Pott, S., and Volberg, A. (2010) Carleson measure and balayage. International Mathematics Research Notices, 2010(13), pp. 2427-2436.

Copyright © 2009 The Authors.

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

The content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given
http://eprints.gla.ac.uk/47601/

Deposited on: 8 May 2015

Enlighten - Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Carleson Measure and Balayage

Sandra Pott ${ }^{1}$ and Alexander Volberg ${ }^{2}$ 2
${ }^{1}$ Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 3
33098 Paderborn, Germany, and ${ }^{2}$ Department of Mathematics, 4
Michigan State University, East Lansing, MI 48824, USA 5
Correspondence to be sent to: sandrapo@math.uni-paderborn.de 6

The balayage of a Carleson measure lies of course in bounded mean oscillation (BMO). 7 We show that the converse statement is false. We also make a two-sided estimate of the 8 Carleson norm of a positive measure in terms of certain balayages.
1 Introduction and Notation 10
In this note, we consider a question that naturally appeared in the recent work ofFrazier-Nazarov-Verbitsky [3]. The question is:12
How does the Carleson norm of a positive measure in the disk relate to the 13
bounded mean oscillation (BMO) norm of its balayage on the circle? 14
A related question is: 15
How can one describe measures on the disk (say, positive measures) whose bala- 16
yage is a BMO function? 17
The second author is grateful to Igor Verbitsky, who called our attention to these 18
questions. 19

We show that the seemingly answer: "These are exactly the Carleson measures" 20 is false. The Carleson property is indeed of course sufficient, but not at all necessary. 21

However, we can characterize the Carleson property in terms of the BMO norms of the 22 balayages of restrictions of the measure.

Throughout the paper, we will use the notation $\lesssim, ~ \gtrsim$ for one-sided estimates up 24 to an absolute constant, and the notation \approx for two-sided estimates up to an absolute 25 constant.

We will use the setting of the upper half plane \mathbb{R}_{+}^{2} rather than the unit disk. Given 27 a positive regular Borel measure μ on the upper half plane $\mathbb{R}_{+}^{2}=\left\{(t, y) \in \mathbb{R}^{2}: Y>0\right\}$, its 28 balayage is defined as the function

$$
S_{\mu}(t)=\int_{\mathbb{R}_{+}^{2}} p_{X, Y}(t) \mathrm{d} \mu(t, y)
$$

where $p_{X, Y}(t)=\frac{1}{\pi} \frac{x}{y^{2}+(t-x)^{2}}$ is the Poisson kernel for \mathbb{R}_{+}^{2}. We say that μ is a Carleson 30 measure if there exists a constant $C>0$ such that for each interval $I \subset \mathbb{R}$, the 31 inequality

$$
\begin{equation*}
\mu\left(Q_{I}\right) \leq C|I| \tag{1}
\end{equation*}
$$

holds. Here, Q_{I} denotes the Carleson square $\{(x, y): x \in I, 0<y \leq|I|\}$ over I. It is easy 33 to see that it is sufficient to consider dyadic intervals in this definition. We denote the 34 infimum of all constants $C>0$ such that (1) holds for all dyadic intervals by Carl (μ). 35

Recall that the space of functions of BMO (\mathbb{R}) is defined as $\quad 36$

$$
\left\{b \in L^{2}(\mathbb{R}): \sup _{I \subset \mathbb{R} \text { interval }} \frac{1}{|I|} \int_{I}\left|b(t)-\langle b\rangle_{I}\right| \mathrm{d} t<\infty\right\}
$$

with $\|b\|_{\text {BMO }}=\sup _{I \subset \mathbb{R}}$ interval $\frac{1}{|I|} \int_{I}\left|b(t)-\langle b\rangle_{I}\right| \mathrm{d} t$. By the John-Nirenberg inequality, the 37 L^{1} norm in the definition of BMO can be replaced by any $\|\cdot\|_{p}$ norm, $1 \leq p<\infty$. We thus 38 obtain a family of equivalent norms on $\operatorname{BMO}(\mathbb{R})$, with equivalent constants depending 39 on p.

The connection between the properties of a measure μ and its balayage S_{μ} have ${ }_{41}$ long been studied. In particular, it is well known that the BMO norm of S_{μ} is controlled ${ }^{42}$ by the Carleson constant of μ,

$$
\begin{equation*}
\left\|S_{\mu}\right\|_{\mathrm{BMO}} \lesssim \operatorname{Carl}(\mu) \tag{2}
\end{equation*}
$$

For this and other basic facts on BMO functions, we refer the reader to [4].

A partial reverse of (2) was found in [2], [7], and in the dyadic case, [5]. Namely, 45 it was shown that for each $b \in$ BMO, there exists an $L^{\infty}(\mathbb{R})$ function ϕ and a Carleson ${ }_{46}$ measure μ such that $b=\phi+S_{\mu},\|\phi\|_{\infty}+\operatorname{Carl}(\mu) \lesssim\|b\|_{\text {BMo }}$. If we allow μ to be a complex 47 measure, one even has the representation $b=S_{\mu}$ with $\operatorname{Carl}(\mu) \lesssim\|b\|_{\text {вMо }}$ [6]. 48

The purpose of this note is to show that reverse inequality to (2) in the strict 49 sense does not hold, and to give a characterization of the Carleson property of a measure 50 μ in terms of the BMO norm of the balayage of restrictions of μ.

2 The Dyadic Balayage

We start by examining the dyadic case. We will use the standard Whitney-type decom- ${ }^{53}$ position of the upper half plane, indexed by the set \mathcal{D} of left-half open dyadic intervals 54 in \mathbb{R},

$$
T_{I}=\left\{(x, y): x \in I, \frac{|I|}{2}<y \leq|I|\right\} \text { for } I \in \mathcal{D}
$$

That means, T_{I} is the "top half" of the Carleson square Q_{I} defined above.
For a positive regular Borel measure μ on \mathbb{R}_{+}^{2}, we define the dyadic balayage by $\quad 57$

$$
S_{\mu}^{\mathrm{d}}(t)=\sum_{I \in \mathcal{D}} \frac{\chi_{I}(t)}{|I|} \mu\left(T_{I}\right) \quad(t \in \mathbb{R})
$$

which is well defined as a function taking values in [$0, \infty$]. By comparing box kernel and 58 Poisson kernel, one easily verifies the pointwise estimate $S_{\mu}^{\mathrm{d}} \lesssim S_{\mu}$.

We recall the definition of dyadic BMO, $\operatorname{BMO}^{\mathrm{d}}(\mathbb{R})$, as the class of $L^{2}(\mathbb{R})$ functions 60 for which

$$
\|b\|_{\mathrm{BMO}^{\mathrm{d}}}^{2}=\sup _{I \in \mathcal{D}} \frac{1}{|I|} \int_{I}\left|b(t)-\langle b\rangle_{I}\right|^{2} \mathrm{~d} t=\sup _{I \in \mathcal{D}} \frac{1}{|I|}\left\|P_{I} b\right\|^{2}=\sup _{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \in \mathcal{D}, J \subseteq I}\left|b_{I}\right|^{2}
$$

is finite. Here, h_{J} denotes the L^{2}-normalized Haar function, $b_{J}:=\left(b, h_{J}\right)$ denotes the cor- 62 responding Haar coefficient of function b, and P_{I} denotes the orthogonal projection on to 63 $\overline{\operatorname{span}\left\{h_{J}: J \subseteq I\right\}}$. Again, by the John-Nirenberg inequality the L^{2} norm in the definition 64 can be replaced by any L^{p} norm, $1 \leq p<\infty$, yielding an equivalent norm.

We say that a sequence of nonnegative numbers $\left(\alpha_{I}\right)_{I \in \mathcal{D}}$ is a Carleson sequence, 66 if there exists a constant $C>0$ such that

$$
\frac{1}{|I|} \sum_{J \in \mathcal{D}, J \subseteq I} a_{I} \leq C \text { for each } I \in \mathcal{D}
$$

Again, we denote the infimum of such constants by $\operatorname{Carl}\left(\left(a_{I}\right)\right)$. With this notation, one 68 verifies immediately the following well-known lemma.

Lemma 2.1. Let $b \in L^{2}(\mathbb{R})$. Then the following are equivalent:

1. μ is a Carleson measure
2. $\left(\mu\left(T_{I}\right)\right)_{I \in \mathcal{D}}$ is a Carleson sequence 72
3. $b_{\mu}=\sum_{I \in \mathcal{D}} h_{I} \mu\left(T_{I}\right)^{1 / 2} \in \mathrm{BMO}^{\mathrm{d}}(\mathbb{R})$. 73

In this case, $\operatorname{Carl}(\mu)=\operatorname{Carl}\left(\left(\mu\left(T_{I}\right)\right)\right)=\left\|b_{\mu}\right\|_{\text {BMO }}^{2}$.
Notice that with the above definition of b_{μ},

$$
S_{\mu}^{\mathrm{d}}=\sum_{I \in \mathcal{D}} \frac{\chi_{I}}{|I|} \mu\left(T_{I}\right)=\sum_{I \in \mathcal{D}} \frac{\chi_{I}}{|I|}\left|(b \mu)_{I}\right|^{2}=\mathcal{S}\left[b_{\mu}\right],
$$

where \mathcal{S} denotes the square of the dyadic square function, $\mathcal{S}[f]=\sum_{I \in \mathcal{D}} \frac{\chi_{I}}{|I|}\left|f_{I}\right|^{2}$ for $f \in{ }_{76}$ $L^{2}(\mathbb{R})$. In this sense, we have identified the dyadic balayage of a positive regular Borel 77 measure μ with the square of a dyadic square function of b_{μ}. Conversely, for any $f \in 78$ $L^{2}(\mathbb{R}), \mathcal{S}[f]$ can be written as a dyadic balayage of a measure μ_{f}, for example by letting 79 $\mu_{f}=\sum_{I \in \mathcal{D}}\left|f_{I}\right|^{2} \delta_{z(I)}, z(I)$ denoting the center of T_{I}.

The well-known dyadic analog of (2) is therefore equivalent to the inequality

$$
\begin{equation*}
\|\mathcal{S}[b]\|_{\mathrm{BMO}^{\mathrm{d}}} \lesssim\|b\|_{\mathrm{BMO}^{\mathrm{d}}}^{2} \tag{3}
\end{equation*}
$$

which can be now be proved as a simple application of the John-Nirenberg inequality. Notice that for any dyadic inverval $I \in \mathcal{D}$, all summands in $\mathcal{S}[b]=\sum_{J \in \mathcal{D}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}$ except those corresponding to dyadic intervals $J \subset I$ are constant on I. Thus

$$
\begin{aligned}
& \frac{1}{|I|} \int_{I}\left|\mathcal{S}[b](t)-\langle\mathcal{S}[b]\rangle_{I}\right| \mathrm{d} t=\frac{1}{|I|} \int_{I}\left|\mathcal{S}\left[P_{I} b\right](t)-\left\langle\mathcal{S}\left[P_{I} b\right]\right\rangle_{I}\right| \mathrm{d} t \\
& \quad \leq \frac{1}{|I|} \int_{I} \mathcal{S}\left[P_{I} b\right](t) \mathrm{d} t+\left\langle\mathcal{S}\left[P_{I} b\right]\right\rangle_{I}=2 \frac{1}{|I|} \int_{I} \sum_{J \subseteq I} \frac{\chi_{J}(t)}{|J|}\left|b_{J}\right|^{2} \mathrm{~d} t=2\left\|P_{I} b\right\|_{2}^{2} \leq 2\|b\|_{\mathrm{BMO}^{\mathrm{d}}}^{2}
\end{aligned}
$$

which proves (3).

Here are the main results of this section, which concern the reverse inequality 83 to (3). The first says that the BMO norm of the dyadic balayage can be very much smaller 84 than the Carleson constant of a measure, even if one increases the BMO norm by the $L^{2}{ }_{85}$ norm.

Theorem 2.2. Let $\varepsilon>0$. Then there exists a Carleson measure μ on \mathbb{R}_{+}^{2} with $\operatorname{Carl}(\mu)=1,87$ $\left\|S_{\mu}^{\mathrm{d}}\right\|_{\text {BMO }}+\left\|S_{\mu}^{\mathrm{d}}\right\|_{2}<\varepsilon$.

Proof. By Lemma 2.1 and the argument following it, we want to find a $\mathrm{BMO}^{\mathrm{d}}(\mathbb{R})$ func- 89 tion b of norm 1 such that both the $\mathrm{BMO}^{\mathrm{d}}$ norm and the L^{2} norm of $\mathcal{S}[b]$ are small. To this 90 end, let $I_{0}=(0,1], I_{-1}=(-2,0], I_{k}=\left(2^{k}-1,2^{k+1}-1\right]$ for $k>0$ and $I_{k}=\left(-2^{-k},-2^{-k-1}\right] 91$ for $k<0$. In particular, $\left|I_{k}\right|=2^{|k|}$ for all $k \in \mathbb{N}$. Let r_{1} denote the first Rademacher func- 92 tion on $\mathbb{R}, r_{1}=\sum_{j \in \mathbb{Z}}\left(-\chi_{\left(j, j+\frac{1}{2}\right]}+\chi_{\left(j+\frac{1}{2}, j+1\right]}\right)$, and let $r_{n}=r_{1}\left(2^{n-1}\right.$.) be the nth Rademacher 93 function on \mathbb{R}. Let $N \in \mathbb{N}, N$ to be determined later, and let

$$
b=\sum_{k=-\infty}^{\infty} \sum_{n=1}^{N-|k|} \chi_{I_{k}}(t) r_{n}(t)
$$

One verifies without difficulty that $\|b\|_{\mathrm{BMO}^{\mathrm{d}}}^{2}=N$. Clearly,

$$
\mathcal{S}[b]=\sum_{k=-\infty}^{\infty} \sum_{n=1}^{N-|k|} \chi_{I_{k}}=\sum_{k=0}^{N}(N-k) \chi_{I_{k} \cup I_{-k}} .
$$

This is a "dyadic log", and it is not difficult to show that

$$
\|\mathcal{S}[b]\|_{\text {вмо }} \leq C,
$$

where C is an absolute constant independent of N. Notice that we have an estimate here 97 not only for the dyadic BMO norm, but for the full BMO norm.

Now choose N so large that $\frac{C}{N}<\frac{\varepsilon}{2}$ and replace b by $\frac{1}{N^{1 / 2}} b$. This already guaran- 99 tees that $\|b\|_{\text {BMO }^{\text {d }}}^{2}=1,\|\mathcal{S}[b]\|_{\text {BMO }}<\frac{\varepsilon}{2}$. To deal with the desired L^{2} estimate, observe that 100 the estimates achieved so far do not change at all if b is dilated with an integer power of 101 2. By choosing a suitable power 2^{K} of $2, K \in \mathbb{N}$, and replacing b by $b\left(2^{K}.\right)$, we obtain the 102 desired estimate

$$
\|b\|_{\mathrm{BMO}^{\mathrm{d}}}^{2}=1, \quad\|\mathcal{S}[b]\|_{\mathrm{BMO}}+\|S[b]\|_{2}<\varepsilon
$$

The next theorem says that we can retrieve the Carleson constant of a measure 104 up to an absolute constant from its dyadic balayage, if we restrict the measure to certain 105 sets.

Theorem 2.3. Let μ be Carleson measure μ on \mathbb{R}_{+}^{2}. Then

$$
\operatorname{Carl}(\mu) \approx \sup _{E \subseteq \mathbb{R}_{+}^{2}, E \text { Borel set }}\left\|S_{\mu_{E}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}} \approx \sup _{I \in \mathcal{D}}\left\|S_{\mu_{Q_{I}}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}}
$$

Here, μ_{E} stands for the restriction of μ to E, given by $\mu_{E}(A)=\mu(E \cap A)$.

Proof. Clearly, $\operatorname{Carl}\left(\mu_{E}\right) \leq \operatorname{Carl}(\mu)$ for each Borel set $E \subseteq \mathbb{R}_{+}^{2}$, so

$$
\sup _{I \in \mathcal{D}}\left\|S_{\mu_{O_{I}}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}} \leq \sup _{E \subseteq \mathbb{R}_{+}^{2}, E \text { Borel set }}\left\|S_{\mu_{E}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}} \lesssim \sup _{E \subseteq \mathbb{R}_{+}^{2}, E \text { Borel set }} \operatorname{Carl}\left(\mu_{E}\right) \leq \operatorname{Carl}(\mu)
$$

To prove the reverse inequality, let $I \in \mathcal{D}$. Observe that $S_{\mu_{Q_{I}}}^{\mathrm{d}}$ is supported on the closure 110 of I. Therefore, with I^{\prime} denoting the dyadic sibling of I, we have

$$
\left\|S_{\mu_{Q_{I}}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}} \geq\left|\left\langle S_{\mu_{O_{I}}}^{\mathrm{d}}\right\rangle_{I}-\left\langle S_{\mu_{O_{I}}}^{\mathrm{d}}\right\rangle_{I^{\prime}}\right|=\left\langle S_{\mu_{O_{I}}}^{\mathrm{d}}\right\rangle_{I}=\frac{1}{|I|} \int_{I} \sum_{J \in \mathcal{D}, J \subseteq I} \frac{\chi_{J}(t)}{|J|} \mu\left(T_{J}\right) \mathrm{d} t=\frac{1}{|I|} \mu\left(O_{I}\right) .
$$

Thus, $\operatorname{Carl}(\mu) \lesssim \sup _{I \in \mathcal{D}}\left\|S_{\mu O_{I}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}}$.

3 The Algebra of Paraproducts

This section contains a short operator-theoretic motivation for the choice of the coun- 114 terexample, in particular the appearance of Rademacher functions, in the previous sec- 115 tion, in terms of paraproducts. Recall that for $b \in L^{2}(\mathbb{R})$, the standard dyadic paraprod- 116 uct π_{b} is defined by

$$
\pi_{b} f=\sum_{I \in \mathcal{D}} h_{I} b_{I}\langle f\rangle_{I} \text { for } f \in L^{\infty}(\mathbb{R}) \cap L^{2}(\mathbb{R})
$$

It is well known, and indeed a reformulation of the classical Carleson Embedding Theo- 118 rem, that π_{b} extends to a bounded linear operator on $L^{2}(\mathbb{R})$, if and only if $b \in \operatorname{BMO}^{\mathrm{d}}(\mathbb{R})$. 119 In this case, $\left\|\pi_{b}\right\| \approx\|b\|_{\text {BMO }^{d}}$.

Such dyadic paraproducts have the nice property that $\pi_{b}^{*} \pi_{b}$ is essentially a dyadic paraproduct again, with symbol \mathcal{S} [b] (see [1]):

$$
\begin{equation*}
\pi_{b}^{*} \pi_{b}=\pi_{\mathcal{S}[b]}+\left(\pi_{\mathcal{S}[b]}\right)^{*}+\operatorname{Diag}(b) \tag{4}
\end{equation*}
$$

where $\operatorname{Diag}(b)$ denotes the diagonal of $\pi_{b}^{*} \pi_{b}$ with respect to the Haar basis, $\operatorname{Diag}(b) h_{I}=123$ $\left\|\pi_{b} h_{I}\right\|^{2} h_{I}$ for $I \in \mathcal{D}$. Moreover,

$$
\begin{equation*}
\left\|\pi_{\mathcal{S}[b]}\right\| \approx\left\|\pi_{\mathcal{S}[b]}+\left(\pi_{\mathcal{S}[b]}\right)^{*}\right\| \approx\|S[b]\|_{\mathrm{BMO}^{\mathrm{d}}} \tag{5}
\end{equation*}
$$

As pointed out in the previous section, the problem of finding a Carleson measure with Carleson constant 1 and small $\mathrm{BMO}^{\mathrm{d}}$ norm of the dyadic balayage is equivalent to finding 126 $b \in \mathrm{BMO}^{\mathrm{d}}(\mathbb{R})$ of norm 1 such that $\mathcal{S}[b]$ has small $\mathrm{BMO}^{\mathrm{d}}$ norm.

In light of (4) and (5), this means finding $b \in \operatorname{BMO}^{\mathrm{d}}(\mathbb{R})$ such that $\pi_{b}^{*} \pi_{b}$ is "almost 128 diagonal", in the sense that

$$
\|\mathcal{S}[b]\|_{\mathrm{BMO}^{\mathrm{d}}} \approx\left\|\pi_{\mathcal{S}[b]}+\left(\pi_{\mathcal{S}[b]}\right)^{*}\right\|=\left\|\pi_{b}^{*} \pi_{b}-\operatorname{Diag}_{b}\right\| \ll\left\|\pi_{b}^{*} \pi_{b}\right\|=\left\|\pi_{b}\right\|^{2} \approx\|b\|_{\mathrm{BMO}^{\mathrm{d}}}^{2}
$$

Note the elementary identity

$$
\begin{equation*}
\pi_{b}^{*} \pi_{b} h_{I}=\frac{1}{|I|^{1 / 2}}\left(\sum_{J \subseteq I^{+}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}-\sum_{J \subseteq I^{-}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}\right) \tag{6}
\end{equation*}
$$

The function $\sum_{J \subseteq I^{+}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}+\sum_{J \subseteq I^{-}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}$ is constant on its support I for each I, if 131 b is a sum of Rademacher functions. In this case, the right-hand side $\sum_{J \subseteq I^{+}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}-132$ $\sum_{J \subseteq I^{-}} \frac{\chi_{J}}{|J|}\left|b_{J}\right|^{2}$ of (6) is always a multiple of h_{I}, and $\pi_{b}^{*} \pi_{b}$ is diagonal in the Haar basis. ${ }^{133}$ In our counterexample, we have to introduce cutoffs on the Rademacher functions in 134 order to control the L^{2} norm. This introduces nondiagonal terms, but these can then be 135 controlled by the logarithmic staggering of the cutoffs.

4 The Poisson Balayage

We are now going to construct a compactly supported positive measure μ on the 138 upper half plane such that its Carleson constant $\operatorname{Carl}(\mu)$ is very large (say m), but 139 $\left\|S_{\mu}\right\|_{\text {BMO }}+\left\|S_{\mu}\right\|_{L^{1}}$ is bounded by absolute constant. From here, one can easily construct 140 finite positive measure μ which is not Carleson, but whose balayage is a nice BMO 141 function.

Fix $m \in \mathbb{N}$. For $0 \leq j \leq m$, let I_{j} denote the interval $\left[-2^{j}, 2^{j}\right]$ and $\tilde{I}_{j}=I_{j} \backslash I_{j-1}$. ${ }^{143}$ Furthermore, let $\tilde{I}_{0}=I_{0}$ and let $\tilde{I}_{m+1}=\mathbb{R} \backslash I_{m}$.

Let μ_{j} denote one-dimensional Lebesgue measure on the segment $I_{j} \times\left\{2^{-j}\right\}$, and 145 let $\mu=\sum_{j=0}^{m} m_{j}$. Clearly, $\operatorname{Carl}(\mu)=m+1$.

Here is the elementary technical lemma which will show the desired properties 147 of μ.

Lemma 4.1. There exists an absolute constant $c>0$ (independent of m) such that

$$
\left|S_{\mu_{j}}(t)-\chi_{I_{j}}(t)\right| \leq c 2^{-2 j} \text { for }|t| \leq 2^{j-1} \text { or }|t| \geq 2^{j+1}, j \in\{0, \ldots, m\} .
$$

Proof. Observe that

$$
S_{\mu_{j}}(t)=\frac{1}{\pi} \int_{-2^{j}}^{2^{j}} \frac{2^{-j}}{(x-t)^{2}+2^{-2 j}} \mathrm{~d} x \leq S_{\mu_{j}}(0) \leq 1 \text { for all } t \in \mathbb{R}, j \in\{0, \ldots, m\}
$$

Now let $|t| \leq 2^{j-1}$. Then

$$
\begin{aligned}
S_{\mu_{j}}(t)-1 & =\frac{1}{\pi} \int_{-2^{j}}^{2^{j}} \frac{2^{-j}}{(x-t)^{2}+2^{-2 j}} \mathrm{~d} x-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{2^{-j}}{(x-t)^{2}+2^{-2 j}} \mathrm{~d} x \\
& =\frac{1}{\pi} \int_{-\infty}^{-2^{j}} \frac{2^{-j}}{(x-t)^{2}+2^{-2 j}} \mathrm{~d} x+\frac{1}{\pi} \int_{2^{j}}^{\infty} \frac{2^{-j}}{(x-t)^{2}+2^{-2 j}} \mathrm{~d} x \\
& \leq \frac{2}{\pi} \int_{0}^{\infty} \frac{2^{-j}}{\left(x+2^{j-1}\right)^{2}+2^{-2 j}} \mathrm{~d} x \\
& =\frac{2}{\pi} \int_{2^{2 j-1}}^{\infty} \frac{1}{x^{2}+1} \mathrm{~d} x \leq \sum_{l=j}^{\infty} \frac{2}{\pi} \int_{2^{2 l-1}}^{2^{2 l+1}} \frac{1}{x^{2}+1} \mathrm{~d} x \\
& \leq \frac{6}{\pi} \sum_{l=j}^{\infty} 2^{2 l-1} \frac{1}{\left(2^{2 l-1}\right)^{2}}=\frac{8}{\pi} 2^{-2 j+1} .
\end{aligned}
$$

If $|t| \geq 2^{j+1}$, then

$$
\begin{aligned}
S_{\mu_{j}}(t) & =\frac{1}{\pi} \int_{-2^{j}}^{2^{j}} \frac{2^{-j}}{(x-t)^{2}+2^{-2 j}} \mathrm{~d} x \\
& \leq \frac{1}{\pi} \int_{-2^{j}}^{2^{j}} \frac{2^{-j}}{2^{2 j}+2^{-2 j}} \mathrm{~d} x \\
& \leq \frac{1}{\pi} 2^{-2 j+1} .
\end{aligned}
$$

Writing $S_{\mu}=\sum_{j=0}^{m} S_{\mu_{j}}=\sum_{j=0}^{m} \chi_{I_{j}}+\sum_{j=0}^{m}\left(S_{\mu_{j}}-\chi_{I_{j}}\right)$, we see that the first term 153 is a dyadic log function, and therefore in $\operatorname{BMO}(\mathbb{R})$ with some absolute norm bound 154 independent of m. To estimate the second term, let $t \in \tilde{I}_{k}$. By the previous lemma, 155 $\left|S_{\mu_{j}}(t)-\chi_{I_{j}}(t)\right| \leq c 2^{-j}$ for $j \notin\{k-1, k, k+1\}$, therefore

$$
\sum_{j=0}^{m}\left|S_{\mu_{j}}(t)-\chi_{I_{j}}(t)\right| \leq \sum_{j=0}^{m} c 2^{-j}+6=2 c+6
$$

Thus, the second term is in $L^{\infty}(\mathbb{R})$, with L^{∞} norm bounded by $2 c+6$. Altogether, we find 157 that there is an absolute constant \tilde{c}, independent of m, such that $\left\|S_{\mu}\right\|_{\text {BMO }} \leq \tilde{c}$. However, 158 an elementary calculation shows that 159

$$
\left\|S_{\mu}\right\|_{1}=\sum_{j=0}^{m}\left\|S_{\mu_{j}}\right\|_{1}=\sum_{j=0}^{m} 2^{j+1}=2^{m+2}-2
$$

and we would like to control the L^{1} norm of S_{μ} as well. But by scaling our con- 160 struction with a small $h>0$, that is, replacing each μ_{j} by $\tilde{\mu}_{j}$, the one-dimensional 161 Lebesgue measure on $\left[-h 2^{j}, h 2^{j}\right] \times\left\{h 2^{-j}\right\}$ and letting $\tilde{\mu}=\sum_{j=0}^{m} \tilde{\mu}_{j}$, we obtain a measure 162 $\tilde{\mu}$ with $\operatorname{Carl}(\tilde{\mu})=\operatorname{Carl}(\mu)=m+1, S_{\tilde{\mu}}(t)=S_{\mu}\left(\frac{t}{h}\right)$. Thus, we have $\left\|S_{\mu}\right\|_{1}=h\left(2^{m+2}-2\right)$ and 163 $\left\|S_{\mu}\right\|_{\text {BMO }}=\left\|S_{\mu}\right\|_{\text {BMO }} \leq \tilde{c}$.

After choosing an appropriate $h>0$ and dividing by an appropriate multiple of 165 m, we obtain

Theorem 4.2. Let $\varepsilon>0$. Then there exists a Carleson measure μ on \mathbb{R}_{+}^{2} with $\operatorname{Carl}(\mu)=1,167$ $\left\|S_{\mu}\right\|_{\text {BMO }}+\left\|S_{\mu}\right\|_{1}<\varepsilon$.

We will now show a continuous analog to Theorem 2.3.

Theorem 4.3. Let μ be Carleson measure μ on \mathbb{R}_{+}^{2}. Then

$$
\operatorname{Carl}(\mu) \approx \sup _{E \subseteq \mathbb{R}_{+}^{2}, E \text { Borel set }}\left\|S_{\mu_{E}}^{\mathrm{d}}\right\|_{\mathrm{BMO}^{\mathrm{d}}} \approx \sup _{I \subset \mathbb{R} \text { interval }}\left\|S_{\mu_{O_{I}}}\right\|_{\mathrm{BMO}}
$$

Proof. We only have to prove that $\sup _{I \subset \mathbb{R}}$ interval $\left\|S \mu_{Q_{I}}\right\|_{\text {BMO }} \gtrsim \operatorname{Carl}(\mu)$. After translation 171 and dilation of μ, we can assume without loss of generality that $\mu\left(Q_{J}\right) \geq \frac{1}{4} \operatorname{Carl}(\mu)$ for 172

$$
\begin{aligned}
\left\|S_{\mu Q_{I}}\right\|_{\mathrm{BMO}} & \gtrsim\left|\left\langle S_{a_{O_{I}}}\right\rangle_{I}-\left\langle S_{\mu Q_{I}}\right\rangle_{I^{\prime}}\right| \\
& =\int_{0}^{1} \frac{1}{\pi} \int_{Q_{I}} \frac{Y}{(t-x)^{2}+y^{2}}-\frac{y}{(t+2-x)^{2}+y^{2}} \mathrm{~d} \mu(x, y) \mathrm{d} t \\
& =\frac{1}{\pi} \int_{Q_{I}} \int_{-x}^{1-x} \frac{Y(4+4 t)}{\left(t^{2}+y^{2}\right)\left((t+2)^{2}+y^{2}\right)} \mathrm{d} t \mathrm{~d} \mu(x, y) \\
& \geq \frac{1}{\pi} \int_{[1 / 4,3 / 4] \times[0,1]} \int_{-x}^{1-x} \frac{Y(4+4 t)}{\left(t^{2}+y^{2}\right)\left((t+2)^{2}+y^{2}\right)} \mathrm{d} t \mathrm{~d} \mu(x, y) \\
& \geq \frac{1}{\pi} \int_{[1 / 4,3 / 4] \times[0,1]} \int_{-1 / 4}^{1 / 4} \frac{Y(4+4 t)}{\left(t^{2}+y^{2}\right)\left((t+2)^{2}+y^{2}\right)} \mathrm{d} t \mathrm{~d} \mu(x, y) \\
& \gtrsim \frac{1}{\pi} \int_{[1 / 4,3 / 4] \times[0,1]} \int_{-1 / 4}^{1 / 4} \frac{Y}{t^{2}+y^{2}} \mathrm{~d} t \mathrm{~d} \mu(x, y) \\
& \geq \frac{1}{\pi} \int_{[1 / 4,3 / 4] \times[0,1]}^{1 / 4} \int_{-1 / 4}^{1} \frac{1}{t^{2}+1} \mathrm{~d} t \mathrm{~d} \mu(x, y) \gtrsim \mu\left(O_{J}\right) \gtrsim \operatorname{Carl}(\mu) .
\end{aligned}
$$

References

[1] Blasco, O., and S. Pott. "Dyadic BMO on the bidisk." Revista Matemática Iberoamericana 21, 175 no. 2 (2005): 483-510.
[2] Carleson, L. "Two remarks on H^{1} and BMO." Advances in Mathematics 22, no. 3 (1976): 269- 177 77.
[3] Frazier, M., F. Nazarov, and I. Verbitsky. "Global estimates for kernels of Neumann series, 179 Green's functions, and the conditional gauge." (2009): preprint.
[4] Garnett, J. B. Bounded Analytic Functions. Pure and Applied Mathematics 96. New York: 181 Academic Press, Inc., 1981.
[5] Garnett, J. B., and P. Jones. "BMO from dyadic BMO." Pacific Journal of Mathematics 99, no. 2183 (1982): 351-71.
[6] Smith, W. S. "BMO(ρ) and Carleson measures." Transactions of the American Mathematical 185 Society 287, no. 1 (1985): 107-26. 186
[7] Uchiyama, A. "A remark on Carleson's characterization of BMO." Proceedings of the American 187 Mathematical Society 79, no. 1 (1980): 35-41. 188

