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Poznań, Poland
dawid.weiss@cs.put.poznan.pl

Abstract— What makes an open source project successful?
In this paper we show that the traditional factors of success
of open source projects, such as the number of downloads,
deployments or community activity are inconvenient to collect
or insufficient. We then correlate success of an open source
project with its popularity on the Web. We show several ideas
of how such popularity could be measured using Web search
engines and provide experimental results from quantitative
analysis of the measures we introduce on representative large
samples of open source projects from SourceForge.

I. INTRODUCTION AND MOTIVATION FOR THE WORK

Success of a commercial software project is usually
measured by the profit it brings to its creators or copyright
owners. This definition, does not translate directly to
majority of the open source world, where software projects
are developed by enthusiasts and volunteers for free. Even
if, for certain larger projects, an indirect income gained
from consultancy or packaged distributions of the software
satisfies the needs of its maintainers (developers), it is
nowhere near a general rule.

A question comes to mind: what makes an open source
project successful? The following factors seem to con-
tribute to the overall success:
• Number of deployments/ uses. Open source projects

that are actively used provide satisfaction and sense
of pride for their developers. “Use” of an open source
project can be understood as direct use by end-
users, or indirect use as a component within another
program.

• Number of active committers and e-mailing list
traffic. For projects that have not yet reached the level
of stability to be used in real applications, the number
of active committers can be an indication of interest of
the OS community in the project. This, for example,
is the case with projects like Nutch (http://www.
nutch.org), which is not yet mature, but has raised
a significant flurry of interest.

In practice, measuring the above factors may prove
to be a difficult task. The number of deployments of a
project is often unknown and impossible to determine,
because open source projects expose their artifacts for
uncontrolled download and rarely keep a list of real use
cases. Besides, number of downloads of a project may
not translate to its deployments. Number of committers
and e-mailing list traffic is also not always a good indica-
tion of a project’s popularity. Number of committers (or
rather: commits) usually reflects the dynamics of project’s
growth, but certain projects are extremely popular and their
development is rather stale than dynamic — take JUnit
(http://www.junit.org) as an example. The latest

version of JUnit is dated September 3, 2002, which is over
two years ago.

Straightforward indicators of open source projects’ suc-
cess may be misleading, inaccurate and difficult to collect.
The motivation for this work is to fill this gap by providing
an alternative, easier way of establishing the success ratio
of a project.

Let us define popularity of a project as being propor-
tional to the number of Web pages that mention this project
somehow. This approach is clearly inspired by how we
perceive and measure the influence (significance, success)
of research papers — the more citations a given paper has,
the more influential it appears to be to the research com-
munity. Considering the ways people nowadays exchange
information — through mailing lists, blogs, newsgroups
and other Web-enabled environments — we believe this
“Web popularity” may serve as a good estimation of a
project’s success.

The remaining part of this paper provides ways of nar-
rowing the concept of popularity to concrete, measurable
properties and a demonstration of how these properties
can be calculated by mining knowledge already present
in existing Web search engines.

II. WEB SEARCH ENGINES AND POPULARITY

Search engines nowadays keep the most up-to-date state
of a large part of the Internet’s resources.1 Mining the
information stored in a Web Search engine for extracting
a project’s popularity has the following advantages:
• Objective (neutral) point of view. Web crawlers are

conceptually simple automata that traverse the Web
pretty much at random.2 The number of references
to any open source project will reflect its actual
importance on the Web.

• Relevance. Most open source licenses require that a
credit is given in case of embedding, or reusing parts
of the source code. This credit usually takes the form
of a link pointing back to the Web page of the original
project, or its name (or the name of its authors). Every
such link thus constitutes a use case, or at least a
strong expression of interest in the project.

• Up-to-date. Search engines keep more or less up to
date with the state of pages in the internet, so by
using the information they provide we can assure
the accuracy of data on an almost daily basis. An
additional bonus is that several search engines provide

1Google’s index as of December 2004 is approximated at a little bit
over 8 billion pages

2This is a major simplification, but with no negative effect for further
considerations here.
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Fig. 1. Different topics for a simple query Cocoon clustered dynamically in a clustering engine Carrot2 (http://carrot2.sourceforge.net).

the capability of searching within the desired time
spans. This should allow us to perform retrospective
analysis of a project’s popularity over time.

• A data source that is easy to collect. Querying
search engines requires substantially less effort com-
pared to the same work performed by humans (in the
form of surveys, for example). Most of the work can
also be performed automatically using simple parsers
or applications interfaces provided by a search engine.

III. METHODS OF MEASURING PROJECTS POPULARITY

Let us define notational convention which we will use
further in this text:

p — the project which we analyze,
Mx(p) — popularity of project p counted with method x,
Np — name of the project p,
hp(p) — home page of project p.

A. Method 1 (M1): simple word counting

The simplest idea of measuring popularity is to count
the number of pages that contain all of the words in
project’s p name.

M1(p) = ∑
(
pages containing words in Np

)
. (1)

1) Advantages:
• No direct links from the pages referencing the project

are needed to count it (it is enough that the project’s
name is mentioned).

• Works with all search engines — there is a possibility
of cross-verification of results.

2) Disadvantages: Simple as it is, the method has a
major drawback: it counts all pages that contain other
meanings of words building up the name of the project. For
example, a word Cocoon is mentioned on over 3 million
pages, but only a fraction of them is indeed related to the
open source project Cocoon. Clustering the top portion
of Web search result by topic reveals other meanings the
query was related to (see Figure 1).

3) Discussion of estimation quality: This method is an
over-estimation of the number of pages that truly reference
the project. We believe that it sets the upper bound of the
popularity of a project.

B. Method 2 (M2): license-reference counting

Many open source licenses require that the name of
the project, or some other specific phrase, is explicitly
mentioned whenever the project or its subcomponents are
reused. An example demonstrating this practice is shown
in Figure 2.

Assuming that most documentation is nowadays pub-
lished on-line we can deduce that the number of pages
containing an exact phrase required by the license is an
estimation of the number of deployments of a project
and therefore its popularity.

M2(p) = ∑
(

pages containing a phrase required
by the project’s license

)
. (2)

1) Advantages: Very accurate — it is highly unlikely
that the same exact phrase required by the license is used
in any other meanings than to denote its deployment.

2) Disadvantages:

• Not all projects require a reference to its name. In
fact, as observed on many open source licenses, they
are copied verbatim from their template, often with
untouched, blank form fields. This estimation method
is unavailable for projects of this kind.

• In certain cases, the license refers to the software
house rather then the project (see Figure 2). For these
projects, this method will be unusable.

• Open source projects are commonly used without
fulfilling all license terms. In practice, developers
seem to look only at the “compatibility” between
various kinds of licenses, grouping them into GPL-
compatible, BSD-compatible etc. Additional sections
of the license file are often neglected.

http://carrot2.sourceforge.net


project-acknowledgement
In addition, we request that you include in the end-user documentation
provided with the redistribution and/or in the software itself an
acknowledgement equivalent to the following:
"This product includes software developed by the Egothor Project.
http://egothor.sf.net/"

os-vendor-acknowledgement
* 3. The end-user documentation included with the redistribution, if

* any, must include the following acknowlegement:

* "This product includes software developed by the

* Apache Software Foundation (http://www.apache.org/)."

* Alternately, this acknowlegement may appear in the software itself,

* if and wherever such third-party acknowlegements normally appear.

Fig. 2. Open source licenses: Egothor (above) requires specific acknowledgement, Apache projects (below) only demand that the ASF is referenced
properly.

3) Discussion of estimation quality: If only applicable,
the estimation of the number of deployments given by
M2 is perhaps the best possible using automated methods.
Let us point out that the number of references to the
phrase required by the project’s license is always an
underestimation of the total number of deployments. It can
be therefore considered a lower bound for the project’s
popularity.

C. Method 3 (M3): backlinks counting

So far we only utilized information about the presence
of a certain keyword, or a phrase in the Web resources. The
third proposal takes into account the link structure present
between Web pages. That this structure is a viable source of
information is obvious — the same kind of information has
long been used to rank the importance of pages matching
a query [2], [1].

There are a few options to derive the popularity of a
project from the link structure:
• We could acquire an already calculated importance

score for the home page of a project (PageRank in
case of Google). Unfortunately, this kind of informa-
tion is not provided by search engines.

• Count the number of backlinks of the project’s home
page. Backlinks are hypertextual references pointing
from some location on the Web to the page in ques-
tion.

The number of backlinks is clearly correlated with the
popularity of a project, even though it does not distinguish
between deployments and other types of citations. Most
modern search engines provide ways of querying for
backlinks of a given page. A potential problem is that
the number of backlinks will include all pages from the
project that internally link to its home page. We introduce
two measures. The first one is a plain backlink count. In
the second measure we substract the total number of pages
found in the project’s domain from the total backlink count.
This adjustment should deal with the pessimistic scenario
of every page linking back to the main one.

M3(p) = ∑
(
pages that link to hp(p)

)

−∑
(
pages in the domain of hp(p)

)
, (3)

M4(p) = ∑
(
pages that link to hp(p)

)
. (4)

1) Advantages:
• High relevance — a backlink to the main page of the

project is a confident indication of external interest in
the project. It is impossible to guess the nature of this

reference, but we measure the popularity in general,
so this is not important.

• Broad applicability — the method applies to all kinds
of projects. The only requirement is that the analyzed
project must have a Web site.

2) Disadvantages: The method counts all backlinks and
it should rather count external domains those backlinks
originate from. One can imagine a situation when a full
mirror of JavaDoc documentation of the project is pointing
back to its home page. This would give an unjustified boost
to the popularity score. At the moment we have no means
of detecting this kind of situations.

3) Discussion of estimation quality: In spite of its disad-
vantages, we think backlink counting is a relevant method
of calculating popularity of a project (see Section V-
B for discussion of potential abuse of this measure). It
is more conservative compared to simple word counting
and less strict than license-reference counting. We believe
the following invariant should always hold between the
presented measures: M1 ÀM4 > M3 > M2.

IV. EXPERIMENTAL EVALUATION

A. Goal of the experiment

We designed a practical experiment to verify our intu-
ition and prove the concept feasible. Specifically, we tried
to provide answers to the following questions:
• Is it always possible to calculate all the introduced

measures? How do they relate to each other?
• Which measure is most useful as a predictor of

popularity of a project?
• Are all our measures consistent with some other

measure of open source projects’ success?

B. Data for the experiment

In the experiment we had to analyze popularity of real,
existing open source projects. As part of the work on this
paper, we crawled and extracted [3] actual project names,
addresses of home pages and numerous other features from
the largest open source hosting facility in the world —
SourceForge. We chose SourceForge hoping to have a good
(large and diverse) population of projects to choose from.
As it turned out, we could also utilize the activity factor
SF assigns to its projects as a reference measure of success
we could compare our method against.

From the entire collection of over 80 thousand projects,
we assembled three distinct test sets of 200 randomly
chosen samples from larger groups of projects satisfying
the following conditions:
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Fig. 3. Distribution of values of RQ (top) and LQ (bottom). Projects
were sorted by test first (from the left on each chart: FAILED, GOOD,
RANDOM and then by RQ or LQ. Note logarithmic Y axis on the charts.

1) Test set name: GOOD Each project had to have at least
15 bugs, more than 5 patches and SF activity indicator
greater than zero. Rationale: projects with high number of
bugs and patches were, at least at some point, developed
actively. SF activity indicator is a measure of weekly
activity used at SourceForge, we assume it can be used
to mark popular, active projects;

2) Test set name: FAILED Each project had to have at least
two or three bugs, registration date earlier than 2004, SF
activity indicator not exceeding 5. Rationale: small number
of bugs in a long time (more than one year) suggests
that the project was unsuccessful at attracting user and
developer community;

3) Test set name: RANDOM All project were initially in-
cluded in this group.

We also assumed that recently registered projects have not
had the time to become a popular subject in the Internet
and only include projects registered prior to year 2004.

The test sets were manually inspected and cleaned from
projects unrelated to computer science. Project names
extracted automatically from SourceForge were often too
verbose. We manually cleaned and simplified names to
those actually used to refer to the project. In cases when
the name was still too long and it had a sensible-looking

abbreviation, this abbreviation was used (Java Weather
Library → jweather, ANSI Common Lisp → CLISP). At
this stage we also checked all home pages by following
browser redirections or finding the home page of a project
manually. Eventually, after all the pruning, the test data
sets had the following sizes: FAILED: 194, GOOD: 200,
RANDOM: 184.

Intuitively, by comparing values of measures calculated
for these test sets, we should be able to notice a statistically
significant difference between good, successful projects
and the failed projects. From the random sample we should
be able to find out about average values and properties of
our defined measures.

C. Search engines

We selected three search engines as a data source
for the experiment: Google (www.google.com),
AllTheWeb (www.alltheweb.com) and Gigablast
(www.gigablast.com). These three search engines
have independent crawlers, indices and ranking formulas,
which allowed us to cross-examine results.

For each project in the test data sets we queried3 each
search engine and collected the following parameters:
• RQ (regular query), number of pages containing all

terms from the project’s name,
• PQ (phrase query), number of pages containing an

exact copy of the project’s name as an ordered phrase,
• LQ (link query), number of pages with hyperlinks to

the home page of the project,
• SQ (site query), number of pages on the home site.

Please note that our measures can be expressed in relation
to these data as: M1 = RQ, M3 = LQ− SQ, M4 = LQ.
Obviously, we rely on the search engines to provide
accurate numbers, which is not entirely true (in huge,
distributed search engines, returned number of matching
results is usually an approximation). We use three inde-
pendent search engines to ensure the results are consistent
among them.

V. RESULTS AND DISCUSSION

A. Results of the experiment

The most valuable observations and conclusions from
the experiment are provided below.

Data in Table I shows that the standard deviation for
RQ is enormous. This is caused by projects with only
common words in their names that boost the RQ, just
as we expected. An extreme example: project “Show it!”
had an RQ = 357000000 and LQ = 0! Using phrases
does not help much with such projects and there were
quite a few of them in our test data sets. This effectively
renders measure M1 unusable for projects with common
names. LQ seems to be a much better indicator of real
project’s influence. It has lower standard deviation and
sensible averages. This observation is confirmed by looking
at Figure 3. Distribution of RQ’s values for GOOD data
set is on average higher compared to the other two data

3Description of the technical implementation of this process is quite
complex and involves advanced tricks with query syntax. We omit the
details here.

www.google.com
www.alltheweb.com
www.gigablast.com


Search Test RQ PQ LQ SQ
engine set E(X) D(X) E(X) D(X) E(X) D(X) E(X) D(X)

AllTheWeb failed 300740 1141744 240484 1105639 95 747 133 1377
AllTheWeb good 842439 2995823 656591 2656649 20257 226251 530 3588
AllTheWeb random 1711943 16074159 1469857 15731561 283 1992 35 275
Gigablast failed 186569 703013 93854 426040 30 211 53 608
Gigablast good 303173 1035229 217208 839435 3080 33612 79 509
Gigablast random 553660 5346102 72013 381947 25 190 8 61
Google failed 617705 2293558 505933 2210440 15 73 354 3148
Google good 1468158 5276370 1414917 5269737 1797 18771 2090 11801
Google random 2511927 26343093 385898 1970813 11 54 198 2011

TABLE I
AVERAGES AND STANDARD DEVIATIONS OF RESULTS RETURNED BY SEARCH ENGINES.

sets, but still they overlap much. With LQ, this situation is
much clearer — projects from GOOD have a much higher
LQ. The difference between RANDOM and FAILED test sets
is nicely highlighted too: RANDOM was a uniform sample
from all SourceForge projects and it comes out even worse
then those projects selected to FAILED (those had at least
one bug and 83% projects on SourceForge has no recorded
bugs [3]).

Data in Table I suggests that on average projects from
GOOD test set had significantly larger websites compared
to projects in RANDOM or FAILED (SQ parameter). The
postulated relationship between M1 and M3 (M1 ÀM3) is
confirmed in the experiment — only 26 projects out of
1734 had M1 < M3.

Reliability of results returned by search engines can be
assessed by comparing numbers of results for identical
queries returned from different search engines (Figure 3).
The numbers returned from all of the search engines are
highly correlated and consistent. Number of results for
regular queries (RQ) reflects the size of the index: Google
leads before AllTheWeb and Gigablast. A very intriguing
thing happens, however, with the number of link queries
(LQ) — AllTheWeb returns significantly more results than
Google. This is against common sense, so we suppose that
the two engines calculate this figure in a different way
or have a completely different organization of their link
database. We selected AllTheWeb as the reference point
for further analysis.

In the second part of our analysis, we tried to establish
correlation between our measures of popularity and several
features of the projects in the test sets: number of bugs,
patches and feature requests. To our surprise, no elements
of such correlation could be found.

Next, we tried to compare values of our measures to the
SourceForge’s activity factor. There are a few problems
with such comparison. First, activity factor is calculated
on a basis of weekly history of projects’ activity,4 so the
ranking it imposes often slightly changes. The activity
factor is also not weighted — it is merely a reflection
of a ranking made using another formula, so any kind
of regression would be inappropriate. As a last resort
we employed rank-order coefficients: Spearman’s ρ and
Kendall’s τ . We ranked (sorted) all projects in the test sets
using the activity factor and repeated the procedure for

4An exact formula is given at: http://sourceforge.net/docman/
display doc.php?docid=14040&group id=1

All data GOOD set only
Kendall’s τ Spearman’s ρ Kendall’s τ Spearman’s ρ

M1 0.23 0.41 0.16 0.24
M3 0.36 0.69 0.27 0.39
M4 0.43 0.78 0.27 0.40

TABLE II
RANK-ORDER COEFFICIENTS FOR PROJECTS SORTED ACCORDING TO

SOURCEFORGE’S ACTIVITY FACTOR TO ORDER IMPOSED BY M1 , M3

AND M4 .

M1, M3 and M4. The results in Table II demonstrate that
in all cases there was a positive rank correlation between
SourceForge’s activity and our measures. This correlation
was strongest for M4.

Finally, we manually investigated the topmost results
sorted according to the three measures M1, M3 and M4.
Just as expected from the previous observations, M1’s
topmost results include many projects that were failures
(see Table III). Their high score is caused by common
terms in their names rather then their real popularity.
Ranking created according to M4 looks good at first glance
— a few projects from the random data set were also
included, but it was not an error (we checked manually:
in spite of their zero SourceForge activity, these were
active, popular projects). The adjustment of site size used
in M3 does not affect the top of the ranking, but results
in many popular projects (like EXWIDGETS or GNUPLOT)
pushed back from the top to the bottom of the list, which
we consider the measure’s weakness. This effect usually
occurred when a project had a large on-line documentation
and a relatively small number of backlinks.

B. Intentional manipulation threat

There is a theoretical possibility of creating an inten-
tional structure of links and Web pages in order to boost
a given project’s measure of popularity. One example
technique to achieve this would be a link farm — cross-
referenced set of Web sites where links are intentionally
set up to boost one site’s score. These practices are already
in use, usually to promote sexual content and spam. Our
measures of popularity partially rely on the fact that most
search engines strongly discourage link farming (to the
point of removal from search engine’s index) and penalize
sites involved with such activities.

http://sourceforge.net/docman/display_doc.php?docid=14040&group_id=1
http://sourceforge.net/docman/display_doc.php?docid=14040&group_id=1
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LIST OF TOPMOST PROJECTS WHEN SORTED ACCORDING TO M1 , M3 AND M4 RESPECTIVELY.
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Fig. 4. Value of M4 measure for several major open source projects (big and small). Link count for Google is considerable smaller, but consistent
with AllTheWeb (as already pointed out in Section V-A).



C. Calculation of M4 and M1 for widely known projects

As a final, maybe a bit entertaining, element of this
paper we allowed ourselves to measure the popularity of
several widely known open source projects, including a
few major Linux distributions. The results are presented
in Figure 4. It is quite amazing to see the “difference”
between major Linux distributions and ANT and JUnit —
probably among the most widely known Java open source
utilities. It also puts into perspective the actual impact of
certain Linux distributions (here: PLD Linux) compared to
the major ones.

VI. SUMMARY AND CONCLUSIONS

The problem of defining and measuring success of open
source projects is definitely not trivial. In this work we
suggest a relationship between the success of a project
and its popularity on the Web. We introduce three methods
in which this popularity could be actually measured by
mining knowledge existing in Web search engines and
design an experiment that explicitly shows how this can
be done. The experiment allows us to make the following
conclusions about the presented measures:
• measure M1 is not accurate enough due to problems

with common terms in names of projects (but indeed
does seem to be the upper bound for popularity of a
project),

• measure M2 is not practically applicable for most
projects because in most cases licenses are merely
generic templates and lack project-specific fragments,

• two measures seem to demonstrate relevant and sen-
sible properties: M3 and M4. They also exhibit a
significant rank order correlation to SourceForge’s
activity factor. We mention this fact, but would rather
avoid making conclusions because the activity factor
is an oddly calculated value and in our opinion is
not a very good indication of success of open source
projects.

Future work on the subject could refine the penalty
component in M3 — currently it seems to be doing more
harm than good. Additional work is also needed to make
the measure less sensitive to apparently quasi-exponential
distribution of values of the link query count component
(LQ).
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