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Abstract. Recent work has suggested that in highly cor-
related systems, such as sandpiles, turbulent fluids, ignited
trees in forest fires and magnetization in a ferromagnet close
to a critical point, the probability distribution of a global
quantity (i.e. total energy dissipation, magnetization and so
forth) that has been normalized to the first two moments fol-
lows a specific non-Gaussian curve. This curve follows a
form suggested by extremum statistics, which is specified by
a single parametera (a = 1 corresponds to the Fisher-Tippett
Type I (“Gumbel”) distribution).

Here we present a framework for testing for extremal
statistics in a global observable. In any given system, we
wish to obtaina, in order to distinguish between the dif-
ferent Fisher-Tippett asymptotes, and to compare with the
above work. The normalizations of the extremal curves are
obtained as a function ofa. We find that for realistic ranges
of data, the various extremal distributions, when normalized
to the first two moments, are difficult to distinguish. In ad-
dition, the convergence to the limiting extremal distributions
for finite data sets is both slow and varies with the asymptote.
However, when the third moment is expressed as a function
of a, this is found to be a more sensitive method.

1 Introduction

The study of systems exhibiting non-Gaussian statistics is of
considerable current interest (see, e.g. Sornette, 2000, and
references therein). These statistics are often observed to
arise in finite sized, multi-body systems, exhibiting correla-
tion over a broad range of scales, leading to emergent phe-
nomenology, such as self-similarity and in some cases frac-
tional dimension (Bohr et al., 1998). The apparent ubiquitous
nature of this behavior has led to interest in self-organized
criticality (Bak, 1997; Jensen, 1998) as a paradigm; other
highly correlated systems include those exhibiting fully de-
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veloped turbulence. In solar terrestrial physics in particu-
lar, problems of interest include MHD turbulence in the so-
lar wind and in the Earth’s magnetotail. Irregular or bursty
transport and energy release in the latter has recently led to
complex system approaches such as SOC (see the review
by Chapman and Watkins, 2001). These complex systems
are often characterized by a lack of scale, and in particular,
by the exponents of the power law probability distributions
(PDF) of patches of activity in the system. Examples of these
patches of activity include energy dissipated by avalanches in
sandpiles, vortices in turbulent fluids, ignited trees in forest
fires and magnetization in a ferromagnet close to the critical
point. In the Earth’s magnetotail, patches of activity in the
aurora, as seen by POLAR UVI have been used as a proxy
for the energy released in bursty magnetotail transport, in or-
der to infer its scaling properties (Lui et al., 2000; Uritsky et
al., 2001). The challenge is to distinguish the system from
an uncorrelated Gaussian process, by demonstrating self-
similarity and to determine the power law exponents. To do
this directly is nontrivial, requiring measurements of the in-
dividual patches or activity events over many decades. Here
we consider what may be a more readily accessible measure:
the statistics of a global average quantity, such as the total
energy dissipation, magnetization and so forth.

An important hypothesis that is the subject of this paper is
that the data arise from an extremum process, i.e. that some
unknown selection process operates such that the observed
global quantity is dominated by the largest events selected
from ensembles of individual “patches” of activity. This is a
real possibility for two reasons. First, measurements of phys-
ical systems, and in particular, observations of natural sys-
tems, inevitably incorporate instrumental thresholds and this
may affect the statistics of a global quantity comprising ac-
tivity summed over patches. Second, there has recently been
considerable interest in a series of intriguing results from tur-
bulence experiments (Labbe et al., 1996; Pinton et al., 1999;
Bramwell et al., 1998), and numerical models exhibiting cor-
relations (Bramwell et al. (2000), (see also Aji and Golden-
feld, 2001; Zheng and Trimper, 2001; Bramwell et al., 2001).
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These studies reveal statistics of a global quantity (i.e.E)
that follow curves that are of the form of one of the limit-
ing extremal distribution (Gumbel, 1958; Fisher and Tippett,
1928):

P(E) = K(ey−ey

)a y = b(E − s), (1)

whereK, b and s are obtained by normalizing to the first
two moments (M0 = 1, M1 = 0, M2 = 1), and the single
parametera appears to be close to the valueπ/2.

For an infinitely large ensemble, there are two limiting dis-
tributions that we consider here. The Fisher-Tippett type I
(or “Gumbel”) extremal distribution is of the form (1), but
with a = 1 and arises from selecting the largest events from
ensembles with distributions that fall off exponentially or
faster. Since we wish to construct a framework that could
encompass all highly correlated systems, we also treat the
case where the distribution of “patches” is a power law. An
example is the Potts model (Cardy, 1996) for magnetization,
where connected bonds form clusters, the size of which is
power law distributed at the critical point. In this case, the
relevant extremal distribution is Fisher-Tippett type II (or
“Frechet”).

Here we provide a framework for comparing data with
Fisher-Tippett type I and II extremal curves. This essentially
requires obtaining the normalizations of these curves in terms
of the moments of the data and ultimately as functions of the
single parametera.

We find that the curves of form (1), which are obtained by
normalizing to the first two moments, are difficult to distin-
guish if a is in the range(1, 2) or from Frechet curves given
a realistic range of data. Furthermore, we demonstrate that
slow convergence with respect to the size of the data set, to
the limitinga = 1 extremal distribution has the consequence
that, for a large but finite ensemble, the extremal distribu-
tion of an uncorrelated Gaussian process is indistinguishable
from thea = π/2 curve. To overcome these limitations we
suggest two much more sensitive methods for determining
whether or not the curve is of the form (1), and, if so, the
corresponding value ofa. These methods are based on the
third moment, and the peak of the distribution, both of which
we obtain here as a function ofa.

2 Extremum statistics: general results

To facilitate the work here we first develop some results from
extremum statistics (for further background reading, see Sor-
nette (2000); Gumbel (1958); Bouchaud and Potters (2000)).
If the maximumQ∗ drawn from an ensemble ofM patches of
activity Q with distributionN(Q) is Q∗

= max{Q1, ..QM },
then the probability distribution (PDF) forQ∗ is given by

Pm(Q∗) = MN(Q∗)(1 − N>(Q∗))M−1, (2)

whereM is the number of patches in the ensemble and

N>(Q∗) =

∫
∞

Q∗

N(Q)dQ. (3)

We now obtainPm for largeM, Q. For general PDFN(Q)

we can write (for appropriate choice of the functiong(Q∗)):

(1 − N>)M = e−Mg(Q∗) (4)

and for smallN>(Q∗) we have

g(Q∗) = − ln(1 − N>(Q∗)) ∼ N> +
N2

>

2
. (5)

We now consider a characteristic value ofQ∗, namelyQ̃∗,
such that by definition

Mg(Q̃∗) = q, (6)

so that

q = Mg(Q̃∗) ≈ MN>(Q̃∗) + M
N2

>(Q̃∗)

2
+ · · · . (7)

We now expandg(Q∗) aboutQ̃∗ to obtain

g(Q∗) = g(Q̃∗) + g′(Q̃∗)1Q∗
+

g′′(Q̃∗)

2
(1Q∗)2

+ · · · (8)

and from (5) we have

g′(Q∗) = −N(Q∗) − N(Q∗)N> + · · · (9)

g′′(Q∗) = −N ′(Q∗) − N ′(Q∗)N> + N2(Q∗) + · · · , (10)

where g′, g′′ denote differentiation with respect toQ∗,
1Q∗

= Q∗
− Q̃∗, and we have usedN ′

> = dN>/dQ∗
=

−N . Inverting expansion (7) gives

MN>(Q̃∗) = q
[
1 −

q

2M
+ · · ·

]
≈ M

(
1 − e−

q
M

)
. (11)

We obtain from (5) and its derivatives with respect toQ∗:

g(Q̃∗) =
q

M

(
1 −

q

2M

)
+

1

2

( q

M

)2
+ · · ·

=
q

M
+ 0

( q

M

)3
, (12)

which to relevant order is consistent with (6), and

g′(Q̃∗) = −N(Q̃∗)
[
1 +

q

M
+ · · ·

]
. (13)

For q finite asM → ∞ this givesg′(Q̃∗) = −N(Q̃∗) and
MN>(Q̃∗) = q.

We can now consider the extremal statistics of specific
PDFN(Q), and more importantly show thatPm(Q∗) can be
written in the universal form (1).

2.1 Gaussian and ExponentialN(Q)

If N(Q) falls off sufficiently fast inQ, i.e. is Gaussian or ex-
ponential, it is sufficient to consider lowest order only in (5)
giving g(Q∗) ∼ N> (Gumbel, 1958; Bouchaud and Mezard,
1997) andq = MN>(Q̃∗). Expanding (3) inQ∗ nearQ̃∗

gives to this order:

MN>(Q∗) = M

∫
∞

Q̃∗

N(Q)dQ − MN(Q̃∗)1Q∗

= q

[
1 −

MN(Q̃∗)

q
1Q∗

+ · · ·

]
≈ qe

−M
N(Q̃∗)

q
1Q∗

.(14)
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ExpandingN(Q) aboutQ∗ yields

N(Q∗) = N(Q̃∗)

[
1 +

N ′(Q̃∗)

N(Q̃∗)
1Q∗

+ · · ·

]

≈ N(Q̃∗)e
N ′(Q̃∗)

N(Q̃∗)
1Q∗

. (15)

As to this order(1 − N>)M−1
≈ e−MN> we then have from

(2)

Pm(Q∗) = MN(Q∗)(1 − N>(Q∗))M−1

≈ MN(Q∗)e−MN> ∼ (eu−eu

)a, (16)

with

a = −
N ′(Q̃∗)N>(Q̃∗)

N2(Q̃∗)
(17)

and

u = ln

(
MN>(Q̃∗)

a

)
−

N(Q̃∗)

N>(Q̃∗)
1Q∗. (18)

Since throughout we are consideringQ̃∗ to be large (M →

∞, q finite), we have the effective value ofa as that given by
(17) in the limitQ̃∗

→ ∞. ForN(Q) exponential the above
givesa = 1. In the particular case of the exponential, all the
summations, which in the above we have truncated, can be
resummed exactly and givea ≡ 1, recovering the result of
Bouchaud and Mezard (1997).

For N(Q) Gaussian we cannot obtaina exactly in this
way, but as we shall see it is instructive to make an estimate.
Given N(Q) = N0 exp(−λQ2) and expanding Eqs. (14),
(15) and (16) to next order we obtain

Pm = P̄meR(u)

R = −
ln2(q)

4λQ̃∗2
+ ū

(
1 +

2 ln(q)

4λQ̃∗2

)
−

ū2

4λQ̃∗2
− eū, (19)

where we have usedu = −2λQ̃∗1Q∗ andū = u+ ln(q). To
lowest order in1Q∗/Q̃∗ (i.e. Q̃∗

→ ∞) we have a universal
PDF witha = 1, but to next order, i.e., neglecting only the
term in ū2 in (19), we have a universal distribution of form
(1,16) with

a ≡

(
1 +

2 ln(q)

4λQ̃∗2

)
6= 1. (20)

2.2 Power lawN(Q)

The PDF of patchesN(Q) may, however, be a power law
and in this case it will fall off sufficiently slowly withQ so
that we need to go to next order, as in (7). If we consider a
normalizable source PDF

N(Q) =
N0

(1 + Q2)k
, (21)

then for largeQ (Q � 1) we haveN(Q) ∼ N0/Q
2k and

then using (3) and (7)

Q̃∗N(Q̃∗)

= (2k − 1)N>(Q̃∗) = (2k − 1)
q

M
(1 −

q

2M
), (22)

which with the above general expressions forg(Q̃∗) and its
derivatives substituted into (8) gives an expression forg(Q∗)

g(Q∗) =

q

M

[
1 − (2k − 1)

1Q∗

Q̃∗
+ k(2k − 1)(

1Q∗

Q̃∗
)2

· · ·

]
. (23)

We also require an expression forN(Q∗), again expanding
aboutQ̃∗ and obtaining the derivatives ofN(Q̃∗) from those
of g(Q̃∗) and via (11) gives

N(Q∗) = N(Q̃∗)

[
1 − 2k

1Q∗

Q̃∗
+ k(2k + 1)(

1Q∗

Q̃∗
)2
]

,(24)

which can be rearranged as

N(Q∗) = N(Q̃∗)e

[
−2k

1Q∗

Q̃∗
+k(

1Q∗

Q̃∗
)2
]
. (25)

After some algebra (23) can be rearranged to give

Mg(Q∗) = qe

[
−(2k−1)

1Q∗

Q̃∗
+

2k−1
2 (

1Q∗

Q̃∗
)2
]
. (26)

These two expressions combine to finally give

Pm(Q) ≡ Pm(Q∗) ∼ (eū−eū

)a (27)

with

ū = − ln(a) − ln(q) − (2k − 1)
1Q∗

Q̃∗
(1 −

1Q∗

2Q̃∗
) (28)

and

a =
2k

2k − 1
. (29)

To lowest order, neglecting the(1Q∗/Q̃∗)2 term (28) re-
duces to (18).

Hence, a power law PDF has maximal statisticsPm(Q)

which, when evaluated to next order, can be written in the
form of a universal curve (i.e. of form (1,16)) with a cor-
rection that is non-negligible at the asymptotes. This can be
seen (Jenkinson, 1955; Bouchaud and Potters, 2000) to be
consistent with the well-known result due to Frechet, where
(following the notation of Bouchaud and Potters, 2000) if we
have PDF

N(x) ∼
1

| x |1+µ
, (30)

then

N> ∼
1

xµ
(31)

Pm(x∗) =
µ

(x∗)1+µ
e
−

1
(x∗)µ ,
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which we can write in the form

Pm(x∗) = µe
µ+1
µ

ln(
µ+1
µ

)
(eu−eu

)a (32)

u = −µ ln(x∗) − ln

(
µ + 1

µ

)
, (33)

which is of universal form (1,16) inu. Noting that hereµ =

2k − 1 anda = (µ + 1)/µ and that to second order

1Q∗

Q̃∗
(1 −

1Q∗

2Q̃∗
) = ln

(
1 +

1Q∗

Q̃∗

)
, (34)

we simply identify 1+ 1Q∗/Q̃∗ with x̃∗ to obtain (28). To
next order in1Q∗/Q̃∗ the analogue of (28) still yields the
right-hand side of (34).

2.3 Convergence to the limiting distributions

The above results should be contrasted with the derivation
of Fisher and Tippett (Fisher and Tippett, 1928). Central to
Fisher and Tippett (1928) and later derivations is that a single
ensemble ofNM patches has the same statistics as theN en-
sembles (ofM patches), of which it is comprised. The fixed
point of the resulting functional equation (Bhavsar and Bar-
row, 1985) for arbitrarily largeN andM is a = 1 for the ex-
ponential and Gaussian PDF, and the Frechet result for power
law PDF. Here we consider a finite sized system so that al-
though the number of realizable ensembles of the system can
be taken to be arbitrarily large, the number of patchesM per
ensemble is always large but finite. More importantly, the
rate of convergence withM depends on the PDFN(Q). For
an exponential or power law PDF we are able to resum the
above expansion exactly to obtaina and convergence then
just depends on termsO(1/M) and above. This procedure
is not possible forN(Q) Gaussian, instead we consider the
characteristicQ∗, that isQ̃∗ which for M to be arbitrarily
large,Q∗ should be large as well. Rearranging (7) to lowest
order forN(Q) = N0 exp(−λQ2) yields

√
λQ̃∗

∼
√

ln(M),
implying significantly slower convergence. This is further
discussed in Sornette (2000).

The extremal distributions are thus essentially a family of
curves that are approximately of universal form (1,16) and
are asymmetric with a handedness that just depends on the
sign ofQ; we have assumedQ to be positive, whereas one
could chooseQ to be negative, in which caseN(Q) → N(|

Q |). This would correspond to, say, power absorbed, rather
than emitted, from a system. The single parametera that dis-
tinguishes the extremal PDF then just depends on the PDF of
the individual events. ForN(Q) exponential we then recover
exactly the well-known result (Gumbel, 1958; Bouchaud and
Mezard, 1997)a = 1. For a power law PDFa is determined
by k via (29). We have also demonstrated that for a Gaussian
PDF with finite but largeM andN , thata 6= 1 and we will
explore the significance of this in Sect. 3.1.

3 Normalization to the first two moments

To compare these curves with data we needP(Q̄) ≡ Pm(Q∗)

in normalized form. This has moments

Mn =

∫
∞

−∞

ynP̄ (y)dy, (35)

which we will obtain as a function ofa and then insist that
M0 = 1, M1 = 0 andM2 = 1.

SettingM1 = 0 (andM0 = 1, M2 = 1) in our analysis
of extremal distributions does not require any assumptions
about the form of the PDF except that the moments exist.
It will allow us to write the analytically obtained extremal
distributions as functions of single parametera.

3.1 Extremal distributions arising from Gaussian and expo-
nentialN(Q)

For Gaussian and exponential PDF we have

P̄ (y) = K(eu−eu

)a (36)

u = b(y − s). (37)

This has moments which converge for alln. From Appendix
A we have that thenth moment:

Mn =
1

b

∫
∞

−∞

P̄ (y)dη
[ln(a) + bs − η]

n

bn

= Ke−a ln(a) dn

dan
0(a), (38)

whereη = ln(a) − u.
To normalize we insist thatM0 = 1, M1 = 0 andM2 = 1.

The necessary integrals can be expressed in terms of deriva-
tives of the Gamma function0(a) (Gradshteyn and Ryzhik,
1980) and we obtain in Appendix A:

b2
= 9 ′(a)

K =
b

0(a)
ea ln(a) (39)

s = −
(9(a) − ln(a))

b
,

where

9(a) =
1

0(a)

d0(a)

da

9 ′(a) =
d9

da
.

The ambiguity in the sign ofb (and hences) corresponds
to the two solutions forP(Q̄) for positive and negativeQ.

We can now plot the curves, i.e., normalized to the first
two moments and these are shown in Fig. 1. Experimen-
tal measurements of a global PDFP(E) normalized toM0
would be plottedM2P versus(E − M1)/M2. In the main
plot we show normalized distributions of the form (1,16) for
a = 1, π/2 and 2. It is immediately apparent that the curves
are difficult to distinguish over several decades inP̄ (y) and
thus in order to obtain a good estimate fora, the numeri-
cal or real experiments would require good statistics over a
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Fig. 1. Curves of the form (1) fora = 1, π/2, 2. Overlaid (*)
are the numerically calculated extremal statistics of an uncorrelated
Gaussian process (see text), and inset for comparison are Frechet
curves plotted on the same scale (see Fig. 2).

dynamic range of about 4 decades, something which is not
readily achievable.

In Fig. 1 we have also over plotted (*) the extremal PDF
of ensembles of uncorrelated numbers that are Gaussian dis-
tributed, calculated numerically. We randomly selectM un-
correlated variablesQj , j = 1, M and to specify the hand-
edness of the extremum distribution, theQj are defined neg-
ative andN(| Q |) is normally distributed. This would phys-
ically correspond to a system where the global quantityQ̄ is
negative, i.e. power consumption in a turbulent fluid, as op-
posed to power generation. To construct the global PDF we
generateT ensembles, that is selectT samples of the largest
negative numberQ∗

i = min{Q1..QM }i, i = 1, T . For the
data shown in the figureM = 105 andT = 106, this gives
√

λQ̃∗
∼

√
ln(M) ' 3 so that for the Gaussian we are far

from thea = 1 limit (Fisher and Tippett, 1928). The numer-
ically calculated PDF lies close toa = π/2. Such a value of
a on these curves thus does not give direct evidence of acor-
relatedprocess; in addition, it is necessary to establish that
the data considered do not arise as the result of an extremal
process.

Generally, plotting data in this way is an insensitive
method for determininga and thus distinguishing the statis-
tics of the underlying physical process. The question of in-
terest is whether we can determine the form of the curve, and
the value ofa from data with a reasonable dynamic range;
we address this question in Sect. 4.

3.2 Frechet distributions arising from power lawN(Q)

For power law PDF (21) we use the Frechet distribution
which we first write as:

P (Q∗) = K(eu−eu

)a (40)

u = α + β ln(1 +
Q∗

Q̃∗
), (41)

which reduces to the form of (37) for1Q∗/Q̃∗
� 1. From

(28), (21) and (33) we identify

β = −µ = −(2k − 1). (42)

The procedure of normalizing to the moments is only valid
provided that they exist. For the power law PDF (21) we have
(see also Bury, 1999):

Mn =

∫
∞

0

QnH(Q)dQ

(1 + Q2)k
,

which converges forQ → 0 and forQ → ∞

Mn ∼

∫
∞ QnH(Q)dQ

Q2k
,

which if H(Q) → H0 asQ → ∞

Mn →

∫
∞ dQ

Q2k−n
'

1

Q2k−n−1
|Q→∞,

which converges if 2k > n + 1.
We now evaluate the moments. Again, we insist thatM0 =

1, M1 = 0 andM2 = 1 and in Appendix B obtain:

α = −β ln

 a
1
β

0(1 + 1/β)


K = ±βaa

[
0(1 +

2

β
) − 02(1 +

1

β
)

] 1
2

(43)

Q̃∗ =

0(1 +
1
β
)[

0(1 +
2
β
) − 02(1 +

1
β
)
] 1

2

,

whereβ = −(2k − 1). The normalization constants are thus
also expressible as functions ofa = 2k/(2k − 1).

For convergence, these curves exist for power law of index
∞ > 2k > 3 i.e. 1 < a < 3/2. This is significant since
processes exhibiting intermittency as a consequence of long-
range correlations typically havek lower than this (Jensen,
1998), and we will consider alternative methods in Sect. 5.

In Fig. 2, we plot the normalized Fisher-Tippett type II
or Frechet PDF fork = 2, 5, 100 and for comparison, the
Fisher-Tippett type I (“Gumbel”) PDF witha = 1. From
(29) a = 1 corresponds tok → ∞ and it is straightforward
to demonstrate from the algebra that in this limit, the nor-
malized Frechet PDF tends to Gumbel’s asymptotea = 1.
Hence, on this plot we see that fork = 100 these are indistin-
guishable, and differences between the Frechet and Gumbel
PDF only appear on such a plot around the mean fork < 3
approximately. This demonstrates that these extremal curves
arising from an uncorrelated Gaussian, exponential or power
law N(Q) will all be difficult to distinguish from the curve
(1,16) witha 6= 1. We now consider more sensitive methods
to determinea.
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Fig. 2. Frechet PDF normalized to the first two moments for PDF
N(Q) = 1/(1 + Q2)k , k = 2, 5, 100.

4 Sensitive indicators ofa; the mean and the third mo-
ment

The question of interest is whether we can determinea with
sufficient accuracy from data with a reasonable dynamic
range. We consider two possibilities here. First, a uniformly
sampled process will have the most statistically significant
values on the extremal curve near the peak, and in particu-
lar, from the figures we see that the Frechet distributions for
smallk will be most easily distinguished in this way. For the
Frechet PDF the peak is atu = 0, i.e., it has coordinates

P̄m =
K

ea
ȳ = Q̃

[
e
−

α
β − 1

]
(44)

on the normalized curve withK, Q̃, α, β known as functions
of a from Appendix B. The coordinates of the peak of the
PDF from the data plotted withM0 = 1, M1 = 0 andM2 =

1 can thus be graphically inverted to give an estimate ofa.
For PDF that represent a power law with largek, either ex-

ponential or Gaussian, we consider the normalized extremal
PDF; then the coordinates of the maximum ofP̄ (y) is at
u = 0, y = s, i.e.:

P̄m =
K

ea
=

√
9 ′(a)e−a(1−ln(a))

0(a)
(45)

with K, s from (A14). These can again be graphically in-
verted to obtaina; Fig. 3 showsP̄ and ȳ versusk for the
Frechet PDF.

A more sensitive indicator may be the third moment ofP̄

of the curve (1,16), which, after some algebra (Appendix A),
can be written as

M3 = −
9 ′′(a)

(9 ′(a))
3
2

(46)

(a) k
32.82.62.42.221.81.6

P_m

8

7

6

5

4

3

2

1

(b) k
32.82.62.42.221.81.6

y

-0.1

-0.2

-0.3

-0.4

-0.5

Fig. 3. The peak(a) and its location(b) as a function ofk for
Frechet curves.
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for a Gaussian or exponential PDF, i.e. with (37) and

M3 =[
0(1 +

3
β
) − 30(1 +

2
β
)0(1 +

1
β
) + 203(1 +

1
β
)
]

[
0(1 +

2
β
) − 02(1 +

1
β
)
] 3

2

(47)

for a power law PDF (Appendix B), i.e. with (41); the lat-
ter then converging fork > 2. Again, these refer to one
of the two possible solutions forP(Q̄); the other solution
corresponding toy → −y (Q∗

→ −Q∗) in Eqs. (37) and
(reffrechu) which in turn givesM3 → −M3.

The third moment is plotted versusa andk, respectively,
in Fig. 4 for the Gumbel and Frechet curves. Inspection of
Fig. 4 shows that over most of the range,M3 is more sensitive
than P̄ . For Frechet curves,M3 only has convergence for
relatively largek (k > 2, a < 4/3); for smallerk, P̄ can
distinguish the Frechet distributions (k > 3/2, a < 3/2 for
convergence).

5 A method for small k

For N(Q) power law, we can only use the properties of the
normalized Frechet PDF above fork > 3/2. If k is smaller
than this the second moment will not exist. We can, however,
obtain a useful result fork > 1 by using the first moment
only, i.e. by insistingM0 = 1, M1 = 0. We need another
condition and can arbitrarily insistP(u = 0) = 1 (insisting
that all the maxima of the Frechet PDF have the same height)
which gives the condition

Ke−a
= 1. (48)

From B6 and B5

KQ̃∗

βg1/βaa
= 1, (49)

which, withg1/β
= 0(1+ 1/β) from Appendix B, givesQ̃∗

in terms ofa andβ (or k). Similarly, we use (B5);g = aeα

to obtainα in terms ofa andβ.
This then gives

Pm(Q∗) = K
(
eu−eu

)a

,

u = α + β ln(1 +
1Q∗

Q̃∗
),

α = β ln

(
0(1 +

1

β
)

)
− ln(a),

Q̃∗
= βea(ln(a)−1),

K = ea .

6 Conclusions

Recent work has suggested that the probability distribution of
some global quantity, such as total power needed to drive ro-
tors at a constant velocity in a turbulent fluid, or total magne-
tization in a ferromagnet slightly off the critical point, when

(a) a
54321

M3

1.8

1.6

1.4

1.2

1

0.8

0.6

(b) k
3.43.232.82.62.42.2

M_3

40

35

30

25

20

15

10

5

Fig. 4. The third moment as a function ofa for (a) curves of form
(1) and(b) Frechet curves.
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normalized to the first two moments, follows a non-Gaussian,
universal curve. This curve is of the same form as that found
from the extremal statistics of a process that falls off expo-
nentially or faster at large values (i.e. Fisher-Tippett type I
or “Gumbel”); whereas for an extremal process, the param-
eter specifying the curvea = 1, for the correlated processes
a > 1.

In this paper, a framework has been developed to com-
pare data with Fisher-Tippett type I (“Gumbel”) and type
II (“Frechet”) asymptotes by obtaining the curves, and their
normalizations, as a function of a single parametera. We
find:

1. The Fisher-Tippett type I and type II curves and their
corresponding values ofa are most easily distinguished
by considering either the third moment, or the position
of the peak, as functions ofa, the functional forms for
which are given here.

For realistic ranges of data, simply comparing curves
normalized to the first two moments, for example, in
Bramwell et al. (1998, 2000), is insufficient to ade-
quately distinguish either curves of the form of type
I (“Gumbel”) but with a values in the range[1, 2], or
most type II (“Frechet”) curves.

2. Convergence to the limiting form of the extremal curve
a = 1 (Gumbel’s asymptote Fisher and Tippett (1928))
is sufficiently slow for an uncorrelated Gaussian such
that for a large but realistic size of data set one obtains
a ≈ π/2. Data that falls on this curve is thus not suffi-
cient to unambiguously distinguish a global observable
of a system that has correlations (Bramwell et al., 1998,
2000), from that of an uncorrelated, extremal process.

Comparison with data is then facilitated in the following
way. First, the data distribution is normalized toM0 (to ob-
tain the PDFN(Q)). Second, the data is plotted on semilog
axes under the following normalization:N(Q) × M2 versus
(Q − M1)/M2. Any Gaussian PDF on such a plot will fall
on a single inverted parabola; similarly, any Gumbel (Fisher-
Tippett I) process will fall on a single curve. Finally,M3 is
calculated for the data; we then can compare the data with
an extremal process by invertingM3(a) obtained here for
a Fisher-Tippett type I or II distribution. Overlaying these
curves (augmented by other quantitative comparisons) then
essentially constitutes a fitting procedure; but more impor-
tantly, in addition, the value ofa is related to the underlying
distribution, as we have discussed.

This and related techniques will have relevance, in partic-
ular, for regions where transport is dominated by turbulence,
in the solar wind and magnetosphere in circumstances where
multi-point and long time interval in situ measurements are
difficult to obtain.
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Appendix A Moments of the Gumbel distribution and
the normalization b, K and s as a function ofa

We consider a family of curves of the form

P(y) = Ke−au−ae−u

(A1)

with u = b(y − s) whereK, b, s, are constants to be derived
as functions ofa. We write

η = ln a − b(y − s) = ln a − u, (A2)

thenae−u
= eη anddη = −bdy, and thenth moment is

given by

Mn =

∫
∞

−∞

ynP(y)dy =
1

b

∫
∞

−∞

P(y)dη
[ln(a) + bs − η]

n

bn
. (A3)

Then, using A2, we writeP(y) (A1) as

P(y) = K e−a(ln(a)−η)−eη

= K̄eaη−eη

, (A4)

whereK̄ = Ke−a ln(a).
Now to within a constant we can writeMn as:

M̃n =

∫
∞

−∞

ηnP(y)dη = K̄

∫
∞

−∞

ηneaη−eη

dη, (A5)

so thatM0 = M̃0/b. Using the substitutionτ = eη A5
becomes

M̃n = K̄

∫
∞

0
(ln τ)nτ a−1e−τdτ = K̄

dn

dan
0(a), (A6)

where0(a) is the Gamma function. Thus

M̃0 = K̄0(a)

M̃1 = K̄0(a)9(a) = M̃09(a)

M̃2 = K̄0(a)[92(a) + 9
′

(a)]

= M̃0(9
2(a) + 9

′

(a)), (A7)

where

9(a) =
d0(a)

da

1

0(a)
.

We now insist thatM0 = 1, M1 = 0 andM2 = 1. Thus

M0 =
M̃0

b
=

K̄0(a)

b
= 1 (A8)

and

M1 = 0 =
1

b2

∫
∞

−∞

P(y)dη[ln(a) + bs − η]

=
1

b2

[
(ln(a) + bs)M̃0 − M̃1

]
, (A9)

so

M̃1

M̃0
= ln(a) + bs = 9(a) (A10)
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from A7. Thus

bs = 9(a) − ln(a). (A11)

Also,

M2 = 1 =
1

b3

∫
∞

−∞

P(y)dη[ln(a) + bs − η]
2

=
1

b3

[
(ln(a) + bs)2M̃0 − 2(ln a + bs)M̃1 + M̃2

]
, (A12)

which, using A7 and A10, rearranges to give

M2 = 1 =
M̃0

b3
9

′

(a). (A13)

This finally gives the normalisation of the universal curve

b2
= 9 ′(a)

K̄ =
b

0(a)

that isK =
b

0(a)
ea ln(a) (A14)

s =
(9(a) − ln(a))

b
.

The above results will also yield an expression for the third
moment in terms ofa. Following A3 and A5 we have

M3 =
1

b4

∫
∞

−∞

P(y)dη[ln(a) + bs − η]
3

=
1

b4

[
(ln(a) + bs)3M̃0 − 3(ln a + bs)2

M̃1 + 3(ln(a) + bs)M̃2 − M̃3

]
. (A15)

Then A6 gives

M̃3 =

M̃0

[
9(a)(92(a) + 9

′

(a)) + 29(a)9
′

(a) + 9
′′

(a)
]

(A16)

which, with A7 and A10, rearranges to give

M3 = −
9

′′

(a)

(9
′
(a))3/2

. (A17)

Appendix B Moments of the Frechet distribution and
normalization as a function ofa.

The moments of a Frechet distribution are obtained from
Bury (1999). Here we wish to consider PDF of the form
(19) which has extremum statistics

Pm(Q) = K(eu−eu

)a, (B1)

where, following (25–32), we write:

u = α + β ln(1 +
Q

Q̃
), (B2)

where here we use the notationsQ ≡ 1Q∗, Q̃ ≡ Q̃∗, i.e. Q
refers to extremal values. From (26),α andβ = (2k − 1) are
constants. We can then define the moments ofPm(Q):

Mn =

∫
∞

−Q̃

Qn dQ Pm(Q) (B3)

since from B2u → ∞ asQ → ∞ andu → −∞ asQ →

−Q̃. Using the substitutionaeu
= ζ we obtain after some

algebra

Mn = K̄Q̃n

∫
∞

0
((

ζ

g
)1/β

− 1)n ζ a−1+1/β e−ζ dζ, (B4)

where the constants

g = aeα and K̄ =
KQ̃

βg
1
β aa

. (B5)

By taking the expansionu = α+βQ/Q̃ it is straightforward
to verify that B4 yields the results from Appendix A. We now
insist thatM0 = 1, M1 = 0 andM2 = 1. B4 then gives

M0 = 1 = K̄0(ā), where ā = a + 1/β (B6)

and

M1 = 0 = K̄Q̃[
0(ā + 1/β)

g1/β
− 0(ā)],

that is

0(ā +
1

β
) = g1/β0(ā) (B7)

and using B7 we have from B4:

M2 = 1 = K̄Q̃2
[
02(ā)0(ā + 2/β)

02(ā + 1/β)
− 0(ā)],

that is

1 = Q̃2
[
0(ā)0(ā + 2/β)

02(ā + 1/β)
− 1] (B8)

using B6.
Now from the main text (27)a =

2k
2k−1 and since

β = −(2k − 1)

ā = a + 1/β = 1 (B9)

and0(ā) = 0(1) = 1.
B7 then givesg1/β

= 0(1 + 1/β). B8 then givesQ̃:

Q̃ = ±

0(1 +
1
β
)[

0(1 +
2
β
) − 02(1 +

1
β
)
] 1

2

(B10)

then B7 gives K as

K = ±
βaa0(1 + 1/β)

Q̃
(B11)

and sinceg = aeα, B6 gives an expression forα:

(aeα)
1
β =

KQ̃

βaa
(B12)
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that is:

α = −β ln

 a
1
β

0(1 + 1/β)

 (B13)

which completes the normalization of B1,B2 as functions of
k or a.

Using B7 we have from B4 an expression for the third mo-
ment:

M3 = K̄Q̃3
[0(ā +

3
β
)03(ā)

03(ā +
1
β
)

−

30(ā +
2
β
)02(ā)

02(ā +
1
β
)

+

30(ā +
1
β
)0(ā)

0(ā +
1
β
)

− 0(ā)
]
. (B14)

Expansion in 1/β readily shows that to lowest order result
A17 is recovered.

Then, using B9, B10 and B11, B13 can be rearranged to
giveM3(β), and hence,M3 as a function ofk or a:

M3 =[
0(1 +

3
β
) − 30(1 +

2
β
)0(1 +

1
β
) + 203(1 +

1
β
)
]

[
0(1 +

2
β
) − 02(1 +

1
β
)
] 3

2

. (B15)
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