Knockout of the US29 gene of Human Cytomegalovirus using BAC Recombineering

Kristin Rosche, Emily Thornsen & Lloyd Turtinen * Department of Biology * University of Wisconsin-Eau Claire

Abstract

The purpose of our research is to determine the function of the US29 gene in Human Cytomegalovirus (HCMV) by knocking it out using Bacterial Artificial Chromosome (BAC) technology. We began with a BAC that contained the entire HCMV genome as well as the chloramphenicol (Cam¹) antibiotic resistance gene (ADCRE) in DH10ß Escherichia coli (E.coli). We isolated the ADCRE from the DH10B cells and then electroporated it into the recombineering E.coli strain SW102 GalK containing an excision defective λ prophage. Following electroporation, 800 Camr colonies were obtained, of these, 1 out of 21 screened had the entire viral genome based on a DNA fingerprint match between the SW102 and DH10β strains. The rest had large deletions in the HCMV sequence. A galactokinase positive, kanamycin resistant (GalK*/Kanr) cassette was amplified to contain flanking US29 regions using the polymerase chain reaction (PCR). This DNA was electroporated into the SW102 with the intact ADCRE to replace part of the US29 sequence with galK/Kanr genes through homologous recombination (allelic exchange). Sixteen Camr/GalK*/Kanr colonies were obtained, indicating exchange of 956 base pairs in US29 with 2.3kb galK/Kanr.

Introduction

HCMV is a ubiquitous human pathogen that by age forty, 90% of us will harbor in a latent form in our body. It remains hidden until immunosuppressive events cause it to be reactivated and spread throughout the body to cause a multitude of problems including pneumonia, retinitis, and multi-organ infections. Conditions such as AIDS, organ transplantation, or cancer almost always lead to reactivation and infection. How it remains hidden in the body and later reactivates to cause such widespread infection remains a mystery. Furthermore, it is one of the most complicated viruses in terms of its genetic makeup. The function of an HCMV gene designated US29 is unknown. Its amino acid sequence shows no significant resemblance to any known proteins in the databanks, although a number of possibilities including immune response receptors have been postulated¹. We do not know how important this gene is for infection and growth of the virus. In order to test a number of hypotheses, we plan to 'knockout' this gene by replacing it with the galK/Kanr reporter genes using Bacterial Artificial Chromosome (BAC) recombineering technology. Once the gene is no longer expressed during infection, we can determine if it is essential for a productive infection or what host immune functions might be disrupted by comparing knockedout and wild type versions of the virus.

In order to 'knockout' US29, BAC recombineering techniques were employed using BACs which are based on the F plasmid in E. coll². They contain Par genes which limit the plasmid to 1-2 copies per cell, an origin of replication (ORI), and a Cam^r gene while all conjugative genes are removed. The entire HCMV genome is available as a circular BAC plasmid DNA of 230KB (ADCRE)³ (Figure 1).

- Used PCR to amplify galK/Kan^r cassette from plasmid pGalK/Kan^r.
- Transfection of SW102 ADCRE clone #11 with galK/Kan^r cassette resulted in
- possible allelic exchange of US29 producing 16 GalK*/Kanr/Camr isolates. PCR of SW102 ADCRE clone #11GalK*/Kanr A9 isolate showing probable amplification of cassette within US29.

Next Steps

941

20

- Southern Blot probing for galK/Kan^r genes in SW102 ADCRE clone #11 GalK/Kan^r A9 to confirm recombination
- Infect HFF cells with wild-type and ΔUS29 ADCRE to compare infection and growth of the virus to determine gene function.

References

- Zuzek, K. University of Wisconsin-Eau Claire Master Thesis. 1999.
- 2. Yu, D., et al. Journal of Virology. 76: 5, 2002
- 3. Warming, S., et al. Nucleic Acids Research. 33: 4, 2005.