
Quantitative Analysis of Open Source Projects
on SourceForge

Dawid Weiss
Poznán University of Technology

Poznán, Poland
dawid.weiss@cs.put.poznan.pl

Abstract— Relatively easy accessibility of high volumes of
information about open source software makes it an interest-
ing target for quantitative analysis meant to discover some
hidden properties and trends of this software development
model. In this work we demonstrate how such information
can be acquired from the largest open source hosting facility
— SourceForge — with nearly minimal effort. We compare
our data with an identical data set collected a few months
earlier by the OssMole [2] project, of which we were not
aware at the time of performing the experiment, but which
allowed us to make some interesting cross-comparisons and
derive conclusions about temporal changes going on at
SourceForge.

I. I NTRODUCTION AND MOTIVATION FOR THE WORK

It is seldom the case that so little is known about
the sources of success of so many. The open source
movement has gained an incredible momentum and still
many questions concerning its internal workings remain
unclear. Why is open source development attractive for
programmers? What kind of factors make an open source
project successful? How can a programming model be so
far from modern commercial software engineering stan-
dards and yet spawn stable, commercial-quality software?

Researchers start to investigate the above questions
and more and more is known about the mechanics and
processes ruling the open source world [1]. In this work
we would like to contribute certain quantitative analyses of
open source projects that we performed on data acquired
(crawled) from the largest open-source hosting facility —
SourceForge.1 Under the term ‘quantitative’ we understand
applying certain statistics and counting properties of hun-
dreds or thousands of open source projects.

A single statistical snapshot of so many open source
projects is interesting in itself, but as an additional bonus
we also provide elements of temporal analysis of changes
going on at SourceForge, which we believe has not been
presented before. We do this by comparing results made
for our data set with identical statistics published a few
months earlier by the OssMole project [2]. It should be
stressed that we were not aware of OssMole until our data
was halfway crawled; approaches to crawling exhibited in
the two vary significantly.

II. PROCEDURE OF CRAWLINGSOURCEFORGE DATA

The primary observation that led us to the concept of
crawling SourceForge data automatically was that all home
pages of projects hosted there have a very similar and pre-
dictable structure (see Figure1), suggesting an underlying
database of some sort. The structure and availability of

1http://sourceforge.net

Fig. 1. Home pages of projects hosted at SourceForge demonstrate a very
predictable layout of content structure (here depicted with red rectangles).

data in that database was for obvious reasons unknown,
but by manual analysis of several dozen pages, we ended
up with the following features that could be automatically
retrieved from tha raw HTML source of home pages:

• Registration date. For all projects, there is a regis-
tration date on SourceForge services.

• Activity percentile. A measure of a project’s ‘activ-
ity’. 2

• Total number of developers in a project.Note that
this is the total number of so-calledcommitters(peo-
ple with write-access to the repository). The number
of committers heavily depends on the internal project
policy of assigning such rights to people and is hard
to compare between projects.

• Unix name of the project. Name of the folder on
SourceForge hosts (also indicates project names found
in the URLs).

• Summary of the project. More verbose information
about the project (if defined by the admin).

• Project tracker information. Trackers for: bugs, sup-
port requests, feature requests and patches. Total and
open counts are available for projects that declared to
use such facilities.

• Trove classification data.Trove3 classification sys-
tem is based on self-declaration of project maintainers
about features and properties of the project. These
include: database environment, development status,

2Calculated by SourceForge every week using the formula de-
scribed athttp://sourceforge.net/docman/display doc.
php?docid=14040 \&group id=1#calculate

3http://sourceforge.net/softwaremap

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/103757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://sourceforge.net
http://sourceforge.net/docman/display_doc.php?docid=14040&group_id=1#calculate
http://sourceforge.net/docman/display_doc.php?docid=14040&group_id=1#calculate
http://sourceforge.net/softwaremap


intended audience, used license(s), programming lan-
guage, deployment operating system, topic, transla-
tions of the project, its documentation and type of
user interface.
Project maintainers may locate the project in Trove’s
categories by assigning it to any of the values prede-
fined by SourceForge. A project may opt not to use
this classification system at all. Usually more than one
value from each category may be also assigned to a
project (i.e. more than one language of translation or
a target operating system).

The next thing we observed was that the URLs of home
pages follow a predictable pattern of:

http://sourceforge.net/projects/︸ ︷︷ ︸
Base address

carrot2︸ ︷︷ ︸
Unix project name

(1)

We then fetched home pages of all projects hosted at
SourceForge in order to extract the interesting information
to a relational database for further analysis. The remaining
part of this section presents this process in an outline. For a
detailed step-by-step description and additional resources,
refer to [3].

1) Acquire a list of all Unix names of projects at
SourceForge. This can be done easily if you have
a shell account at SourceForge (which every project
administrator does).

2) Process the list of project names and fetch all home
pages of known projects using the URL pattern
mentioned above. Play it nice with SourceForge
servers and make long delays between fetches. There
were over 89 thousand projects at the time we did
the crawl. It takes a good couple of days to collect
all the data.

3) Process locally stored home pages and extract all
available information about the projects. We used a
set of quite trivial regular expressions and a simple
Python script.

4) Insert all the extracted information into a relational
database to facilitate data mining. We used a data-
base’s schema shown in Figure2 together with
MySQL database engine. There is one table to hold
all of project-related information (projects ) and
one table to store predefined values of categories
found in the Trove system (trove categories ).
Since there is a many-to-many relationship be-
tweenprojects and trove categories , this
relationship is split and forms an additional table
trove . An average query with multiple joins and
where clauses is usually completed under a few
seconds on average commodity hardware.

Using this procedure we crawled and extracted informa-
tion from 89557 projects present in SourceForge at the end
of December, 2004.

III. C ROSS-COMPARISON OF RESULTS WITHOSSMOLE

Our crawl took place roughly two months after Oss-
Mole’s. We believed certain trends and differences should

Fig. 2. Database schema for storing information extracted from Source-
Forge.trove table is a normalization of many-to-many relationship.

be visible by comparing results of queries4 published by
OssMole to identical queries on our data set.

A. Number of developers for each project

(OSSMole:sfSummaryDeveloperData12-Nov-2004.txt )

We have found out the following:

• Projects with no access (invalid or with permission
denied) are omitted in OSSMole’s results. We include
all projects, even if information about them is unavail-
able.

• Our list has 4744 new projects compared to Oss-
Mole’s. This is also confirmed by charts of projects
registration per month (see SectionIII-G).

• 1187 projects gained developers, on average by1.51
developer per project.

• 397 projectslost developers, on average by1.80 de-
veloper per project (which is more than the developer
gain mentioned above).

• Interestingly, 15 projects went completely inactive (or
should we say have been abandoned by the captain)
dropping to zero developers.

• Even more interesting, however, was the fact that
several projects werenot present at allin our results.
Since our database of projects contained all entries
in the filesystem, it either implies that those projects
had been physically removed in the meantime (against
SourceForge’s policy?), or a network file system was
disconnected at the time we crawled project names
(not likely because missing project names range
throughout the alphabet). A total of 93 projects had
been removed in the period of 2 months.

B. Intended audience for projects

(OSSMole:sfSummaryIntAudData21-Oct-2004.txt )

Comparison of intended audience charts yields an interest-
ing thing: apparently new categories have been added to
Trove (see TableI). Apart from that, a steady increase of
project counts among all categories can be observed.

C. Usage of licenses

(OSSMole:sfSummaryLicenseData21-Oct-2004.txt )

As it is shown in TableII , the use of open source licenses is

4OssMole only published the scripts and several results of their crawl.
The database they collected is not available for the public.



Intended audience Expe- OssMole Increase Ranking
riment change

Developers 32248 31104 1144 0
End Users/Desktop 28381 27406 975 0
System Administrators 13111 12710 401 0
Other Audience 6329 6206 123 0
Information Technology 5155 4895 260 0
Education 4254 4051 203 0
Science/Research 3978 3749 229 0
Customer Service 1292 1232 60 0
Telecommunications Industry 1205 1121 84 0
Financial and Insurance Industry 612 572 40 0
Manufacturing 495 460 35 0
Healthcare Industry 437 424 13 0
Advanced End Users 329 #N/A #N/A #N/A
Religion 239 227 12 1
Legal Industry 219 210 9 1
Quality Engineers 48 #N/A #N/A #N/A

TABLE I

INTENDED AUDIENCE FOR PROJECTS INOSSMOLE AND OUR EXPERIMENT. NOTE THE MISSING CATEGORIES INOSSMOLE

License Expe- OssMole Increase Ranking
riment change

GNU General Public License (GPL) 40275 37947 2328 0
GNU Library or Lesser General Public License (LGPL) 6455 5070 1385 0
BSD License 4172 3962 210 0
Public Domain 1579 1271 308 0
Artistic License 1160 1112 48 0
MIT License 1041 904 137 -1
Other/Proprietary License 1000 555 445 -1
Apache Software License 930 918 12 2
Mozilla Public License 1.1 (MPL 1.1) 716 537 179 0
OSI-Approved Open Source 473 471 2 0
Common Public License 416 360 56 0
zlib/libpng License 288 245 43 0
Open Software License 270 208 62 0
Apache License V2.0 260 198 62 0
Mozilla Public License 1.0 (MPL) 227 187 40 0
Qt Public License (QPL) 214 152 62 -1
Academic Free License (AFL) 182 160 22 1
Python License (CNRI Python License) 139 117 22 0
Python Software Foundation License 123 102 21 0
PHP License 112 58 54 -1
IBM Public License 74 63 11 1
Apple Public Source License 51 51 0 0
wxWindows Library Licence 48 33 15 0
Sun Industry Standards Source License (SISSL) 47 29 18 -2
Sun Public License 45 26 19 -2

TABLE II

SUMMARY OF USED LICENSES INOSSMOLE AND OUR EXPERIMENT. NOTE THE STABILITY IN THE RANKING AMONG THE TOPMOST LICENSES.

quite stable, especially among the topmost licenses. Why is
GNU-family licensing so popular is an interesting question.
Some people say it is GNUs idealistic concept of forever-
free software people are attracted to. Others claim it is
a consequenceof these idealistic concepts — a set of
‘contagious’ legal terms and obligations people have little
choice but to obey.

D. Target operating systems

(OSSMole:sfSummaryOpSysData21-Oct-2004.txt )

Target operating system summaries differ very much be-
tween OssMole and our experiment. It is mostly due to
major changes in names of categories. This is somewhat of
a mistery to us — we suppose either SourceForge changed
Trove classification system at some point, or OssMole’s
data has been modified from Trove’s classification to

reduce the set of classes (compare listings of topmost
classes in TableIII ). Another factor that obscures the view
of results is that Trove categories are hierarchical, but
projects get assigned to internal hierarchy nodes and leaves
at the same time.

E. Language of implementation

(OSSMole:sfSummaryProgLangData21-Oct-2004.txt )

A ranking of implementation languages remained virtually
unchanged from OssMole’s version (see TableIV); a few
new languages apparently have been added to Trove and
there is a steady increase in the project counts. Note
strong position of Java in comparison with C#. Assembly
language, even though strong in the ranking, gained only
7 projects in two months.



OssMole Our experiment
Operating system Projects Operating system Projects
OS Independent 20802 All POSIX (Linux/BSD/UNIX-like OSes) 27660
Linux 20576 OS Independent (interpreted language) 22135
Windows 7720 Linux 21642
Windows 95/98/2000 6429 All 32-bit MS Windows (95/98/NT/2000/XP) 18766
Windows NT/2000 4983 32-bit MS Windows (95/98) 6628
POSIX 4786 32-bit MS Windows (NT/2000/XP) 5358
MacOS X 2694 WinXP 5269
SunOS/Solaris 1972 Win2K 5212
FreeBSD 1397 All BSD Platforms

(FreeBSD/NetBSD/OpenBSD/Apple OS X)
2978

BSD 1353 OS X 2888
Other OS 1072 Solaris 2057
Microsoft 1007 FreeBSD 1451
MacOS 821 Other Operating Systems 1081
Other 705 Other 738
MS-DOS 540 MS-DOS 581
PalmOS 462 PalmOS 499
BeOS 421 BeOS 430
MacOS 9 386 Apple Mac OS Classic 409
PDA Systems 297 OS Portable (Source code to work with many OS

platforms)
372

OpenBSD 291 Handheld/Embedded Operating Systems 310

TABLE III

TOPMOST CLASSES FOR TARGET OPERATING SYSTEMS INOSSMOLE AND OUR EXPERIMENT. NOTE MAJOR DIFFERENCES IN NAMES OF CLASSES.

��������	
								


�����		
									


������
��������
���

����						
							

�����				
								


���
�����			
					


����
����						
			

� ���� ���� ���� ����� ����� �����

� ����!���

"##
���

Fig. 3. Declared development statuses in OssMole and our experiment.

Implementation Our OssMole Increase Ranking
language experiment change
C++ 14326 13793 533 0
C 13962 13547 415 0
Java 13552 12872 680 0
PHP 9976 9480 496 0
Perl 5554 5407 147 0
Python 3608 3432 176 0
JavaScript 2054 1946 108 0
C# 2052 1847 205 -1
Visual Basic 1989 1939 50 1
(contd.)

TABLE IV

IMPLEMENTATION LANGUAGES IN OSSMOLE AND OUR EXPERIMENT.

F. Declared development status

(OSSMole:sfSummaryStatusData21-Oct-2004.txt )

Comparison of development statuses between OssMole
and our experiment shows major increases in products
marked asPre-Alpha and Production/Stable(by over
2000 projects). Pre-alpha growth could be explained by

projects that were added to SourceForge in between the
two experiments. There seems to be no clear source for
such increase in stable projects number (all statuses noted
an increase in counts and the number of recently added
projects does not entirely balance this increase). We were
unable to rationally explain this phenomenon.

G. Registration history

(OSSMole:sfSummaryRegistrationData21-Oct-2004.txt )

As mentioned before in SectionIII-A , we could expect
certain discrepancy in the number of registrations over time
between OssMole’s and our data. Theoretically, the past
numbers should be identical, but as we showed, several
projects had been physically removed from SourceForge.
Large increase in 2004 is of course caused by the two
months of difference between crawl times of the two
experiments (however, the difference accounts only for
4221 new registrations and as we showed in SectionIII-A ,
the actual difference between data sets is 4744 projects).



Development Expe- OssMole Increase
status riment
1999 433 433 0
2000 5660 5662 -2
2001 16354 16412 -58
2002 21618 21676 -58
2003 22377 22436 -59
2004 20864 16643 4221

TABLE V

NUMBER OF REGISTRATIONS PER YEAR INOSSMOLE AND OUR

EXPERIMENT.

H. Declared topic

(OSSMole:sfSummaryTopicData21-Oct-2004.txt )

As for projects’ declared topics, no major changes could
be observed between OssMole and our experiment. When
looking at the assignments, however, one cannot escape
the conclusion that the work on categorization of software
on SourceForge is still in progress, or is badly designed.
A highlight example: in theDocBookcategory of Trove5

there was only one project at the time of our crawl6

and it was not the main DocBook stylesheets project,
which is also hosted on SourceForge. . . In fact, DocBook
stylesheets project is not even categorized in Trove.

I. Summary of the comparison

Comparison of our data with OssMole’s yields some
interesting observations, especially about changes undergo-
ing the SourceForge software classification system Trove.
Analysis of open source projects data over time addition-
ally shows certain aspects of its dynamics, which is obscure
with static snapshots. It may be a good idea for the future
to focus on this temporal activity going on at SourceForge.

IV. SELECTED ANALYSES PERFORMED

EXCLUSIVELY ON OUR DATA

A. Project activity

1) Invalid and inaccessible projects:While crawling
SourceForge we encountered many projects with home
pages either inaccessible — 74 projects, or invalid — 2251
projects, a bit over 2% of the total number of projects
(see Figure4). Inaccessible pages are blocked by project
administrators. We could not come up with any sensible
explanation for invalid pages other then that these pages
might have been scheduled for removal and inaccessibility
is a way of detecting whether the project is still maintained.

2) Development status declared by projects:Figure 5
presents a chart of counts of projects with a given devel-
opment status. Note the disproportion between software
declared as stable and software in alpha, or planning phase.
Table VI shows the number of ‘discontinued’ projects —
those that registered over a year ago and never changed
their status from alpha. Again, it might be surprising, but
over 43% of projects fall into this category.

5http://sourceforge.net/softwaremap/trove list.
php?form cat=555

6http://sourceforge.net/projects/xml2texml/

Fig. 4. SourceForge returned invalid or inaccessible pages for a number
of projects.

3) Number of projects with at least one bug:Number
of projects with at least one bug is 14475, a mere 16% of
the total. Yet again a proof that most SourceForge projects
never really attracted a serious user community.

At an average, each project has approximately one open
bug out of four ever submitted. unfortunately, the averages
are not good representatives of the distribution of bugs,
which is exponential (see Figure6 for a chart). This again
would suggest that only minority of SourceForge projects
are truly active.

Figure 7 also presents an interesting chart — projects
with most submitted bugs (and hence most active user
communities). On a more relaxing note, the project with
most submitted feature requests is. . . SourceForge itself!

B. Average number of developers per project

An average number of developers per project is 2, but
again, the distribution of this statistic is rather exponential
(see Fig8) with maximums reaching hundreds of devel-
opers in one project (TINYOS, JEDIT, JBOSS).

C. Number of language translations per project

Majority of projects is unilingual (40649 projects), with
English being the most popular language (48482 projects)
and German with the second position (4809 projects). Rel-
atively high number of bilingual projects (9486 projects)
may be a result of foreign projects being later (or even
at the time of development) translated to English. Higher
number of translations are seldom.

Registration date Total
Status 1999 2000 2001 2002 2003
1 - Planning 24 524 3308 3991 3462 11309
2 - Pre-Alpha 43 686 2271 2794 2758 8552
3 - Alpha 61 1027 2163 2651 2769 8671
Total 128 2237 7742 9436 8989 28532

TABLE VI

NUMBER OF DISCONTINUED PROJECTS

http://sourceforge.net/softwaremap/trove_list.php?form_cat=555
http://sourceforge.net/softwaremap/trove_list.php?form_cat=555
http://sourceforge.net/projects/xml2texml/


0

2500

5000

7500

10000

12500

15000

N
u
m

b
er

o
f
p
ro

je
ct

s

1
-

P
la

n
n
in

g

2
-

P
re

-A
lp

h
a

3
-

A
lp

h
a

4
-

B
et

a

5
-

P
ro

d
u
ct

io
n
/
S
ta

b
le

6
-

M
a
tu

re

7
-

In
a
ct

iv
e

14648

11125 11259

14322

11929

1070 984

Fig. 5. Count of projects with a given development status

V. SUMMARY AND CONCLUSIONS

We have presented a simple and low-effort method of
crawling SourceForge data that provides very interesting
information about numerous open source projects. We have
also shown how our data compares to a similar project
OssMole.

The following conclusions and observations can be
drawn from the experiments:

• OssMole’s data is not complete — it lacks information
about inactive and inaccessible projects. We are able
to indicate at least names of those projects.

• Open source projects on SourceForge are constantly
initiated and go inactive; some of the inactive projects
vanish completely from the server.

• Trove categorization seems to be under constant re-
finement by SourceForge. Categories change names,
new leaves and hierarchy nodes are added.

• Developers themselves are the main target audience
for open source projects. This class of target audience
also exhibits the most rapid growth in the number of
new projects (see TableI).

• With outstanding lead over any other license, GPL
and LGPL licensing types are the most common in the
open source world (see TableII ). GNU’s ‘contagious’
licensing terms might have resulted in its leading
role; it is difficult to say whether this is really the
case. From the point of view of commercial partners,
this strong leading position of GPL might be seen
as a drawback because GPL is commonly considered
hostile to the commercial world.

• The ‘war’ between Java and C#, at least in the world
of open source, does not exist — Java reigns together
with C and C++ (see TableIV).

• Surprisingly, vast majority of open source projects
declares their development status at the ‘unstable’

level or even in the planning phase (see SectionIV-
A.2). Together with the information concerning com-
munity activity, such as the number of submitted bugs,
patches and feature requests, this seems to indicate
that only minority of open source projects ever makes
it to the level of being popular (and thus successful).
open source looks much like software incubator —
out of many attempts only a few make it, but are
good enough to catch on with a larger group of end
users.

• There is something essentially odd about the way
‘activity’ is measured by SourceForge. Linear char-
acteristic of values of this activity suggests that it is
a form of a ranking, rather than a product of some
independent factors. In any way, the activity factor
is on an ordinal scale rather then ratio scale — any
comparisons of activity ratios of two projects do not
make sense.

Future work could focus on detecting temporal activity
of the open source projects and community: what type
of projects are becoming more successful and which lose
interest? Which languages are becoming more important
and which not? What operating systems dominate the
market? Seeking answers to such questions is justified for
purely research reasons, but might turn to be useful to
commercial companies investing in open source software
as well. Elements of such analysis have been started after
this paper was finalized: the OSSMole project integrated
the outcome of the experiment described in this paper and
initiated the process of collecting temporal data.

Acknowledgement. The author of this work would like to
thank Maciej Hapke, Andrzej Jaszkiewicz and Krzysztof Kowal-
czykiewicz for fruitful discussions. This research has been funded
by the European Commission via FP6 Co-ordinated Action
Project 004337 in priority IST-2002-2.3.2.3CALIBRE (http:
//www.calibre.ie ).

http://www.calibre.ie
http://www.calibre.ie


0

2000

4000

6000

8000

10000

N
u
m

b
er

of
p
ro

je
ct

s

0
-

4

5
-

9

1
0

-
1
4

1
5

-
1
9

2
0

-
2
4

2
5

-
2
9

3
0

-
3
4

3
5

-
3
9

4
0

-
4
4

4
5

-
4
9

5
0

-
5
4

5
5

-
5
9

6
0

-
6
4

6
5

-
6
9

7
0

-
7
4

7
5

-
7
9

8
0

-
8
4

8
5

-
8
9

9
0

-
9
4

9
5

-
9
9

Total number of bugs (in intervals)

8
5
4
1

2
1
5
0

9
0
5

5
7
6

3
4
6

2
8
6

2
0
4

1
5
7

1
1
9

1
1
2

9
1

6
5

5
1

6
6

5
1

4
2

4
0

3
6

2
4

2
2

Fig. 6. Histogram of distribution of the total number of bugs for projects with less than a 100 bugs.

0

2000

4000

6000

8000

10000

T
o
ta

l
n
u
m

b
er

o
f
b
u
g
s

G
a
im

P
y
t
h
o
n

S
la

s
h

T
c
l

P
C

G
e
n

::
A

n
R

P
G

C
h
a
r
a
c
t
e
r

G
e
n
e
r
a
t
o
r

jE
d
it

J
B
o
s
s
.o

r
g

w
x
W

id
g
e
t
s

(
fo

r
m

e
r
ly

w
x
W

in
d
o
w

s
)

S
t
e
p
M

a
n
ia

m
o
r
e
.g

r
o
u
p
w
a
r
e

W
e
b
m

in

T
k

T
o
o
lk

it

T
ik

i
C

M
S
/
G

r
o
u
p
w
a
r
e

S
q
u
ir

r
e
lM

a
il

S
c
u
m

m
V

M

O
p
e
n

M
e
r
c
h
a
n
t

E
m

p
ir

e
s

p
h
p
M

y
A

d
m

in

e
G

r
o
u
p
W

a
r
e
:

E
n
t
e
r
p
r
is

e
C

o
ll
a
b
o
r
a
t
io

n

C
o
m

p
ie

r
e

E
R

P
+

C
R

M
B
u
s
in

e
s
s

S
o
lu

t
io

n

p
h
p
W

e
b
S
it

e
C

o
n
t
e
n
t

M
a
n
a
g
e
m

e
n
t

S
y
s
t
e
m

8
6
4
7

5
5
2
4

3
2
6
4

3
1
0
1

2
3
6
6

2
3
3
3

2
2
6
1

2
0
9
8

2
0
8
6

1
9
6
8

1
9
2
7

1
8
3
3

1
8
0
3

1
7
2
1

1
6
8
1

1
6
6
4

1
5
5
6

1
4
7
8

1
4
6
3

1
4
3
5

Fig. 7. Projects with most total submitted bugs.



0

10000

20000

30000

40000

50000

60000

N
u
m

b
er

o
f
p
ro

je
ct

s
w

it
h

th
is

n
u
m

b
er

o
f
d
ev

el
o
p
er

s

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

Number of developers in a project

1
3
8

5
8
0
4
7

1
3
7
2
4

5
6
7
9

3
1
4
4

1
8
9
2

1
2
3
8

8
2
1

5
3
0

4
0
2

2
9
5

2
2
7

1
9
2

1
4
7

1
1
8

9
1

6
9

6
7

5
8

4
9

3
5

3
6

2
9

3
0

2
0

2
2

2
3

1
3

1
5

1
7

1
5 7 1
1 3 5 8 5 6 6 6 3 2

Fig. 8. Distribution of the number of developers in projects.

REFERENCES

[1] M. Hahsler and S. Koch, “Discussion of a large-scale open source
data collection methodology,” Proceedings of the Hawaii Interna-
tional Conference on System Sciences (HICSS-38), to appear., 2004.

[2] Ossmole, “Ossmole: a project to provide academic access to data
and analyses of open source projects,” 2004. [Online]. Available:
http://ossmole.sourceforge.net

[3] D. Weiss, “A large crawl and quantitative analysis of open source
projects hosted on sourceforge,” Institute of Computing Science,
Poznán University of Technology, Poland,” Research Report RA-
001/05, 2005.

http://ossmole.sourceforge.net

	I Introduction and motivation for the work
	II Procedure of crawling SourceForge data
	III Cross-comparison of results with OssMole
	III-A Number of developers for each project
	III-B Intended audience for projects
	III-C Usage of licenses
	III-D Target operating systems
	III-E Language of implementation
	III-F Declared development status
	III-G Registration history
	III-H Declared topic
	III-I Summary of the comparison

	IV Selected analyses performed exclusively on our data
	IV-A Project activity
	IV-A.1 Invalid and inaccessible projects
	IV-A.2 Development status declared by projects
	IV-A.3 Number of projects with at least one bug

	IV-B Average number of developers per project
	IV-C Number of language translations per project

	V Summary and conclusions
	References

