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The Gradient of a Graph

David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL

In ‘understandinghe calculus? | suggestedhat the traditionahpproach to the subject is
not themost appropriate sequentm learning, andoutlined an alternative development
using the powerful visualizations possible with a microcomputer. Inatticde | introduce
a dynamic interpretation of the gradient of a graph which leads naturallshentwtion of
differentiation.

The traditionalsyllabus causedifficulties at the outset by attemptifgnsuccessfully) to
introduce the general notion lifnit before discussinthe gradient of a curvegraph. The
developmensuggested here starts withe exploration of magnifyingraphsthen uses a
numerical gradient illustrated by movimmctures. Limiting ideas arisemplicitly in the

course ofthe exploration, buttheir full implementation may b@ostponed to amore
appropriatestage. Graphiwisualization allows a wider range of examples andn-
examples to be considered, so that students learn not only how to calculate a derivative, but
also what it meanfor a function to balifferentiable or non-differentiablélhe seeds are

sown for a level of insight that has hitherto been considered unattainable.

The logical approach

A process of mathematical refinement over the centuries has produced a logical approach to
the calculus that is embodied in the opening sequence of topics in the prAgeselcore
curriculum:

 The idea of a limit and the derivative defined as a limit.

» The gradient of a tangent as the limit of the gradient of a chord.

In the preface oPsychology ofLearning Mathematic$, Richard Skemgriticizes the
purely logical approach in the following words:

Published ilMMathematics Teaching1985), 111, 48-52.



It gives onlythe end-product ofmathematicadiscovery (‘This isit: all

you have to do is learit’), and fails to bring about ithe learnerthose
processes by whichmathematicaldiscoveriesare made. It teaches
mathematical thought, not mathematical thinking.

To promote mathematicalthinking we require a cognitive approattat builds on the
learner’s current state of knowledge and understanding.

A cognitive approach

It will be assumedhat the learner meeting the calcufas thefirst time is able to do the
following:

* manipulate simple algebra (to be able to handle the formulae),

» sketch andvizualize thegraphs ofsimple curveqlines, quadratics and
simple cubics at least)

» calculate the gradient of atraight line and understand positive and

negative gradients using the for y_)x(/i for the gradient ofhe straight
line through X1,y1), (x2,y2).

A student with theseapabilities could begihis study byinvestigating the behaviour of
graphs ofsimple functions under high magnificatidPrior tothe advent of the computer
this would have been a non-trivial task where technicalities could so eas@pscure the
essentiafactors.But modern technology makes it possibleus® acomputer tadraw the
graph to allowthe mind to concentrate on the esserféatures.Any adequategraph-
drawing package could besed, but the MAGNIFY program inGraphic Calculus F is
designed specifically to alloveuch investigationsexhibiting both the graph and a
magnification of a small portiosimultaneously.The investigation can beone as a
classroom activityeitherwith smallgroups of students sharing micros, or witlsirgle
computer and socratic dialogue between teacher and pupils. Draw any graph and magnify it
to see what happens. (Figure 1.)
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Figure 1 : magnifying a small portion of a graph

Virtually any graph drawn usinthe standard formulae will lookess curved under high
magnification. Rationalfunctions, combinations of trigonometric, logarithmic and
exponential functions all have this property.

It is a major problem to invent a function that fails to magnify to look strayghtn nature

such things are common. The edge ¢#ad undermagnificationhastiny irregularities and
higher magnification reveals yet smallenes. Even a plasticuler, that is supposedly
straight, looks irregular under a microscope. Thus the phenomenon of magnifying to ‘look
straight’ is a very speciahathematicaproperty and it should be seen as such from the
beginning.

Graphs with corners

A small inroad into the ‘locally straighpropertycan be made bgrawing graphs with
‘corners’. The absolute value functiofor modulus)absk) = x|, stripsthe sign of a
number to give the positive value of the paix, so that

abs(1.5)=1.5, abs(-2.7)=2.7, abs(0)=0, amhs{r

The functionsabsk), absk?-1), absx(x—1)(x—2)) all have ‘corners’. More interesting
pictures can be madrit of combinations ofunctions. For instancgbs&?—1)+x (figure
2) has corners at -1 and 1.
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Figure 2 : A graph which is not locally straight

Nowhere differentiable functions

Graphs with ‘cornersmay still have the ‘locally straighproperty everywhere else. A
nowheredifferentiablefunctionis onethatnowhere magnifies to looktraight. Asimple
example is the blancmangenction® which wasdescribed by thdapanesenathematician
Takagk in 1903. Using alynamicdisplay, as inthe program BLANCMANGE, it is
possible to give an idea of this functionn@thematicianend non-mathematiciaradike. It

is much more difficult to appreciate the notions witktatic textand selected stifpictures.
But | shall attempt the task in brief.

The idea is to build up function in stages.The first stage is a saw-tooth whiafses
linearly to 1/2 and falls to O in every unit interval (figu8® This isthe first approximation

b1(X) to the blancmange function. Next we take a half-size saw-tooth which rises to 1/4 and
falls to O twice in each unit interval (figure 4).
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figure 3: a sawtooth (in every unit interval) figure 4: a half-size sawtooth

Adding them together gives the second approximati¢r) ffigure 5).
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figure 5: the sum of a sawtooth and a half-size sawtooth

We proceed in this manner, each time taking a sawtooth half the previous size and adding it
to the approximation to get a better approximation taothacmange. Figure ghows the
next stage with a 1/4-size sawtooth added(®) tbo give the third approximatiors(x).
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figure 6: adding another (quarter-size) sawtooth to give bs(x)

When drawing thigrocess on a TV monitothe added saw-teefoonget so smalthat
the picture stabilizes (after eight or so stages on most modern VDUS). (Figure 7.)

y=bl(x)
A

>

Figure 7 : the blancmange function

We mustimagine theprocess going on forever gbat the blancmangginction bl) is
visualized as theum of aninfinite number ofteeth. Apractical pictureonly reveals the
details of afew teeth, but wean imagine that we can magnify tgeaph to any desired
extent to reveal the finer detail. This is done in the program BLANCMANGE.

When the blancmange function is magnified, a strange thing happens: tiny blancmanges can
be seen all over the place!



To understand why this happens, consider what would occurs iefiveut the first
sawtooth and added uberest. We wouldstart at a half-size sawtooth and successively
add sawteeth each half the previsize. The resultwould be as befordgut wouldgive a
half-size blancmange.

Adding the first saw-tooth to thsum, reveals the full blancmange as than ofthe first
sawtooth and a half-size blancmange.

Similarly, starting the sum at the third (quarter-size) sawtooth and adding all the succeeding
saw-teeth gives a quarter-size blancmange. The first two teeth added togethgixgivanb
the full blancmange bff is the sum of f{x) and a quarter-size blancmange.

In general
bl(X)=bn(X) + 1/2-size blancmange.

Further inspectiorshowsthat ky(x) is made up oftraightline segments oveeach x-

interval of length 1/2 Over each interval the T¥8ize blancmange is added to give the full
blancmangdunction. Figure 8 shows4(x) superimposed othe blancmangéunction.

There are tiny blancmanges clearly visible on each horizpattibn of ky(x) and on the

other portions the blancmange is sheared to sit on the line-segment. Thus no tiny portion of
the blancmange function will ever look straight under high magnification theisupreme
non-example. It inowheredifferentiable.

The besttime tointroducesuch a function to students isratter ofpersonal tastéor the
teacher.Many mayconsider it too difficultfor weaker pupils at aearly stage but my
inclination would be to approach it experimentally fairly earlyusing a preparepiece of
software such as BLANCMANGE. Thoughe technicalitiesare difficult, the idea of a
wrinkled graph is not. It helps studeméslize the special nature thfose smoother graphs
that look straight whensmall portions are highly magnified. This highlyspecialized
property is the foundation of the differential calculus.



The gradient of a graph

figure 9: changing gradient on a road

How can we measure the gradient of a road? Driving along in a car (Bguatany stage
the linethroughthe carhub capsmakes a measurable angle witke horizontal. The
gradient can be measured as \bdical step (fromthe axis of one hub-cap tthe other)
divided by the horizontal step. This givepractical interpretation of the gradieadt along
the road, no matter how rough the road is. Baarawith a different base-length on a very
uneven road might give quite a different gradiemiction, especially a tiny toy car on a
typical road. This method ofpractical gradient calculation anly of value ifthe gradient
does not change much in the car’s length.

The same idea can lbsed on angraph, though it i®asier to fix the horizontal distance
between two points rather than the base distance between wheels. Cihesidaphy=x2
andimaginetwo points A=(a,a2), B=(b,b2) on thegraph sothat the horizontal distance
c=b—a betweerAB is fixed. Taking a=x, b=x+c, measure the gradient 8B asx varies
and plot thechord and its gradientsing acomputerprogram. (Figure 10 iplottedusing
the program GRADIENT). What is happening is that the extended chord thrthglwo
pointsx, x+c is plotted as a linand, simultaneouslythe computer calculates the gradient
and plots it as a point. For various valueg @fe getpractical calculations of thgradient.
For small values af it may be seen that the chord gradient pdiaten astraightline and
the approximate equation of the lineyis2x. Thus wemay conjecture that thieoretical
gradient of the graphxX=x2 is 2.
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Figure 10 : Building up the gradient of f(x)=x?

This may be confirmed in this particular case by algebra, for the gradikBti®f

b>a2  (x+c)>x?
ba -~ c

which, forcz0, simplifies to 2+c.

For extremely small values @fthis is indistinguishable fromx2 The derivative '{x) can
be introduced at this stage the theoretical gradient of tlgraph. Inthe case #)=x2 we
have f(x)=2x.

Theroles ofpracticalandtheoretical gradient areery different. The practical gradient is
calculated numerically using the origirfahction. Every graphhas apractical gradient for

each value of cBut a graph only has theoretical gradient ahose places where small
magnified portion looks almost straight. The theoretical gradient is then the gradient of this
small magnified part.

Discovering the gradient formula for a power

Using acomputer progranthat plots the gradient of thgraph f&)=x3 one may try to
estimatewhat happens tthe gradient functiowhen c is fairly small (figure11). When
faced with this gradient graph, studefamniliar with simplegraph-shapemight guess the
formula. I've seen various guesses suggestetdmamon one ix4 because thgraph is a
sort of quadratic, but clearly isn¢. Overplotting the graph of* disproves thisonjecture
and a betteguess of 22 often leads to the gradient ofxfEx3 being conjectured as
f'(x)=3x2.
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Figure 11 : The gradient of f(x)=x3

At this stage the table with just two results:

f(X) f'(x)
X2 2X
x3 3x2

is usually sufficient for students to suggest the general formula:
f(xX)=x" has derivative'fx)=nx"1,

A gradient-drawing program which allows this formula to be typed in and testdelachto
a variety ofinvestigations. Does it give adequate picturéor n=4, n=5, ... What about
n=277?

If the studentshave the appropriateackground, onenight try negativen, such asi=—1,
-2, or fractionaln such asn=1/2, n=3/4 etc. It isfascinating to see thgraphs drawn
appropriately, though in a few instanddg computer may naespond inthe expected
mathematicaway. Forinstance themathematicaformula f(x)=x/3 for the cuberoot is
defined for all values of, but computers can often only calculate it for positive values.

Another generalization is to simppolynomials. Forinstance one might investigate the
effect of multiplying by aconstant, through consideringZ or kx2 for various values of
k. Multiplying by a positive constaktmay beseen to stretcthe y-scale bythat constant,
leading to a gradient multiplied by the same constant. Thus the gradiefhtokx.



2
FixIr=kx Ck=—1>
from x=—-2 to 2

gradient function
CFix+cd—F(xId)r
for
c=1-1888

figure 12 : The gradient function for y=—x2

What happens whenis negative? Figure 12 shows the gradient being drawthéajraph
of y=kx for k=—1. The gradient is > which is, of course,kx wherek=—1. Multiplying
by —1 reflects the graph in tleaxis, keepinghe x-stepthe same,but multiplyingy-steps
by —1.

By gaining a feelingfor the concepts inthis way, the more general formuléor a
polynomialfollows naturally. At this stageeven with only one computer in@dass, it is
possible to accompany class exercises in formal differentiation of polynomiatsidents

taking it in turns to use the computer to check their answers. All that is necessary is to draw
the graph ofthe function and @racticalgradient,then to compare this gradient function

with the graph of the derivative found by formal differentiation.

Standard formulae

Every year thghysicsdepartmenseems tccome to simple harmonic motidsefore the
mathematics departmehascovered differentiation of trigopnometrfanctions. Agradient

drawing program will quickly give a temporary solutionth® problem. By drawing the
graph of f&)=sinx and its gradientthe result clearlysuggeststhat f(x)=cox. For

f(x)=cox, theshape othe graph ofthe gradient quicklysuggests'{x)=—sinx, complete
with the minus sign. (Figure 13.)

— 10—



f{x)=cosx
from x=—-nw to Znw

gradient function
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Figure 13 : The gradient function of cosx is ‘sinx upside down’

When [ first used the program | was convindleakt the derivative of tanwastoo difficult

to approach usingraphicalguesswork. Ihave been provedrong onmany occasions.

Studentsare far smarter than we giteem credit. Looking atthe gradient function of
f(x)=tarx gives an interesting graph shape (figlig. Studentsvith experience in graph
sketching can sethat the gradiengraph is roughlythe shapethat might occur if the

gradient of tar were squared, except that it passes thrggghwhen tar=0. Hence they
add one and suggest the derivative gffarn is f(x)=1+tarkx.

e

fFi{x)=tanx

from x=-3 to 5

gradient function
CFix+cdr—FixdIIrsc
for
c=8.881

Figure 14 : The gradient of tanx

Another interesting rule to investigate is to find a valuk sfichthat k< hasderivative also

kx. Fork=2 thederivative isbelow the originalgraph, fork=3 it is above. Homingnto a
suitable value plausibly suggests tkag.

- 11—



The naturallogarithm, Ink), also leads to amusing conjectures. Students drawing the
logarithm and gractical gradientfigure 15)often think that theramust be something
‘logarithmic’ about the formulafor the derivative. Thus guessdike ‘—In(x)+1" or
‘(In(x))+1’ are commonplace. The idea that the derivative of the natural logarithm might be
1/xis then quite a revelation.

Flx)»=1n{x>
"2' from x=-3 to 3

gradient function
CFix+cdr—FixdIIrsc
for
c=1-188

|
[XER

Figure 15 : Guess the formula for the gradient of y=Inx

The picturesuggests aleargap in the theoryusuallyleft unfilled in traditionalcourses):

In(x) is defined only foix>0 but the derivative formulaxis also definedor x<0. What
happens to the left of the origin? Investigations by the students, or socratic dialogue guided
by the teacher, lead to the function:

f(x)=In(absk))

satisfying f(x)=1/x for all non-zerox. (Fig 16). Regrettably this picture is only still
shapshot of on@stant of theprocess; it should be seen growidgnamically inall its

glory!

— 12—
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Figure 16 : The function whose gradient is 1/x for x>0 and x<0

The gradient as a dynamic process

The experience that a student gets from plotting gradient function etfablgsadient of a
curve to be visualized as a dynanpiocess.This comes from observinthe extended
chord clicking along thecurve, simultaneously plotting the gradient as a sequence of
points. It becomes possible for the student to scan a curve and see the geagjgust as

it is to see a cross-section of a mountain road andhsegradientise and fall. Suppose
that thegraph in figure 17 is given and one is askeddtaw a sketch of itgradient
function (assuming that the graph is fairly smooth).

A

1 1 »
1 T

-1 1

Figure 17 : Sketch the gradient of this curve ..

Someone who has only studied the beginnings dir#ititional methodnust proceed by a
sequence of steps:

1) The graph looks like xf=x2

2) | know the formula'§x)=2x for this graph

— 13—



3) | can draw the straight line graph2x.

A student with experience of gradient plotting could glance along the curve to see:

the gradient is at first large and negative, moving to zero at the origin, then
growing large and positive.

With this insight a rough sketch of the gradient graph may be drawn immediately.

For slightly more unusuagraphs, such aigure 18, the studentwvith only atraditional
background in the calculus may not dide to copewith the gradienfunction, because an
appropriate formula is natbvious. Someone following a graphical approaohy seehat
the gradient is initially largend positive, diminishing taerofor x=0 and staying zero
thereafter, again beirgple to make aough sketch. Thushe studenwith the graphical
approach has a better chance of understanditigecfradient concept and developing of a
relational understanding which links formulae, numerical ideas and graphical insight.

A

7 ;

Figure 18: Sketch the gradient of this curve ...

The limit concept

Depending on the inclinations of the teacher andréagliness othe students,the limit
concept can be introduced at any suitable point along the route exploring the gradient
function. For the more able student thidikely to be fairly earlyon. But in all cases it is

best considered atteme whenthe needfor it is clearly seen.Drawing gradients with a

fixed stepc givesthe impressionthat the limitingprocess igarely necessary, justake
c=1/100, orc=1/1000 and a good pictorial approximation to the derivagegelts. My own
experiencesuggestghat agood time to discussthe necessityfor the limit is with the
gradient of f)=1/. Draw the gradient function for a fairly large sizecaind youwill see

why. (Figure 19.)

— 14—
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Figure 19 : A bad approximation to the gradient of the graph

The graph of %)=1/x is always sloping dowand the gradient is clearglways negative.
But a fixed value ot hits a position wher is to the left of theorigin andx+c is to the
right. Thus a false positive gradient is given through joining a poirth@eft component
of thegraph to a point othe right. The only solution is tanakesurethat the value ot
chosen is suitably small wherewbe gradient is being calculatdebr this graph ndixed
value ofc is suitable. Tacalculate the gradiemtear a poink requiresd|<jx| so thatx and
x+c are at the same side of the origin.

The formula for the practical gradient fronto x+c in this case is

f(x+c)—f(x) _ 1/(x+c)—1k
Cc - c

X—(X+C)
TX(X+C)

-1
X(x+cC)

The limit can be thought of as a dynamic process:
‘asc approaches 0, the gradient approaches the derivative’.
Using an arrow to represent the dynamic activity in this case we have:

-1 -1
asc-0, Soxixrg) ~ X2 -

— 15—



The derivative '{x)=—1/2 gives a truesaluefor the gradient of thgraph at everynon-
zero)x, but the practical gradient fromto x+c may begrosslyinaccurate near therigin.
Thus the need to take limits arises naturally latex stage of thedevelopment. It need not
be forced meaninglessly into the beginning of the calculus syllabus.

When and how to introduce differentiation

The approachproposed in thisarticle allows an investigation of gradient and the
development of the formulae for differentiation to be carried out in the gadgs without

any formal discussion of the limiting process. The methods are quite sufficient to introduce
the concepts to candidates taking calculus in O-level mathematics.

It is known that studentshave various misconceptionslated to limitingprocesses, |
outlined some of them in my previous artitlén the next issue dflathematics Teachinb
shall show how to tackle some of these problems using a graphical appreacnd® and
tangents. By considerinthe tangent as a vector | shalso explainhow the Leibniz
notation @¢/dx can be considered as a ratio of lengtiéch are simply the components of
the tangent vector fgdy). Yet more fondly held beliefs wilcome under close scrutiny
using new insight given by the microcomputer. Will they stand the test?
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