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Abstract

Specialization is a promising direction for improving processor energy efficiency. With functional-
ity specialization, hardware is designed for application-specific units of computation. With parallelism
specialization, hardware is designed to exploit abundant data-level parallelism. The hardware for these
specialization approaches have similarities including many functional units and the elimination of per-
instruction overheads. Even so, previous architectures have focused on only one form of specialization.
Our goal is to develop mechanisms that unify these two approaches into a single architecture. We de-
velop the DySER architecture to support both, by Dynamically Specializing Execution Resources to
match program regions. By dynamically specializing frequently executing regions, and applying a set
of judiciously chosen parallelism mechanisms—namely region growing, vectorized communication, and
region virtualization—we show DySER provides efficient functionality and parallelism specialization.
It outperforms an OOO-CPU, SSE-acceleration, and GPU-acceleration by up to 4.1×, 4.7× and 4× re-
spectively, while consuming 9%, 86%, and 8% less energy. Our full-system FPGA prototype of DySER
integrated into OpenSPARC demonstrates an implementation is practical.

1 Introduction

Future processors must improve microarchitectural efficiency to overcome slowing transistor energy ef-

ficiency and sustain performance growth. Specialization and accelerators are promising directions. One

of the most mainstream specialization techniques is to specialize architectures for data-level parallelism.

Examples include vector processors, short-vector instructions like SSE/AVX, and GPUs. Functionality

specialization is another technique, wherein custom hardware is targeted at application functionality. Ex-

amples include Garp [3], Chimaera [15], CCA [4], PipeRench [5], Tartan [11], Phoenix [13], Conservation-

Cores [14], and BERET [7].

Thus far, specialization architectures have targeted only parallelism or functionality specialization. In

fact, the functionality specialization architectures are typically not evaluated on data-parallel workloads and

vice versa. The reason for this distinction is that the fundamental approaches behind these strategies are
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conflicting. Parallelism specialization utilizes homogeneous hardware resources with a wide/independent

interconnect, while functionality specialization uses task-specific hardware resources with task-specific rout-

ing. Furthermore, parallelism specialization’s homogeneous resources are simple to virtualize to support

mapping arbitrarily large computations, while functionality specialization’s heterogeneity means arbitrary

computations face resource mapping problems.

Nevertheless, we observe that architectures like SSE and GPU are taking incremental steps towards the

unification of functionality specialization with their parallelism specialization, a point we will revisit in the

conclusion. The driving force is that the combination of specialization types can provide further energy and

performance benefits.

DySER can be viewed as the natural progression of the trend towards unification, culminating in both

functionality and parallelism exploited by Dynamically Specializing Execution Resources. The enabling

mechanism is the configurable lightweight switching network which connects a set of heterogeneous func-

tional units and allows customization. In DySER, parallelism is exploited by creating logical lanes of inde-

pendent computation in this substrate, and functionality is exploited by creating specific datapaths for each

particular computation.

Practically speaking, DySER is integrated into the execution stage of a general purpose processor, which

acts as a load/store engine to feed the DySER computation substrate. To achieve functionality specialization,

a compiler synthesizes datapaths between functional units specific to an application’s phase. To achieve par-

allelism specialization, we use a judicious mix of vectorization techniques and novel hardware mechanisms.

High performance is enabled by providing a dense compute fabric with low-latency integration and energy

efficiency is attained through eliminating per-instruction overheads by converting code-regions into dynami-

cally formed compound functional units. These gains can be provided without significantly disrupting either

the general purpose architecture into which it is integrated, or the software development environment.

We have designed and implemented the DySER architecture and its compiler, ported applications to it

and implemented an FPGA prototype. Employing functionality specialization, DySER outperforms a dual

issue out-of-order(OOO) processor by 1.1× to 4.1×, simultaneously reducing energy by 9%. Employing

parallelism specialization, DySER outperforms SIMD: it is 1.3× to 4.7× faster than SSE, consuming 86%

less energy. It outperforms GPUs with mean speedup of 1.4×, consuming 8% less energy.

In this article, we present the architecture and hardware/software mechanisms for functionality spe-
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Figure 1: DySER architecture,integration to a processor pipeline and execution model

cialization and for parallelism specialization. We also report on quantitative evaluation and feasibility by

describing our full-system FPGA prototype that integrates DySER into OpenSPARC. We conclude with

comments on DySER’s practical usage.

2 DySER and Functionality Specialization

The main insight in designing DySER is that programs execute in phases and only a small number of such

phases or regions contribute to most of the program’s execution time. Specializing such frequently execut-
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ing regions can eliminate overheads and provide energy efficiency. However, the cost of having specialized

hardware for all such possible regions is prohibitive. Instead, DySER dynamically creates specialized dat-

apaths for only frequently executed regions. We also leverage the processor’s memory system, utilizing its

cache, prefetch, memory disambiguation and memory-dependence prediction mechanisms, thus overcoming

load-store serialization bottlenecks in “irregular” code.

Architecture: DySER achieves functionality specialization by employing a heterogeneous array of func-

tional units connected with simple switches as shown in Figure 1(a). A functional unit is connected to four

neighboring switches which deliver its inputs and consume its output. It can be configured to get its in-

puts from any of its neighboring switches. Once all of its inputs have arrived, it performs the configured

operation and delivers the output to the switch. Switches form a circuit-switched network and can create

hardware datapaths, as shown by the example configuration in Figure 1(b). Once configured, which takes

about 64 cycles, DySER computes very efficiently because it eliminates per instruction overheads such as

decode, commit and unnecessary register reads and writes.

To allow pipelining inside DySER, we implement a simple credit-based flow control using a forward

signal “valid” and a backward signal “credit”. Functional units perform the operation when all its inputs are

“valid”, and data is forwarded only when the “credit” signal is asserted. Functional units and switches send

credits only when they are able to accept new data. This network and data-flow execution model create a

pipelined functionality specialization engine.

Figure 1(a) shows how DySER is integrated to a processor. The processor pipeline communicates to

DySER through a set of named input and output ports which correspond to FIFOs that deliver data to the

switches. We extend the ISA with five instructions that configure DySER, send/receive register data, and

send/receive memory values.

Execution Model: Figures 1(c)-(f) compare the conceptual execution model of a dual issue out-of-order

processor to that of DySER. The processor of Figure 1(d) executes up to two operations at a time, and is

shown performing two iterations of the loop from 1(c).

The DySER version in Figure 1(e), begins by first configuring DySER for a region’s datapath before it

is encountered. For every instance of the region, the processor either sends register values or loads data

directly to DySER. All of the sends and loads for one instance is referred to as an "invocation". As the
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data reaches DySER, it is routed to functional units through switches according to the configuration, and

execution occurs in data-flow fashion, producing results for the processor. Similar to the CPU, DySER can

be speculatively invoked with the next instance of the computation, pipelining both instances together, as

shown in Figure 1(f). In this example, DySER executes 5 less cycles than the processor.

Compiler Role: DySER relies on a compiler to create its configurations and insert instructions in the

program to communicate with the processor. Our compiler does the following: i) identifies regions using

profiling or static analysis, ii) partitions them into a memory subregion, which includes loads,stores and

address calculations; and a computation subregion, which has all other instructions; iii) generates DySER

configurations for computation subregions, and iv) inserts communication instructions into the memory

subregion.

Workload Characterization: Considering the PARSEC and SPECINT benchmarks, we observe there are

many candidate regions to specialize: 9 to 906 for PARSEC, and 46 to 10018 for SPECINT. However, about

10% contribute to 90% of the execution time. These regions are 51 to 264 instructions in length. For a

64-unit heterogeneous DySER (details in Section 4), 60% to 100% of these regions can be specialized.

3 DySER and Parallelism Specialization

The large number of functional units in DySER provide a great opportunity for supporting data-parallel exe-

cution. However, for DySER as described previously, parallelism specialization presents several challenges.

We develop parallelism specialization mechanisms to overcome these challenges by analyzing DySER per-

formance on data-parallel (DLP) applications. We consider hand-optimized workloads from Intel’s research

lab and Parboil [12]. Table 1 describes the workloads we consider and their characteristics.

3.1 Challenges for DySER on Data Parallel Workloads

The computation subregions of the applications considered, while providing parallelism, are ill-suited for

DySER due to their "size" and "shape". Figure 2 illustrates four types of computation subregions, and

column 4 in Table 1 shows the type for each benchmark.
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1.
Bench

2. Descrip-
tion

3. GPU/SIMD Performance 4. Region
Type

5. DLP Tech-
niques Used

6. DySER Analysis

SIMD Benchmarks
NBDY Nbody Simu-

lation
Large kernel with regular access pat-
tern.

Superfluous SCX, FCS,
VEC-Intra

DySER throughput limited by long la-
tency FUs (div, sqrt).

VR Volume ren-
dering

Nested loop with lots of control-flow. Insufficient UNR, SCX Control flow divergence hinders SSE.
DySER limited by irregular mem.

TSRCH Tree Search Irregular data accesses prevent SSE
vectorization.

Insufficient UNR, SCX,
SUB

Scalar loads feed region, SSE loses be-
cause of irregular mem. access.

MRG Sorting Small kernel with unpredictable data
dependent control-flow.

Superfluous SUB, VEC-
Intra

Emulates 4x4 merge network; larger re-
gion than SSE. Control flow limits perf.

RDR Complex
conv.

Small kernel with regular access pat-
tern.

Insufficient UNR,SUB,STR,
VEC-Hybrid

Emulates 4 wide complex multiplier,
wins with fewer instructions.

CONV Image convo-
lution

Regular comp and data accesses. No
control-flow divergence.

Insufficient UNR,SUB,STR,
VEC-Intra

Emulates 8 wide SIMD, wins with larger
region and memory regularity.

GPU Benchmarks
GPU is Faster

MRI-Q Mag. Res.
Imaging

Heavy use of Sin/Cos. Use of constant
memory for less global mem B/W.

Proportional STR, VEC-
Inter

Single computation lane; DySER loses
b/c of non-pipelined sin/cos FUs.

SPMV Spare Matrix
Vector Mult.

Indirect loads are software pipelined.
Uses constant&texture mem.

Insufficient UNR, STR DySER loses because of irregular mem.
access, no vectorization possible.

CTCP 3D Grid &
Point Calc.

Significant use of transcendentals.
Overlaps CPU/GPU execution.

Superfluous FCS, STR,
VEC-Hybrid

Multilane pattern executes sqrt ops in
parallel, lose b/c of throughput of sqrt.

DySER & GPU have Similar Performance
MM Dense Matrix

Mult.
Standard algorithm. Shared memory
& sync to reduce global memory B/W.

Insufficient UNR, VEC-
Intra

Similar perf. b/c of regular mem. access,
high comp/mem.

STNCL 3D Matrix Ja-
cobi

Small comp/mem ratio. Shared mem-
ory & sync reduce global memory b/w.

Proportional STR, VEC-
Inter

2-lane Stencil. Similar performance,
limited by low comp/mem ratio.

SAD Sum-of-abs.
diff.

Extremely High Comp/Mem Ratio.
Good Memory Locality.

Proportional UNR,FCS,STR,
VEC-Hybrid

Multilaned abs() with sum reduction.
Similar perf b/c regular mem.

LBM Fluid Dynam-
ics

Extremely large computation region.
Large-region ctrl-flow divergence.

Superfluous FCS, VEC-
Intra

Many reductions. Divergence hurts
GPU, scattering mem. hurts DySER.

TPACF Angular Cor-
relation

Irregular memory access due to his-
tograming. Causes branch divergence.

Superfluous FCS, STR,
VEC-Hybrid

Performs histogram with reductions.
Similar b/c GPU parallelizes hist.

DySER is Faster
KMNS Kmeans clus-

tering
Uses texture as cache. Regular mem-
ory access.

Insufficient UNR, VEC-
Intra

Large reduction kernel. Perf similar b/c
mem. access regularity.

NNW Neural Net-
works

Some transcendentals. Strided mem-
ory access.

Insufficient UNR,STR,
VEC-Hybrid

VEC-Inter and VEC-Intra on different
arrays. Poor warp occupancy for GPU.

FFT Fast Fourier
Transform

Regular Memory Access. Heavy use
of Sin/Cos.

Proportional UNR, VEC-
Hybrid

Single lane region. GPU implementation
doesn’t cache re-used sin/cos ops.

NDL Dyn. Pro-
gramming

GPU diagonal iteration inhibits mem-
ory coalescing. Shared mem and sync.

Insufficient UNR, VEC-
Intra

Single lane of computation. GPU suffers
from excess sync & poor coalescing.

Table 1: Benchmark Characterization
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Figure 2: Types of computation subregions with example benchmarks for each type.

Insufficient Regions: Figure 2(a) shows computation subregions that are small in relation to DySER’s

resources, limiting the potential speedup and utilization.

Proportional Regions: Figure 2(b) shows computation subregions that are appropriately sized for DySER.

These generally come in the form of the multilane and reduction patterns. Even though the potential for these

regions is high, these patterns have a high communication/computation ratio, which limits speedups, since

the computation subregion cannot be fed fast enough for high utilization.

Superfluous Regions: Figure 2(c) shows a computation subregion which is very large. While we can con-

figure DySER separately for different sections of the computation subregion, DySER’s functional units will

be inactive during reconfiguration. Since reconfiguration must be performed on every invocation, overall

utilization is low.

Ideal Regions: Figure 2(d) depicts some best-case scenarios of computation subregions, distinguished by

small numbers of inputs and outputs with numerous computations. Assuming pipelinable invocations, these

patterns are ideal because they have very little communication overhead. However, these are rare in most

workloads, so we develop techniques to transform regions into this type.
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3.2 Mechanisms for Parallelism Specialization

The "Transformation Flow" in Figure 3 shows our overall strategy for transforming an arbitrary computa-

tion subregion to act like an ideal region. Though performed manually for the results in this paper, these

transformations are designed to be implementable in a compiler. Only the TPACF and MERGE benchmarks

require additional algorithmic changes for effective parallelism specialization. Column 5 in Table 1 shows

the transformations for each benchmark.

3.2.1 Region Growing

Regions that are too small to attain high utilization must be expanded, which can be achieved by trans-

forming the loops. Specifically, we apply loop unrolling (UNR) until an appropriately sized computation

subregion is formed, as shown in Figure 3(a). If the loops are independent, we create a multilane pattern.

With a single loop carried dependence, if possible we create a reduction pattern. When profitable, we al-

ternatively employ scalar expansion (SCX) 3(b), which enables loop parallelization by providing temporary

storage for dependent variables. Scalar expansion allows us to break some reduction patterns into multilane

patterns, which can be beneficial depending on the use of the region’s outputs.

3.2.2 Vectorizing DySER

Vectorized DySER instructions can load and store only contiguous words. In order to vectorize send and load

instructions efficiently, we must provide mechanisms to handle arbitrary relationships between contiguous

memory and the interface to the regions. We explain several communication patterns with examples, and

describe the mechanisms which make vectorization possible.

Intra-invocation Communication (VEC-Intra): Figure 3(d) shows the computation subregion from the

convolution (CONV) benchmark. Each contiguous memory word is mapped to a different input port of

DySER and used by a single invocation. Intra-invocation (Intra-VEC) communication converts DySER into

a vector unit.

Inter-invocation Communication (VEC-Inter): Figure 3(e) shows the computation subregion from the

stencil(STNCL) benchmark. Each contiguous memory word is mapped to the same port since subsequent
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invocations use contiguous memory addresses, thus allowing multiple invocations to be explicitly pipelined.

Hybrid Communication (VEC-Hybrid): Figure 3(f) shows a computation subregion from the TPACF

benchmark. Neither inter-invocation nor intra-invocation is sufficient to perform a vector load more than

3 words wide. Our strategy is to use a hybrid, where each word triplet is sent to the same invocation, and

subsequent triplets are pipelined to subsequent invocations. This example is 3 “wide” and 3 “deep”.

Stripmining (STR): Employing these communication patterns requires a transformation called stripmin-

ing, as shown in Figure 3(c). Both stripmining and loop unrolling reduce the loop trip count, but doing both

is usually possible because the loops we considered have high bounds.

Implementation: To implement vectorized communication in hardware, we first require a wide memory

interface similar to that of SSE, and a number of named vector ports. Additionally, we need a mechanism

to map a vector of input/output values to or from DySER’s internal input/output ports. The information that

conveys this correspondence is termed the "vector map". The configuration is augmented with bits which

specify a vector map for each vector port. When a vectorized DySER instruction accesses a vector port, a

finite state machine (FSM) in DySER’s I/O interface coordinates the transfer of data between the incomming

values from the register file or memory, and DySER’s internal ports. Figure 4 shows our implementation of
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vectorized communication. The FSM in DySER’s I/O interface uses the vector map bits to generate control

signals which select the appropriate DySER port. In each subsequent cycle, the next value in the vector map

is utilized. In the example shown, vector port 1 routes the first and second memory values to DySER port 1,

the third memory value is ignored because it is masked off, and finally the fourth memory value is sent to

DySER port 3. Note that a similar vector mapping FSM is required on the output interface as well. In this

implementation, it takes N cycles to map an N element vector. Though faster implementations are possible,

and can have an impact on performance, their description and evaluation is ongoing work.

3.2.3 Region Virtualization

Similarly to insufficient regions, overly large regions must be "resized" to fit inside DySER to achieve

high utilization. Compared to instruction-level acceleration, DySER’s dynamic customization introduces

resource limitation challenges, which we overcome by employing two primary techniques.

Subgraph Matching (SUB): First, we attempt to reduce the computational region by identifying similar

computational structures, which we call Subgraph Matching as shown in Figure 3(g). The transformation is

essentially to cut dataflow edges from a common subgraph, and combine all common subgraphs together.

These cut edges will be reconnected through the memory subregion.

Fast-Config-Switching (FCS): If Subgraph Matching cannot reduce the computation subregion suffi-

ciently, we employ a further technique to reduce the configuration penalty. Figure 3(h) shows how a su-

perfluous computation subregion can be cut into components of appropriate size and mapped to DySER by

using multiple configurations.

We enable fast-config-switching through two hardware mechanisms. First, we augment every DySER

tile (FU+switch) with ability to store multiple configurations. Second, we developed a configuration switch

protocol for DySER that relies on each tile being either in an active or off state.

We added to the network a 1-bit free signal, which is sent from the eight neighbors of a tile. We add

one additional instruction that sends reset signals through the old configuration forcing every tile that has

finished computation into the off state, triggering them into sending free signals to neighbors. The set

signals that follow the reset signals then change any off-state tile into the new configuration. Each set signal

propagates to all neighbors in the new configuration after receiving their free signals.
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This protocol explicitly reuses the dataflow in the two regions to synchronize the set and reset signals

without any additional networks or compiler requirements. As soon as an entire invocation has been sent,

reset and set signals can also be sent. Figure 5(a) shows an example of the set and reset signals perform-

ing the configuration switching. Figure 5(b) shows the microarchitecture implementation, which requires

configuration registers and finite state machines, and outlines the protocol.

Using our RTL implementation, the evaluation of the energy consumed by fast-config-switching shows

it is about 2 picojoules compared to the 120 picojoules for instruction-fetch and decode of a 4-wide OOO

processor.

4 Evaluation

Our evaluation focuses on three issues: i) functionality specialization effectiveness; ii) parallelism special-

ization effectiveness; and iii) implementation and integration feasibility. We evaluate DySER on these issues

with simulation, RTL implementation, and a full-system FPGA implementation.

4.1 Evaluation Methodology

For our performance and energy evaluation, we use a simulation-based approach. We consider a dual-issue

OOO processor as our baseline. This baseline processor has 64KB L1-D$, 32KB-L1-I$, and a tournament
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Unit Count Latency Area (µm2) Description
INT-ADD 16 1 2482 OpenSPARC
INT-MUL 12 5 16401 OpenSPARC
FP-ADD 16 4 14533 OpenSPARC
FP-MUL 12 7 24297 OpenSPARC
FP-DIV 4 12 16932 Taylor-series based [9]

FP-SQRT 4 12 16932 Taylor-series based [9]
Switch 81 1 8009

Table 2: Details of function units used in 64-FU DySER. Unified Div/Sqrt implementation.

branch predictor with 4K BTB entries. We consider an SSE implementation in X86 and a GPU as our

reference data-parallel accelerators to compare to DySER. Specifically, we consider a 1-SM/8-wide GPU

since its area and functional unit mix matches one DySER block integrated with a 2-wide OOO processor.

In all cases, we consider applications tuned for each architecture. We integrate DySER into a dual issue

out-of-order processor that is identical to our baseline.

We evaluate a DySER that has 64 heterogeneous functional units, as shown in Table 2 (RTL implemen-

tation details in Section 4.4). We use the Gem5 simulator [1], Gem5+SSE, GPGPU-Sim [2], and Gem5

extended for DySER to evaluate the various platforms respectively. We augmented our Gem5 infrastructure

with McPAT [10] based power models. We developed our own GPU power model extending the device-

specific model developed by Hong and Kim [8] to allow parametrization. Its error range is ≤ 20%.

Benchmarks: For functionality specialization, we consider the PARSEC and SPECINT benchmark suites.

We use code optimized with GCC -O3, and used profiling to identify regions. We chose distinct benchmarks

for evaluating parallelism specialization because we wanted to manually compile and optimize each bench-

mark, which was intractable for PARSEC and SPECINT. A manual approach is appropriate because this is

an evaluation our architectural mechanisms independent of effects from potential compiler transformations.

The benchmarks described in Section 3 were good choices because they were simple enough to manually

optimize and were well suited for their respective accelerators. For the DySER versions of these bench-

marks, we implemented or obtained scalar C++ code, applied the transformations described in Section 3,

and compiled with our GCC based DySER toolchain.
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4.2 Functionality Specialization Results

Figures 6(a),(c) show the performance and energy improvements from DySER integration when compared

to the baseline dual issue OOO processor and performing only functionality specialization. We consistently

see improvements across the benchmarks with harmonic speedup of 39% and 9% reduction in energy. We

achieve performance improvements in irregular workloads by forming large regions and specializing such

regions with control-flow support inside DySER. With some benchmarks (eg. freqmine, gobmk), there is

little performance gain because of the many insufficient regions which were not amenable to our transfor-

mations. Govindaraju et al. presents further analysis of these benchmarks and results [6].

4.3 Parallelism Specialization Results

Column 6 in Table 1 summarizes our results when performing parallelism specialization using DySER. For

each benchmark it shows how DySER employs the transformations we described. Note that these bench-

marks primarily benefit from parallelism specialization, but can also implicitly benefit from functionality

specialization by using the DySER hardware to represent computations. Figure 6(b),(d) show the perfor-

mance and energy improvements of DySER, SIMD, and GPU acceleration compared to the baseline. We

provide detailed analysis below.

DySER vs SIMD: DySER performs significantly better for all of the SIMD benchmarks. For highly

regular workloads such as CONV and RDR, DySER emulates a wider SIMD unit than SSE units and accel-

erates them using vectorized loads. For irregular workloads such as volume rendering (VR) and TreeSearch

(TSRCH), we find independent computations and accelerate them using DySER’s pipeline parallelism.

However, we cannot vectorize the code beneficially because of data dependent control flow and irregular

memory accesses. The benchmarks Merge and NBody have superfluous computation subregions, so we use

Region Virtualization.

DySER provides a harmonic mean speedup of 3.2× over our baseline, with a range of 1.5× to 15×, and

energy reduction of 60%, with a range of 33% to 94%.

It is 1.3× to 4.7× faster than SSE and has similar energy efficiency.
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DySER vs GPU: We see various distinct types of behavior with GPU workloads. Table 1 presents details

under three categories in its last column, while some highlights follow.

• CUTCP requires long latency functional units which are not pipelined in DySER, but are pipelined in

the GPU, causing the GPU to outperform DySER.

• Benchmarks like SAD, STNCL, and MM perform similarly in both architectures because they can all

exploit highly regular data access efficiently. For TPACF, the GPU and DySER end up with similar

performance, but take different approaches for efficient histogram calculation. DySER can parallelize

each index calculation, while the GPU uses threads to calculate multiple indices simultaneously.

• The DySER implementation of FFT caches the reused transcendental operations performed on the

load slice, which turns out to be highly beneficial, and outperforms the GPU approach.

DySER provides a harmonic mean speedup of 3.6× over our baseline, with a range of 1.5× to 8.5×, and

energy reduction of 64%, with a range of 34% to 81%.

It is up to 4× faster than GPU and 64% more energy efficient.

Summary: Overall, we observe DySER can be trivially configured to exactly imitate SIMD and can sur-

pass SIMD’s performance. DySER is competitive with GPU performance and its mechanisms are equally

flexible.

4.4 Feasibility of Implementing/Integrating DySER

We implemented DySER as standalone RTL for verification and to determine the feasibility in terms of

design, area, and power. To attain an area estimate, we synthesized DySER using Synopsys Design Compiler

with the TSMC 55nm Standard Cell library. For the area of FP-DIV and SQRT units, we scaled previous

estimates [9] to 55nm. In total, the 64-unit DySER described earlier occupies an area of 1.54 mm2, which

is approximately the size of the Intel ATOM FP/SIMD units (from die-photos the FPC unit of Atom is 1.45

mm2 in 45nm), and is about half the size of a GPU SM (from die-photos, area of one SM in NVIDIA GT200

is 2.7 mm2 at 65nm), when all are scaled to 55nm. The interfaces, switches, and flip-flops contribute to

42% of DySER’s area and 18% of energy. Overall we conclude DySER is area and energy efficient.
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Figure 6: Performance and Energy improvements from DySER specialization (CPU = CPU w/o SIMD;
SIMD-4= 4-wide SIMD; GPU = 1SM/8-Wide; DySER = 64-FU-DySER + CPU)

To demonstrate DySER can be integrated easily into conventional processors, we have integrated a pro-

totype of DySER into the OpenSPARC processor, including SPARC ISA extensions, a compiler based on

LLVM, and verified the implementation on an off-the-shelf Virtex-5 FPGA board booting unmodified Linux

and running applications. Due to FPGA size limitations, we could only map a four FU DySER, which limits

performance analysis. We are exploring a full-fledged 64-unit prototype.

5 Conclusions

We have shown how the DySER architecture unifies disparate attempts at functionality and parallelism

specialization in a single architecture with a set of mechanisms. Our quantitative results show DySER is

competitive or outperforms SIMD and GPU accelerators, performs well in terms of functionality specializa-

tion, and is a feasible design easily integrable with a processor. We reflect on DySER’s potential practical

usages.
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Programming tradeoffs: SIMD accelerators or short-vector extensions can provide speedup, but compil-

ers have difficulty targeting SIMD well. Programmers typically must use compiler intrinsics, which creates

severe portability and maintainability problems. Although there have been successful GPGPU programming

languages like CUDA, GPUs pose their own set of programming challenges. Not only must the user learn a

new language, they must learn the massively multi-threaded thinking paradigm, give up on familiar sequen-

tial program debugging, and apply GPU specific optimizations. DySER programming is relatively simple,

uses sequential C++ code, and uses established debugging methodologies.

SIMD Evolution: Even though the SSE family is SIMD, many extensions to SSE (SSE3 and later) have

instructions that are not purely word parallel. For example, the instruction HADDPD and its variants operate

on elements from the same vector. Also, there are instructions specializing the functionality like MPSADBW,

which computes the sum of absolute differences. This exemplifies a trend towards providing functionality

specialization in data parallel accelerators. SIMD evolution, by increasing width, does not provide scalable

performance benefits across workloads, whereas DySER scalably adapts. Hence, we feel DySER is the

natural evolution of these instructions sets.

GPU Evolution: Conversely, GPUs are leaning toward the CPU side by providing caches and eliminating

redundant work with their scalarization approach which effectively creates a “control” core and a set of

compute-cores, much like DySER’s organization. Again, we feel DySER-like integration is the direction

GPUs are headed.

Replacing SIMD or GPU: In summary, we feel DySER is a viable candidate for replacing SIMD short

vector instruction sets. With some simple extensions, DySER can be augmented to emulate existing in-

struction sets like SSE, thus providing backward compatibility. Clearly, DySER is not a GPU replacement,

since it cannot perform graphics tasks well. It is a promising alternative for “design-constrained” environ-

ments like Tilera, ARM in servers, and Oracle’s T4 successor to target high-performance computing. In

these cases, a completely new processor design like a GPU, or integration of GPU with a core, and adoption

of a new software ecosystem may be prohibitively complex. In contrast, DySER’s hardware and software

ecosystem are non-disruptive.

Broadly, DySER’s unifying functionality and data-parallel specialization mechanisms provide a platform
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for energy efficient computing.
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