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Crew time is one of the most valuable and limited resources during long-duration space 
missions. Crew time requirements fluctuate depending on variations in crew performance. 
The limited number of crewmembers, resources, and the myriad of tasks to be performed 
leave a tight schedule for crewmembers during long-duration space missions. This sched-
ule needs to account for potential interventions (stress events) that may alter predicted 
performance and thus scheduling. A dynamic crew model using a stochastic Auto Regres-
sive Integrated Moving Average (ARIMA) model of interrupted time series was devel-
oped to account for the effects of potential stress events on crew performance. This model 
aids in estimating crew time requirements for varying mission scenarios and for evaluating 
stress event effects on crew performance.  
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Long duration space mission crews will have to perform a myriad of tasks 
under extreme conditions for exploratory and settlement missions.  The primary 
goal for any mission is the achievement of specific scientific endeavors and the 
maintenance of a safe crew environment.  Stressors such as isolation, confine-
ment, microgravity, extraneous work schedules, and crew heterogeneity are exam-
ples of elements that may alter the consistency of motivation, crew performance, 
and productivity (Connors, Harrison, & Akins, 1985). Crew time is the most valu-
able and limited resource during long-duration space missions and is directly re-
lated to performance.  It is thus critical to predict the influence of stressors on 
crew performance for designing successful mission scenarios. 

Static crew time calculations have been used for determining the appropriate-
ness of Advanced Life Support (ALS) subsystems for long-duration space mis-
sions. An example of this is the methodology used for Equivalent System Mass 
(ESM) computation of a Bioregenerative Water Recovery System (BWRS) for a 
space mission by Levri, Vaccari, and Drysdale (2000). An important aspect of this 
computation is calculating the crew time associated with this particular technol-
ogy. This crew time estimate is static in the sense that it assumes steadiness in 
crew performance and uses a time-averaged crew time estimate. The total crew 
time available for mission related work (tmission) is the time used for maintenance 
and repair of the BWRS (tlss), subtracted from the total time available for perform-
ing work (twork). However, assuming a variable that represents the dynamic nature 
of crew time would further enhance such calculations.  

To aid in furthering the fine-tuning of crew time calculations, a dynamic crew 
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model was constructed with the notion that crew pro-
ductivity is not constant and may vary due to potential 
stressors present during long-duration space missions. 
Specifically, the objective of developing such a model 
was to simulate the effects of physiological and psy-
chological stressors on crew performance and ulti-
mately on crew time requirements for various mission 
tasks.  Crew time is a costly and limited resource for 
long-duration missions, which can effectively increase 
mission costs. Only a limited amount of time is avail-
able during each day for crewmembers to perform 
tasks such as life support system maintenance and 
achieve specific scientific endeavors.  This time can-
not be amplified unless the number of crewmembers is 
increased, and the number of crewmembers cannot be 
increased without the addition of more systems and 
equipment needed to provide life support for the addi-
tional crewmembers.  Additional systems and equip-
ment increase the Advanced Life Support System 
(ALSS) mass, which essentially increases mission 
costs (Drysdale & Hanford, 1999; Jones, 2001).   

The dynamic crew model developed for this study 
is an adaptation of a previously built  model (Stahl, 
1996), and incorporates earlier work by Goudarzi and 
Ting (1999). Stahl’s CREW model was designed to 
predict crew performance during critical times 
throughout a mission, whereas the Goudarzi and Ting 
model was an empirical tool developed for examining 
physical requirements, such as calorie intake and oxy-
gen consumption, based upon habitat conditions and 
specific human characteristics (e.g., gender, age, and 
body mass).  The dynamic model presented here may 
be used as a stand-alone application, or may be inte-
grated into a system level model, such as the top-level 
ALSS model developed by the System Studies and 
Modeling team that was part of the New Jersey NASA 
Specialized Center of Research and Training (NJ-
NSCORT) project (Rodriguez, 2002). 

MODEL DEVELOPMENT METHODOLOGY 

Mathematical Framework 

 The dynamic crew model presented here is based 
on a stochastic ARIMA (Auto Regressive Integrated 
Moving Average) model of interrupted time series, 
which can be used for a broad range of phenomena in 
the social sciences (McDowall, McCleary, Meidinger, 
& Hay, 1981).  The dynamic crew model investigates 
whether performance of any crewmember would be 
significantly compromised at critical times during a 

mission rather than determining the time-averaged 
physiological-psychological state of an entire crew.   

ARIMA models are statistical models generally 
used to analyze time series data while assessing the 
impact of interventions.  Such time series may be con-
sidered as a realization of a stochastic process. The 
idea is to observe impacts on a time series due to inter-
ventions, which break the series into pre- and post-
intervention segments.  In an ARIMA model, the cur-
rent time series observation (Yt) is partially deter-
mined by the previous observation (Yt-1) and so on 
(See Eq. 1) (McDowall et al., 1981).  Following the 
procedures described by Stahl (1996), the concept of 
ARIMA modeling was used for this study.  However, 
actual time series data were unavailable for model de-
velopment.  Therefore, it was necessary to choose 
plausible parameter values (α, φ, and θ) for the model, 
while developing a model structure that can accept 
“real” input data when they become available. Once 
the structure was developed, the resulting model was 
then used for simulating “what if” scenarios, thus in-
vestigating its utility.  

The general model expression combines the three 
main ARIMA components (differencing, averaging, 
and autoregressive components) to determine the rela-
tive crew performance while accounting for past 
trends: 

Yi(t) = αi(t) + φi Yi(t-1) + θi αi(t-1)           [Eq. 1] 
 

Where:  

Yi(t) = Crew performance relative to optimal  
  performance (=1.0) for crew member i 
  for a given mission at time t, 
α = Random variable with mean µ (= 0)  
  and standard deviation s for the un- 
  known variance in crew performance,  
φ = Momentum of Yi(t), 
θ = Momentum of α. 

 
In addition to accounting for past trends, an ex-

pression that incorporates interventions was added.  
Interventions are external events that can disturb the 
flow of a time series (in our model, stress events are 
the interventions).  Impact characteristics such as the 
duration and intensity of the stress event are accounted 
for by adding the following expression to the right 
hand side of Equation 1: 
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εij
(tj-t) ωij  +    δij

(t-tj) ω*ij                   [Eq. 2] 

(for t < tj)          (for t > tj) 

 
Where: 

ε = Rise rate of stress event j, 
tj  = Time of occurrence of the jth of n   
  stressor events during the mission, 
δ = Rise rate of recovery process for event  
  j, 
ω = Relative intensity of the stress event on 
  Y,  
ω* = Relative intensity of the recovery  
  process on Y. 

 
Equation 2 describes an interruption (event j) 

through its intensity (ω) and the onset rate (ε), while 
accounting for the decay (δ) rate of that event. The 
first summation term in Equation 2 accounts for the 
onset of a stress event, while the second summation 
term in the equation is the recovery portion.  The re-
covery process may be quite slow or non-existent. In 
that case, the second term is zero. A stress event can 
be a physiological malady such as a cold, having a 
gradual onset with a recovery lasting several days, or a 
sudden mechanical failure, that may only affect per-
formance for a few hours. 

Therefore, the overall model equation determined 
by combining Equations 1 and 2 is: 

 
  Yi(t) = αi(t) + φi Yi(t-1) + θi αi(t-1) +  

 

εij
(tj-t) ωij  +    δij

(t-tj) ω*ij                   [Eq. 3] 

       (for t < tj)          (for t > tj) 

 

  Equation 3 is a generalized first-order ARIMA 
model that also includes the (exponential) onset and 
decay of j interventions (i.e., stress events such as 
crew illness, emergencies, or mechanical failures).  
The model determines a single general crew perform-
ance factor, Yi (t), for each of i crewmembers that 
represents his/her performance level.  As discussed, 
the quantitative data to define the intensities, shapes, 
and durations for the stress onset and recovery func-
tions included in Equation 3 were not available during 

the development of our model. Similarly, Stahl’s 
(1996) research recovered no data for developing his 
model. Despite the likelihood that research at NASA 
collected some of this data, it remained inaccessible 
for our study. Therefore, qualitative data was used to 
generate default functions, when needed.   

Figure 1 presents examples of two simulated 
stress-recovery events occurring on the fourth and 
sixth day of a 10-day period, where it is assumed that 
the recovery process eventually cancels a stress event 
(i.e., δ = ε, and ω* = |ω|).  

As shown, the most significant impact of the stress 
events occurs on days 4 and 6.  However, in the case 
of both stress events, performance starts to drop some 
time prior, as determined by the rise rate (ε) associated 
with each stress event.  The dashed line is an example 
of a stress event that starts to affect crew performance 
slowly (ε = 0.5, ω = -0.6).  For example, a lack of 
proper nutrition may start to affect performance gradu-
ally, whereas a mechanical failure, where the crew has 
to allot additional time for fixing the subsystem, may 
affect relative performance more rapidly as shown by 
the solid line (ε = 0.01, ω = -0.9).  It should be noted 
that performance decreases are used as a proxy for 
increased crew time requirement.  

The recovery events for both examples in Figure 1 
mirror the rise rates and intensities of their onset 
events. However, the recovery events may also vary 
depending on the stressor type and the crewmembers’ 
response to it (e.g., a crewmember may come down 
with food poisoning within a few hours but take sev-
eral days to fully recover).  Therefore, there may be 
instances where performance may drop in a short time 
(e.g., a day) but the recovery characteristics could be 
different and last longer (e.g., 5 days) or vice versa. 
Such an example is shown in Figure 2 (ε = 0.01, ω = -
0.9, δ = 0.9, ω*= 0.3).  

For this study, the stochastic component in Equa-
tion 3 (i.e., the two α terms) was interpreted as an ap-
proximation for all the random effects on crew per-
formance, for example,  variance in sleep patterns, or 
the variability in resistance to various stressors for in-
dividual crewmembers at different times.  Since α is 
different for each crewmember and each time step 
(day), crew performance will vary among individuals 
even for identical initial conditions and stress-recovery 
events.  

For the purpose of this study, it was assumed that 
a value of Yi(t) = 1 corresponds to optimal crew per-
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Figure 2. Example of a stress-recovery event for a single crewmember - with a rapid onset and gradual recovery occurring 
on day 6.  
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Figure 1. Example of two stress-recovery events, each for a single crewmember - one with a rapid onset and recovery oc-
curring on day 4, and one with a gradual onset and recovery occurring on day 6.  
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formance (performance at 100%), with tasks being 
completed successfully within the planned time sched-
ule.  As a result of the random variable α, Yi(t) will 
fluctuate around 1, even without stress-recovery 
events.  If the intention is to account only for perform-
ance decrements, the overall crew performance can be 
assumed to not exceed 1.0 (i.e., overall relative crew 
performance = Min [1.0, Yi(t)]). However, the random 
term in the model often causes performance to exceed 
100% (i.e., implying that more work than scheduled 
was completed). In such cases, we did not penalize 
performance (truncate it to 100%) and carried the ef-
fects of a “good” day (a day where performance ex-
ceeds 100%) via the term Yi(t-1), into the next day.  
Energy Deficiency Stress 

Certain stressors can be directly linked to reduced 
food intake caused by factors such as loss of appetite, 
fatigue, or illness.  In such cases, stress events were 
linked to the Goudarzi and Ting (1999) model by cou-
pling crew performance to reduced food intake, and 
comparing it to “normal” energy consumption re-
quired to perform a task.  This model includes calcula-
tions of oxygen consumption and carbon dioxide pro-
duction, energy expenditure, heat and waste loads, and 
nutritional analyses. 

The energy expenditure is calculated based on a 
set of functions that relate crew characteristics to ac-
tivity schedules over a 24-hr period.  Using the energy 
expenditure and the amount of energy intake through 
food, an energy deficiency (where more energy is ex-
pended than consumed due to a lack of appetite, lim-
ited food supply, etc.) or surplus (where more energy 
is consumed than used, due to excess food consump-
tion or a light work schedule) is determined.  Specifi-
cally, energy deficiencies are linked to the dynamic 
crew model where they are seen as stress events.  This 
process allows for a direct estimate of decreases in 
relative performance and related increases in crew 
time requirements for variations in energy expendi-
ture. 

For illustration purposes, only energy deficiencies 
were considered, and the effects of surpluses in en-
ergy, which could translate to stored energy and possi-
bly weight gain, were not accounted for.  It was as-
sumed that the astronauts consumed up to their daily 
maximum allowable nutritional limit. 

Energy expenditures over a 24-hr period were cal-
culated using equations extrapolated from data pro-
vided by the Advanced Life Support Program Require-

ments Definition and Design Considerations (RDDC) 
document (Lang & Lin, 1998). The energy balance 
was computed by comparing energy expenditure to the 
available energy content for the three main food ingre-
dients (proteins, carbohydrates, and lipids). The avail-
able energy content was calculated using estimated 
energy contents in the main food ingredients (KJ/g) 
multiplied by the amount consumed by each crew-
member (g).  
Model Implementation 

The developed model has three main structural 
parts. The first part allows for user input. Here, initial 
information for each crewmember is specified.  Crew-
member characteristics such as age, weight, and gen-
der are detailed by the user.  Additionally, stress 
events are either specified or randomly selected using 
a random number generator.  The information from 
this first part then feeds into the second (empirical) 
and third (ARIMA) portions of the model. 

The empirical section of the model employs the 
user-defined information and allows for either a user-
defined crew activity level and nutritional intake, or 
calculates the crew activity level and nutritional intake 
using a random number generator.  Using this infor-
mation, energy deficiencies or surpluses are calcu-
lated. Deficiencies are regarded as stressors and used 
as inputs for the third part of the model, the ARIMA 
portion.  This portion is where the overall crew per-
formance is calculated. In addition to the energy defi-
ciency, the stress events (previously mentioned as 
user-defined or randomly generated) are utilized here 
to track performance variations.  

MODEL APPLICATIONS 

Martian Surface Mission Case Scenario 

The utility of the model is demonstrated with a 
simulation based on the recommendations described in 
the Mars Reference Mission Document (MRMD; 
Hoffman & Kaplan, 1997) for a Martian surface mis-
sion scenario.  The proposed crew size for this 600-
day Martian surface mission is eight with an undeter-
mined gender and age composition.  However, based 
on the gender distribution of active astronauts, a 
breakdown of 79% male and 21% female was used (6 
male and 2 female crewmembers) (Gibson, 2002).  
The ages and body weights were chosen randomly 
within the following ranges; age: 18-50 years, weight: 
65-73 kg.  
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The activity schedule outlined for the 600-day 
Martian surface mission in the MRMD was used as a 
guide for this simulation. The assumed activity level 
of the crew during the Mars surface mission scenario 
was derived from the “Mars Surface Mission Time 
Allocation” table in the MRMD and was interpreted 
using several assumptions.  The assumptions made 
were related to task designation. The objective was to 
take each assignment and decide whether it would fit 
into one of four major activity categories: 1) sleep 
(sleeping and sleep preparation), 2) light work 
(hygiene, cleaning, communication, planning, docu-
mentation, reporting, analysis, meetings, and health 
care), 3) medium work (recreation, exercise, system 
shut down, and departure preparation), and 4) heavy 
work (system monitoring, inspection, calibration, re-
pair, maintenance, extra vehicular activities [EVAs]).  

The recommended nutritional intake for astronauts 
is 0.8 g/kg of body mass per day of protein, 5 g/kg of 
body mass per day of carbohydrates, and 1 g/kg of 
body mass per day of lipids (Eckart, 1994). This rec-
ommendations is very similar to the one by Larson 
and Pranke (2000): approximately 0.8 g/d per kg of 
body mass of protein, 350 g/d per person of carbohy-
drates, and 77-103 g/d per person of lipids. For each 
crewmember, an availability range for each food in-
gredient was identified: the model randomly picked a 
number within the recommended range for each day as 
the presumed intake.  The reason for setting a range in 
the model and randomly selecting the actual intake 

from this range is to simulate the effect of random eat-
ing habits. An example of this would be a crewmem-
ber’s wish not to eat a certain type of food.  The 
ranges of the main food ingredient intake used for 
each crewmember were 95-105% of Eckart’s (1994) 
recommended rates for carbohydrates, lipids, and pro-
tein consumption. The advantage to using body mass-
dependent rates for calculating energy input is that 
indirectly, a distinction between female and male food 
intake is made via the common gender differences in 
body mass.  

In addition to stress events from nutritional defi-
ciencies, additional stress events were introduced for 
each crewmember.  We assumed one randomly occur-
ring stress event within each 10-day period.  There-
fore, each crewmember experienced 60 stress events 
over the course of a 600-day mission.  Two types of 
simulations were performed; one with only random 
stress events, and one with both random and nutri-
tional stress events. 

RESULTS AND DISCUSSION 

Simulation Results 

The average relative performance for each crew-
member of an eight-member crew experiencing only 
random stress events over a 600-day simulation period 
is presented in Table 1.  The average relative perform-
ance for each crewmember experiencing both random 
and nutritional stress events is presented in Table 2. 

Table 1:   Average Relative Crew Performances of an Eight-Member Crew (Six Male, Two Female) Over a 600-Day Martian Surface Mission 
Simulation for Crewmembers Experiencing Only Random Stress Events. 

 
 
Table 2:  Average Relative Crew Performances of an Eight-Member Crew (Six Male, Two Female) Over a 600-Day Martian Surface Mission 
Simulation for Crewmembers Experiencing Both Random and Nutritional Stress Events. 

 

Crewmember C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 

Average Relative 
Performance 

0.941 0.926 0.903 0.920 0.904 0.855 0.785 0.792 

Crewmember C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 

Average Relative 
Performance 

0.759 0.721 0.659 0.906 0.686 0.775 0.721 0.727 
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The results in Table 1 show that the average crew 
performance of eight crewmembers experiencing only 
random stress events was 0.878.  The variability which 
exists among the performance of all crewmembers is 
not attributed to the number of stress events affecting 
them (all were faced with 60 events with the same 
characteristics) or the age difference between them (all 
were in the 31-60 year age range).  Therefore, the 
variation in average relative performance of the crew-
members is simply due to the random variability factor 
α, coupled with the difference in timing of the stress 
events among crewmembers. Table 2 shows a lower 
average relative performance of the eight crewmem-
bers: 0.744.  This is due to the additional hardship 
(stress events) experienced by the crew due to nutri-
tional deficiencies (Goudarzi, 2003).  
Evaluations of Different Crew Sizes   

The model was employed to illustrate how it may 
examine the most favorable crew size based on the 
average relative performance and performance vari-
ability (standard deviation).  The daily average relative 
performances and standard deviation for a four-, six-, 
and eight-person crew were calculated.  For compari-
son purposes, the age of all crewmembers was set at 
35 years, while the gender breakdowns were selected 
randomly by the model. The nutritional intake was set 
to be a function of weight with a plus or minus 5% 
randomness to simulate intake variability. Similarly, 
the schedules were set up randomly to schedule 
amounts of sleep, light, medium and heavy work. As 
one would expect during “real” missions, each of these 
variables changed daily during the simulation, produc-
ing unique performance numbers for each day. Tables 
3 and 4 show the average results of these simulations 
(each simulation was repeated 10 times to address the 
idea of randomness in the model) for a 600-day Mar-
tian surface simulation.   
 
Table 3:  Calculated Average Relative Performances and Standard 
Deviations for 4, 6 And 8 Person Crews. 

 

Four-, six-, and eight-person crews resulted in 
very similar average relative performances. As the 
crew size gets larger, the standard deviations slightly 
decrease (stability increases).  Intuitively, this makes 
sense, because if one or two crewmembers are stressed 
on a given day, other crewmembers that are not af-
fected by that stress event could take on activities that 
could not be completed by the stressed crewmembers.  
An example would be a mechanical failure. In such an 
event, if there were only four crewmembers and two 
of them had to tend to the problem, only two people 
would be left to complete the remaining activities. On 
the other hand, if there were eight crewmembers, there 
would be six crewmembers to make up for the loss in 
overall performance.  Larger crews seem to indicate 
stability. However, it is important to acknowledge the 
fact that there should be a cap or limitation on the 
number of crewmembers.  At some point, a larger 
crew size will not be cost effective for a mission.  Lar-
ger crews would require more supplies, more radiation 
shielding, more life support systems, and more crew 
time needed to maintain the additional life support 
systems. Not to mention the additional psychological 
and social factors (such as crowding and interpersonal 
conflicts) that need to be accounted for in a larger 
crew size. 

Small crew sizes may not be ideal for a long-
duration mission, such as a Mars mission, either.  Not 
only are many different skills and expertise levels 
needed, but also the amount of work required for 
maintaining life support systems and performing sci-
entific endeavors will require more human participa-
tion.  During a Mars analogue mission (Mars Desert 
Research Station – MDRS Crew 8), the crew reported 
a decrease of team performance when a six-person 
crew was reduced to five (Fisher, 2002), due to the 
unexpected premature departure of a crewmember.  In 
addition to specific expertise loss, this report indicates 
that during the normal three-person EVAs, there were 
not enough people at the operations base (habitat) 
tending to daily duties. Thus, the crew was forced to 
reduce the frequency of their EVAs in order to main-
tain the life support systems.  Hence, their scientific 
endeavors and primary mission objectives were com-
promised by loss of a crewmember and her specific 
skills. In the end, a balance between crew performance 
and mission goals will have to be struck, and it will be 
up to the mission designers to carefully determine the 
optimum crew size. 

The example presented here shows that the opti-

Crew Size 4 – person 6 – person 8 – person 

Average  
Relative 
Performance 

0.852 0.847 0.840 

Standard 
Deviation 0.087 0.086 0.079 
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mum crew size can be determined using such a simu-
lation tool. But the results presented above only show 
the operational integrity of the model with some basic 
initial assumptions and little available data from “real 
life” space missions. More true performance measure-
ments are required to further increase the integrity of 
the equations used in the model.  

An interesting discovery made during these simu-
lations was that when the random gender generator 
produced a larger number of female crewmembers in 
an eight-person crew, generally the average relative 
performance increased, while the standard deviation 
decreased.  Table 4 shows calculated values for the 
average relative performances and standard deviations 
for eight person crews with increasing numbers of fe-
male crewmembers.  
 
Table 4:  Calculated Average Relative Performance And Standard 
Deviation For Varying Gender Breakdowns For An Eight-Person 
Crew. 

The increase in average relative performance due 
to an increasing number of female crewmembers can 
be attributed to the equations used to describe nutri-
tional stress. Other than differences in body weight, 
which are accounted for in the food consumption 
equations, no other gender specific relationships were 
used in the model.  However, the data used to deter-
mine the energy expenditure calculations (Lang & Lin, 
1998) shows that males of the same body weight 
spend more resting energy than females.  Hence, fe-
males would need less energy to do the same amount 
of work.  Thus, the amount of food intake is not only 
weight but also gender specific.  Because in the model 
no distinction in food intake was made based on gen-
der, it depicts females as experiencing less nutritional 
stress than males. Also, the differences in physical 
strength that may favor males on Earth are no longer 
applicable in microgravity environments. Therefore, 
one has to account for other factors such as motor and 
cognitive skills, dexterity, disease resistance, and ra-

diation responses, to decide on optimum crew gender 
compositions. Data and equations to account for these 
factors would be needed to accurately simulate their 
effects. Including this data in future simulations will 
help identify knowledge gaps or ambiguities that can 
hinder comprehensive efforts of whole systems studies 
modeling.  

Presently, the model performs simple calculations 
of crew performance based on a few crew characteris-
tics.  The performance of each crewmember is evalu-
ated independent of other crewmembers.  It would be 
interesting, once more real life data is available, to 
also incorporate the effect of one crewmember’s per-
formance on the other crewmembers.  For example, it 
is possible that if one crewmember panics due to a 
stress event, it could have a negative impact on the 
other crewmembers and this could decrease the overall 
crew performance.  Mathematically, this could be 
modeled by making the stress event parameters for a 
given crewmember (i.e., ε, δ, ω and ω*) dependent on 
the performance of one or more other crewmembers. 

 The dynamic crew model provides a useful tool 
for performance measurements and mission planning.  
However, while developing this model, a lack of space 
mission human performance data was encountered, 
and, even when such data were collected, it was not 
always accessible to us.  Therefore, the results pre-
sented in this study are not comparable with other 
findings and are for concept illustration only.  The 
availability of more of the collected data would help 
make our model a better mission-planning tool.  With 
the use of real life data, it may be possible to evaluate 
many different crew compositions including varying 
age ranges and genders.  In addition, the estimates of 
crew time requirements to perform different tasks 
would be more accurate.  Once all these data are avail-
able, the developed simulation model may be incorpo-
rated into a larger systems model such as the 
“Dynamic Object Oriented Top Level ALSS 
Model” (Rodriguez, 2002), where the different Ad-
vanced Life Support System subcomponents are com-
bined (biomass production, food processing and nutri-
tion, waste processing and resource recovery, and the 
crew).  The crew model would then allow for a dy-
namic assessment of crew performance and crew time 
requirements as opposed to the static assumptions cur-
rently made in most top level ALSS models.  Such 
dynamic crew performance estimates could account 
for scenarios where one ALSS subsystem takes up 

Crew Com-
position 

25%  
Female 

50%  
Female 

75%  
Female 

Average  
Relative  
Performance 

0.801 0.840  0.904 

Standard  
Deviation 0.114 0.078 0.047 
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more than the allotted crew time due to performance 
decrements.   An example scenario would be one 
where mission designers need to account for remain-
ing time of tending to a waste management subsystem 
if more than the allotted time were used to tend to a 
biomass production unit.  Such improved top-level 
ALSS models could better account for crew perform-
ance and time variations and select technologies that 
require less crew time, resulting in reduced mass and 
ultimately lower mission costs. 
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