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The Gradient of a Graph

David Tall

Mathematics Education Research Centre

University of Warwick

COVENTRY CV4 7AL

In ‘understanding the calculus’ 4 I suggested that the traditional approach to the subject is

not the most appropriate sequence for learning, and outlined an alternative development

using the powerful visualizations possible with a microcomputer. In this article I introduce

a dynamic interpretation of the gradient of a graph which leads naturally into the notion of

differentiation.

The traditional syllabus causes difficulties at the outset by attempting (unsuccessfully) to

introduce the general notion of limit before discussing the gradient of a curved graph. The

development suggested here starts with the exploration of magnifying graphs then uses a

numerical gradient illustrated by moving pictures. Limiting ideas arise implicitly in the

course of the exploration, but their full implementation may be postponed to a more

appropriate stage. Graphic visualization allows a wider range of examples and non-

examples to be considered, so that students learn not only how to calculate a derivative, but

also what it means for a function to be differentiable or non-differentiable. The seeds are

sown for a level of insight that has hitherto been considered unattainable.

The logical approach

A process of mathematical refinement over the centuries has produced a logical approach to

the calculus that is embodied in the opening sequence of topics in the proposed A-level core

curriculum:

• The idea of a limit and the derivative defined as a limit.

• The gradient of a tangent as the limit of the gradient of a chord.

In the preface of Psychology of Learning Mathematics 1, Richard Skemp criticizes the

purely logical approach in the following words:
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It gives only the end-product of mathematical discovery (‘This is it: all
you have to do is learn it’), and fails to bring about in the learner those
processes by which mathematical discoveries are made. It teaches
mathematical thought, not mathematical thinking.

To promote mathematical thinking we require a cognitive approach that builds on the

learner’s current state of knowledge and understanding.

A cognitive approach

It will be assumed that the learner meeting the calculus for the first time is able to do the

following:

• manipulate simple algebra (to be able to handle the formulae),

• sketch and vizualize the graphs of simple curves (lines, quadratics and
simple cubics at least)

• calculate the gradient of a straight line and understand positive and

negative gradients using the formula 
y2–y1
x2–x1

  for the gradient of the straight

line through (x1,y1), (x2,y2).

A student with these capabilities could begin his study by investigating the behaviour of

graphs of simple functions under high magnification. Prior to the advent of the computer

this would have been a non-trivial task where the technicalities could so easily obscure the

essential factors. But modern technology makes it possible to use a computer to draw the

graph to allow the mind to concentrate on the essential features. Any adequate graph-

drawing package could be used, but the MAGNIFY program in Graphic Calculus I 5 is

designed specifically to allow such investigations, exhibiting both the graph and a

magnification of a small portion simultaneously. The investigation can be done as a

classroom activity, either with small groups of students sharing micros, or with a single

computer and socratic dialogue between teacher and pupils. Draw any graph and magnify it

to see what happens. (Figure 1.)
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Figure 1 : magnifying a small portion of a graph

Virtually any graph drawn using the standard formulae will look less curved under high

magnification. Rational functions, combinations of trigonometric, logarithmic and

exponential functions all have this property.

It is a major problem to invent a function that fails to magnify to look straight. Yet in nature

such things are common. The edge of a leaf under magnification has tiny irregularities and

higher magnification reveals yet smaller ones. Even a plastic ruler, that is supposedly

straight, looks irregular under a microscope. Thus the phenomenon of magnifying to ‘look

straight’ is a very special mathematical property and it should be seen as such from the

beginning.

Graphs with corners

A small inroad into the ‘locally straight’ property can be made by drawing graphs with

‘corners’. The absolute value function (or modulus) abs(x) = |x|, strips the sign of a

number to give the positive value of the pair x, –x, so that

 abs(1.5)=1.5, abs(–2.7)=2.7, abs(0)=0, abs(–π)=π.

The functions abs(x), abs(x2–1), abs(x(x–1)(x–2)) all have ‘corners’. More interesting

pictures can be made out of combinations of functions. For instance, abs(x2–1)+x (figure

2) has corners at –1 and 1.
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Figure 2 : A graph which is not locally straight

Nowhere differentiable functions

Graphs with ‘corners’ may still have the ‘locally straight’ property everywhere else. A

nowhere differentiable function is one that nowhere magnifies to look straight. A simple

example is the blancmange function 3 which was described by the Japanese mathematician

Takagi 2 in 1903. Using a dynamic display, as in the program BLANCMANGE 5, it is

possible to give an idea of this function to mathematicians and non-mathematicians alike. It

is much more difficult to appreciate the notions with a static text and selected still pictures.

But I shall attempt the task in brief.

The idea is to build up a function in stages. The first stage is a saw-tooth which rises

linearly to 1/2 and falls to 0 in every unit interval (figure 3). This is the first approximation

b1(x) to the blancmange function. Next we take a half-size saw-tooth which rises to 1/4 and

falls to 0 twice in each unit interval (figure 4).

y=b (x)1

figure 3: a sawtooth (in every unit interval) figure 4: a half-size sawtooth

Adding them together gives the second approximation b2(x) (figure 5).
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y=b (x)2

figure 5: the sum of a sawtooth and a half-size sawtooth

We proceed in this manner, each time taking a sawtooth half the previous size and adding it

to the approximation to get a better approximation to the blancmange. Figure 6 shows the

next stage with a 1/4-size sawtooth added to b2(x) to give the third approximation b3(x).

y=b (x)3

figure 6: adding another (quarter-size) sawtooth to give b3(x)

 When drawing this process on a TV monitor, the added saw-teeth soon get so small that

the picture stabilizes (after eight or so stages on most modern VDUs). (Figure 7.)

y=bl(x)

Figure 7 : the blancmange function

We must imagine the process going on forever so that the blancmange function bl(x) is

visualized as the sum of an infinite number of teeth. A practical picture only reveals the

details of a few teeth, but we can imagine that we can magnify the graph to any desired

extent to reveal the finer detail. This is done in the program BLANCMANGE.

When the blancmange function is magnified, a strange thing happens: tiny blancmanges can

be seen all over the place!
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To understand why this happens, consider what would occurs if we left out the first

sawtooth and added up the rest. We would start at a half-size sawtooth and successively

add sawteeth each half the previous size. The result would be as before, but would give a

half-size blancmange.

Adding the first saw-tooth to this sum, reveals the full blancmange as the sum of the first

sawtooth and a half-size blancmange.

Similarly, starting the sum at the third (quarter-size) sawtooth and adding all the succeeding

saw-teeth gives a quarter-size blancmange. The first two teeth added together give b2(x); so

the full blancmange bl(x) is the sum of b2(x) and a quarter-size blancmange.

In general

 bl(x)=bn(x) + 1/2n-size blancmange.

Further inspection shows that bn(x) is made up of straight line segments over each x-

interval of length 1/2n. Over each interval the 1/2n-size blancmange is added to give the full

blancmange function. Figure 8 shows b4(x) superimposed on the blancmange function.

There are tiny blancmanges clearly visible on each horizontal portion of b4(x) and on the

other portions the blancmange is sheared to sit on the line-segment. Thus no tiny portion of

the blancmange function will ever look straight under high magnification. It is the supreme

non-example. It is nowhere differentiable.

The best time to introduce such a function to students is a matter of personal taste for the

teacher. Many may consider it too difficult for weaker pupils at an early stage but my

inclination would be to approach it experimentally fairly early on using a prepared piece of

software such as BLANCMANGE. Though the technicalities are difficult, the idea of a

wrinkled graph is not. It helps students realize the special nature of those smoother graphs

that look straight when small portions are highly magnified. This highly specialized

property is the foundation of the differential calculus.
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The gradient of a graph

figure 9: changing gradient on a road

How can we measure the gradient of a road? Driving along in a car (figure 9), at any stage

the line through the car hub caps makes a measurable angle with the horizontal. The

gradient can be measured as the vertical step (from the axis of one hub-cap to the other)

divided by the horizontal step. This gives a practical interpretation of the gradient all along

the road, no matter how rough the road is. But a car with a different base-length on a very

uneven road might give quite a different gradient function, especially a tiny toy car on a

typical road. This method of practical gradient calculation is only of value if the gradient

does not change much in the car’s length.

The same idea can be used on any graph, though it is easier to fix the horizontal distance

between two points rather than the base distance between wheels. Consider the graph y=x2

and imagine two points A=(a,a2), B=(b,b2) on the graph so that the horizontal distance

c=b–a between A,B is fixed. Taking a=x, b=x+c, measure the gradient of AB as x varies

and plot the chord and its gradient using a computer program. (Figure 10 is plotted using

the program GRADIENT 5). What is happening is that the extended chord through the two

points x, x+c is plotted as a line and, simultaneously, the computer calculates the gradient

and plots it as a point. For various values of c we get practical calculations of the gradient.

For small values of c it may be seen that the chord gradient points lie on a straight line and

the approximate equation of the line is y=2x. Thus we may conjecture that the theoretical

gradient of the graph f(x)=x2 is 2x.
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Figure 10 : Building up the gradient of f(x)=x2

 This may be confirmed in this particular case by algebra, for the  gradient of AB is

b2–a2

b–a    =  
(x+c)2–x2

c  

which, for c≠0, simplifies to 2x+c.

For extremely small values of c this is indistinguishable from 2x. The derivative f'(x) can

be introduced at this stage as the theoretical gradient of the graph. In the case f(x)=x2 we

have f'(x)=2x.

The roles of practical and theoretical gradient are very different. The practical gradient is

calculated numerically using the original function. Every graph has a practical gradient for

each value of c. But a graph only has a theoretical gradient at those places where a small

magnified portion looks almost straight. The theoretical gradient is then the gradient of this

small magnified part.

Discovering the gradient formula for a power

Using a computer program that plots the gradient of the graph f(x)=x3 one may try to

estimate what happens to the gradient function when c is fairly small (figure 11). When

faced with this gradient graph, students familiar with simple graph-shapes might guess the

formula. I’ve seen various guesses suggested: a common one is x4 because the graph is a

sort of quadratic, but clearly isn’t x2. Overplotting the graph of x4 disproves this conjecture

and a better guess of 2x2 often leads to the gradient of f(x)=x3 being conjectured as

f '(x)=3x2.
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Figure 11 : The gradient of f(x)=x3

At this stage the table with just two results:

f(x) f '(x)

x2 2x

x3 3x2

is usually sufficient for students to suggest the general formula:

 f(x)=xn has derivative f'(x)=nxn–1.

A gradient-drawing program which allows this formula to be typed in and tested can lead to

a variety of investigations. Does it give an adequate picture for n=4, n=5, ... What about

n=27?

If the students have the appropriate background, one might try negative n, such as n=–1,

-2, or fractional n such as n=1/2, n=3/4 etc. It is fascinating to see the graphs drawn

appropriately, though in a few instances the computer may not respond in the expected

mathematical way. For instance the mathematical formula f(x)=x1/3 for the cube root is

defined for all values of x, but computers can often only calculate it for positive values.

Another generalization is to simple polynomials. For instance one might investigate the

effect of multiplying by a constant, through considering 2x2, or kx2 for various values of

k. Multiplying by a positive constant k may be seen to stretch the y-scale by that constant,

leading to a gradient multiplied by the same constant. Thus the gradient of kx2 is 2kx.
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figure 12 : The gradient function for y=–x2

What happens when k is negative? Figure 12 shows the gradient being drawn for the graph

of y=kx2 for k=–1. The gradient is –2x, which is, of course, 2kx where k=–1. Multiplying

by –1 reflects the graph in the x-axis, keeping the x-step the same, but multiplying y-steps

by –1.

By gaining a feeling for the concepts in this way, the more general formula for a

polynomial follows naturally. At this stage, even with only one computer in a class, it is

possible to accompany class exercises in formal differentiation of polynomials by students

taking it in turns to use the computer to check their answers. All that is necessary is to draw

the graph of the function and a practical gradient, then to compare this gradient function

with the graph of the derivative found by formal differentiation.

Standard formulae

Every year the physics department seems to come to simple harmonic motion before the

mathematics department has covered differentiation of trigonometric functions. A gradient

drawing program will quickly give a temporary solution to the problem. By drawing the

graph of f(x)=sinx and its gradient, the result clearly suggests that f'(x)=cosx. For

f(x)=cosx, the shape of the graph of the gradient quickly suggests f'(x)=–sinx, complete

with the minus sign. (Figure 13.)
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Figure 13 : The gradient function of cosx is ‘sinx upside down’

When I first used the program I was convinced that the derivative of tanx was too difficult

to approach using graphical guesswork. I have been proved wrong on many occasions.

Students are far smarter than we give them credit. Looking at the gradient function of

f(x)=tanx gives an interesting graph shape (figure 14). Students with experience in graph

sketching can see that the gradient graph is roughly the shape that might occur if the

gradient of tanx were squared, except that it passes through y=1 when tanx=0. Hence they

add one and suggest the derivative of f(x)=tanx is f'(x)=1+tan2x.

Figure 14 : The gradient of tanx

Another interesting rule to investigate is to find a value of k such that kx has derivative also

kx. For k=2 the derivative is below the original graph, for k=3 it is above. Homing into a

suitable value plausibly suggests that k=e.
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The natural logarithm, ln(x), also leads to amusing conjectures. Students drawing the

logarithm and a practical gradient (figure 15) often think that there must be something

‘logarithmic’ about the formula for the derivative. Thus guesses like ‘–ln(x)+1’ or

‘(ln(x))2+1’ are commonplace. The idea that the derivative of the natural logarithm might be

1/x is then quite a revelation.

Figure 15 : Guess the formula for the gradient of y=lnx

The picture suggests a clear gap in the theory (usually left unfilled in traditional courses):

ln(x) is defined only for x>0 but the derivative formula 1/x is also defined for x<0. What

happens to the left of the origin? Investigations by the students, or socratic dialogue guided

by the teacher, lead to the function:

 f(x)=ln(abs(x))

satisfying f'(x)=1/x for all non-zero x. (Fig 16). Regrettably this picture is only a still

snapshot of one instant of the process; it should be seen growing dynamically in all its

glory!
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Figure 16 : The function whose gradient is 1/x for x>0 and x<0

The gradient as a dynamic process

The experience that a student gets from plotting gradient function enables the gradient of a

curve to be visualized as a dynamic process. This comes from observing the extended

chord clicking along the curve, simultaneously plotting the gradient as a sequence of

points. It becomes possible for the student to scan a curve and see the gradient vary, just as

it is to see a cross-section of a mountain road and see the gradient rise and fall. Suppose

that the graph in figure 17 is given and one is asked to draw a sketch of its gradient

function (assuming that the graph is fairly smooth).

-1 1

1

Figure 17 : Sketch the gradient of this curve ...

Someone who has only studied the beginnings of the traditional method must proceed by a

sequence of steps:

 1) The graph looks like f(x)=x2

 2) I know the formula f'(x)=2x for this graph
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 3) I can draw the straight line graph y=2x.

A student with experience of gradient plotting could glance along the curve to see:

the gradient is at first large and negative, moving to zero at the origin, then
growing large and positive.

With this insight a rough sketch of the gradient graph may be drawn immediately.

For slightly more unusual graphs, such as figure 18, the student with only a traditional

background in the calculus may not be able to cope with the gradient function, because an

appropriate formula is not obvious. Someone following a graphical approach may see that

the gradient is initially large and positive, diminishing to zero for x=0 and staying zero

thereafter, again being able to make a rough sketch. Thus the student with the graphical

approach has a better chance of understanding of the gradient concept and developing of a

relational understanding which links formulae, numerical ideas and graphical insight.

-1 1

1

Figure 18: Sketch the gradient of this curve ...

The limit concept

Depending on the inclinations of the teacher and the readiness of the students, the limit

concept can be introduced at any suitable point along the route exploring the gradient

function. For the more able student this is likely to be fairly early on. But in all cases it is

best considered at a time when the need for it is clearly seen. Drawing gradients with a

fixed step c gives the impression that the limiting process is rarely necessary, just take

c=1/100, or c=1/1000 and a good pictorial approximation to the derivative results. My own

experience suggests that a good time to discuss the necessity for the limit is with the

gradient of f(x)=1/x. Draw the gradient function for a fairly large size of c and you will see

why. (Figure 19.)
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Figure 19 : A bad approximation to the gradient of the graph

The graph of f(x)=1/x is always sloping down and the gradient is clearly always negative.

But a fixed value of c hits a position where x is to the left of the origin and x+c is to the

right. Thus a false positive gradient is given through joining a point on the left component

of the graph to a point on the right. The only solution is to make sure that the value of c

chosen is suitably small wherever the gradient is being calculated. For this graph no fixed

value of c is suitable. To calculate the gradient near a point x requires |c|<|x| so that x and

x+c are at the same side of the origin.

The formula for the practical gradient from x to x+c in this case is

 
f(x+c)–f(x)

c   = 
1/(x+c)–1/x

c  

             = 
x–(x+c)
cx(x+c) 

             =  
–1

x(x+c)   .

The limit can be thought of as a dynamic process:

 ‘as c approaches 0, the gradient approaches the derivative’.

Using an arrow to represent the dynamic activity in this case we have:

 as c→0, so 
–1

x(x+c)  → 
–1
x2   .
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The derivative f'(x)=–1/x2 gives a true value for the gradient of the graph at every (non-

zero) x, but the practical gradient from x to x+c may be grossly inaccurate near the origin.

Thus the need to take limits arises naturally at a later stage of the development. It need not

be forced meaninglessly into the beginning of the calculus syllabus.

When and how to introduce differentiation

The approach proposed in this article allows an investigation of gradient and the

development of the formulae for differentiation to be carried out in the early stages without

any formal discussion of the limiting process. The methods are quite sufficient to introduce

the concepts to candidates taking calculus in O-level mathematics.

It is known that students have various misconceptions related to limiting processes, I

outlined some of them in my previous article 4. In the next issue of Mathematics Teaching I

shall show how to tackle some of these problems using a graphical approach to chords and

tangents. By considering the tangent as a vector I shall also explain how the Leibniz

notation dy/dx can be considered as a ratio of lengths which are simply the components of

the tangent vector (dx,dy). Yet more fondly held beliefs will come under close scrutiny

using new insight given by the microcomputer. Will they stand the test?
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