (*)

128 inputs ($)

128 inputs (*)

$

15

30

60

120

240

1 2 4 8 16 32 64 128 256

N
u
m
b
e
r
o
f
C
A
E
B
l

Number of Outputs

64 inputs ($)

64 inputs (*)

32 inputs ($)

32 inputs (*)

16 inputs ($)

16 inputs (*)

Figure 3.12: The number of CAE blocks for 2n-to-2m bitonic partial sorting
($) and max-set-selection (*) units.

max-set-selection unit and a 2n-input partial sorting unit, doubling the
number of outputs from 2m to 2m+1 increases the number of CAE stages
by n −m − 2 and n −m − 1, respectively. The difference in the number
of CAE stages between sorting units and max-set-selection units increases
logarithmically with the number of outputs.

Fig. 3.12 shows the required number of CAE blocks for 2n-to-2m bitonic
partial sorting and max-set-selection units as n and m are varied. The
number of CAE blocks in bitonic max-set-selection and partial sorting units is
(m(m+3)+4)×2n−2−2m×(m+1) and (m(m+3)+4)×2n−2−2m−1×(m+2),
respectively. Keeping the number of outputs fixed, the number of CAE
blocks increases linearly with the number of inputs. Keeping the number
of inputs fixed, the number of CAE blocks increases sub-linearly with the
number of outputs. The difference in the number of CAE blocks between
partial sorting units and max-set-selection units increases logarithmically
with the number of outputs.

33

480

960

1920

3840
o
ck
s
(L
o
g
2
)

256 input

Bitonic
256 input

Odd Even
128 input

Bitonic
128 input

Odd Even

15

30

60

120

240

1 2 4 8 16 32 64 128

N
u
m
b
e
r
o
f
C
A
E
B
lo

Number of Outputs

Odd Even
64 input

Bitonic
64 input

Odd Even
32 input

Bitonic
32 input

Odd Even
16 input

Bitonic

Figure 3.13: The number of CAE blocks for 2n-to-2m bitonic and odd-even
merge max-set-selection units.

Fig. 3.13 compares the required number of CAE blocks for 2n-to-2m

bitonic and odd-even merge max-set-selection units as n and m are varied.
The number of CAE blocks in odd-even merge max-set-selection and partial
sorting units is (m(m+3)+4)×2n−2−m×2n−1+(1−2−m)×2n−2m×(m+1)
and (m(m+ 3)+ 4)× 2n−2 −m× 2n−1 +(1− 2−m)× 2n − 2m−1× (m+ 2),
respectively. Thus, N-to-M bitonic and odd-even merge max-set-selection
and partial sorting units have an area complexity of O(N × log2

2(M)).
Fig. 3.14 compares the number of CAE blocks for 2n-to-2m bitonic and
odd-even merge sorting units. In both Figs. 3.13 and 3.14, For all the
units, the number of CAE blocks increases linearly with the number of
inputs. When the number of outputs is one or two, bitonic and odd-even
merge max-set-selection and partial sorting units require the same number
of CAE blocks. However, as the number of inputs increases, the benefit of
using the odd-even merge algorithm over the bitonic algorithm increases in

34

480

960

1920

3840

f
C
A
E

 B
lo
ck
s

256!input Bitonic

256!input Odd!Even

128!input Bitonic

128!input Odd!Even

64 input Bitonic

15

30

60

120

240

1 2 4 8 16 32 64 128 256

N
u
m
b
e
r
o
f

Number of Outputs

64!input Bitonic

64!input Odd!Even

32!input Bitonic

32!input Odd!Even

16!input Bitonic

16!input Odd!Even

Figure 3.14: The number of CAE blocks for 2n-to-2m bitonic and odd-even
merge partial sorting units.

terms of the required number of CAE blocks for both partial sorting and
max-set-selection units.

35

4 results

To assist with analyzing implementations of our proposed techniques, we
developed Verilog register transfer level (RTL) models for 2n-to-2m partial
sorting and max-set-selection units. The Verilog models are fully parame-
terized to provide the flexibility needed to design and analyze a wide range
of sorting and max-set-selection units. The designer can change (add or
remove) each level of pipeline registers to get a design with a different
latency, resource requirements, and frequency. This feature helps achieve
the desired throughout and latency. The models are composed of small,
verified building blocks to simplify the design process and facilitate testing.

4.1 ASIC Implementation

The proposed designs are synthesized using the Synopsys design compiler
vB 2008.09 SP3 and a TSMC 65-nm standard-cell library. The designs
are pipelined and all outputs are registered. For all the synthesis results,
the parameterizable data width (i.e, the CAE width), which can be easily
changed, is set to ten unsigned bits, which is commonly used in HEP
applications. Tables 4.1 and 4.2 show post-place-and-route results for 2n-to-4
and 2n-to-8 max-set-selection units, respectively. We report implementation
results for three different pipeline structures (depths) for each bitonic and
odd-even max-set-selection unit: one CAE stage between pipeline registers,
two CAE stages between pipeline registers, and three CAE stages between
pipeline registers. The last column of Tables 4.1 and 4.2 lists the end-to-
end latency for each design. All max-set-selection units can achieve high
frequencies due to the regular pipelined structure of the designs.

36

Ta
bl

e
4.

1:
Pe

rfo
rm

an
ce

an
d

re
so

ur
ce

re
qu

ire
m

en
ts

of
2n

-t
o-

4
bi

to
ni

c
an

d
od

d-
ev

en
m

er
ge

m
ax

-s
et

-s
el

ec
tio

n
un

its
w

ith
10

-b
it

un
sig

ne
d

C
A

E
bl

oc
ks

us
in

g
a

T
SM

C
65

-n
m

st
an

da
rd

-c
el

ll
ib

ra
ry

M
ax

-s
et

-
se

le
ct

io
n

Pi
pe

lin
e

D
ep

th
Fr

eq
ue

nc
y

(M
H

z)
C

om
bi

na
tio

na
lA

re
a

(µ
m

2)
N

on
-c

om
b.

A
re

a
(µ
m

2)
En

d-
to

-e
nd

La
te

nc
y

(n
s)

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-e

ve
n

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-e

ve
n

16
-t

o-
4

7
2,

94
1

2,
94

1
5,

40
0

4,
86

2
8,

78
1

8,
31

7
2.

38
2.

38

16
-t

o-
4

4
1,

85
1

2,
00

0
7,

88
1

7,
17

1
4,

28
2

4,
67

1
2.

16
2.

00

16
-t

o-
4

3
1,

44
9

1,
44

9
8,

24
0

6,
85

2
3,

51
4

3,
54

0
2.

07
2.

07

32
-t

o-
4

10
2,

85
7

2,
85

7
13

,6
96

11
,2

29
20

,0
08

17
,9

62
3.

50
3.

50

32
-t

o-
4

5
1,

88
6

1,
88

6
16

,6
81

16
,1

74
11

,5
03

10
,6

48
2.

65
2.

65

32
-t

o-
4

4
1,

42
8

1,
44

9
18

,9
60

18
,6

95
7,

76
4

8,
24

1
2.

80
2.

76

64
-t

o-
4

13
2,

77
7

2,
85

7
24

,8
88

20
,1

40
39

,6
33

37
,3

24
4.

68
4.

55

64
-t

o-
4

7
1,

78
5

1,
85

1
40

,8
80

30
,9

14
22

,9
22

22
,2

04
3.

92
3.

78

64
-t

o-
4

5
1,

31
5

1,
44

9
42

,5
07

35
,2

27
17

,1
43

18
,1

72
3.

80
3.

45

12
8-

to
-4

16
2,

70
2

2,
70

2
46

,0
29

48
,1

78
70

,6
95

68
,4

65
5.

92
5.

92

12
8-

to
-4

8
1,

78
5

1,
75

4
83

,9
75

70
,3

39
37

,7
73

45
,2

53
4.

48
4.

56

12
8-

to
-4

6
1,

36
9

1,
31

5
89

,4
93

69
,5

88
37

,1
64

35
,5

75
4.

38
4.

56

25
6-

to
-4

19
2,

70
2

2,
70

2
94

,6
06

85
,1

78
14

2,
30

8
13

7,
45

7
7.

03
7.

03

25
6-

to
-4

10
1,

75
4

1,
75

4
16

6,
57

8
14

4,
06

2
90

,2
21

87
,7

15
5.

70
5.

70

25
6-

to
-4

7
1,

29
8

1,
31

5
15

0,
59

6
13

9,
32

2
64

,5
17

53
,9

36
5.

39
5.

32

37

Ta
bl

e
4.

2:
Pe

rfo
rm

an
ce

an
d

re
so

ur
ce

re
qu

ire
m

en
ts

of
2n

-t
o-

8
bi

to
ni

c
an

d
od

d-
ev

en
m

er
ge

m
ax

-s
et

-s
el

ec
tio

n
un

its
w

ith
10

-b
it

un
sig

ne
d

C
A

E
bl

oc
ks

us
in

g
a

T
SM

C
65

-n
m

st
an

da
rd

-c
el

ll
ib

ra
ry

M
ax

-s
et

-
se

le
ct

io
n

Pi
pe

lin
e

D
ep

th
Fr

eq
ue

nc
y

(M
H

z)
C

om
bi

na
tio

na
lA

re
a

(µ
m

2)
N

on
-c

om
b.

A
re

a
(µ
m

2)
En

d-
to

-e
nd

La
te

nc
y

(n
s)

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-e

ve
n

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-e

ve
n

16
-t

o-
8

7
1,

44
9

3,
03

0
7,

78
8

5,
81

6
10

,9
53

9,
86

0
2.

38
2.

31

16
-t

o-
8

4
2,

00
0

1,
92

3
11

,1
71

7,
91

6
6,

69
3

6,
17

9
2.

00
2.

10

16
-t

o-
8

3
1,

51
5

1,
56

2
9,

25
2

8,
48

2
4,

48
8

4,
32

8
1.

98
1.

92

32
-t

o-
8

11
2,

77
7

2,
70

2
17

,4
77

14
,9

96
25

,6
97

24
,2

68
3.

96
4.

07

32
-t

o-
8

6
1,

81
8

1,
85

1
30

,0
26

24
,0

47
16

,5
02

15
,6

84
3.

30
3.

24

32
-t

o-
8

4
1,

47
0

1,
49

2
27

,0
86

23
,1

75
12

,1
25

11
,3

73
2.

72
2.

68

64
-t

o-
8

15
2,

77
7

2,
70

2
38

,2
49

31
,5

57
57

,8
29

54
,9

86
5.

40
5.

55

64
-t

o-
8

8
1,

75
4

1,
81

8
65

,9
72

48
,0

38
32

,1
03

32
,9

30
4.

56
4.

40

64
-t

o-
8

5
1,

47
0

1,
42

8
69

,7
31

57
,9

29
20

,9
23

21
,6

40
3.

40
3.

50

12
8-

to
-8

19
2,

70
2

2,
70

2
70

,8
47

82
,8

88
10

9,
82

7
10

7,
93

3
7.

03
7.

03

12
8-

to
-8

10
1,

75
4

1,
75

4
13

5,
02

4
10

8,
49

8
73

,8
44

68
,3

05
5.

70
5.

70

12
8-

to
-8

7
1,

33
3

1,
33

3
12

8,
38

0
11

1,
70

0
45

,9
72

45
,2

29
5.

25
5.

25

25
6-

to
-8

23
2,

63
1

2,
70

2
13

7,
77

4
12

6,
67

2
22

6,
95

5
21

6,
09

3
8.

74
8.

51

25
6-

to
-8

12
1,

72
4

1,
69

4
26

7,
06

0
19

4,
38

2
94

,7
30

11
2,

02
0

6.
96

7.
08

25
6-

to
-8

8
1,

29
8

1,
35

1
26

2,
12

6
22

2,
43

3
88

,0
69

88
,5

45
6.

16
5.

92

38

As shown in Tables 4.1 and 4.2, the clock frequency scales fairly well for
larger max-set-selection units. The reason is that the frequency depends on
the CAE width and the number of CAE blocks between pipeline registers.
Increasing the number of inputs for a max-set-selection unit does not directly
affect the frequency, although it might complicate the wire routing. By de-
creasing the pipeline depth for a given max-set-selection unit, combinational
area increases due to trading increased area from buffers and larger/faster
gates for the higher clock frequency. As expected, non-combinational area
from registers decreases for a given max-set-selection unit by decreasing the
pipeline depth. Comparing the two types of max-set-selection units with each
other, odd-even merge max-set-selection units have higher clock frequencies
and lower areas than bitonic units for most designs and configurations.

Designs with one CAE stage between pipeline registers have higher
sorting throughput than similar designs with two or three CAE stages
between pipeline registers, although they usually have higher latency and
total area. Designs with three CAE stages between pipeline registers have
the lowest latency and total area in most cases, while they provide the
lowest sorting throughput. Designs with two CAE stages between pipeline
registers attain a trade-off between latency and throughput. For instance, a
pipeline depth of seven at about 1.3 GHz provides the lowest latency and
lowest resource resource usage for the 256-to-4 max-set-selection unit, while
a pipeline depth of 19 at 2.7 GHz gives the highest throughput.

Tables 4.1 and 4.2 show that, for a given number of outputs and pipeline
stages, resource requirements scale linearly, latency scales logarithmically,
and the frequency scales fairly well with the number of inputs. These results
conform to the theoretical analysis of the proposed max-set-selection units
in Chapter 3.4. For a given number of outputs, as the number of inputs
increases, units with fewer pipeline stages provide better end-to-end latency.
Modular design and intelligent pipelining enable efficient frequency/latency
trade-offs even for large sorting units.

39

4.2 FPGA Implementation

We synthesized our proposed designs to a Virtex-5 TX240T FPGA (speed
grade -2) using Xilinx Synthesis Technology 11.3 SP3. For all results, the
data width (i.e, the CAE width) is set to ten unsigned bits, although the
parameterized data width can easily be changed. Table 4.3 shows post-place-
and-route results for 2n-to-4 bitonic max-set-selection units. The designer
can specify the pipeline depth of the max-set-selection units, which is given
in the second column of Table 4.3. We report results for three different
pipeline structures for each 2n-to-4 bitonic max-set-selection unit: one CAE
stage between pipeline registers, two CAE stages between pipeline registers,
and three CAE stages between pipeline registers. The last column of Table
4.3 lists the end-to-end latency for each design. All max-set-selection units
can achieve high frequencies due to the regular pipelined structure of the
designs. For the 256-to-4 max-set-selection unit, a pipeline depth of 7 at 94
MHz provides the lowest latency, while a pipeline depth of 19 at 200 MHz
gives the highest throughput.

Table 4.3 shows that, for a given number of outputs and pipeline stages,
resource requirements scale linearly, latency scales logarithmically, and
the frequency scales fairly well with the number of inputs. These results
conform to the theoretical analysis of the proposed max-set-selection units
in Chapter 3.4. For a given number of outputs, as the number of inputs
increases, units with fewer pipeline stages provide better end-to-end latency.
Modular design and intelligent pipelining enable efficient frequency/latency
trade-offs on FPGAs even for large sorting units.

4.3 Comparison with Other Approaches

One way to make 2n-to-2m sorting units is to create a full 2n-input network,
but use only the top 2m values, leaving the remaining sorter outputs unused.
The synthesis tool can then automatically prune the unused logic. We

40

Table 4.3: Performance and resource requirements of 2n-to-4 bitonic max-
set-selection units with 10-bit unsigned CAE blocks on an XC5VTX240T-
2FF1759 FPGA

Max-set-
selection

Pipeline
Depth

Freq.
(MHz)

Slice
LUTs

Slice
Regs

End-to-End
Latency (ns)

16-to-4 7 277 1,199 760 25.2

16-to-4 4 156 1,198 440 25.6

16-to-4 3 108 1,198 280 27.6

32-to-4 10 250 2,714 1,725 40.0

32-to-4 5 156 2,703 764 32.0

32-to-4 4 108 2,705 604 36.8

64-to-4 13 243 5,727 3,644 53.3

64-to-4 7 149 5,722 2,044 46.9

64-to-4 5 99 5,718 1,244 50.5

128-to-4 16 238 11,832 7,484 67.2

128-to-4 8 138 11,758 3,324 57.6

128-to-4 6 99 11,760 2,524 60.6

256-to-4 19 200 22,382 14,165 95.0

256-to-4 10 126 22,356 7,804 79.0

256-to-4 7 94 22,378 4,644 74.2

compared this method to our custom units and found that our proposed
units not only have lower latency, but also require fewer resources. For
instance, an automatically optimized 32-to-4 sorting unit is 1.4 times slower
and twice as large as our corresponding unit. The advantage of our units over

41

tool-optimized units soars as the number of inputs increases: our proposed
256-to-4 max-set-selection unit is 1.6 times faster and five times smaller
than the corresponding tool-optimized unit.

Parallel sorters can also be implemented in software. A CUDA v3.1
implementation running on an NVIDIA® Tesla™ C2050 GPU at 1.15 GHz
requires about 46 µs to sort 256 numbers. GPUs could be a preferred
method for implementation of high-throughput sorters when the number
of inputs is extremely large due to high cost of FPGA implementation and
I/O bandwidth.

4.4 Customized Units Used in the CMS L1
Trigger

In November 2009, the Large Hadron Collider (LHC) [35], built by the
European Organization for Nuclear Research (CERN), became the world’s
highest energy particle accelerator [2]. Experiments using the LHC are
intended to address fundamental questions in particle physics and nature.
The LHC’s Compact Muon Solenoid (CMS) experiment [1] is a high-energy
physics detector designed to analyze particle collisions that occur at a rate
of roughly one billion collisions per second. The CMS experiment relies
on a high-performance system of custom processing elements (collectively
known as the CMS trigger) to perform real-time processing of collision data
and select the most interesting data for further study. Because of the sheer
amount of input data and the rate at which it is generated, the hardware-
based CMS trigger is subject to stringent performance requirements [22].

Most of the data generated by collisions in the LHC contains worthless
information that corresponds to low-energy particle collisions. This worthless
data should be discarded by the CMS trigger in order to process the useful
data from high-energy collisions. Therefore, high-performance sorting and
max-set-selection units are important components in the CMS trigger for

42

determining which data to keep and which to discard. The need to modify
the CMS trigger design as the LHC system is upgraded, the low-volume cost
advantages of FPGAs, and a desire for a flexible and adaptable system all
point toward the use of FPGAs as an attractive hardware solution for sorting
and max-set-selection units in the CMS trigger. The CMS trigger requires
high-bandwidth circuits to process large amounts of data in real-time. By
utilizing a sufficient number of high-speed serial transceivers and an efficient
communication scheduling methodology, we are able to provide appropriate
amounts of data each clock cycler to large sorting units.

Sorting and max-set-selection units are key components throughout the
CMS trigger. For example, in the CMS Calorimeter trigger, sorting and
max-set-selection units are used to identify important particle interactions
that correspond to high-energy collisions. The objects to sort correspond to
physics objects (particles and jets) that are ranked by their energy. Energy
values are represented using unsigned numbers with six to ten bits. However,
there is other information, such as the object position and type that are
not used in energy sorting but must be associated with the object’s energy.
Thus, the sorting is performed by comparing only energy bits and the other
bits are passed along with the energy bits. Furthermore, the number of
max-set-selection or sorting unit outputs is typically much lower than the
number of inputs. For most applications, the sorting unit outputs only
the top four objects. For example, the CMS Global Calorimeter trigger
(GCT) [52, 54, 55] sorts the candidate electrons, photons, taus, and jets and
forwards the four most energetic objects of each type to the Global trigger.
Based on the values of these sorted objects and other factors, a decision is
made to keep or discard data produced by the CMS Experiment during a
specified time interval.

There are several different types of sorting and max-set-selection units
utilized in the CMS trigger. The requirements for these units may change
over time to cope with changes in the energy of LHC particle collisions and

43

new physics requirements. Our generalized methodology enables designers
to configure sorting and max-set-selection units in terms of the number of
inputs and outputs, the width of the input and outputs, the pipeline depth,
and even resource usage, thereby achieving suitable high-speed sorting or
max-set-selection units for given design constraints.

In the CMS trigger, different sorting and max-set-selection units are used
to identify important particle interactions that correspond to high-energy
collisions. The inputs to sort correspond to physics objects that are ranked
by their energy. Energy values are represented using unsigned numbers
with six to ten bits. However, there is other information, such as the object
position and type, that is not used in energy sorting but must be associated
with the object’s energy. Thus, the sorting is performed by comparing only
energy bits and the other bits are passed along with the energy bits. In
most cases, the sorting unit outputs only the top four objects. For example,
the CMS L1 trigger [52, 54, 55] sorts the candidate objects and forwards the
four most energetic objects of each type to the global trigger [54]. Based on
the values of these sorted objects and other factors, a decision is made to
keep or discard data produced by CMS experiments during a specified time
interval.

LHC upgrades and physics experiment changes may alter demands on
hardware sorting and max-set-selection units over time. Our generalized
methodology enables designers to create these units based on the needed
input and output width and quantity, throughput, latency, and even resource
usage.

The need to modify the CMS L1 trigger design as the LHC system is
upgraded, the low-volume cost advantages of FPGAs, and a desire for a
flexible and adaptable system all point toward the use of FPGAs as an
attractive hardware solution for data processing in the CMS trigger. The
CMS trigger requires high-bandwidth circuits to process large amounts of
data in realtime and with low latency, including sorting and max-set-selection

44

Table 4.4: Performance and resource requirements of customized 2n-to-4 max-
set-selection units with 10-bit unsigned energy vectors on an XC5VTX240T-
2FF1759 FPGA. Each of the 2n inputs has an associated n-bit position
vector (index).

Max-Set-
Selection

Pipeline
Depth

Freq.
(MHz)

Slice
LUTs

Slice
Regs

End-to-End
Latency (ns)

16-to-4 4 172 1,276 616 23.2

32-to-4 5 149 2,989 1,144 33.5

64-to-4 7 149 6,754 3,268 46.9

128-to-4 8 156 14,374 5,648 51.2

256-to-4 10 147 28,905 14,044 68.0

operations. The FPGA’s high-speed serial transceivers provide new input
data to these sorting and max-set-selection units every few clock cycles [22].

Using our Verilog model, we generate 2n-to-4 bitonic max-set-selection
units for the CMS trigger with 10-bit unsigned energy vectors, n-bit unsigned
position vectors, and pipeline registers after every other CAE stage. Table
4.4 presents the performance and resource requirements of different 2n-to-4
max-set-selection units for the CMS trigger. Parameterized HDL, regular
building blocks, and hierarchical design techniques allow us to quickly
develop fast max-set-selection-units with desired specifications. Due to the
regularity in our design methodology, increasing the number of inputs does
not significantly impact the frequency of the max-set-selection units, making
this approach a good candidate for large, high-throughput max-set-selection
and sorting units on FPGAs. The 256-to-4 max-set-selection unit in Table
4.4 occupies about 25% of the total slices available on the Virtex-5 TX240T
FPGA, allowing designers to implement even larger max-set-selection units
or other functionality on the same FPGA.

45

5 iterative max-set-selection units

Parallel sorting and max-set-selection units that operate on large blocks
of data may receive considerable amounts of input data. Implementing
large max-set-selection and partial sorting units in a fully parallel manner
requires high I/O bandwidth and area. In addition, for a fixed number
of outputs, the resource requirements of these units increase linearly with
the number of input values. Thus, fully parallel sorting units may not be
practical in large data sorting applications. In cases in which I/O bandwidth
or area is limited and latency requirements are not as stringent, a small
max-set-selection unit can be employed using an iterative process to obtain
the largest values from a given input data set. This iterative approach is
particularly well suited to systems in which only a portion of the total data
arrives to the max-set-selection unit each cycle and the sorting throughput
requirements are not too high. Furthermore, such iterative max-selection
units can provide throughput, latency, and resource requirement trade-offs.
Max-set-selection and partial sorting units in applications such as HEP and
video processing often need to get data from different sources over multiple
cycles. Thus, our proposed iterative max-set-selection units, which take as
inputs new input data and the largest results from previous iterations, are
area-efficient designs for these types of applications.

There has previously been successful research on iterative sorting. Huang
et al. describe an iterative sorting method that assumes all elements to
be sorted are in the device memory and sorts the elements in place [26].
Their memory-based approach does not work efficiently on streaming data
that arrives over multiple cycles. Zhang and Zheng [59] implement another
iterative sorting method that uses systolic arrays to sort data in memory.
Although their approach scales well, it requires special memory hardware.
Olariu et al. [41] present a hardware algorithm for sorting N values by
repeatedly using a fixed-size P-input sorting network that processes P values

46

each cycle. They show that their algorithm achieves optimal overall per-
formance of Θ(N× log2 N

P× log2 P
) provided the P-input sorting network has a depth

of O(log2
2 P) such as bitonic sorting networks. In this thesis, we instead

focus on iterative max-set-selection units. The main differences between our
work and previous research include (1) our designs are optimized for the
case in which only M outputs from N inputs are needed, (2) our designs
avoid using additional storage or intermediate memory blocks by receiving
the appropriate number of input values each cycle, and (3) our designs
iteratively utilize max-set-selection units, rather than complete sorting units,
which leads to improved area and latency.

As shown in Fig. 5.1, our proposed iterative max-set-selection units utilize
R-to-M bitonic or odd-even merge max-set-selection units of varying pipeline
depths as functional cores. Each design has a finite state machine (FSM)
that manages three sequential phases of the execution pipeline: warm-up,
steady-state, and completion. The warm-up phase occurs when the first P
input values arrive and begin to propagate through the core max-set-selection
unit’s pipeline, but before any intermediate results are generated. When the
core max-set-selection unit outputs data from the first set of input elements,
the steady-state phase begins. During each cycle of the steady-state phase,
a set of P new input values arrives at the inputs and a set of M intermediate
result elements are produced and then immediately consumed by the core
max-set-selection unit, where R = P+M. In this phase, the intermediate
results are fed back into the core max-set-selection unit with the new input
values to be sorted. Once all the inputs have been received and applied
to the core max-set-selection unit, the completion phase begins, in which
intermediate result values are stored at the inputs of the sorting unit as the
core max-set-selection unit produces them. Once R values are stored, they
are sent to the core max-set-selection unit. This process is completed with a
final max-set-selection run with R or fewer remaining valid values, resulting
in the final M outputs.

47

Core R-to-M D-Stage Pipelined

Max-set-selection Unit

R inputs

Finite State Machine

Control Unit

In
p

u
t

R
e

g
is

te
rs

P inputs

M outputs

M feedback inputs

O
u

tp
u

t
R

e
g

is
te

rs

Feedback Logic

S
ta

g
e
 1

 R
e
g
is

te
rs

S
ta

g
e
 1

 L
o
g
ic

S
ta

g
e
 2

 R
e
g
is

te
rs

S
ta

g
e
 2

 L
o
g
ic

S
ta

g
e
 D

 R
e
g

is
te

rs

S
ta

g
e
 D

 L
o
g
ic

Start

Control Signals

Control Signal
Control Signal

Figure 5.1: Iterative max-set-selection unit.

5.1 Discussion

As shown in Fig. 5.1, we use R = P+M input registers to buffer P input
values and M intermediate result values. Removing that level of registers
decreases the total number of cycles (latency) to generate the final result.
However, it also decreases the overall frequency of the design by adding the
delay from the feedback logic into the critical path of the first stage of the
core max-set-selection unit. Thus, our designs use input registers to increase
the frequency.

Including input registers, the latency of our iterative max-set-selection
designs in terms of clock cycles is bounded by

Latency = dN/Pe+
⌈
(D+ 1)2 ×M/(P +M)

⌉
+D+ 1 (5.1)

where P is the number of new input values received each cycle by the

48

core max-set-selection unit, N is the total number of input values, D is
the pipeline depth of the core max-set-selection unit, M is the number of
outputs from the core max-set-selection unit, and d·e denotes the ceiling
operation. It is important to note that N, P, and M define the problem.
The first term of the equation accounts for the cycles required to receive all
the inputs, both during the warm-up phase and the steady-state phase. The
remaining terms describe the bound on how many cycles the completion
phase takes.

As an example, a design with a seven-stage, 16-to-4 max-set-selection
core unit is used to iteratively perform max-set-selection on 256 inputs. The
design parameters are R = 16, M = 4, N = 256, and D = 7, which implies
P = 12, since R = P+M. The warm-up phase lasts seven cycles in which
12 new inputs are applied each cycle. At the end of the warm-up phase,
the input registers and seven pipeline stages each have a set of 12 values
being sorted to find the largest four. The steady-state phase begins when
the first input set’s four largest values are reapplied to the inputs of the
core unit along with another 12 completely new inputs. This phase lasts 15
cycles until all 256 inputs are received. The completion phase now forms
new sets of 16 values by concatenating (over four cycles) the first next four
intermediate output sets and reapplying them to the input of the core unit.
The second next four intermediate outputs sets, which were originally in
the input registers and first three stages of the pipeline, also form another
new set of 16 values in four cycles. After another eight cycles, two output
sets of the previous concatenations are reapplied to the core unit. The four
largest values from the entire 256 inputs are ready after eight more cycles,
for a total of 24 cycles in the completion phase and 46 cycles for the entire
process.

An iterative max-selection unit performs a significant percentage of the
work as it is receiving input values. More overlapping of computation with
data reception (during the warm-up and steady-state phases) occurs by

49

increasing the total number of input values. Hence, for a large data stream,
such as N = 8192, the latency is dominated by the N/P term in Equation
(5.1).

5.1.1 Comparison with Parallel Max-set-selection
Units

Equation (5.1) demonstrates that the latency of the iterative max-set-
selection units scales linearly with the total number of inputs to sort (N),
rather than O(log2

2N), as with parallel max-set-selection units. However, in
situations in which P is significantly smaller than N (e.g., I/O bandwidth-
limited situations), a parallel max-set-selection unit, which operates on all
the input values at one time, must first buffer the input values as they
arrive, and then propagate the values through the pipeline only once all
input values are present. Moreover, the number of logic inputs of a parallel
max-set-selection unit (R) should be as large as the number of data values
to sort (N). This imposes a huge impact on the area, since parallel max-
set-selection units have a hardware complexity of O(N× (log2

2M)). When
the area of a parallel max-set-selection unit can be tolerated, a parallel
max-set-selection unit achieves higher throughput and lower latency than
an iterative max-set-selection unit.

5.1.2 Iterative Partial Sorting Units

An iterative max-set-selection unit can easily be converted to an iterative
partial sorting unit by augmenting the iterative unit with anM-input sorting
unit to sort the final M values. This modification increases the latency by
O(log2

2M), if a bitonic or odd-even merge sorting unit is used.

50

5.2 Results

To illustrate the potential trade-offs that can be made with iterative max-
set-selection-units, 18 different iterative max-set-selection units are designed
to find the four largest values from a stream of input values. Table 5.1
summarizes the latency and resource requirements of each of the iterative
max-set-selection units when they are used to find the four largest values
from 256 10-bit input values. The units are synthesized using the TSMC
65-nm standard cell library. These designs use our proposed pipelined 8-to-4,
16-to-4, and 32-to-4 max-set-selection units, described in Chapter 3, as
functional cores for the iterative units. By a simple modification to the
FSM, our iterative technique can be employed to find the M largest values
from N input values using an R-to-M max-set-selection unit as a functional
core for any integer values of N, R, and M for which N > R > M > 1 and
R = P +M.

The area benefit of an iterative max-set-selection over a parallel max-set-
selection unit increases linearly with a linear increase in the total number
of inputs. For example, in the case of a data stream of N = 256 inputs
and where only P = 12 new inputs can be received each cycle, an iterative
bitonic max-set-selection unit using a simple 16-to-4 max selection unit
with a pipeline depth of four has a latency of 17.64 ns, whereas a parallel
bitonic 256-to-4 max-selection unit with a pipeline depth of seven has a
latency of 5.39 ns (for the lowest latency 256-to-4 bitonic unit) as indicated
in Tables 4.1 and 5.1. However, the iterative max-set-selection unit is more
than 13 times smaller than the corresponding parallel unit. Thus, at a
small fraction of the resource requirements, the iterative max-set-selection
unit could provide reasonable latency and throughput for certain target
applications.

51

Ta
bl

e
5.

1:
Pe

rfo
rm

an
ce

an
d

re
so

ur
ce

re
qu

ire
m

en
ts

of
ite

ra
tiv

e
m

ax
-s

et
-s

el
ec

tio
n

un
its

us
ed

to
fin

d
th

e
fo

ur
la

rg
es

t
da

ta
va

lu
es

fr
om

N
=

25
6

da
ta

in
pu

ts
w

ith
10

-b
it

un
sig

ne
d

C
A

E
bl

oc
ks

us
in

g
a

T
SM

C
65

-n
m

st
an

da
rd

-c
el

ll
ib

ra
ry

C
or

e
M

ax
-s

et
-

se
le

ct
io

n
(R

-t
o-
M

)

Pi
pe

lin
e

D
ep

th
(D

)

#
of

N
ew

D
at

a
El

em
en

ts
pe

r
C

yc
le

(P
)

To
ta

l
C

yc
le

s

Fr
eq

ue
nc

y
(M

H
z)

C
om

bi
na

tio
na

l
A

re
a

(µ
m

2)
N

on
-c

om
b.

A
re

a
(µ
m

2)
En

d-
to

-e
nd

La
te

nc
y

(n
s)

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-e

ve
n

B
ito

ni
c

O
dd

-e
ve

n
B

ito
ni

c
O

dd
-e

ve
n

8-
to

-4
4

4
81

2,
70

2
2,

85
7

3,
01

3
3,

22
2

4,
38

6
4,

24
9

29
.9

7
28

.3
5

8-
to

-4
2

4
72

1,
92

3
2,

00
0

3,
64

0
3,

06
9

2,
56

7
2,

42
9

37
.4

4
36

.0
0

8-
to

-4
1

4
68

1,
40

8
1,

58
7

4,
83

7
4,

30
6

1,
75

6
1,

66
6

48
.2

8
42

.8
4

16
-t

o-
4

7
12

46
2,

63
2

2,
43

9
6,

28
9

5,
59

0
11

,1
19

9,
09

8
17

.4
8

18
.8

6

16
-t

o-
4

4
12

36
2,

04
0

2,
08

3
9,

56
1

8,
26

4
6,

39
8

6,
16

0
17

.6
4

17
.2

8

16
-t

o-
4

3
12

30
1,

72
4

1,
72

4
10

,8
01

10
,2

19
6,

33
6

6,
13

0
17

.4
0

17
.4

0

32
-t

o-
4

10
28

39
2,

17
4

2,
08

3
10

,1
97

8,
19

1
19

,8
49

17
,5

41
17

.9
4

18
.7

2

32
-t

o-
4

5
28

21
1,

38
8

1,
38

8
12

,1
48

11
,3

71
11

,3
39

11
,1

41
15

.1
2

15
.1

2

32
-t

o-
4

4
28

19
1,

05
2

1,
05

1
12

,3
52

10
,1

52
9,

30
3

9,
46

7
18

.0
5

18
.0

5

52

6 related research

Sorting algorithms for shared-memory multi-processor systems and VLSI
implementations have been investigated during the past 40 years. Linear
array structures and sorting networks are two types of architectures that
have been widely used for hardware implementations. Different linear sorting
units that use insertion techniques have been proposed and implemented
as FPGA and VLSI designs [3, 5, 16, 29, 39, 42, 43, 56, 57]. Although they
are simple to implement and their area complexity is reasonable, linear
array structures are not able to process blocks of data in parallel, resulting
in low throughput designs [42]. However, linear array structures are good
candidates for sorting streaming or serial data when only one new element is
sent to or one sorted element is retrieved from the sorting unit per clock cycle.
Linear sorters have a time complexity in the range O(b(N)) to O(N), where
b is the bit-width of input values. Compared to sorting networks, the higher
time complexity of linear sorters hinders their use in fast, high-throughput
sorting applications.

On the other hand, sorting networks, which use multiple levels of parallel
CAE blocks to rearrange data, are suitable architectures for sorting huge
amounts of parallel data. Moreover, customizable pipelined sorting networks
can meet the requirements of high-throughput applications. Hardware-
implemented sorting networks have a time complexity of O(log2

2N) which
make them high-speed architectures for large values of N. While theoretical
time-optimal O(log2N) sorting networks have also been proposed [6, 36, 44],
they cannot be implemented in hardware because of their large hidden
constants in O-notation [34].

53

6.1 Sorting Networks

From complex cube and mesh array structures to linear array structures,
and from theoretical log-depth algorithms to practical linear and log2-depth
algorithms, Batcher’s compare-exchange sorting networks are of importance
for hardware implementations because of their ease of VLSI realization. Since
the advent of Batcher’s sorting networks, many sorting schemes have evolved
from his bitonic and odd-even merge algorithms for shared-memory systems
and VLSI hardware [9, 34, 53]. Previous research on sorting networks falls
into two main categories: sorting algorithms and sorting architectures.

Extensive research has been performed to optimize parallel sorting algo-
rithms under various implementation assumptions and for different applica-
tions. Herruzo et al. [24] propose a novel odd-even merge sorting algorithm
based on a divide-and-conquer strategy for shared-memory multi-processor
systems. Ionescu et al. [27] propose a parallel bitonic sorting algorithm
for coarse-grain parallel machines to optimize communication steps and
local computations. Agrawal [4] presents a scheme to design arbitrary-sized
bitonic sorting networks. He shows that his method can efficiently be used
in the design of asynchronous transfer mode (ATM) switches. Kuo et al.
[32] introduce a modified odd-even merge sorting network for an arbitrary
number of inputs. Their modular approach can be used to implement custom
sorting units in hardware.

Significant research has also investigated sorting architecture designs for
VLSI and FPGA implementation. Latency, throughput, scalability, and
resource requirements are the main factors considered for these hardware
implementations. Ratnayake et al.[49] present an FPGA-based implementa-
tion of a modified counting sort algorithm that is used to sort large amounts
of data. Their design is composed of memory units to hold data, processing
nodes to perform sorting, an address generator to provide addresses for the
different memory units, and a control logic to transfer data between the
memory units and processing nodes. Layer et al. [33] study the hardware

54

implementation of an iterative sorting unit that provides trade-offs between
data throughput and area, and they present a pipelined architecture that
utilizes multi-level bitonic sorting networks on FPGAs. They provide a cost
function for different sorting networks based on their architecture. Jae-Dong
et al. [34] propose a novel recirculating bitonic sorting network made up of
a level of CAE blocks followed by an Ω-network of log2N− 1 switch levels.
The purpose of the recirculating network is to reduce the area complexity
of the original bitonic sorting networks to O(N × logN). Although the
proposed network theoretically has the same time complexity as the origi-
nal bitonic sorting networks, the latency of the switches may degrade the
performance of the sorter. The interested reader may refer to [9, 53] for a
more detailed survey of hardware sorting algorithms and architectures.

6.2 Partial Sorting and Max-set-selection
Units

In some cases, partial sorting units are needed to find the M largest (or
smallest) numbers from a set of N numbers in sorted order, where M < N.
Max-set-selection is a related operation that outputs the M largest numbers
but not necessarily in sorted order. Partial sorting and selection algorithms
have previously been addressed by a wealth of software approaches and
techniques [30]. However, hardware designs for partial sorters and selection
algorithms have barely been discussed in the literature.

Linear sorters, with slight modifications, are capable of performing partial
sorting [50]. Perez-Andrade et al. [46] propose a linear FIFO-based sorter to
partially sort an arbitrary number of input values. Their algorithm discards
the smallest sorted element on receiving a new element and finds a position
for the new element. Colavita et al. [14] propose a VLSI sorting architecture
for streaming data. Their regular design consists of several small elementary
sorting units, and its area and latency increase linearly with the number of

55

values to sort. Consequently, their design does not provide a low-latency
solution for sorting large amounts of data. Dong et al. [17] propose a
parallel partial sorting design using internal FPGA blocks to improve the
performance of normalized cross-correlation image matching systems. When
a large set of data needs to be sorted, their method can be extended to use
FPGA memory blocks.

Each of these partial sorters are based on linear arrays, resulting in a time
complexity of O(N). To find/sort the M largest numbers from N numbers,
our proposed partial sorters, which are based on sorting networks, have a time
complexity of O(log2N× log2M) and area complexity of O(N× log2

2M),
compared with the O(log2

2N) time complexity and O(N × log2
2N) area

complexity of the original bitonic and odd-even merge sorting networks. Our
sorters also have better latency, frequency, and throughput than the partial
sorters presented above, but our sorters have higher resource requirements
as summarized in Table 6.1.

56

Ta
bl

e
6.

1:
C

om
pl

ex
ity

of
so

rt
in

g
al

go
rit

hm
s(
N

:
To

ta
ln

um
be

ro
fi

np
ut

s,
M

:
N

um
be

ro
fo

ut
pu

ts
,P

:
N

um
be

r
of

ne
w

el
em

en
ts

pe
r

cy
cl

e)

A
lg

or
ith

m
La

te
nc

y
A

re
a

T
hr

ou
gh

pu
t

C
om

pl
et

e
so

rt
in

g
ne

tw
or

k
(N

=
M

=
P
)

[8
]

O
((

lo
gN

)2
)

O
(N
×

(lo
gN

)2
)

O
(N

)

Pa
rt

ia
ls

or
tin

g
ne

tw
or

k
(N

=
P
)

*
O
(lo

gN
×

lo
gM

)
O
(N
×

(lo
gM

)2
)

O
(N

)

It
er

at
iv

e
co

m
pl

et
e

so
rt

in
g

ne
tw

or
k

(N
=
M

)
[4

1]
Θ
(N

×
lo

g
N

P
×

lo
g
P
)

O
(P
×

(lo
gP

)2
)

**
O
(P
)

It
er

at
iv

e
pa

rt
ia

ls
or

tin
g

ne
tw

or
k

*
O
(N
/
P
)

O
((
P
+
M

)
×

(lo
g(
P
+
M

))
2)

O
(P
)

Li
ne

ar
co

m
pl

et
e

so
rt

er
(N

=
M

)
[5

,3
9]

O
(N

)
O
(N

)
O
(1
)

Li
ne

ar
pa

rt
ia

ls
or

te
r

[4
6]

O
(N

)
O
(M

)
O
(1
)

*
O

ur
pr

op
os

ed
so

rt
in

g
ne

tw
or

ks
.

**
It

al
so

re
qu

ire
s
N

m
em

or
y

w
or

ds
.

57

7 conclusions

The thesis has presented the design and implementation of flexible, low-
latency, high-throughput N-to-M sorting and max-set-selection units and
discussed the structure, performance and resource requirements of these
units. In this thesis, we propose modular techniques for designing N-to-M
sorting and max-set-selection units based on the Batcher’s bitonic and odd-
even merge sorting algorithms. We present new regular bitonic merging
units that are used to construct efficient sorting and max-set-selection
units. Although built from Batcher’s merging units, our proposed parallel
designs modify the original units to obtain efficient max-set-selection and
partial sorting units, reducing time and area complexities of the original
algorithm to O(log2N × log2M) and O(N × log2

2M), respectively. The
analysis performed shows that our designs have lower latency and area
than previous designs. For instance, a 256-to-4 max-set-selection unit is
more than two times faster and five times smaller than the corresponding
256-input complete sorting network.

We employ a modular design methodology that allows our units to be
readily utilized in applications with different requirements. Our units meet
stringent latency and throughput constraints, are suitable for a wide range
of applications, and give designers the flexibility to easily change the sorter
architecture. Moreover, our designs can be applied to two’s complement
or floating-point numbers by simply changing the comparators used in the
compare-and-exchange blocks.

Parallel max-set-selection units have high I/O bandwidth and resource
requirements. To reduce I/O bandwidth and area, we propose an iterative
max-set-selecting method that receives P new input values per cycle. Our
iterative design reuses a small max-set-selection unit over a number of
iterations to generate the outputs. The proposed iterative units, which have
time and area complexities of O(N/P) and O((P+M)× log2

2(P+M)), have

58

much lower resource and I/O requirements than the corresponding parallel
units. The iterative max-set-selection units target applications that require
selection units with moderate latency and throughput, but need low area
and I/O.

59

references

[1] 1998. CMS: The story of the universe. particle and forces. CERN and
LHC. the compact muon solenoid. Geneva: CERN.

[2] 2009. LHC sets new world record. CERN Press Release.

[3] Afghahi, M. 1991. A 512 16-b bit-serial sorter chip. IEEE J. of
Solid-State Circuits 26(10):1452–1457.

[4] Agrawal, J. P. 1996. Arbitrary size bitonic (ASB) sorters and their
applications in broadband ATM switching. In Proc. IEEE intl. conf.
on computers and communications, 454–458.

[5] Ahn, B., and J. M. Murray. 1989. A pipelined, expandable VLSI sorting
engine implemented in CMOS technology. In Proc. ieee intl. symp. on
circuits and systems, 134–137.

[6] Ajtai, M., J. Komlós, and E. Szemerédi. 1983. An O(n log n) sorting
network. In Proc. ann. acm symp. on theory of computing, 1–9.

[7] Azuma, Shinsuke, Takao Sakuma, Tetsuya Takeo, Takaaki Ando, and
Kenji Shirai. 2000. Diaprism hardware sorter - sort a million records
within a second.

[8] Batcher, K. E. 1968. Sorting networks and their applications. In Afips
proc. spring joint computer conference, 307–314. ACM.

[9] Bitton, Dina, David J. DeWitt, David K. Hsaio, and Jaishankar Menon.
1984. A taxonomy of parallel sorting. ACM Comput. Surv. 16(3):
287–318.

[10] Brajovic, Vladimir, and Takeo Kanade. 1999. A VLSI sorting image
sensor: Global massively parallel intensity-to-time processing for low-

60

latency, adaptive vision. IEEE Trans. on Robotics and Automation
15(1):67–75.

[11] Chakrabarti, Chaitali. 1993. Sorting network based architectures for
median filters. IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing 40(11):723–727.

[12] Chakrabarti, Chaitali, and Li-Yu Wang. 1994. Novel sorting network-
based architectures for rank order filters. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems 2(4):502–507.

[13] Chien, M.V., and A. Yavuz Oruc. 1994. Adaptive binary sorting schemes
and associated interconnection networks. IEEE Trans. on Parallel and
Distributed Systems 5(6):561–572.

[14] Colavita, A., A. Cicuttin, F. Fratnik, and G. Capello. 2003. SORTCHIP:
A VLSI implementation of a hardware algorithm for continuous data
sorting. IEEE J. Solid-State Circuits 38(6):1076–1079.

[15] Colavita, Alberto, Enzo Mumolo, and Gabriele Capello. 1997. A novel
sorting algorithm and its application to a gamma-ray telescope asyn-
chronous data acquisition system. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 394(3):374–380.

[16] Demirci, T., I. Hatirnaz, and Y. Leblebici. 2003. Full-custom CMOS
realization of a high-performance binary sorting engine with linear
area-time complexity. In Proc. intl. symp. on circuits and systems,
vol. 5, V–453–V–456.

[17] Dong, Sheng-Nan, Xiao-Tao Wang, and Xing-Bo Wang. 2009. A novel
high-speed parallel scheme for data sorting algorithm based on FPGA.
In Intl. cong. on image and signal processing, 1–4.

61

[18] Farmahini-Farahani, A., A. Gregerson, M. Schulte, and K. Compton.
2011. Modular high-Â-throughput and low-Â-latency sorting units for
FPGAs in the Large Hadron Collider. In Proc. ieee intl. symp. on
application specific processors, 38–45.

[19] Govindaraju, Naga, Jim Gray, Ritesh Kumar, and Dinesh Manocha.
2006. GPUTeraSort: high performance graphics co-processor sorting
for large database management. In Proc. of the ACM SIGMOD intl.
conf. on management of data, 325–336.

[20] Graefe, Goetz. 2006. Implementing sorting in database systems. ACM
Comput. Surv. 38.

[21] Grama, Ananth, George Karypis, Vipin Kumar, and Anshul Gupta.
2003. Introduction to parallel computing. 2nd ed. New York: Addison
Wesley.

[22] Gregerson, Anthony, Amin Farmahini-Farahani, William Plishker,
Zaipeng Xie, Katherine Compton, Shuvra Bhattacharyya, and Michael
Schulte. 2009. Advances in architectures and tools for FPGAs and their
impact on the design of complex systems for particle physics. Typical
Workshop on Electronics for Particle Physics (TWEPP) 617–626.

[23] Gregerson, Anthony, Michael Schulte, and Katherine Compton. 2010.
High-energy physics. In Handbook of signal processing systems, 179–211.
Springer.

[24] Herruzo, Ezequiel, Guillermo Ruiz, J. Ignacio Benavides, and Oscar
Plata. 2007. A new parallel sorting algorithm based on odd-even
mergesort. In Proc. intl. conf. on parallel, distributed and network-based
processing, 18–22.

62

[25] Hongwei, Xie, and Xue Yafeng. 2008. An improved parallel sorting
algorithm for odd sequence. In Intl. conf. on advanced computer theory
and engineering, 356–360.

[26] Huang, Chun-Yueh, Gwo-Jeng Yu, and Bin-Da Liu. 2001. A hardware
design approach for merge-sorting network. In Proc. ieee intl. symp. on
circuits and systems, vol. 4, 534–537.

[27] Ionescu, M. F., and K. E. Schauser. 1997. Optimizing parallel bitonic
sort. Tech. Rep., University of California at Santa Barbara.

[28] Ja’Ja’, J., and R. M. Owens. 1984. VLSI sorting with reduced hardware.
IEEE Trans. on Computers C-33(7):668–671.

[29] Karthik, S., I. de Souza, J. T. Rahmeh, and J. A. Abraham. 1991. In-
terlock schemes for micropipelines: Application to a self-timed rebound
sorter. In Proc. ieee intl. conf. on computer design: Vlsi in computers
and processors, 393–396.

[30] Knuth, Donald E. 1998. Art of computer programming, volume 3:
Sorting and searching. 2nd ed. Reading, Mass: Addison-Wesley.

[31] Koch, Dirk, and Jim Torresen. 2011. FPGASort: A high performance
sorting architecture exploiting run-time reconfiguration on FPGAs
for large problem sorting. In Proc. ACM/SIGDA intl. symp. on field
programmable gate arrays, 45–54.

[32] Kuo, Chung J., and Zhi W. Huang. 2001. Modified odd-even merge-
sort network for arbitrary number of inputs. In IEEE intl. conf. on
multimedia and expo, 929–932.

[33] Layer, C., D. Schaupp, and H.-J. Pfleiderer. 2007. Area and throughput
aware comparator networks optimization for parallel data processing
on FPGA. In Intl. symp. on circuits and systems, 405–408.

63

[34] Lee, Jae-Dong, and K. E. Batcher. 2000. Minimizing communication
in the bitonic sort. IEEE Trans. on Parallel and Distributed Systems
11(5):459–474.

[35] Lefevre, C. 2008. LHC: The guide.

[36] Leighton, Tom. 1985. Tight bounds on the complexity of parallel sorting.
IEEE Trans. on Computers C-34(4):344–354.

[37] Liszka, Kathy J., and Kenneth E. Batcher. 1993. A generalized bitonic
sorting network. Proc. Intl. Conf. on Parallel Processing 105–108.

[38] Marcelino, Rui, Horácio C. Neto, and João M. P. Cardoso. 2008. Sorting
units for FPGA-based embedded systems. In IFIP cong. distributed
embedded systems: Design, middleware and resources, 11–22.

[39] Moore, Simon W., and Brian T. Graham. 1995. Tagged up/down sorter
- a hardware priority queue. The Computer Journal 38:695–703.

[40] Nakatani, T., S.-T. Huang, B.W. Arden, and S.K. Tripathi. 1989. K-way
bitonic sort. IEEE Trans. on Computers 38:283–288.

[41] Olariu, S., M. C. Pinotti, and S. Q. Zheng. 2000. An optimal hardware-
algorithm for sorting using a fixed-size parallel sorting device. IEEE
Trans. on Computers 49(12):1310–1324.

[42] Ortiz, J., and D. Andrews. 2010. A configurable high-throughput linear
sorter system. In Proc. ieee intl. symp. on parallel distributed processing
(ipdpsw), 1–8.

[43] Parhami, B., and Ding-Ming Kwai. 1999. Data-driven control scheme
for linear arrays: Application to a stable insertion sorter. IEEE Trans.
on Parallel and Distributed Systems 10(1):23–28.

[44] Paterson, Mike. 1990. Improved sorting networks with O(log N) depth.
Algorithmica 5(1):65–92.

64

[45] Pedroni, V.A., R.P. Jasinski, and R.U. Pedroni. 2010. Panning sorter:
A minimal-size architecture for hardware implementation of 2D data
sorting coprocessors. In IEEE asia pacific conf. on circuits and systems,
923–926.

[46] Perez-Andrade, R., R. Cumplido, F. Del Campo, and C. Feregrino-
Uribe. 2008. A versatile linear insertion sorter based on a FIFO scheme.
In Proc. ieee comp. soc. ann. symp. on vlsi, 357–362.

[47] Pitas, I., and A. N. Venetsanopoulos. 1990. Nonlinear digital filters:
Principles and applications. Boston, Mass: Kluwer Academic Publishers.

[48] Pok, D.S.K., C.-I.H. Chen, J.J. Schamus, C.T. Montgomery, and J.B.Y.
Tsui. 1997. Chip design for monobit receiver. IEEE Trans. on Microwave
Theory and Techniques 45(12):2283–2295.

[49] Ratnayake, Kumara, and Aishy Amer. 2007. An FPGA architecture of
stable-sorting on a large data volume: Application to video signals. In
Proc. ann. conf. on information sciences and systems, 431–436.

[50] Ribas, L., D. Castells, and J. Carrabina. 2004. A linear sorter core
based on a programmable register file. In Proc. conf. on design of
circuits and integrated systems, 635–640.

[51] Stephens, Donpaul C., Jon C.R. Bennett, and Hui Zhang. 1999. Im-
plementing scheduling algorithms in high-speed networks. IEEE J. on
Selected Areas in Communications 17:1145–1158.

[52] Taurok, A., H. Bergauer, and M. Padrta. 2001. Implementation and
synchronisation of the first level global trigger for the CMS experiment
at LHC. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment
473(3):243–259.

65

[53] Thompson, C. D. 1983. The VLSI complexity of sorting. IEEE Trans.
on Computers C-32(12):1171–1184.

[54] Varela, J. 2002. CMS L1 trigger control system. CMS Note 2002/033.

[55] Wulz, Claudia-Elisabeth. 2001. Concept of the first level global trigger
for the CMS experiment at LHC. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 473(3):231–242.

[56] Yasuura, H., N. Takagi, and S. Yajima. 1982. The parallel enumeration
sorting scheme for VLSI. IEEE Trans. on Computers C-31(12):1192–
1201.

[57] Yen-Chun, Lin. 1993. On balancing sorting on a linear array. IEEE
Trans. on Parallel and Distributed Systems 4(5):566–571.

[58] Yun, K.Y., K.W. James, R.H. Fairlie-Cuninghame, S. Chakraborty,
and R.L. Cruz. 2000. A self-timed real-time sorting network. IEEE
Trans. on Very Large Scale Integration (VLSI) Systems 8(3):356–363.

[59] Zhang, Yanjun, and S. Q. Zheng. 2000. An efficient parallel VLSI
sorting architecture. VLSI Design 11(2):134–147.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Parallel Sorting Networks
	Bitonic Sorting Networks
	Odd-even Merge Sorting Networks
	Designing Large Sorting Networks

	Proposed Partial Sorting and Max-set-selection Units
	4-Output Max-set-selection and Partial Sorting Units
	8-to-4 Max-set-selection Units
	BM-8-to-4 and 8-to-4 Partial Sorting Units
	2n-to-4 Max-set-selection and Partial Sorting Units

	2n-to-2m Max-set-selection and Partial Sorting Units
	Modular Max-set-seletion Units
	Modular Partial Sorting Units

	Other Extensions
	Other Input Quantities
	Other Output Quantities

	Analysis

	Results
	ASIC Implementation
	FPGA Implementation
	Comparison with Other Approaches
	Customized Units Used in the CMS L1 Trigger

	Iterative Max-set-selection Units
	Discussion
	Comparison with Parallel Max-set-selection Units
	Iterative Partial Sorting Units

	Results

	Related Research
	Sorting Networks
	Partial Sorting and Max-set-selection Units

	Conclusions
	References

