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The balayage of a Carleson measure lies of course in bounded mean oscillation (BMO). 7

We show that the converse statement is false. We also make a two-sided estimate of the 8

Carleson norm of a positive measure in terms of certain balayages. 9

1 Introduction and Notation 10

In this note, we consider a question that naturally appeared in the recent work of 11

Frazier–Nazarov–Verbitsky [3]. The question is: 12

How does the Carleson norm of a positive measure in the disk relate to the 13

bounded mean oscillation (BMO) norm of its balayage on the circle? 14

A related question is: 15

How can one describe measures on the disk (say, positive measures) whose bala- 16

yage is a BMO function? 17

The second author is grateful to Igor Verbitsky, who called our attention to these 18

questions. 19

We show that the seemingly answer: “These are exactly the Carleson measures” 20

is false. The Carleson property is indeed of course sufficient, but not at all necessary. 21
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However, we can characterize the Carleson property in terms of the BMO norms of the 22

balayages of restrictions of the measure. 23

Throughout the paper, we will use the notation �, � for one-sided estimates up 24

to an absolute constant, and the notation ≈ for two-sided estimates up to an absolute 25

constant. 26

We will use the setting of the upper half plane R
2+ rather than the unit disk. Given 27

a positive regular Borel measure μ on the upper half plane R
2+ = {(t, y) ∈ R

2 : y > 0}, its 28

balayage is defined as the function 29

Sμ(t) =
∫

R
2+

px,y(t)dμ(t, y),

where px,y(t) = 1
π

x
y2+(t−x)2 is the Poisson kernel for R

2+. We say that μ is a Carleson 30

measure if there exists a constant C > 0 such that for each interval I ⊂ R, the 31

inequality 32

μ(QI ) ≤ C |I | (1)

holds. Here, QI denotes the Carleson square {(x, y) : x ∈ I, 0 < y ≤ |I |} over I . It is easy 33

to see that it is sufficient to consider dyadic intervals in this definition. We denote the 34

infimum of all constants C > 0 such that (1) holds for all dyadic intervals by Carl(μ). 35

Recall that the space of functions of BMO (R) is defined as 36

{
b ∈ L2(R) : sup

I⊂R interval

1

|I |
∫

I
|b(t) − 〈b〉I |dt < ∞

}
,

with ‖b‖BMO = supI⊂R interval
1
|I |

∫
I |b(t) − 〈b〉I |dt. By the John–Nirenberg inequality, the 37

L1 norm in the definition of BMO can be replaced by any ‖ · ‖p norm, 1 ≤ p < ∞. We thus 38

obtain a family of equivalent norms on BMO(R), with equivalent constants depending 39

on p. 40

The connection between the properties of a measure μ and its balayage Sμ have 41

long been studied. In particular, it is well known that the BMO norm of Sμ is controlled 42

by the Carleson constant of μ, 43

‖Sμ‖BMO � Carl(μ). (2)

For this and other basic facts on BMO functions, we refer the reader to [4]. 44
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A partial reverse of (2) was found in [2], [7], and in the dyadic case, [5]. Namely, 45

it was shown that for each b ∈ BMO, there exists an L∞(R) function φ and a Carleson 46

measure μ such that b = φ + Sμ, ‖φ‖∞ + Carl(μ) � ‖b‖BMO. If we allow μ to be a complex 47

measure, one even has the representation b = Sμ with Carl(μ) � ‖b‖BMO [6]. 48

The purpose of this note is to show that reverse inequality to (2) in the strict 49

sense does not hold, and to give a characterization of the Carleson property of a measure 50

μ in terms of the BMO norm of the balayage of restrictions of μ. 51

2 The Dyadic Balayage 52

We start by examining the dyadic case. We will use the standard Whitney-type decom- 53

position of the upper half plane, indexed by the set D of left-half open dyadic intervals 54

in R, 55

TI =
{
(x, y) : x ∈ I,

|I |
2

< y ≤ |I |
}

for I ∈ D.

That means, TI is the “top half” of the Carleson square QI defined above. 56

For a positive regular Borel measure μ on R
2+, we define the dyadic balayage by 57

Sd
μ(t) =

∑
I∈D

χI (t)

|I | μ(TI ) (t ∈ R),

which is well defined as a function taking values in [0,∞]. By comparing box kernel and 58

Poisson kernel, one easily verifies the pointwise estimate Sd
μ � Sμ. 59

We recall the definition of dyadic BMO, BMOd(R), as the class of L2(R) functions 60

for which 61

‖b‖2
BMOd = sup

I∈D
1

|I |
∫

I
|b(t) − 〈b〉I |2dt = sup

I∈D
1

|I | ‖PI b‖2 = sup
I∈D

1

|I |
∑

J∈D,J⊆I

|bI |2

is finite. Here, hJ denotes the L2-normalized Haar function, bJ := (b, hJ) denotes the cor- 62

responding Haar coefficient of function b, and PI denotes the orthogonal projection on to 63

span{hJ : J ⊆ I }. Again, by the John–Nirenberg inequality the L2 norm in the definition 64

can be replaced by any L p norm, 1 ≤ p < ∞, yielding an equivalent norm. 65
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We say that a sequence of nonnegative numbers (αI )I∈D is a Carleson sequence, 66

if there exists a constant C > 0 such that 67

1

|I |
∑

J∈D,J⊆I

aI ≤ C for each I ∈ D.

Again, we denote the infimum of such constants by Carl((aI )). With this notation, one 68

verifies immediately the following well-known lemma. 69

Lemma 2.1. Let b ∈ L2(R). Then the following are equivalent: 70

1. μ is a Carleson measure 71

2. (μ(TI ))I∈D is a Carleson sequence 72

3. bμ = ∑
I∈D hI μ(TI )

1/2 ∈ BMOd(R). 73

In this case, Carl(μ) = Carl((μ(TI ))) = ‖bμ‖2
BMOd. � 74

Notice that with the above definition of bμ, 75

Sd
μ =

∑
I∈D

χI

|I |μ(TI ) =
∑
I∈D

χI

|I | |(bμ)I |2 = S[bμ],

where S denotes the square of the dyadic square function, S[ f] = ∑
I∈D

χI|I | | fI |2 for f ∈ 76

L2(R). In this sense, we have identified the dyadic balayage of a positive regular Borel 77

measure μ with the square of a dyadic square function of bμ. Conversely, for any f ∈ 78

L2(R), S[ f] can be written as a dyadic balayage of a measure μ f , for example by letting 79

μ f = ∑
I∈D | fI |2δz(I ), z(I ) denoting the center of TI . 80

The well-known dyadic analog of (2) is therefore equivalent to the inequality 81

‖S[b]‖BMOd � ‖b‖2
BMOd , (3)

which can be now be proved as a simple application of the John–Nirenberg inequality.

Notice that for any dyadic inverval I ∈ D, all summands in S[b] = ∑
J∈D

χJ|J| |bJ |2 except

those corresponding to dyadic intervals J ⊂ I are constant on I . Thus

1

|I |
∫

I
|S[b](t) − 〈S[b]〉I |dt = 1

|I |
∫

I
|S[PI b](t) − 〈S[PI b]〉I |dt

≤ 1

|I |
∫

I
S[PI b](t)dt + 〈S[PI b]〉I = 2

1

|I |
∫

I

∑
J⊆I

χJ(t)

|J| |bJ |2dt = 2‖PI b‖2
2 ≤ 2‖b‖2

BMOd ,

which proves (3). 82
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Here are the main results of this section, which concern the reverse inequality 83

to (3). The first says that the BMO norm of the dyadic balayage can be very much smaller 84

than the Carleson constant of a measure, even if one increases the BMO norm by the L2 85

norm. 86

Theorem 2.2. Let ε > 0. Then there exists a Carleson measure μ on R
2+ with Carl(μ) = 1, 87

‖Sd
μ‖BMO + ‖Sd

μ‖2 < ε. � 88

Proof. By Lemma 2.1 and the argument following it, we want to find a BMOd(R) func- 89

tion b of norm 1 such that both the BMOd norm and the L2 norm of S[b] are small. To this 90

end, let I0 = (0, 1], I−1 = (−2, 0], Ik = (2k − 1, 2k+1 − 1] for k > 0 and Ik = (−2−k,−2−k−1] 91

for k < 0. In particular, |Ik| = 2|k| for all k ∈ N. Let r1 denote the first Rademacher func- 92

tion on R, r1 = ∑
j∈Z

(−χ( j, j+ 1
2 ] + χ( j+ 1

2 , j+1]), and let rn = r1(2n−1·) be the nth Rademacher 93

function on R. Let N ∈ N, N to be determined later, and let 94

b =
∞∑

k=−∞

N−|k|∑
n=1

χIk(t)rn(t).

One verifies without difficulty that ‖b‖2
BMOd = N. Clearly, 95

S[b] =
∞∑

k=−∞

N−|k|∑
n=1

χIk =
N∑

k=0

(N − k)χIk∪I−k.

This is a “dyadic log”, and it is not difficult to show that 96

‖S[b]‖BMO ≤ C ,

where C is an absolute constant independent of N. Notice that we have an estimate here 97

not only for the dyadic BMO norm, but for the full BMO norm. 98

Now choose N so large that C
N < ε

2 and replace b by 1
N1/2 b. This already guaran- 99

tees that ‖b‖2
BMOd = 1, ‖S[b]‖BMO < ε

2 . To deal with the desired L2 estimate, observe that 100

the estimates achieved so far do not change at all if b is dilated with an integer power of 101

2. By choosing a suitable power 2K of 2, K ∈ N, and replacing b by b(2K ·), we obtain the 102

desired estimate 103

‖b‖2
BMOd = 1, ‖S[b]‖BMO + ‖S[b]‖2 < ε. �
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The next theorem says that we can retrieve the Carleson constant of a measure 104

up to an absolute constant from its dyadic balayage, if we restrict the measure to certain 105

sets. 106

Theorem 2.3. Let μ be Carleson measure μ on R
2+. Then 107

Carl(μ) ≈ sup
E⊆R

2+,E Borel set
‖Sd

μE
‖BMOd ≈ sup

I∈D
‖Sd

μQI
‖BMOd .

Here, μE stands for the restriction of μ to E , given by μE (A) = μ(E ∩ A). � 108

Proof. Clearly, Carl(μE ) ≤ Carl(μ) for each Borel set E ⊆ R
2+, so 109

sup
I∈D

‖Sd
μQI

‖BMOd ≤ sup
E⊆R

2+,E Borel set
‖Sd

μE
‖BMOd � sup

E⊆R
2+,E Borel set

Carl(μE ) ≤ Carl(μ).

To prove the reverse inequality, let I ∈ D. Observe that Sd
μQI

is supported on the closure 110

of I . Therefore, with I ′ denoting the dyadic sibling of I , we have 111

‖Sd
μQI

‖BMOd ≥ |〈Sd
μQI

〉I − 〈Sd
μQI

〉I ′ | = 〈Sd
μQI

〉I = 1

|I |
∫

I

∑
J∈D,J⊆I

χJ(t)

|J| μ(TJ)dt = 1

|I |μ(QI ).

Thus, Carl(μ) � supI∈D ‖Sd
μQI

‖BMOd. � 112

3 The Algebra of Paraproducts 113

This section contains a short operator-theoretic motivation for the choice of the coun- 114

terexample, in particular the appearance of Rademacher functions, in the previous sec- 115

tion, in terms of paraproducts. Recall that for b ∈ L2(R), the standard dyadic paraprod- 116

uct πb is defined by 117

πb f =
∑
I∈D

hI bI 〈 f〉I for f ∈ L∞(R) ∩ L2(R).

It is well known, and indeed a reformulation of the classical Carleson Embedding Theo- 118

rem, that πb extends to a bounded linear operator on L2(R), if and only if b ∈ BMOd(R). 119

In this case, ‖πb‖ ≈ ‖b‖BMOd. 120
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Such dyadic paraproducts have the nice property that π∗
bπb is essentially a dyadic 121

paraproduct again, with symbol S[b] (see [1]): 122

π∗
bπb = πS[b] + (πS[b])∗ + Diag(b), (4)

where Diag(b) denotes the diagonal of π∗
bπb with respect to the Haar basis, Diag(b)hI = 123

‖πbhI ‖2hI for I ∈ D. Moreover, 124

‖πS[b]‖ ≈ ‖πS[b] + (πS[b])∗‖ ≈ ‖S[b]‖BMOd . (5)

As pointed out in the previous section, the problem of finding a Carleson measure with 125

Carleson constant 1 and small BMOd norm of the dyadic balayage is equivalent to finding 126

b ∈ BMOd(R) of norm 1 such that S[b] has small BMOd norm. 127

In light of (4) and (5), this means finding b ∈ BMOd(R) such that π∗
bπb is “almost 128

diagonal”, in the sense that 129

‖S[b]‖BMOd ≈ ‖πS[b] + (πS[b])∗‖ = ‖π∗
bπb − Diagb‖ � ‖π∗

bπb‖ = ‖πb‖2 ≈ ‖b‖2
BMOd .

Note the elementary identity 130

π∗
bπbhI = 1

|I |1/2

⎛
⎝ ∑

J⊆I+

χJ

|J| |bJ |2 −
∑

J⊆I−

χJ

|J| |bJ |2
⎞
⎠ . (6)

The function
∑

J⊆I+ χJ|J| |bJ |2 + ∑
J⊆I− χJ|J| |bJ |2 is constant on its support I for each I , if 131

b is a sum of Rademacher functions. In this case, the right-hand side
∑

J⊆I+ χJ|J| |bJ |2 − 132∑
J⊆I− χJ|J| |bJ |2 of (6) is always a multiple of hI , and π∗

bπb is diagonal in the Haar basis. 133

In our counterexample, we have to introduce cutoffs on the Rademacher functions in 134

order to control the L2 norm. This introduces nondiagonal terms, but these can then be 135

controlled by the logarithmic staggering of the cutoffs. 136

4 The Poisson Balayage 137

We are now going to construct a compactly supported positive measure μ on the 138

upper half plane such that its Carleson constant Carl(μ) is very large (say m), but 139

‖Sμ‖BMO + ‖Sμ‖L1 is bounded by absolute constant. From here, one can easily construct 140

finite positive measure μ which is not Carleson, but whose balayage is a nice BMO 141

function. 142
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Fix m∈ N. For 0 ≤ j ≤ m, let I j denote the interval [−2 j, 2 j] and Ĩ j = I j \ I j−1. 143

Furthermore, let Ĩ0 = I0 and let Ĩm+1 = R \ Im. 144

Let μ j denote one-dimensional Lebesgue measure on the segment I j × {2− j}, and 145

let μ = ∑m
j=0 mj. Clearly, Carl(μ) = m+ 1. 146

Here is the elementary technical lemma which will show the desired properties 147

of μ. 148

Lemma 4.1. There exists an absolute constant c > 0 (independent of m) such that 149

|Sμ j (t) − χI j (t)| ≤ c2−2 j for |t| ≤ 2 j−1 or |t| ≥ 2 j+1, j ∈ {0, . . . , m}. �

Proof. Observe that 150

Sμ j (t) = 1

π

∫ 2 j

−2 j

2− j

(x − t)2 + 2−2 j dx ≤ Sμ j (0) ≤ 1 for all t ∈ R, j ∈ {0, . . . , m}.

Now let |t| ≤ 2 j−1. Then 151

Sμ j (t) − 1 = 1

π

∫ 2 j

−2 j

2− j

(x − t)2 + 2−2 j dx − 1

π

∫ ∞

−∞
2− j

(x − t)2 + 2−2 j dx

= 1

π

∫ −2 j

−∞
2− j

(x − t)2 + 2−2 j dx + 1

π

∫ ∞

2 j

2− j

(x − t)2 + 2−2 j dx

≤ 2

π

∫ ∞

0

2− j

(x + 2 j−1)2 + 2−2 j dx

= 2

π

∫ ∞

22 j−1

1

x2 + 1
dx ≤

∞∑
l= j

2

π

∫ 22l+1

22l−1

1

x2 + 1
dx

≤ 6

π

∞∑
l= j

22l−1 1

(22l−1)2 = 8

π
2−2 j+1.

If |t| ≥ 2 j+1, then 152

Sμ j (t) = 1

π

∫ 2 j

−2 j

2− j

(x − t)2 + 2−2 j dx

≤ 1

π

∫ 2 j

−2 j

2− j

22 j + 2−2 j dx

≤ 1

π
2−2 j+1. �
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Writing Sμ = ∑m
j=0 Sμ j = ∑m

j=0 χI j + ∑m
j=0(Sμ j − χI j ), we see that the first term 153

is a dyadic log function, and therefore in BMO(R) with some absolute norm bound 154

independent of m. To estimate the second term, let t ∈ Ĩk. By the previous lemma, 155

|Sμ j (t) − χI j (t)| ≤ c2− j for j /∈ {k − 1, k, k + 1}, therefore 156

m∑
j=0

|Sμ j (t) − χI j (t)| ≤
m∑

j=0

c2− j + 6 = 2c + 6.

Thus, the second term is in L∞(R), with L∞ norm bounded by 2c + 6. Altogether, we find 157

that there is an absolute constant c̃, independent of m, such that ‖Sμ‖BMO ≤ c̃. However, 158

an elementary calculation shows that 159

‖Sμ‖1 =
m∑

j=0

‖Sμ j ‖1 =
m∑

j=0

2 j+1 = 2m+2 − 2,

and we would like to control the L1 norm of Sμ as well. But by scaling our con- 160

struction with a small h > 0, that is, replacing each μ j by μ̃ j, the one-dimensional 161

Lebesgue measure on [−h2 j, h2 j] × {h2− j} and letting μ̃ = ∑m
j=0 μ̃ j, we obtain a measure 162

μ̃ with Carl(μ̃) = Carl(μ) = m+ 1, Sμ̃(t) = Sμ( t
h). Thus, we have ‖Sμ‖1 = h(2m+2 − 2) and 163

‖Sμ̃‖BMO = ‖Sμ‖BMO ≤ c̃. 164

After choosing an appropriate h > 0 and dividing by an appropriate multiple of 165

m, we obtain 166

Theorem 4.2. Let ε > 0. Then there exists a Carleson measure μ on R
2+ with Carl(μ) = 1, 167

‖Sμ‖BMO + ‖Sμ‖1 < ε. � 168

We will now show a continuous analog to Theorem 2.3. 169

Theorem 4.3. Let μ be Carleson measure μ on R
2+. Then 170

Carl(μ) ≈ sup
E⊆R

2+,E Borel set
‖Sd

μE
‖BMOd ≈ sup

I⊂R interval
‖SμQI

‖BMO.

�

Proof. We only have to prove that supI⊂R interval ‖SμQI ‖BMO � Carl(μ). After translation 171

and dilation of μ, we can assume without loss of generality that μ(QJ) ≥ 1
4Carl(μ) for 172
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J = [1/4, 3/4]. Let I = [0, 1] and let I ′ denote the translated interval [2, 3]. Then 173

‖SμQI
‖BMO � |〈SμQI

〉I − 〈SμQI
〉I ′ |

=
∫ 1

0

1

π

∫
QI

y

(t − x)2 + y2 − y

(t + 2 − x)2 + y2 dμ(x, y)dt

= 1

π

∫
QI

∫ 1−x

−x

y(4 + 4t)

(t2 + y2)((t + 2)2 + y2)
dtdμ(x, y)

≥ 1

π

∫
[1/4,3/4]×[0,1]

∫ 1−x

−x

y(4 + 4t)

(t2 + y2)((t + 2)2 + y2)
dtdμ(x, y)

≥ 1

π

∫
[1/4,3/4]×[0,1]

∫ 1/4

−1/4

y(4 + 4t)

(t2 + y2)((t + 2)2 + y2)
dtdμ(x, y)

� 1

π

∫
[1/4,3/4]×[0,1]

∫ 1/4

−1/4

y

t2 + y2 dt dμ(x, y)

≥ 1

π

∫
[1/4,3/4]×[0,1]

∫ 1/4

−1/4

1

t2 + 1
dt dμ(x, y) � μ(QJ) � Carl(μ). �
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