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Abstract
This paper provides a critical examination of the current state and future possibility of 
formal cognitive theory for insight problem solving and its associated “aha!” experience. 
Insight problems are contrasted with move problems, which have been formally defined 
and studied extensively by cognitive psychologists since the pioneering work of Alan 
Newell and Herbert Simon. To facilitate our discussion, a number of classical brainteasers 
are presented along with their solutions and some conclusions derived from observing the 
behavior of many students trying to solve them. Some of these problems are interesting 
in their own right, and many of them have not been discussed before in the psychologi-
cal literature. The main purpose of presenting the brainteasers is to assist in discussing 
the status of formal cognitive theory for insight problem solving, which is argued to be 
considerably weaker than that found in other areas of higher cognition such as human 
memory, decision-making, categorization, and perception. We discuss theoretical barri-
ers that have plagued the development of successful formal theory for insight problem 
solving. A few suggestions are made that might serve to advance the field.
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1. Introduction

This paper discusses the current state and a possible future of formal cognitive theory for 
insight problem solving and its associated “aha!” experience. Insight problems are con-
trasted with so-called move problems defined and studied extensively by Alan Newell and 
Herbert Simon (1972). These authors provided a formal, computational theory for such 
problems called the General Problem Solver (GPS), and this theory was one of the first 
formal information processing theories to be developed in cognitive psychology. A move 
problem is posed to solvers in terms of a clearly defined representation consisting of a 
starting state, a description of the goal state(s), and operators that allow transitions from 
one problem state to another, as in Newell and Simon (1972) and Mayer (1992). A solu-
tion to a move problem involves applying operators successively to generate a sequence 
of transitions (moves) from the starting state through intermediate problem states and 
finally to a goal state. Move problems will be discussed more extensively in Section 4.6. 

In solving move problems, insight may be required for selecting productive moves 
at various states in the problem space; however, for our purposes we are interested in the 
sorts of problems that are described often as insight problems. Unlike Newell and Simon’s 
formal definition of move problems, there has not been a generally agreed upon defini-
tion of an insight problem (Ash, Jee, and Wiley, 2012; Chronicle, MacGregor, and Ormerod, 
2004; Chu and MacGregor, 2011). It is our view that it is not productive to attempt a pre-
cise logical definition of an insight problem, and instead we offer a set of shared defining 
characteristics in the spirit of Wittgenstein’s (1958) definition of ‘game’ in terms of family 
resemblances. Problems that we will treat as insight problems share many of the follow-
ing defining characteristics: (1) They are posed in such a way as to admit several possible 
problem representations, each with an associated solution search space. (2) Likely initial 
representations are inadequate in that they fail to allow the possibility of discovering a 
problem solution. (3) In order to overcome such a failure, it is necessary to find an alternative 
productive representation of the problem. (4) Finding a productive problem representation 
may be facilitated by a period of non-solving activity called incubation, and also it may be 
potentiated by well-chosen hints. (5) Once obtained, a productive representation leads 
quite directly and quickly to a solution. (6) The solution involves the use of knowledge 
that is well known to the solver. (7) Once the solution is obtained, it is accompanied by a 
so-called “aha!” experience. (8) When a solution is revealed to a non-solver, it is grasped 
quickly, often with a feeling of surprise at its simplicity, akin to an “aha!” experience.

It is our position that very little is known empirically or theoretically about the cogni-
tive processes involved in solving insight problems. Furthermore, this lack of knowledge 
stands in stark contrast with other areas of cognition such as human memory, decision-
making, categorization, and perception. These areas of cognition have a large number of 
replicable empirical facts, and many formal theories and computational models exist that 
attempt to explain these facts in terms of underlying cognitive processes. The main goal 
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of this paper is to explain the reasons why it has been so difficult to achieve a scientific 
understanding of the cognitive processes involved in insight problem solving. 

There have been many scientific books and papers on insight problem solving, start-
ing with the seminal work of the Gestalt psychologists Köhler (1925), Duncker (1945), and 
Wertheimer (1954), as well as the English social psychologist, Wallas (1926). Since the 
contributions of the early Gestalt psychologists, there have been many journal articles, 
a few scientific books, such as those by Sternberg and Davidson (1996) and Chu (2009), 
and a large number of books on the subject by laypersons. Most recently, two excellent 
critical reviews of insight problem solving have appeared: Ash, Cushen, and Wiley (2009) 
and Chu and MacGregor (2011). 

The approach in this paper is to discuss, at a general level, the nature of several fun-
damental barriers to the scientific study of insight problem solving. Rather than criticizing 
particular experimental studies or specific theories in detail, we try to step back and take a 
look at the area itself. In this effort, we attempt to identify principled reasons why the area 
of insight problem solving is so resistant to scientific progress. To assist in this approach 
we discuss and informally analyze eighteen classical brainteasers in the main sections of 
the paper. These problems are among many that have been posed to hundreds of upper 
divisional undergraduate students in a course titled “Human Problem Solving” taught for 
many years by the senior author. Only the first two of these problems can be regarded 
strictly as move problems in the sense of Newell and Simon, and most of the rest share 
many of the characteristics of insight problems as described earlier.

The paper is divided into five main sections. After the Introduction, Section 2 describes 
the nature of the problem solving class. Section 3 poses the eighteen brainteasers that 
will be discussed in later sections of the paper. The reader is invited to try to solve these 
problems before checking out the solutions in the Appendix. Section 4 lays out six major 
barriers to developing a deep scientific theory of insight problem solving that we believe 
are endemic to the field. We argue that these barriers are not present in other, more theo-
retically advanced areas of higher cognition such as human memory, decision-making, 
categorization, and perception. These barriers include the lack of many experimental 
paradigms (4.1), the lack of a large, well-classified set of stimulus material (4.2), and the 
lack of many informative behavioral measures (4.3). In addition, it is argued that insight 
problem solving is difficult to study because it is non-modular, both in the sense of Fodor 
(1983) but more importantly in several weaker senses of modularity that admit other areas 
of higher cognition (4.4), the lack of theoretical generalizations about insight problem solv-
ing from experiments with particular insight problems (4.5), and the lack of computational 
theories of human insight (4.6). Finally, in Section 5, we suggest several avenues that may 
help overcome some of the barriers described in Section 4. These include suggestions for 
useful classes of insight problems (5.1), suggestions for experimental work with expert 
problem solvers (5.2), and some possibilities for a computational theory of insight.
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2. Batchelder’s Human Problem Solving Class

The senior author, William Batchelder, has taught an Upper Divisional Undergraduate 
course called ‘Human Problem Solving” for over twenty-five years to classes ranging in 
size from 75 to 100 students. By way of background, his active research is in other areas 
of the cognitive sciences; however, he maintains a long-term hobby of studying classical 
brainteasers. In the area of complex games, he achieved the title of Senior Master from 
the United States Chess Federation, he was an active duplicate bridge player throughout 
undergraduate and graduate school, and he also achieved a reasonable level of skill in 
the game of Go. 

The content of the problem-solving course is split into two main topics. The first 
topic involves encouraging students to try their hand at solving a number of famous 
brainteasers drawn from the sizeable folklore of insight problems, especially the work of 
Martin Gardner (1978, 1982), Sam Loyd (1914), and Raymond Smullyan (1978). In addition, 
games like chess, bridge, and Go are discussed. The second topic involves presenting the 
psychological theory of thinking and problem solving, and in most cases the material is 
organized around developments in topics that are covered in the first eight chapters of 
Mayer (1992). These topics include work of the Gestalt psychologists on problem solving, 
discussion of experiments and theories concerning induction and deduction, present-
ing the work on move problems, including the General Problem Solver (Newell & Simon, 
1972), showing how response time studies can reveal mental architectures, and describing 
theories of memory representation and question answering. 

Despite efforts, the structure of the course does not reflect a close overlap between 
its two main topics. The principal reason for this is that in our view the level of theoreti-
cal and empirical work on insight problem solving is at a substantially lower level than is 
the work in almost any other area of cognition dealing with higher processes. The main 
goal of this paper is to explain our reasons for this pessimistic view. To assist in this goal, 
it is helpful to get some classical brainteasers on the table. While most of these problems 
have not been used in experimental studies, the senior author has experienced the solu-
tion efforts and post solution discussions of over 2,000 students who have grappled with 
these problems in class.

3. Some Classic Brainteasers

In this section we present eighteen classical brainteasers from the folklore of problem 
solving that will be discussed in the remainder of the paper. These problems have de-
lighted brainteaser connoisseurs for years, and most are capable of giving the solver a 
large dose of the “aha!” experience. There are numerous collections of these problems in 
books, and many collections of them are accessible through the Internet. We have selected 
these problems because they, and others like them, pose a real challenge to any effort to 
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develop a deep and general formal theory of human or machine insight problem solving. 
With the exception of Problems 3.1 and 3.2, and arguably 3.6, the problems are different in 
important respects from so-called move problems of Newell and Simon (1972) described 
earlier and in Section 4.6.

Most of the problems posed in this section share many of the defining characteristics 
of insight problems described in Section 1. In particular, they do not involve multiple steps, 
they require at most a very minimal amount of technical knowledge, and most of them 
can be solved by one or two fairly simple insights, albeit insights that are rarely achieved 
in real time by problem solvers. What makes these problems interesting is that they are 
posed in such a way as to induce solvers to represent the problem information in an 
unproductive way. Then the main barrier to finding a solution to one of these problems 
is to overcome a poor initial problem representation. This may involve such things as a 
re-representation of the problem, the dropping of an implicit constraint on the solution 
space, or seeing a parallel to some other similar problem. If the solver finds a productive 
way of viewing the problem, the solution generally follows rapidly and comes with burst 
of insight, namely the “aha!” experience. In addition, when non-solvers are given the solu-
tion they too may experience a burst of insight. 

What follows next are statements of the eighteen brainteasers. The solutions are 
presented in the Appendix, and we recommend that after whatever problem solving 
activity a reader wishes to engage in, that the Appendix is studied before reading the 
remaining two sections of the paper. As we discuss each problem in the paper, we provide 
authorship information where authorship is known. In addition, we rephrased some of 
the problems from their original sources. 

Problem 3.1. Imagine you have an 8-inch by 8-inch array of 1-inch by 1-inch little 
squares. You also have a large box of 2-inch by 1-inch rectangular shaped dominoes. Of 
course it is easy to tile the 64 little squares with dominoes in the sense that every square 
is covered exactly once by a domino and no domino is hanging off the array. Now sup-
pose the upper right and lower left corner squares are cut off the array. Is it possible to 
tile the new configuration of 62 little squares with dominoes allowing no overlaps and 
no overhangs? 

Problem 3.2. A 3-inch by 3-inch by 3-inch cheese cube is made of 27 little 1-inch 
cheese cubes of different flavors so that it is configured like a Rubik’s cube. A cheese-eating 
worm devours one of the top corner cubes. After eating any little cube, the worm can go 
on to eat any adjacent little cube (one that shares a wall). The middlemost little cube is 
by far the tastiest, so our worm wants to eat through all the little cubes finishing last with 
the middlemost cube. Is it possible for the worm to accomplish this goal? Could he start 
with eating any other little cube and finish last with the middlemost cube as the 27th?
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Figure 1. The cheese eating worm problem.

Problem 3.3. You have ten volumes of an encyclopedia numbered 1, . . . ,10 and 
shelved in a bookcase in sequence in the ordinary way. Each volume has 100 pages, and to 
simplify suppose the front cover of each volume is page 1 and numbering is consecutive 
through page 100, which is the back cover. You go to sleep and in the middle of the night 
a bookworm crawls onto the bookcase. It eats through the first page of the first volume 
and eats continuously onwards, stopping after eating the last page of the tenth volume. 
How many pieces of paper did the bookworm eat through?

Figure 2. Bookcase setup for the Bookworm Problem.

Problem 3.4. Suppose the earth is a perfect sphere, and an angel fits a tight gold 
belt around the equator so there is no room to slip anything under the belt. The angel 
has second thoughts and adds an inch to the belt, and fits it evenly around the equator. 
Could you slip a dime under the belt?
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Problem 3.5. Consider the cube in Figure 1 and suppose the top and bottom surfaces 
are painted red and the other four sides are painted blue. How many little cubes have at 
least one red and at least one blue side?

Problem 3.6. Look at the nine dots in Figure 3. Your job is to take a pencil and con-
nect them using only three straight lines. Retracing a line is not allowed and removing 
your pencil from the paper as you draw is not allowed. Note the usual nine-dot problem 
requires you to do it with four lines; you may want to try that stipulation as well.

Figure 3. The setup for the Nine-Dot Problem.

Problem 3.7. You are standing outside a light-tight, well-insulated closet with one 
door, which is closed. The closet contains three light sockets each containing a working 
light bulb. Outside the closet, there are three on/off light switches, each of which controls 
a different one of the sockets in the closet. All switches are off. Your task is to identify 
which switch operates which light bulb. You can turn the switches off and on and leave 
them in any position, but once you open the closet door you cannot change the setting 
of any switch. Your task is to figure out which switch controls which light bulb while you 
are only allowed to open the door once.

Figure 4. The setup of the Light Bulb Problem.
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Problem 3.8. We know that any finite string of symbols can be extended in infinitely 
many ways depending on the inductive (recursive) rule; however, many of these ways are 
not ‘reasonable’ from a human perspective. With this in mind, find a reasonable rule to 
continue the following series:

Problem 3.9. You have two quart-size beakers labeled A and B. Beaker A has a pint 
of coffee in it and beaker B has a pint of cream in it. First you take a tablespoon of coffee 
from A and pour it in B. After mixing the contents of B thoroughly you take a tablespoon of 
the mixture in B and pour it back into A, again mixing thoroughly. After the two transfers, 
which beaker, if either, has a less diluted (more pure) content of its original substance - 
coffee in A or cream in B?  (Forget any issues of chemistry such as miscibility).

Figure 5. The setup of the Coffee and Cream Problem.

Problem 3.10. There are two large jars, A and B. Jar A is filled with a large number 
of blue beads, and Jar B is filled with the same number of red beads. Five beads from 
Jar A are scooped out and transferred to Jar B. Someone then puts a hand in Jar B and 
randomly grabs five beads from it and places them in Jar A. Under what conditions after 
the second transfer would there be the same number of red beads in Jar A as there are 
blue beads in Jar B.

Problem 3.11. Two trains A and B leave their train stations at exactly the same time, 
and, unaware of each other, head toward each other on a straight 100-mile track between 
the two stations. Each is going exactly 50 mph, and they are destined to crash. At the time 
the trains leave their stations, a SUPERFLY takes off from the engine of train A and flies 
directly toward train B at 100 mph. When he reaches train B, he turns around instantly, 

€ 
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continuing at 100 mph toward train A. The SUPERFLY continues in this way until the trains 
crash head-on, and on the very last moment he slips out to live another day. How many 
miles does the SUPERFLY travel on his zigzag route by the time the trains collide?

Problem 3.12. George lives at the foot of a mountain, and there is a single narrow 
trail from his house to a campsite on the top of the mountain. At exactly 6 a.m. on Satur-
day he starts up the trail, and without stopping or backtracking arrives at the top before 
6 p.m. He pitches his tent, stays the night, and the next morning, on Sunday, at exactly 6 
a.m., he starts down the trail, hiking continuously without backtracking, and reaches his 
house before 6 p.m. Must there be a time of day on Sunday where he was exactly at the 
same place on the trail as he was at that time on Saturday? Could there be more than 
one such place?

Problem 3.13. You are driving up and down a mountain that is 20 miles up and 20 
miles down. You average 30 mph going up; how fast would you have to go coming down 
the mountain to average 60 mph for the entire trip?

Problem 3.14. During a recent census, a man told the census taker that he had three 
children. The census taker said that he needed to know their ages, and the man replied 
that the product of their ages was 36. The census taker, slightly miffed, said he needed 
to know each of their ages. The man said, “Well the sum of their ages is the same as my 
house number.”  The census taker looked at the house number and complained, “I still 
can’t tell their ages.” The man said, “Oh, that’s right, the oldest one taught the younger 
ones to play chess.” The census taker promptly wrote down the ages of the three children. 
How did he know, and what were the ages?

Problem 3.15. A closet has two red hats and three white hats. Three participants and 
a Gamesmaster know that these are the only hats in play. Man A has two good eyes, man 
B only one good eye, and man C is blind. The three men sit on chairs facing each other, 
and the Gamesmaster places a hat on each man’s head, in such a way that no man can 
see the color of his own hat. The Gamesmaster offers a deal, namely if any man correctly 
states the color of his hat, he will get $50,000; however, if he is in error, then he has to 
serve the rest of his life as an indentured servant to the Gamesmaster. Man A looks around 
and says, “I am not going to guess.” Then Man B looks around and says, “I am not going 
to guess.” Finally Man C says, “ From what my friends with eyes have said, I can clearly see 
that my hat is _____”. He wins the $50,000, and your task is to fill in the blank and explain 
how the blind man knew the color of his hat.

Problem 3.16. A king dies and leaves an estate, including 17 horses, to his three 
daughters. According to his will, everything is to be divided among his daughters as fol-
lows: 1/2 to the oldest daughter, 1/3 to the middle daughter, and 1/9 to the youngest 
daughter. The three heirs are puzzled as to how to divide the horses among themselves, 
when a probate lawyer rides up on his horse and offers to assist. He adds his horse to the 
kings’ horses, so there will be 18 horses. Then he proceeds to divide the horses among 
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the daughters. The oldest gets ½ of the horses, which is 9; the middle daughter gets 6 
horses which is 1/3rd of the horses, and the youngest gets 2 horses, 1/9th of the lot. That’s 
17 horses, so the lawyer gets on his own horse and rides off with a nice commission. How 
was it possible for the lawyer to solve the heirs’ problem and still retain his own horse?

Problem 3.17. A logical wizard offers you the opportunity to make one statement: 
if it is false, he will give you exactly ten dollars, and if it is true, he will give you an amount 
of money other than ten dollars. Give an example of a statement that would be sure to 
make you rich.

Problem 3.18. Discover an interesting sense of the claim that it is in principle impos-
sible to draw a perfect map of England while standing in a London flat; however, it is not 
in principle impossible to do so while living in a New York City Pad.

4. Barriers to a Theory of Insight Problem Solving

As mentioned earlier, our view is that there are a number of theoretical barriers that 
make it difficult to develop a satisfactory formal theory of the cognitive processes in play 
when humans solve classical brainteasers of the sort posed in Section 3.  Further these 
barriers seem almost unique to insight problem solving in comparison with the more 
fully developed higher process areas of the cognitive sciences such as human memory, 
decision-making, categorization, and perception. Indeed it seems uncontroversial to us 
that neither human nor machine insight problem solving is well understood, and com-
pared to other higher process areas in psychology, it is the least developed area both 
empirically and theoretically. 

There are two recent comprehensive critical reviews concerning insight problem 
solving by Ash, Cushen, and Wiley (2009) and Chu and MacGregor (2011). These articles 
describe the current state of empirical and theoretical work on insight problem solving, 
with a focus on experimental studies and theories of problem restructuring. In our view, 
both reviews are consistent with our belief that there has been very little sustainable 
progress in achieving a general scientific understanding of insight. Particularly striking is 
that are no established general, formal theories or models of insight problem solving. By 
a general formal model of insight problem solving we mean a set of clearly formulated 
assumptions that lead formally or logically to precise behavioral predictions over a wide 
range of insight problems. Such a formal model could be posed in terms of a number 
of formal languages including information processing assumptions, neural networks, 
computer simulation, stochastic assumptions, or Bayesian assumptions. 

Since the groundbreaking work by the Gestalt psychologists on insight problem 
solving, there have been theoretical ideas that have been helpful in explaining the cog-
nitive processes at play in solving certain selected insight problems. Among the earlier 
ideas are Luchins’ concept of einstellung (blind spot) and Duncker’s functional fixedness, 
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as in Maher (1992). More recently, there have been two developed theoretical ideas: (1) 
Criterion for Satisfactory Progress theory (Chu, Dewald, & Chronicle, 2007; MacGregor, 
Ormerod, & Chronicle, 2001), and (2) Representational Change Theory (Knoblich, Ohls-
son, Haider, & Rhenius, 1999). We will discuss these theories in more detail in Section 4. 
While it is arguable that these theoretical ideas have done good work in understanding in 
detail a few selected insight problems, we argue that it is not at all clear how these ideas 
can be generalized to constitute a formal theory of insight problem solving at anywhere 
near the level of generality that has been achieved by formal theories in other areas of 
higher process cognition.

The dearth of formal theories of insight problem solving is in stark contrast with other 
areas of problem solving discussed in Section 4.6, for example move problems discussed 
earlier and the more recent work on combinatorial optimization problems such as the 
two dimensional traveling salesman problem (MacGregor and Chu, 2011). In addition, 
most other higher process areas of cognition are replete with a variety of formal theories 
and models. For example, in the area of human memory there are currently a very large 
number of formal, information processing models, many of which have evolved from 
earlier mathematical models, as in Norman (1970). In the area of categorization, there are 
currently several major formal theories along with many variations that stem from earlier 
theories discussed in Ashby (1992) and Estes (1996). In areas ranging from psycholinguistics 
to perception, there are a number of formal models based on brain-style computation 
stemming from Rumelhart, McClelland, and PDP Research Group’s (1987) classic two-
volume book on parallel distributed processing. Since Daniel Kahneman’s 2002 Nobel 
Memorial Prize in the Economic Sciences for work jointly with Amos Tversky developing 
prospect theory, as in Kahneman and Tversky (1979), psychologically based formal models 
of human decision-making is a major theoretical area in cognitive psychology today. In our 
view, there is nothing in the area of insight problem solving that approaches the depth 
and breadth of formal models seen in the areas mentioned above. 

In the following subsections, we will discuss some of the barriers that have prevented 
the development of a satisfactory theory of insight problem solving. Some of the bar-
riers will be illustrated with references to the problems in Section 3. Then, in Section 5 
we will assuage our pessimism a bit by suggesting how some of these barriers might be 
removed in future work to facilitate the development of an adequate theory of insight 
problem solving.

4.1 Lack of Many Experimental Paradigms

There are not many distinct experimental paradigms to study insight problem solving. 
The standard paradigm is to pick a particular problem, such as one of the ones in Section 
3, and present it to several groups of subjects, perhaps in different ways. For example, 
groups may differ in the way a hint is presented, a diagram is provided, or an instruction 
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is given on how to represent the problem. This is the approach initiated originally by the 
Gestalt psychologists, as in Luchins (1942), Duncker (1945), Birch and Rabinowitz (1951), 
and it has continued to the present day as the common experimental paradigm for study-
ing insight problem solving, as in MacGregor, Ormerod, and Chronicle (2001), Ormerod, 
MacGregor, and Chronicle (2002) and Chu, Dewald, and Chronicle (2007). Differences in 
the proportion of solvers may then be traced to the differences in the way that a problem 
is presented and therefore processed.  The barrier for insight problem solving theory that 
we see in the usual paradigm is that in such studies it is difficult to generalize from one 
insight problem to other insight problems. As a consequence any general theory accrued 
from such experiments tends to take the form of simple, problem specific ideas like Luchins’ 
einstellung, Duncker’s functional fixedness, or the popular term thinking outside of the box 
(Adams, 1974). This concern is discussed in more detail in Section 4.5.

This lack of a rich collection of problem solving paradigms for insight problems con-
trasts markedly with other successful higher process areas of psychology. For example, 
consider human memory. There are well explored paradigms for studying iconic memory, 
echoic memory, short term memory, recognition memory, recall memory, serial recall, 
source monitoring, semantic memory, procedural memory, and prospective memory 
(Baddeley, Eysenck, & Anderson, 2008), just to name a few of the standard experimental 
settings. Numerous experimental studies in each of these paradigms have led to many 
empirical generalizations as well as a multiplicity of computational theories, each open 
to experimental testing. Further, some of these theories interrelate the different types of 
human memory, and cognitive neuroscientists are well on their way to discovering the 
brain processes behind different types of memory phenomena. 

The higher process areas of decision-making and perception share with the area of 
human memory the proliferation of experimental paradigms. In these areas, unlike the 
area of human memory, there are related scientific disciplines that provide normative 
concepts to assist in theory formulation and associated experimental paradigms. For 
example in decision-making, the fields of economics and statistics have supplied many 
theoretical concepts such as various senses of rationality, subjective probability, and the 
differential effects of gains and losses, as in Luce and Raiffa (1957) and Kahneman and 
Tversky (1979). This has led to a variety of human decision-making paradigms in the area 
of experimental economics, most notably ones connected to a variety of game situations, 
as in Gintis (2009). In perception, empirical studies use results from physics to construct 
stimuli, as well as knowledge from the neurosciences to understand the role of brain 
systems in perception. The closest allied field to insight problem solving would be logic. 
While it is clear that ideas from the field of logic do assist theory formation in studies of 
reasoning, we are unaware of any substantial role of logic in aiding in the proliferation of 
experimental paradigms for insight problem solving. 
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4.2 The Lack of a Well-classified Set of Stimulus Material

Unfortunately, there are only a limited number of classical insight problems, and those 
that do exist are often quite different from one another. The lack of a large collection of 
well-graded, homogeneous classes of insight problems prevents one from running the 
usual sorts of within and between subject experiments that are based on setting up several 
experimental and control groups with different problems that are of comparable difficulty. 
The unavailability of adequate numbers of well-graded insight problems is pointed out 
in Chu and MacGregor (2011). In addition, what insight problems that do exist have not 
been classified beyond usual coarse categories such as verbal, mathematical, and spatial 
(Dow & Mayer, 2004), and within these categories, there are no carefully formulated metrics 
of similarity between problems or graded levels of difficulty. Indeed, what makes most 
classical insight problems so endearing is that they are usually one-of-a-kind. 

Other more successful higher process areas of cognition do not suffer from such 
a shortage of large sets of well-classified stimulus material. For example, in the area of 
human memory there are a variety of norms for verbal material such as concreteness 
ratings, frequency of usage norms, meaningfulness, affective categories, and association 
strength between pairs of words (Friendly, Franklin, Hoffman, & Rubin, 1982; Bradley & 
Lang, 1999), and in the area of categorization, norms exist for category prototypicality, 
instance similarity, and the degree of category membership (Van Overschelde, Rawson, 
& Dunlosky, 2004). In decision-making, among the many classes of stimuli are gambles, 
and members of this class are well calibrated because they are defined by probability 
distributions over a set of valued outcomes (von Neumann & Morgenstern, 1944). Much 
of the current cognitive theory in this area rests on extensive studies of choice among 
gambles. There is hope that the lack of a large, systematic body of stimulus material for 
insight problem solving may be overcome, and we will expand on a suggestion of Chu 
and MacGregor (2011) for how this might happen in Section 5.1. 

4.3 The Lack of Many Behavioral Measures

In addition to problems of the lack of stimulus material discussed in the previous section, 
there are problems on the response side as well. In particular, there is a paucity of useful 
behavioral measures that can be obtained while subjects are in the process of trying to 
solve an insight problem. For many insight problems like the ones in Section 3, only a very 
small number of subjects are able to solve the problem within a reasonable period of time. 
Without some sort of auxiliary data, all one has is the period of time between when the 
problem is presented and when either a solution occurs or when a deadline is reached. 
Apart from solution time (for solvers) and the proportion of solvers in each group, there 
is very little data to work with. 

For example, consider Problem 3.3 involving the number of pieces of paper a worm 
will eat. This problem is presented to the Human Problem Solving class discussed in Sec-
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tion 2 on the first day of class. In over 25 years, more than two thousand students have 
been given this problem, and so far only one student has solved it in the roughly ten 
minutes during which a solution is allowed. After presenting the problem and waiting 
for two minutes, students are asked to suggest answers. Apart from haphazard guesses, 
students have proposed only three reasonable possible answers: 500, 802, and 1,000. Of 
these three, 802 is very rare, 1,000 always comes up, but generally it is accompanied with 
a side comment that it is surely wrong, and 500 is the one that draws most interest from 
the class. Only one person (so far) seems to have put the two needed insights together 
and correctly concluded that 402 is the correct answer as described in the Appendix. 

In our view, this is a great insight problem because it involves going past an initial 
“aha!” experience to finding a second one, and few insight problems have this property. 
Nevertheless, virtually everyone has been a non-solver, with only a small subset realizing 
one of the needed insights (leading to the responses 500 or 802), and this behavioral evi-
dence carries the empirical basis of our theoretical views about this problem. Indeed, in 
any real time study involving most of the insight problems in Section 3, the norm would 
be a non-solver, and even if there were solvers, one would only have the proportion of 
solvers, and their time-to-solution as the empirical measures. Despite the prevalence of 
failure, almost everyone understands the solution when it is given, and with it, they ex-
perience some amount of the “aha!” experience.

There have been efforts to augment the available behavioral measures for insight 
problems, such as, for example, collecting running verbal protocols from subjects during 
the course of solution (Ericsson, 2003). This procedure was a mainstay of the work on move 
problems (Newell & Simon, 1972); however, in the case of insight problems there is little 
evidence that this addition to the database has led to deep theoretical insights. Another 
type of behavioral data that has been collected during problem solving is feeling-of-
warmth (FOW) ratings, as in Metcalfe (1986). She found that subjects could indicate FOW 
ratings that were predictive of solution announcements; however, announced solutions 
were often wrong leaving open the question about whether or not the FOW was tracking 
the occurrence of an insight experience, as in Weisberg, R. W. (1992). In any event, efforts 
to incorporate metacognitive measures during problem solving have yet to contribute to 
a general theory of insight problem solving, and this is significant because in the area of 
human memory, metamemory measures have played a significant role in theory building 
(Dunlosky & Bjork, 2008)

One promising measure for some types of insight problems is data obtained from 
an eye movement camera that track across time which aspects of a stimulus a subject is 
inspecting. For example, Knoblich, Ohlsson, and Raney (2001) used this measure to study 
how subjects solved matchstick arithmetic problems described in Section 5.1. This is very 
useful for problems where parts have to be realigned because eye movements reveal 
what parts of the problem are being inspected across a time horizon. Another successful 
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utilization of eye movements is Jones (2003) who used an eye movement camera during 
solution of the so-called car park game, where vertically and horizontally placed cars must 
be moved to allow a certain car to move out of the car park. Of course, solutions to most 
insight problems do not involve long periods of visual inspection of stimulus material, so 
this measure is only available for special problem types. The next section discusses some 
brain recording measures that have been used to attempt to find areas of the brain that 
are involved during problem solving, and upon close analysis we suggest that little use-
ful information about insight problem solving has come from utilizing these measures.

4.4 The Lack of Problem Solving Modules

Jerry Fodor (1983) wrote an influential book, The Modularity of Mind, in which he argued 
that cognitive science is unlikely to make substantial theoretical progress in studying 
cognitive systems that are not modular. By a modular system, Fodor meant one that is 
characterized by special computational devices that are domain specific and operate only 
on specially defined inputs. He postulated further that such systems are innate (hardwired), 
domain specific, have fixed neural locations, are inaccessible to consciousness, and are 
characterized by specific breakdown patterns. Examples of modular systems in Fodor’s 
book are mechanisms of color vision, face recognition, speech recognition, and mecha-
nisms that associate grammatical descriptions to utterances. In particular, reasoning and 
problem solving, as well as other areas of higher processes like memory and decision- 
making, are non-modular in Fodor’s sense because they involve combining the outputs 
from a variety of cognitive processes operating on various types of information drawn 
from several sources. The proposition that only modular systems in Fodor’s sense could 
be productively studied led to most psychologists, and eventually even Fodor (2000) 
himself, to accept that this strict definition of modularity would not work to delimit the 
productive study of the mind.

However, some cognitive theorists advanced a weakened and potentially more pro-
ductive concept of modularity known as the massive modularity thesis (Sperber, 1994; 
Samuels, 1998). This concept views minds as structured by a computational architecture 
consisting of many innate modules, each based on functional specialization developed as 
evolutionary adaptation by natural selection. In a nutshell, the view is that human minds 
have evolved to adapt to life’s challenges by developing a number of specialized com-
putational devices rather than a general problem solving system. This view allows some 
information-processes mechanisms to be modular, such as ones that Fodor referred to as 
non-modular “central” processes: certain types of reasoning, different types of memory, 
and decision-making (Barrett & Kurzban, 2006; Cosimides, & Tooby, 1994). According to 
Barrett and Kurzban (2006), the signal properties of modularity can be characterized by 
functionally specialized mechanisms that contain properly defined informational inputs. 
Furthermore, modules evolved to process information to help the organisms’ fitness. 
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With this definition of modularity, it is easy to see that a number of specific problem 
solving mechanisms could be functionally useful for an organism’s survival; however, 
it seems implausible that a general insight problem solving system would qualify as a 
modular system even under this weaker sense. For example according to evolutionary 
psychology, we have the same mental processes as the Neolithic Stone Age men of 12,000 
years ago, and it took centuries for them to achieve useful insights that once understood 
can be easily taught to others, for example fire making technology and specially designed 
uses of wheels. Regardless of the definition of modularity, two conclusions seem to be 
justified. First, theoretical advances are more likely to occur in modular rather than non-
modular systems, and second; insight problem solving, in comparison with other higher 
process areas of cognition, is far from being modular in any sense of the term.

By any definition, modular systems should manifest themselves in specific neural 
locations. Currently there are imaging studies in every higher process area of cognition, 
including a few in the area of insight problem solving. For example, there are several stud-
ies in the literature that have attempted to look for a link between the act of insight (the 
“aha!” experience) and brain regions. A few of the brain regions that have been linked to 
insight are bilateral insula, right prefrontal cortex, anterior cingulate (Aziz-Zadeh, Kaplan, 
& Iacoboni, 2009), hippocampus (Luo & Niki, 2003), precuneus, left inferior/middle frontal 
gyrus, inferior occipital gyrus, cerebellum (Qiu et al., 2010) and right anterior superior 
temporal gyrus (Jung-Beeman et al., 2004; Bowden, Jung-Beeman, Fleck, & Kounios, 2005; 
Kounios & Jung-Beeman, 2009). 

It is evident from these few studies that there seems to be no consensus on a neural 
correlate of insight, and instead it is the case that neural activities associated with insight 
are spread across several brain regions. Further, many of the brain regions that have been 
proposed seem to be correlated with other functions that may explain the observed re-
search results. For example, Kounios and Jung-Beeman (2009) suggested that the right 
anterior superior temporal gyrus is a brain region for insight by using compound remote 
association problems (Bowden & Jung-Beeman, 2003). These problems test a subject’s 
ability to produce a single word that would be a compound remote associate with three 
presented words, for example, finding the word ‘dog’, given the three words: ‘patch’, ‘tired’, 
‘pound’. This type of problem requires that any possible word that may be used must be in 
semantic memory, because a person is not allowed to make up a new word. Grasby et al. 
(1993) have suggested that the superior temporal gyrus is part of a system for auditory-
verbal memory functions, and these functions must surely be a part of a cognitive activity 
that solves a compound remote association problem. 

In another example, Luo and Niki (2003) had subjects solve Japanese riddles such 
as “The thing that can move heavy logs, but cannot move a small nail,” and the answer is 
“a river.” Each subject was given each riddle for a maximum of 3 minutes before the fMRI 
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scanning started. Once they were in the fMRI chamber, each subject was given the same 
riddle and instructed to indicate whether they knew the answer. When a subject did not 
indicate that they knew the answer, the experimenters presented it. Their conclusion was 
that the hippocampus is a brain region for insight. The hippocampus has also been linked 
to stimulus novelty (Tulving et al., 1994; Tulving, Markowitsch, Craik, Habib, & Houle, 1996; 
Knight, 1996; Grunwald, Lehnertz, Heinze, Helmstaedter, & Elger, 1998), and Luo and Niki 
(2003) addressed this by stating that because the solutions to the riddles were everyday 
concepts it is unlikely that the hippocampus showed greater blood-oxygen level-depen-
dent (BOLD) response due to stimulus novelty. However, Yassa and Stark (2008) have found 
that the hippocampus is linked to stimulus novelty, and what makes their study relevant 
in this situation is that they used familiar images such as a sailboat or the Mona Lisa by 
Leonardo Da Vinci. This suggested that although a subject may have seen these images 
before in their lifetime, the first presentation of a stimulus in an experimental condition 
elicits a BOLD response in the hippocampus. 

The other neuroanatomy associated with insight such as the prefrontal cortex and 
anterior cingulate also have been associated with emotions (Greene, Sommerville, Nys-
trom, Darley, & Cohen, 2001). These studies consist of self-reports of an insight experience 
so the data may be somewhat biased. Also, it is difficult to create experiments that would 
precipitate the “aha!” moment, and many of these experiments involve the experimenter 
presenting the solution and asking the subject after viewing the answer if they experi-
enced an “aha!” After reviewing the few studies on neural specificity of insight problem 
solving, we believe there is scant evidence available that indicates that there are specific 
brain regions that can be reliably associated with any common aspect of the process 
of insight problem solving, and this conclusion is consistent with our view that insight 
problem solving is non-modular.

4.5 The Lack of Theoretical Generalizations

While there is detailed and arguably adequate theoretical understanding of particular 
insight problems, the task of finding theoretical generalizations that apply across a wide 
class of insight problems has proven to be quite difficult. For example, a critical step in 
finding a solution to most classical insight problems is discovering a productive cognitive 
representation of the problem. Such a representation guides the search for a solution, and 
if the initial representation of a problem fails to include any route to a solution, then until 
the initial representation is modified or replaced, a solution is impossible. Many classical 
insight problems have been constructed to minimize the probability a solver will initially 
represent a problem in a productive way. In such cases, often the “aha!” experience along 
with the solution comes shortly after the solver sees a new, productive way to represent 
the problem. We believe that a crucial centerpiece in a deep theory of insight problem 
solving would be a theory of problem representation. 
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Unfortunately, to our knowledge, very little progress has been made in formulating 
such a theory. Ash, Cushen, and Wiley (2009) provide an interesting critical review of work 
on restructuring the problem representation while solving an insight problem. In their 
review, they discuss both experimental studies and theoretical ideas, and it appears from 
their review that little sustainable scientific progress has been made on understanding 
insight problem restructuring. In particular, they point out obstacles in interpreting experi-
mental data during problem solving as supporting the occurrence or lack of occurrence of 
spontaneous (unaided) restructuring. Many of their concerns are echoed in our remarks 
in Sections 4.1, 4.2, and 4.3 concerning, respectively, the lack of a variety of experimental 
paradigms, the lack of a large set of well-classified insight problems, and the lack of a variety 
of behavioral measures. In this section we discuss a number of classical insight problems, 
mostly drawn from Section 3, that are specifically designed to thwart an initial productive 
problem representation. Our main conclusion is that while the representational issues of 
each of these problems may be able to be understood in some detail, there are not any 
clear generalizations that could be used to construct a formal theory of representation 
that applies to insight problem solving in general.

First consider Problem 3.4 concerning the band around the earth. This problem is 
related to the ‘rope around the earth’ problem credited to the mathematician and puzzle 
master Harry Langman (1934). Once, an informal study was conducted in the problem 
solving course described in Section 2, in which different groups of students were presented 
with this problem in different forms. Each group was given a version of the problem with a 
different sized sphere, and the question in each case was whether or not a dime could be 
slipped under the belt. In one group, the sphere was represented by the earth, in another 
group by a basketball, and in the third by a golf ball. The results were that the number of 
correct ‘yes’ answers significantly increased as the volume of the sphere decreased. Talk-
ing with the class after the experiment, it was clear that none of the students thought 
through the simple fact, learned at least by the 7th grade, that the circumference C of a 
circle is directly proportional to its radius R, 

€ 

C = 2πR. Thus increasing the circumference 
by 1” increases the radius by 

€ 

1/2π ≈ 0.16"  no matter what is the value of the original cir-
cumference. It is a reasonable conjecture that almost all students would have solved the 
problem easily if they were told directly that the angel added 0.16” to the radius, and in 
fact with that increase in the radius two dimes could be slipped under the belt. Instead, it 
seems clear that students were representing the problem with mental imagery, and im-
agery suggests that the addition of an inch to the circumference of an earth-sized sphere 
will not raise the band more than an infinitesimal amount. Thus for this problem using 
mental imagery seems to be leading to an unproductive representation of the problem.

Another example of how imagery can have a very strong, negative effect on problem 
representation is Problem 3.12 concerning the hiker. Given the description in Section 3, 
only a small number of students in the problem-solving class were able to see clearly 
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that there is exactly one place on the trail where the hiker has been at the same time of 
day while hiking up on Saturday and hiking down on Sunday. On the other hand, if the 
problem is presented as a friend walking up the trail starting at 6:00 a.m. on the same 
day as the hiker is walking down, everyone sees that they must pass each other at exactly 
one point somewhere on the trail, and in addition, most solvers see that when they pass 
it will be at the same time of day. Why does one description of the problem yield so few 
correct answers while the other one, logically equivalent, yields many correct answers? We 
would conjecture that the difference is that the second version, but not the first version, 
allows the events to take place in the same spatiotemporal setting, where mental imag-
ery can track the hikers. Some conformation for this conjecture comes from the fact that 
students are more likely to solve the problem when they are given a hint to imagine that 
the Saturday hike up the mountain is taking place again on Sunday, with the down hikers 
‘ectoplasmic’ body recreating his earlier Saturday hike. The work with the hiker problem 
has led to a possibly interesting theoretical insight about the relative ease of imagining 
and reasoning about events that take place in space and time. 

Despite gaining an understanding of the barriers to solutions of Problems 3.4 and 
3.12, it is difficult for us to imagine exactly what can be generalized from these discover-
ies that could be used in constructing a general theory of the role of imagery in insight 
problem solving. For example, consider Problem 3.5, where subjects are asked to figure out 
the number of little cubes that have at least one red and one blue face. This is a relatively 
easy problem, and many subjects solve this problem readily without the use of paper and 
pencil. The students that fail to solve the problem usually report 18 cubes rather than the 
correct answer of 16 cubes, probably because they erroneously include the middle top 
and bottom cubes in their count. It is very difficult for us to imagine how humans can 
solve this problem without using imagery. If that is the case, then we have learned that 
imagery sometimes helps solvers and at other times it fails them; however, exactly when 
it helps, when it fails to help, and why are the important theoretical issues that need to 
be addressed. The answers to these questions seem to be ad hoc, namely they depend 
on the particular problem in question.

An interesting feature of problem representation is that it is often possible to present 
a problem in several ways that are logically equivalent; however, different presentations 
strongly affect the likelihood that a solver will start with a productive representation. The 
different ways of posing Problems 3.4 and 3.12 discussed in this section are good examples 
of this. Another example is the relationship between Problem 3.9 and Problem 3.10. Martin 
Gardner (1982) has a nice discussion of problems that are logically equivalent to these two 
problems. Both have tended to stump almost all students in the problem solving class 
discussed in Section 2, even when the students have had a night to think about them. 
When the solution to Problem 3.10 is given, most students understand it quickly because 
they can see that every displaced red bead in the blue bead jar corresponds to a displaced 
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blue bead in the red bead jar. Indeed, many non-solvers achieve an “aha!” experience after 
that explanation. Problem 3.9, on the other hand, usually stumps everyone, and when the 
solution along the lines of the solution to Problem 3.10 is given, there are still many blank 
faces. Sometimes arguments break out, and in an effort to quell them the following proof 
using 7th grade algebra is presented.

Let V be the volume of liquid in the beakers and T the volume of a tablespoon. Then 
after the tablespoon of coffee is added to the cream, the purity of the cream is V/(V+T). 
Now when a tablespoon of the mixture is returned to the coffee, the amount of coffee is 
given by 

and the purity of the coffee is given by

and that is the same purity as the cream. Unfortunately, some students remain stumped, 
even after the presentation of the proof. The only successful explanation of the solution 
to the students is to ask them to imagine that the coffee and cream separates into dif-
ferent regions of the beakers. Then it is relatively easy to convince them that the volume 
of coffee left in the cream beaker is the same as the (displaced) volume of cream that is 
now in the coffee beaker. This explanation is essentially the same as the explanation for 
the solution of Problem 3.10.

Why is Problem 3.10 easier to grasp and represent productively than is Problem 3.9? 
Our conjecture is that it has to do with the different linguistic status of the words, namely 
‘bead’ versus ‘coffee’ and ‘cream’. Bead is a count noun and coffee and cream are mass 
nouns; for example, you can have seven red beads but not seven creams (at least not in 
the sense of the problem). Thus ‘purity’ becomes a ratio of the pure to the total rather than 
an amount of transferred beads as in Problem 3.10. Further the cream and tablespoon of 
coffee are ‘thoroughly mixed,’ whereas for the bead problem there is no stipulation other 
than the number placed on the size of the transfers. As Gardner (1982) points out in his 
discussion of variations on these problems, it is not necessary to thoroughly mix the cof-
fee in the cream jar. Furthermore, if it is the relative amount of cream in the coffee versus 
coffee in the cream, the size of the beakers does not matter so long as at the end of the 
transfer the amounts in each beaker are the same as at the beginning. Irrespective of 
whether or not our conjecture about count versus mass nouns is correct, it is difficult for 
us to imagine what can be learned from studying this problem that can inform a general 
theory of insight problem representation. Apart from a few general classes of insight 
problems, it seems to us that each insight problem has its own character that influences 
why an unproductive initial representation is likely.
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An interesting subclass of insight problems involves a story setting where humans 
interact, and each person in the story knows some facts that the others do not know. 
Examples of these problems are Problem 3.14 and Problem 3.15. For versions of Prob-
lem 3.14, many solvers have difficulty seeing how the statement ‘the sum of their ages 
is the same as my house number’ can convey any information to the census taker since 
the number is not revealed to the solver. Those who fail to see that it is the census taker 
who does see the number and can reason from it often find the rest of the story baffling. 
In the case of Problem 3.15, the blind man has all the information he needs about the 
color of his hat from the fact that the others, who do see his hat, have failed to take the 
Gamesmaster up on her offer. 

There is a collection of classical insight problems like Problems 3.14 and 3.15 that 
many would regard as the most difficult of all insight problems. These problems are usu-
ally called sum-product problems, and they derive from a problem posed originally by 
Freudenthal (1968). The setting involves two mathematicians who are trying to figure 
out which two positive integers have been selected by a third mathematician. The first 
mathematician knows the sum of the two numbers and the second knows their product. 
Then they have a remarkably brief conversation about what each knows that the other 
can’t know, and then they both announce that they now have the answer. There are several 
variations on this problem type, and a recent discussion can be found in Born, Hurken, & 
Woeginger (2008).

These problems along with Problems 3.14 and 3.15 all share a representational 
requirement that is an essential aspect of expert ability in some multiperson games, like 
bridge, hearts, or gin rummy. In games such as these, each player sees their own cards but 
not the cards of the other player(s). During play, there is an exchange of overt information 
according to the rules of the game, such as bidding for the contract in bridge or request-
ing a card denomination from one’s opponent in gin rummy. The overt communications 
coupled with knowledge of one’s own cards and the cards that have been revealed in play 
allow a player to make inferences about the cards the other players hold, and in this way 
make better decisions about future actions during the game. Being able to simultaneously 
represent what other players know from their actions is a key to achieving expertise in 
these games. While we can imagine that a formal theory of representation during problem 
solving for such situations might be developed, it is difficult to imagine that this theory 
would have concepts in it that would generalize to representational issues for the other 
problems discussed so far in this section.

Problem 3.16 is an example of another variety of insight problem that resists a 
productive representation. This problem sometimes crops up in books on brainteasers 
for children, and, according to Petković (2009), it was initially posed by the Italian math-
ematician Niccolo Tartaglia (1500–1557). In the problem, we are given the rules to divide 
the estate of a king among his three daughters, along with an enthralling story. The story 
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starts by pointing out that it appears to be impossible to carry out the conditions of the 
estate, and then, as if by magic, a solution is found. The estate conditions have a crucial 
arithmetic flaw (see Appendix); however, the story is so intriguing that a solver is likely to 
miss the flaw and thereby incorrectly represent the problem. In a sense this type of insight 
problem is like a magic trick, in that the story is designed to divert the solver’s attention 
from finding a productive representation of the problem.

A much simpler problem having similar magic trick characteristics is often used to 
fool very young children who are just learning arithmetic. The problem is as follows. Sup-
pose John has three haystacks and Jim has five haystacks. They decide to put them all 
together. How many haystacks do they now have? Often a smart child will respond quickly 
with eight; however, if good-natured, they will smile when they are corrected with the 
correct answer, namely one. This problem as well as 3.16 suggest that one component of 
a general theory of problem representation will need to deal with how problem wording 
misdirects attention.

Problem 3.11 and Problem 3.13 both deal with computing average speed, and they 
are also examples of problems involving elementary arithmetic, where the storyline of the 
problem promotes an unproductive representation. Problem 3.11 about the SUPERFLY is 
a form of a famous problem that crops up in many collections of brainteasers. Our version 
specifies that the fly will have to travel on a zig-zag route between the two trains before 
they crash, and it invites an unwary solver to set up and sum an infinite series of the zig 
and zag lengths. Such a representational set will block the solver from solving the problem 
quickly by applying the simple rule that the product of average speed and total travel 
time gives the total distance traveled. In fact, MacRae (1992, p.10) in a humorous passage, 
states that John von Neumann, the famous mathematician and scientist, provided the 
answer to an equivalent problem immediately upon hearing the problem. When teased 
that he was not thinking like a mathematician, he is said to have replied that he in fact set 
up and summed the infinite series in his head in a couple of seconds. 

Problem 3.13 is one of many brainteasers involving averaging speeds. Of course 
any college student knows that average speed is the ratio of distance traveled to travel 
time; however, in reasoning about averaging speeds, incorrect intuitions often trump 
calculations with this simple formula. When told that in the first half of a forty-mile trip 
the average speed was 30 mph, students in the problem solving class discussed in Section 
2 often state that an average speed of 90 mph for the second half of the trip will result 
in a 60 mph average for the entire trip. Even mathematically literate students are often 
surprised to discover that it is impossible to travel fast enough for the second half of the 
trip to average 60 mph for the whole trip, and this is true regardless of the length of the 
trip. It seems plausible that a theory could be worked out for a subclass of problems like 
the four above involving wording of arithmetic information; however, as with the other 
problem types discussed in this section, it seems to us that generalizations that hold across 
other problem types are in short supply.
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Perhaps the most famous brainteaser involving problem representation is the so-
called nine-dot problem, a version of which is presented as Problem 3.6. This problem 
is usually presented as requiring four continuously drawn lines with no backtracking to 
cover all nine dots. A solution is illustrated in the left panel of Fig. 6. This problem satisfies 
some of the definitional requirements of a move problem in that there is a well defined 
starting state and allowable operations; however, the goal state is not explicitly depicted 
but instead defined in terms of a criterion that would admit an infinite number of possi-
bilities. Subjects’ attempting to solve the nine-dot problem often act unproductively as if 
the problem stipulation requires that solutions must involve lines that are confined to the 
area circumscribed by the convex hull of the nine dots, which in this case has the shape 
of a square box. This assumption leads to a problem representation that does not offer 
a solution path, so the key to solving this problem is to consider drawing lines outside 
of the box. Thus the nine-dot problem has become a prototype for the popular phrase 
‘thinking outside of the box.’

In a very creative discussion of the nine-dot problem, Adams (1974) shows how it is 
possible to find solutions that satisfy the stipulation with less than four lines. The solution 
on the right side of Figure 6 covers the case of three lines, and Adams (1974) goes on to 
provide solutions of fewer than three lines that nevertheless respect the given problem 
stipulation. These solutions importantly focus on the exact nature of a dot, which in or-
dinary language is not the same as a point in Euclidean geometry, which has zero area. 

MacGregor, Ormerod, and Chronicle (2001) provide an interesting theoretical analysis 
of the nine-dot problem by explicitly viewing it as a move problem. Their analysis is based 
on an information processing account of the problem that utilizes some of the notions 
in Newell and Simon’s (1972) computational model for move problem called the General 
Problem Solver (GPS) discussed in some detail in Section 4.6. They provide formal defini-
tions and assumptions along with supporting data from five experiments involving adding 
dots to the problem configuration suggested by their theory. In a nutshell, their theory 
assumes that the subjects are employing the GPS concept of hill climbing to minimize 
the difference between the current state and the goal state, and only when they abandon 
this approach that it is possible to find a productive way of trying new approaches. Thus 
their theory emphasizes the fact that subjects monitor their solution progress, and they 
can be held back from productive ideas if they seem to be making satisfactory progress 
with moves that turn out to be unproductive. In particular for the nine-dot problem, ini-
tially trying lines that start and stop on a dot seem to result in good progress. Based on 
their experiments and theory, the authors argue that the barriers to solving the nine-dot 
problem are not, as some have argued, related to the inability of the subject to see that 
they can try lines that are outside the convex hull of the nine dots. 

A recent theory of insight problem solving is the Representational Change Theory 
(RCT) by Knoblich et al. (1999). This theory deals directly with the case that an initial poor 
problem representation must be overcome to solve certain insight problems. The authors 
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proposed the theory in the context of so-called matchstick arithmetic problems. These 
problems present the solver with an invalid arithmetic formula made up of matchsticks 
depicting Roman numbers and arithmetic signs along with a stipulation to make a valid 
formula by moving a stated number of matchsticks (usually one). An example is to make 
a valid formula from the following invalid formula with the movement of one matchstick:

||| + | = |.
The solution is

||| – | = ||.
The RCT analyzes such problems by proposing that the initial representation sets 

unnecessary constraints on the solver that must be removed to achieve a solution. For 
example, solvers of the problem above may initially attempt to move only vertical lines and 
fail to see that lines in an arithmetic operator as well as in a Roman number are fair game 
to move. More generally the RCT seems well adapted to understanding representational 
issues in cases where a problem presentation can be described by a distribution of activity 
across pieces of information, and altering this distribution creates a new representation. In 
the case of the matchstick arithmetic above, seeing the plus sign as decomposable chunk 
is the key to the solution. While the RCT offers a plausible theoretical account of some 
subclasses of insight problems, it has a major disadvantage as a general theory of insight 
problem solving. The disadvantage is that for many insight problems such as the ones in 
Section 3, it is not at all clear how a theorist can determine possible activity distributions 
from problem statements. Instead, it appears that for most insight problems, the RCT 
might be a useful post hoc tool to discuss problem solving behavior rather than a theory 
that makes formal predictions across a wide class of insight problems. 

4.6 The Lack of a Computational Theory

Most mental activities that humans engage in have a number of computational models 
that are able to simulate empirically some of the known aspects of human experimental 
data. Three popular computational approaches in higher cognition have been brain-style 
connectionist models (Rumelhart et al., 1987), models based on the ACT-R architecture 
(Anderson, 1990), and discrete state Multinomial Processing Tree models (Batchelder & 
Riefer, 1999; Erdfelder et al., 2009). In the area of problem solving, Newell and Simon (1972) 
developed and tested GPS as a major computer simulation theory of move problems, and 
some of the ideas in the GPS such as production systems are part of Anderson’s ACT-R 
architecture. In contrast, the area of insight problem solving has seen very few efforts at 
computational modeling.

Because of its success, it is reasonable to examine Newell and Simon’s GPS in some 
detail to see if it might offer suggestions on how a productive computational model of 
insight problem solving might be developed. As stated earlier, move problems are char-
acterized by a well-defined starting state, a set of allowable operators that transform 
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one problem state into another, and one or more well defined goal states. Examples of 
move problems include cryptarithmetic problems, river crossing problems, and water jug 
problems, with several specific examples to be discussed later. The solution to a move 
problem is a sequence of allowable operators that apply first to the start state, and then 
successively to the resulting problem states until a goal state is reached. Thus, for move 
problems, unlike most of the problems in Section 3, the way the problem is posed al-
ready sets up a productive problem representation and its associated search space. Some 
theorists have elaborated on ideas like those in GPS for move problems (Greeno, 1974; 
Wickelgren, 1974) and some of the ideas developed by Newell and Simon are still playing 
a productive role in modern theories of thinking and problem solving, e.g. applications of 
ACT-R (Taatgen & Anderson, 2010) and the Criterion of Satisfactory Progress (CSP) theory 
discussed later in this section. 

In solving a move problem, one is usually faced with several possible choices for the 
next move at each stage of the problem. While random choice at each stage may lead to a 
solution, both GPS and human solvers evidence selective strategies in their choice of next 
moves. The GPS strategy is called means-ends analysis. The idea is that when the program 
is in any current problem state, it sets an initial goal of reaching one of the goal states. If 
that goal is unachievable by a single move, as it usually is, it attempts to select a produc-
tive subgoal that is easier to achieve. GPS selects subgoals by identifying the obstacles 
that are blocking achieving the initial goal, and then it examines the allowable operators 
and selects one that leads to a new problem state that overcomes some of the obstacles. 
To enable GPS to work on a problem, information leading to a similarity metric between 
pairs of problem states must be imposed on the descriptions of the states. Basically, if 
the program is in a particular state, and another state is analyzed as being closer (more 
similar) to a goal state, then it looks for the difference between these states, and selects 
an operator that reduces this difference. This process leads to a succession of subgoals 
that are popped on and off a subgoal stack during the solution process (Newell & Simon, 
1972; Mayer, 1992). Eventually all subgoals are achieved, and finally one of the goal states 
is popped off to empty the stack and solve the problem. 

Newell and Simon regard GPS as a theory of human problem solving, and they test 
this notion by comparing the sequences of moves selected by humans with those selected 
by GPS, showing that, at least in some cases, there is a close correspondence. Sometimes 
verbal protocols are taken from solvers and used to argue that humans are attempting to 
engage in the sort of means-ends analysis that is built into GPS. The psychologist Wayne 
Wickelgren (1974) wrote an interesting book that discusses human strategies for solving 
move problems like those tackled by GPS. Some of these strategies like subgoaling, work-
ing backward, and hill climbing are part of the strategies used in GPS. Thus it seems fair to 
say that the GPS efforts have led to the development of plausible human computational 
models for solving move problems. 
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In addition to a valid problem representation, move problems have another ad-
vantage over classical insight problems in that for many move problems it is possible to 
construct a so-called ideal observer model of the problem. An ideal observer is a compu-
tational algorithm that can explore the entire problem space and determine sequences of 
moves that lead from the starting state toward a goal state that minimize a cost function 
such as the number of moves. The ideal observer is a valuable tool in comparing human 
performance with various senses of optimal behavior. For example, the so-called Orcs and 
Hobbits’ river-crossing problem, due originally, in another equivalent form, to the Venetian 
mathematician, Niccoi Fontana Tartaglia (1499-1557), is a prototype of many other river 
crossing move problems. In this version, three orcs and three hobbits are stranded on 
the left bank of a river, and they must figure out a way to cross to the other side. The only 
available means to cross the river is in a two-seater boat. Orcs will eat hobbits if the hobbits 
are ever outnumbered, and orcs will not run away from the possibility of this opportunity 
in the future. Mayer (1992, Box 6.8) provides a 13-step sequence of moves that solves the 
problem, and a number of psychologists have done experiments that try to determine 
which steps in the solution are the most difficult to find (Greeno, 1974).

Another well-studied move problem is the so-called ‘Tower of Hanoi’ problem due 
originally to the French mathematician Edouard Lucus (1842-1891). For this problem, 
the solver is required to move three disks of different sizes stacked in order of size on an 
initial peg onto another peg subject to specific rules. It is a trivial matter to generate all 
the intermediate problem states, and they can be exhibited in a nice diagram (see Maher, 
1992, Box 6.7). The availability of a complete solution space for this move problem has led 
to extensive experimentation with this problem, and in an equivalent setting (the Tower of 
London problem), it has become a tool in clinical assessment to examine possible deficits 
in a patient’s executive functioning and planning (Shallice, 1982). 

The presence of an ideal observer model is not always useful in move problems with 
huge and complex problem states. For example, in two-dimensional Euclidean versions 
of the traveling salesman problem, humans seem to approach optimality by applying 
simply understood strategies (Pizlo et al., 2006), whereas the problem itself is classified as 
an NP-Hard problem in combinatorial optimization theory (Applegate, Bixby, Chvátal, & 
Cook, 2006). There are other standard problems that can be regarded as move problems 
where the ideal observer has little to offer. For example jigsaw puzzles, Sudoku puzzles, 
and crossword puzzles can be regarded as move problems, but humans solving these 
problems use, respectively, spatial perception, insights from arithmetic, and semantic 
knowledge to far exceed random trial-and-error processes that computational algorithms 
would have to use without specific domain knowledge.

The main missing element in any theory that derives from GPS is how to impose a 
similarity metric on pairs of problem states. This is essential because the key to means-
ends analysis is making moves that reduce the difference between one’s current state and 
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a goal state. For many move problems, selecting a similarity metric seems post hoc, and 
in practice it is often developed for a particular problem after seeing the general nature 
of human move sequences. In fact, problems like Problem 3.1 and Problem 3.2 challenge 
the adequacy of the GPS to handle more complex move problems involving insight in 
the selection of a similarity metric. To our best account, Problem 3.1 is due originally to 
Gamow and Stern (1958). It is posed as a move problem; however, there is a very large 
number of ways that one might try and tile the 62 squares. Apart from exhausting them all 
by brute force, it would not be possible to arrive at the fact that the remaining 62 squares 
cannot successfully be tiled. In fact Kaplan and Simon (1990) wrote a program to solve 
the problem by trial and error, and it took 758,145 domino placements to exhaust all the 
possibilities. Discovering the idea of restructuring the problem by coloring the squares like 
a checkerboard (the problem is sometimes called the mutilated checkerboard problem, 
incorporating the coloring hint) as presented in the Appendix is not something that the 
GPS is capable of doing. This coloring scheme imposes a parity property on the states in 
the sense that adjacent squares have opposite colors, and once imposed, it can inform 
the similarity metric between pairs of states. 

Problem 3.2 concerning the cheese-eating worm is also similar to Problem 3.1 be-
cause a solution is aided by imposing parity on the problem representation. In particular, 
the addition of an integer-numbering scheme on the 27 little cubes in the problem rep-
resentation can lead to an immediate solution (see Appendix). The key insight is that the 
walls next to any visited little cube will have an even (odd) number if the visited cube has 
an odd (even) number. If GPS were able to solve this problem without enumeration of all 
possible cheese-eating routes, it would have to impose something like the parity scheme 
in its effort to develop a similarity metric between problem states. Unfortunately, unlike 
the precise representation of a move problem itself, the search space for similarity metrics 
on a problem’s state space is huge, and to be manageable one would seem to have to 
develop general search heuristics. In that spirit, the tiling problem (3.1) was posed to the 
developers of the GPS in the late 1960s as a challenge to see if GPS could be upgraded to 
incorporate restructuring heuristics into the theory. It is precisely in this aspect of GPS that 
one might seek ways to extend the GPS into a computational theory of insight problem 
solving; however, to our knowledge, there have not been any computational upgrades 
to the theory that work generally across a variety of insight problems. 

MacGregor, Ormerod, and Chronicle’s (2001) theory for the nine-dot problem (3.6) 
discussed in Section 4.5 does add a productive concept to the ideas incorporated in GPS. 
They provide a general rationale for why certain unproductive moves are attractive to 
problem solvers during the early stages of the problem solving efforts. Their assumption 
is that if a move seems to be making good progress toward the goal, then it, and equiva-
lent variations, may be repeatedly tried, eliminating, or at least postponing discovery of 
the solution. This idea was developed into a more general theory called the Criterion of 
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Satisfactory Progress (CSP) theory. Chu, Dewald, & Chronicle (2007) developed the CSP 
theory and applied it to understand solution behavior in the so-called cheap necklace 
problem. In this problem, subjects are presented with four, three link pieces of chain, and 
their task is to make a single necklace with twelve links. This problem is a well-defined 
move problem in terms of the formal definition discussed earlier and in Section 4.6. The 
initial and goal states are clearly presented, and the allowable operations are cutting a 
link, for 2 cents, or closing an open link, for three cents. The goal is achieved by a series 
of allowable moves that holds the expense to 15 cents or less. The authors of the study 
argue that subjects feel they are making satisfactory progress by early moves that partly 
construct the desired necklace, and this leads them to fail to see that the best early moves 
are to sever all the links in one of the four pieces of chain so that they can be used to splice 
the other three chains together into the necklace. 

As with the theoretical analysis of the nine-dot problem, the CSP theory is couched 
in terms that are analogous to those used in Newell and Simon’s formal theory of move 
problem solving discussed earlier (also see Mayer, 1992) such as hill climbing to minimize 
the difference between the current state and the goal state. While it may require insight 
to break out of the pattern of repeating unproductive moves sequences, it is not surpris-
ing that the CPS theory works well for these problems. However, the move problems 
discussed above fail to satisfy many of the attributes of insight problems as defined in 
the introductory section of this paper. In particular, the representation of the problems is 
already provided and the solution is a series of moves rather than a single step. While the 
CSP is a plausible theory for such problems, it is not at all clear how to apply the notions 
of the CPS theory to most of the brainteasers from Section 3 discussed in this section. 

Despite the successful implementation of a computational model for move problems, 
no one to our knowledge has been successful in constructing a convincing general compu-
tational model for insight problem solving. There have been attempts, for example a recent 
one is Hélie and Sun (2010), who provide a theory called EII (explicit-implicit interaction 
theory) based on a connectionist architecture called CLARION (Sun, 2002). Roughly speak-
ing, the theory is based on the simultaneous interaction of rule-based, explicit processes 
and associative, implicit processes. The computational theory is motivated by trying to 
incorporate the four stages of problem solving proposed by Wallas (1926). These stages are 
preparation, incubation, illumination (i.e. insight), and verification. Wallas’ theory closely 
mirrors Köhler’s (1925) theory of problem solving developed from observations of apes, 
and while plausible, it was not developed from an extensive set of empirical findings. The 
EII theory is mostly concentrated on the stages of incubation and illumination, and Helie 
and Sun (2010) describe six extant theories of incubation and four for illumination. The 
theories are quite different from each other; however, somewhat surprisingly, EII is able 
to provide a reinterpretation of all of them. 
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Incubation refers to solution facilitation that occurs in some way as a consequence of 
laying a problem aside for a while, and no one can doubt that this is sometimes beneficial, 
although it has proven to be a difficult process to study experimentally. In a meta-analysis 
of studies involving incubation, Sio and Ormerod (2009) found that there are problem 
specific effects of incubation, and that incubation tends to be beneficial when a problem 
requires a lot of knowledge activation. But they found relatively little convincing evidence 
that incubation plays an important role in problem restructuring or when a problem has 
one as opposed to many possible solutions. 

The EII theory did capture some aspects of insight problem solving in a few specially 
designed verbal problems. For example, subjects were asked how to accomplish the fol-
lowing task described in Schooler, Ohlsson, and Brooks (1993, p. 183),

A giant inverted steel pyramid is perfectly balanced on its point. Any move-
ment of the pyramid will cause it to topple over. Underneath the pyramid is 
a $100 bill. How would you remove the bill without disturbing the pyramid?

This problem has been posted many times on the Internet, and several possible solutions 
have been suggested, such as burning the bill. In order for EII to find solutions, the pos-
sible solutions have to be loaded into a layer of CLARION. Then when EII is run, solutions 
bubble up when their “internal confidence level” reaches a threshold. While EII does not 
come close, at least yet, to solving insight problems like the ones in Section 3, it may be a 
start. In fairness, it seems a safe conclusion that successful effort to develop computational 
theory for insight problem solving lags considerably behind such work in other areas of 
higher process cognition.

5. Some Possibilities for Progress

The discussion in Section 4 lays out our reasons for why there has been little empirical or 
theoretical progress in understanding human insight problem solving, especially when 
compared to the level of progress that has been made in other higher process areas of 
cognition. We detailed several principled reasons why it is very difficult if not impossible 
to have a deep, satisfactory theory of human insight problem solving. Despite our pes-
simism, we do see several possibilities that might advance the field, and hopefully future 
work will prove our pessimistic assessment incorrect. We cover these possibilities in the 
next subsections.

5.1. Some Useful Classes of Insight Problems

As discussed in Section 4.1, one of the greatest barriers to the development of a solid 
empirical base of studies on insight problem solving is the lack of large collections of 
well-calibrated problems. Chu and MacGregor (2011) also discuss this problem, and they 
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suggest three classes of insight problems that do not suffer from this limitation. These 
classes are matchstick arithmetic problems (Knöblich et al., 1999), compound remote 
association problems (Bowden & Jung-Beeman, 2003), and rebus puzzles (MacGregor & 
Cunningham, 2008). An example of a matchstick arithmetic problem is given in Section 
4.5, and a compound remote association problem is given in Section 4.4. Rebus puzzles 
involve determining a global meaning of a visual display of letters and numbers, for ex-
ample a solution to the rebus, ‘1t345’, is ‘tea for two’. Solutions to most problems in these 
three classes come with an “aha!” experience, and it often occurs when a solver is able 
to access a productive search space. Especially the last two of these classes have many 
problem instances, and there have been efforts to calibrate them for similarity and dif-
ficulty. Another advantage of working with these large classes of brain teasers is that it 
is possible to set up training studies to understand what aspects of solving one of these 
problems transfers to another similar problem. 

We propose further work with three other classes of insight problems that share 
some of the advantages of the three classes suggested by Chu and MacGregor (2011). 
These classes are Bongard problems, tricky series completion problems, and self-refer-
ential logic problems. Bongard problems are discussed extensively in Hofstadter (1979). 
These problems present solvers with a visual pattern recognition task in which they have 
to discern the difference between two sets of relatively simple diagrams. The instances 
in one of the sets share an attribute not shared by any of the diagrams in the other set, 
such as polygons with an odd number of sides, or a particular feature in a fixed orienta-
tion. Some of the pattern rules are pretty simple, but others are quite difficult even for 
experienced human solvers. The solution to a Bongard problem requires the solver to 
explore visual features at various levels of abstraction, and when a problem is solved it is 
usually accompanied with an “aha!” experience. Bongard (1970) invented and published 
100 of these problems, and at the time of this writing, Harry Foundalis (2006), maintains 
a website with a growing index of 280 such problems. Also there have been some efforts 
to grade them for level of difficulty. 

Another largely undeveloped class of insight problems that we believe has the 
potential to have some of the advantages as the ones discussed above is tricky series 
completion problems. An example is Problem 3.8, in which a solver is asked to continue 
an alphabetic series. In general, series continuation problems are standard for tests of 
intelligence; however, for those series problems the proper search space is usually clear. 
Problem 3.8 is set up to mislead the solver into searching for a solution of the wrong type. 
When this problem is posed to students in the problem solving class described in Sec-
tion 2, there are almost no immediate solvers. Then a series of hints are given. First, it is 
stated that humanities majors solve this problem faster than math majors, and then, after 
a delay, it is mentioned that elementary students are faster than college students on the 
problem. By this point several hands go up signaling a perceived solution, but still the bulk 
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of the class remains clueless. The final hint is to look at the shape of the letters, and that 
is usually followed by an instantaneous solution along with a big “aha!” experience. What 
is interesting about this problem is that its structure inevitably leads solvers to initially 
look at patterns in the sequence of clump sizes of up and down letters. As with Problem 
3.6, successful solvers must look for solutions that are outside of the box, so to speak. 

After presenting this problem, students are treated to several other series completion 
problems involving different productive search spaces, for example 

OTTFFSS . . . ,
and

335443 . . . .
All three of these new series involve, in one way or another, sequences of the first few 
positive integers: the first involves visual forms of the numbers reflected in a mirror, the 
second is the first letter of each of the numbers, and the third involves a sequence of the 
number of letters in each of the number words. After this exposure, students are given 
a homework problem to make up their own tricky series completion problem. Lots of 
creative ideas are generated, and from the ease with which students take to the task, we 
would conjecture that people would exhibit a lot of improvement from training on these 
problems. It would be a potentially useful task to create a number of these tricky series 
completion problems and calibrate them for similarity and difficulty level. 

There is a large class of classical insight problems that deal with self-referential 
statements that might be amenable to computational models. Though some of these 
paradoxes arise from deep issues in mathematical logic, one does not need any training 
in formal logic to understand some of the classical ones. The earliest examples of self-
referential paradoxes appear to have arisen in Greek philosophy, and they take various 
forms of the so-called liar’s paradox. For example, in 4 BC, Eubulides of Miletus is said to 
have made the statement, “I am lying.” An analysis of this statement reveals the paradox, 
if Eubulides is lying, then the statement is false, and so he isn’t lying (at least in the usual 
sense of two-valued logic), and alternatively, if the statement is true, then it must be a lie, 
so it is false, and he isn’t lying. 

A large number of problems dealing with self-referential statements involves a setting 
where all the natives on an island belong to one of two groups, where in one members 
always tell the truth (T), and in the other where members always tell lies (L). Many college 
students have encountered brainteasers that derive from this setting. There are several 
academic writers of popular books of brainteasers who tie self-referential paradoxes to 
major advances in mathematical logic, such as Smullyan (1978, 1988) and Hofstadter (1979). 
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Problem 3.17 is from Smullyan (1988), and it describes a wizard who offers a deal to 
make money by uttering a single true or false statement. The author claims that it captures 
an essential aspect of Gödel’s famous incompleteness theorem in logic. Students in the 
problem solving class described in Section 2 are given a couple of days to try and solve 
the problem, after they have been exposed to various forms of the liar’s paradox in class. 
Typically only a few students succeed in finding a solution like the one given in the Ap-
pendix, but when the problem is explained, most students seem to experience insight. 
Occasionally a student will discover a neat trick that one might play on the wizard, namely, 
say, “You will give me $10.” This paralyzes the wizard in a double bind, using logic similar 
to the liar’s paradox, but it does not result in any monetary gain. 

Another example of a self-referential paradox is Problem 3.18, where one examines 
the possibility of making a perfect map of England. There are of course a number of practi-
cal reasons why one could not draw a prefect map of England no matter where they lived; 
but the problem asks the solver to find an interesting sense that would make it impossible 
in London but not in New York. In a group problem solving setting, very few students in 
the problem solving class come up with plausible reasons. Nevertheless in pre-solution 
discussions, it is quickly recognized that the key must be that London is in England and 
New York City is not. The next phase of the group discussion turns on the concept of what 
exactly is a ‘perfect map,’ and only if it is seen that a perfect map must depict everything, 
will the group have a chance to solve the problem. Sometimes insight is achieved when a 
hint about the infinite regress of reflections in two mutually reflecting mirrors is provided, 
but many students continue to express puzzlement and never seem to get the point. This 
is surprising because unlike Problem 3.17 and other classical self-referential problems, the 
statement of the map problem is designed to focus on the self-referential component. 
It seems that many solvers are unwilling to stretch their minds beyond the fact that it is 
impossible, from a practical point of view to make a perfect map.

It might be a productive strategy to extract a large number of these problems from 
the many available sources. Then one could grade them for difficulty for naive solvers. In 
addition one could conduct experiments with individual subjects over a long time span in 
an effort to develop expert problem solvers in this area. A study of their problem solving 
strategies might shed light on some of the latent cognitive processes that naïve solvers 
bring to bear on such problems.

5.2 Suggestions for Experimental Work

It seems clear to us that some new experimental approaches are needed if insight prob-
lem solving is to reach a mature status among the higher process areas in cognition. We 
suggest three. The first is to accept that insight problem solving is quite a bit more dif-
ficult to understand scientifically than other higher process areas of cognition. The usual 
approaches that have helped shed light on other higher process areas such as simple 
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behavioral experiments with naive subjects, creative computational models, and brain 
imaging studies are unlikely to help for a variety of reasons as detailed in Section 4. In 
particular, very little of the work so far on insight problem solving is likely to be helpful in 
establishing a formal computational theory of insight, and new ideas and new varieties 
of experiments will be necessary.

The second step is to continue work on establishing a large body of insight problems 
in the categories discussed in Section 5.1. Along with an increasing stock of problems 
in each class, more normative studies establishing their similarity and level of difficulty 
would be helpful. A third step is to focus on training expert problem solvers in each of 
these problem domains. It is a reasonable conjecture that many humans can consider-
ably improve their ability to solve these types of problems with extensive experience in 
generating and solving them. Such experts might have the capacity to rapidly shift their 
search spaces until the type of space that contains the solution occurs to them. Experi-
mental study of insight in problem solvers who are experienced experts in a particular 
problem domain seems to us to provide a more productive basis for developing theory 
than the usual studies with inexperienced subjects such as college sophomores. While 
we cannot assure that our proposed experimental strategies for studying insight problem 
solving would advance the field, we are almost certain that if insight problem solving is 
approached in the experimental ways that it is currently studied, very little sustainable 
progress will be forthcoming.

5.3 Possibilities for a Computational Theory

It was pointed out in Section 4.6 that so far there is not a generally recognized success-
ful computational model for insight problem solving. In this section we discuss the 
possibility for a computational theory in less pessimistic terms. There is an ever-present 
tension between two strategies in developing computational models cognitive activity. 
One strategy is to develop computational models that are designed to embody some 
theoretical ideas for how humans perform a cognitive task, and the other strategy is to 
write computer programs that are designed to perform a cognitive task that humans do 
as well as possible. This is the familiar difference between the computer simulation and 
artificial intelligence approaches, and Newell and Simon (1972) explicitly pursue the first 
of these strategies with their GPS.  We discussed some of the impasses in extending the 
GPS to handle problems that require representational changes in Section 4.6. In this sec-
tion we discuss both the computer simulation and the artificial intelligence strategies for 
developing computational models for special classes of insight problems.

In Section 4.6, we argued that it is not realistic to expect that a general computational 
model of insight problem solving will be forthcoming. An alternative strategy would be to 
try and develop computational models within particular large insight problem domains to 
represent the processes of expert problem solvers.  Some of the insight problem domains 
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discussed in Section 5.1 would seem natural to handle with a computational model. For 
example, a computational model for the class of compound word association problems 
might be developed using current computational models of semantic organization such 
as the topics model, as in Griffiths, Steyvers, & Tenenbaum (2007), or word association 
networks, as in De Deyne and Storms (2008). Further, the extensive word association 
norms of Nelson, McEvoy, and Schreiber (1998) are already in great use to predict the 
many aspects of word association experiments. 

The domain of matchstick arithmetic problems is much smaller than the domain 
of compound word association problems, although there are those matchstick move 
problems that do not deal with arithmetic formula that could increase the size of this 
domain. It might be possible to develop a computational theory for the entire domain 
using principles from the computational theories of move problems. The RCT of Knoblich 
et al. (1999) discussed in Section 4.5 could plausibly be a start because its notions would 
seem to lend themselves to formal rules.

The other four classes of insight problems discussed in Section 5.1 are rebuses, Bon-
gard problems, tricky series completion problems, and self-reference problems. These 
classes of problems might pose more challenges for constructing a computational model 
for an expert problem solver. For example, in series completion problems, one could 
probably find many logically justifiable ways to continue a given sequence; yet in most 
cases humans exhibit a clear preference for only one of them. This is similar to the law of 
prägnanz in Gestalt psychology, which is designed to explain why humans are biased to 
see a pattern of sensation in one particular way even though logically it could be seen in 
many different ways. Because of this, computational models for series completion prob-
lems would have to represent human principles of good series completion. 

The case of rebus puzzles and Bongard problems would probably play out similarly, 
because humans usually agree on a single solution to most such problems once the solu-
tion is revealed. On the other hand, machine intelligence that does not represent human 
biases could probably generate multiple candidates for the meaning of a rebus or the 
solution to a Bongard problem. In the case of Bongard problems efforts have been made 
to construct an artificial intelligence system that solves them, as in Foundalis (2006), and 
despite progress in this area it is clear at this point that humans are better than the avail-
able computer programs for such problems. Finally, in the case of self-reference problems, 
we know of no efforts to develop a model for how humans represent and solve them. 
Because of the underlying tight logical structure of such problems, this might prove to 
be a viable task given data from expert problem solvers in this area.

In addition to developing computational models of expert problem solvers in a 
particular problem domain, it would be informative to pursue an artificial intelligence 
approach as well. There are several examples of creative artificial intelligence in several 
areas of human problem solving such as chess and Go (Newborn, 1997). A more recent 
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success was the development of a computer program that could beat expert problem 
solvers in the popular television game of Jeopardy (Baker, 2011). A team of IBM researchers 
headed by David Ferrucci in 2005 accomplished this success by creating ‘Watson.’ Watson 
is an artificial intelligence program that can take encyclopedia type questions in natural 
language and answer them by a rapid search of its vast store of knowledge. Indeed, it is 
likely that computer scientists might be attracted to pursue an artificial intelligence route, 
if cognitive scientists could convince the public that achieving insight in machines was 
at the same level of challenge as defeating human experts in chess or competing with 
humans in the Jeopardy game. 

There are clear difficulties that must be overcome for an artificial intelligence insight 
problem solver to succeed. Problem 3.7 illustrates some of these difficulties. To solve this 
problem, a solver must know pragmatic information about light bulbs in sockets as well 
as things about the consequences of touching a light bulb shortly after it was in use. Since 
computers do not have sensory experience, this knowledge would have to come from 
a vast storehouse of semantic information. That would not be an impossible barrier, for 
example such an encyclopedia is essentially what Watson has. 

In addition to having a knowledge base similar to that of Watson, an artificial intel-
ligence insight problem solver would have to extract productive search spaces from very 
short problem statements. This challenge does not seem impossible to overcome. In 
fact, at a joint computer science and psychology conference at Dagstuhl castle in 2011, 
the senior author read a paper that discussed many of the insight problems in Section 
3 and described some of the difficulties in the current state of work on insight problem 
solving (Batchelder, 2011). In discussion, the conference participants coined the term the 
“Dagstuhl-Batchelder challenge” (van Rooij, Haxhimusa, Pizlo, & Gottlob, 2011), which is 
a challenge to computer scientists to create a program that would solve insight prob-
lems using as input the problem statements verbatim in natural language exactly as the 
brain teasers in Section 3 were presented. Even if the challenge were successfully met, it 
would remain to see if any of the knowledge learned by creating such a program could be 
transferred to the task of constructing a computational model for human insight problem 
solving. In this, one is tempted to be pessimistic, but we would hold out some hope for 
advancement in a human theory of insight problem solving by pursuing this route.

The reason for pessimism is that insights into human theory from artificial intel-
ligence successes do not always occur. For example, for many years artificial intelligence 
programs have been constructed to play games like chess and Go. Throughout many of 
these years, computer scientists working with chess masters had expected that aspects 
of human reasoning during game play would be valuable in aiding the construction of 
computer chess playing programs. Instead what has been learned by all these efforts is 
that computer chess programs did not succeed in any way by following aspects of human 
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reasoning, and instead vast, powerful deep search engines were the key to beating the 
world chess champion (Hsu, 2004). 

Another example of disconnect between human participants and computer programs 
in game playing occurs in the game of Go. Go is combinatorially much more complicated 
than chess, and so far there are no computer programs capable of defeating professional 
Go masters that play without handicap on the usual 19 by 19 board. There are some 
programs that play expertly or even perfectly on smaller boards, but the received view 
in computer science is that the day when the world champion at Go will be a computer 
program is a long way off, if ever. The first computer program that played a complete 
game on a 19 by 19 board was due to Albert Zobrist (1969) in his prize winning doctoral 
dissertation. His approach was to build in pattern recognition processes and downplay 
the role of look-ahead. At that time, Newell and Simon (1958) were supporting the idea 
that human chess skill is mostly pattern recognition rather than look ahead, so this was 
a natural start. In 1970, the senior author was invited to join Zobrist’s PhD Defense Com-
mittee and to play a game against the program with a handicap. The requirement was a 
15 stone handicap, a handicap about equivalent to a queen and a rook in chess. After the 
first 50 moves of the game, the program appeared to have improved its position; however, 
when it was engaged in close hand-to-hand combat, in general not a good strategy in 
Go, it proceeded to lose one safe group of stones after another, and most of its territory 
was eventually wiped out. The lesson here, as in the case of chess, is that successes in 
computer game playing programs have come from abandoning efforts to incorporate 
human reasoning strategies into the program.

This divergence between artificial intelligence approaches and human approaches in 
problem solving is echoed in a report on the November 2008 Workshop on Human Problem 
Solving held at Purdue University (Goldstone & Pizlo, 2009). These authors came to the 
same conclusion that we do about the fact that the way that successful computer chess 
programs operate bears little or no relationship to the mental processes of human chess 
players. They go on to remark that in the area of solving Bongard problems, discussed in 
Section 5, humans can outperform extant computer programs. This is interesting because 
computer programs have replaced humans in many areas of human pattern recognition 
such as recognizing speech and writing. We conjecture that in the future computer pro-
grams will be able to solve Bongard problems; however, it remains to be seen if any of the 
knowledge needed to accomplish this goal will transfer into ideas for a computational 
theory of human pattern recognition while solving Bongard problems. 

In conclusion, human insight problem solving has proven to be a very complex sub-
ject to study scientifically. We do not think that this is because of any inadequacies on the 
part of the researchers who have worked in this area. Instead, we believe that there are 
intrinsic reasons why insight problem solving is so refractive to study using the standard 
approaches that have been successful in studying other areas of higher process cognition. 
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We follow on the suggestions of others who have worked on insight problem solving to 
suggest some new approaches to insight problem solving that may prove to be productive.
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Appendix

In this section, we give the solutions and some notes concerning each of the 18 problems 
in Section 3. The solutions will be very cryptic; however, in the body of the paper we will 
discuss some of the issues surrounding the problems including the original source when 
available.

Solution Problem 3.1. Imagine that the original 8” by 8” was a chessboard with green 
and white squares. Observe that the upper right and lower left squares are the same color. 
However, each domino placement must cover one white and one green colored square; 
therefore, it is impossible to tile the 62 square array after the upper right and lower left 
squares are cut off. 

Solution Problem 3.2. Suppose alternate cubes are colored green and white, where 
cubes sharing a face have different colors. Color the upper, front left cube in Figure 1 green. 
By the coloring scheme, it is clear that the middlemost cube is colored white. Starting 
with the Green upper, front left cube, it is clear that the worm eats green colored cubes 
on odd numbers and white ones on even numbers. But the middlemost cube is eaten as 
the 27th cube and it is white. Thus there can be no sequence that starts at the upper, front 
left cube and leads to eating the middlemost cube last. It’s no help to start at another 
cube, because by this coloring scheme 13 cubes are colored white and 14 green, so if the 
worm starts eating a white cube, he runs out of white cubes to eat before the 27th cube.

Solution Problem 3.3. The correct answer is 402 pieces of paper. In books, pieces 
of paper are numbered on both sides. Furthermore, examining the way the books are 
stacked in Figure 2, the worm only eats one piece of paper in the first and tenth volumes; 
where as it eats 50 pieces of paper in the other eight volumes.

Solution Problem 3.4. Let the circumference and radius of the earth be, respectively, 
C and R. We know that 

€ 

C = 2πR, so the circumference is directly proportional to the radius; 
thus 

€ 

(1/2π )"≈ 0.16"  is added to the radius, regardless of the original size of C. The thick-
ness of a dime is less that 0.16”, so you could fit a dime under the belt.

Solution Problem 3.5. It is not difficult to see that there are exactly 16 little cubes 
with both colors.
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Solution Problem 3.6. The usual stipulation of the nine-dot problem requires four 
lines, and the statement of the problem reduced it to three. Figure 6 shows solutions for 
these two stipulations.

Figure 6. Solutions to the Nine- Dot Problem

Solution Problem 3.7. Light bulbs in sockets get warm when they are on. Turn one 
switch on and leave it on. Turn another switch on for a few minutes and then turn it off. 
Enter the closet without touching the third light switch. The first switch controls the light 
that is on, the second controls the light that is off but warm, and the untouched switch 
controls the light that is off and not warm.

Solution Problem 3.8. A reasonable completion is obtained by noting that the 
capitol letters with straight lines are on the top, and the letters with a curvy feature are 
on the bottom.

Solution Problem 3.9. The solution follows from the logic of the solution to Problem 
3.10 next, namely that any volume of cream that ends up in the coffee is exactly matched 
by a displacement equal to the amount of coffee in the cream mixture. Thus both beakers 
are equally diluted.

Solution Problem 3.10. Clearly, every blue bead that was transferred into the red 
bead jar matches with a red bead that remains in the blue bead jar. So in all cases, there 
are as many red beads in the blue jar as there are blue beads in the red jar.

Solution Problem 3.11. The trains collide in one hour, and the SUPERFLY has been 
going 100 mph, therefore he has traveled 100 miles in his zig zag journey.

Solution Problem 3.12. There will be exactly one place on the trail where George 
was on both days at the same time of day. To see this, imagine that a ‘shadow’ of George 
proceeds up the trail on Sunday morning exactly as George did the previous day. Clearly 
the shadow will pass by George on his descent somewhere on the trail, and their watches 
will read the same time.

Solution Problem 3.13. Trip average speed is distance divided by travel time. The 
distance is 40 miles, and the up travel of 20 miles at 30 mph has taken 40 minutes (two 
thirds of an hour). So to average 60 MPH one would have to go infinitely fast downhill, 
and of course that is impossible.

Solution Problem 3.14. The product of the ages is 36 implies that the ages are three 
positive integers that multiply to 36. Table 1 lists them along with their sum. It is clear that 
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knowing the sum determines which row one is in unless the sum is 13. Thus the house 
number is 13, else the census taker would already know the ages. Since the oldest taught 
the younger ones to play chess, the ages must be 2, 2, and 9 because if it were 1, 6, and 6 
there would not be two youngest.

Table 1. Possible Ages of the Three Daughters in Problem 3.14.

Solution Problem 3.15. The first man is not seeing two red hats because if he did 
he would know his hat was white. The second man knows this, so if he saw a red hat on 
the third man, he would know his hat was white. Therefore, because neither guessed the 
color of their hat, the third man knows his hat is white.

Solution Problem 3.16. The estate rules were ill formed, because ½ + 1/3 + 1/9 = 
17/18 rather than one.

Solution Problem 3.17. The following statement will force the wizard to give you 
a trillion dollars. “You will either give me $10 or you will give me a trillion dollars.” If the 
statement is false, he must give you $10 but that would make the statement true. If he 
gives you any amount other than $10 or a trillion dollars, the statement is false and he 
would have to give you $10. Ergo, he must give you a trillion dollars.

Solution Problem 3.18. Of course there are a bunch of ‘uninteresting’ reasons why 
it cannot be done in either place. The key to an interesting one is to characterize a perfect 
map as one that depicts everything. Then the map of England drawn in London would 
have to depict the mapmaker on the map drawing a map that has the mapmaker on it 
drawing . . . ad infinitum. Drawing one on NYC would not have that problem.

D11 D2 D3 SUM
1 1 36 38
1 2 18 21
1 3 12 16
1 4 9 14
1 6 6 13
2 2 9 13
2 3 6 11
3 3 4 10


