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Abstract:
Recent studies on a computationally hard visual optimization problem, the Traveling 
Salesperson Problem (TSP), indicate that humans are capable of finding close to opti-
mal solutions in near-linear time. The current study is a preliminary step in investigating 
human performance on another hard problem, the Minimum Vertex Cover Problem, in 
which solvers attempt to find a smallest set of vertices that ensures that every edge in 
an undirected graph is incident with at least one of the selected vertices. We identify ap-
propriate measures of performance, examine features of problem instances that impact 
performance, and describe strategies typically employed by participants to solve instances 
of the Vertex Cover problem.
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Introduction

In the past two decades, there has been an increased interest among cognitive scientists in 
investigating human performance on instances of computationally hard visual problems1. 
For the purpose of this study, we define computationally hard problems as those that 
have been shown to be NP-hard according to a formal definition from complexity theory. 
These are problems that likely cannot be solved by polynomial-time algorithms2 (Garey 
& Johnson, 1979). Studies of human performance on one such problem, the Euclidean 
Traveling Salesperson Problem (E-TSP), have indicated that humans may be able to find 
close to optimal solutions in near linear-time (Chronicle, MacGregor, Ormerod, & Burr, 
2006; Dry, Lee, Vickers, & Hughes, 2006; Graham, Joshi, & Pizlo, 2000; MacGregor, Chronicle, 
& Ormerod, 2004; MacGregor, Chronicle, & Ormerod, 2006; Kong & Schunn, 2007; Tak, 
Plaisier, & van Rooij, 2008). This seems to be in keeping with the best known approxima-
tion algorithms3 that can also achieve near optimal results in close to linear time, as well as 
fast heuristics (Arora, 1997).  In the computer science field, a heuristic is an algorithm that 
has no guarantee of correctness or quality of bounds for a given computational problem 
(Cormen, Leiserson, Rivest, & Stein, 2003). This definition differs slightly from that in the 
cognitive science domain given by Gigerenzer and Gaissmaier (2011), which states that 
“[h]euristics are efficient cognitive processes, conscious or unconscious, that ignore part 
of the information” (p. 451). Alternatively, according to Todd and Gigerenzer (2000): 

Up to about 1970, “heuristics” referred to useful, even indispensable cogni-
tive processes for solving problems that cannot be handled by logic and 
probability theory alone. After 1970, a second meaning of “heuristics” 
emerged in the fields of psychology and decision-making research: limited 
decision-making methods that people often misapply to situations where 
logic and probability theory should be applied instead. (pp. 738–739)

1 A computational problem is typically a formally described question or task that is to be solved for a given 
input of a specified format. Computational problems come in different flavours, such as decision problems, 
search problems and optimization problems.
2 An algorithm is a finite set of well-defined steps that transforms an input into an output. Furthermore, for 
a given computational problem, in order for an algorithm to be considered correct, it must, on any input, 
come to a stop with the correct output (Cormen, Leiserson, Rivest, Stein, 2003). For the remainder of the 
paper when referring to an algorithm, unless otherwise specified, we mean a correct algorithm for the 
computational problem discussed.
3 An approximation algorithm for a computational problem is a well-defined set of steps that transforms 
an input into an output that guarantees the optimality of the solution to be within specific bounds of 
the correct solution (Vazirani, 2003). Typically, the goal when designing an approximation algorithm is 
that the approximation achieved by the algorithm is optimal up to a (small) constant factor (for example,  
 2×optimal). This still holds when there exists more than one optimal solution, as the bound is in terms of 
the optimality of the solution.
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The computer science definition of heuristic stems from the correctness of the result, 
whereas this cognitive science definition appears to stem from the input that is (not) 
used. It is not clear whether humans employ strategies that are similar or related to ap-
proaches from the computer science literature, namely, optimal algorithms, heuristics or 
approximation algorithms. It is, however, important to view human performance results in 
context. Studies of human performance on E-TSP typically use inputs of relatively small size 
(<100 points), and generally use randomly generated instances. Both of these factors may 
reduce the complexity of the particular instances of the problems given to participants.  

While this paper focuses on human performance on computationally hard graph 
problems, we recognize the wealth of previous work on other hard problems that do not 
use graph representations, like the 15-puzzle (or n-puzzle), water jug problems, optimal 
stopping, and bandit problems to name but a few (e.g., Atwood, Masson, & Polson, 1980; 
Bellman & Brock, 1960; Lee, 2006; Hemmati & Smith, 2011; Lee, Vickers, & Brown, 1997; 
Lee, Zhang, Munroe, & Steyvers, 2011; Pizlo & Li, 2005). A study of human performance 
on non-Euclidean TSP found that solutions were no longer near-optimal (Saalweachter & 
Pizlo, 2008). This study is a next step in investigating human performance on non-Euclidean 
computationally hard problems. 

Because of the interdisciplinary nature of these studies, we begin with a discussion 
of the notions of problem solving in the fields of computer science and cognitive psychol-
ogy. We then introduce the computationally hard Minimum Vertex Cover problem, and 
discuss the purpose of this study. Finally, after presenting the data from our experiments, 
we discuss the results of this pilot study, and some directions for future studies.

Solving a Problem

Problem solving is an important part of human thinking, and takes place in diverse situa-
tions of everyday life. In this section, we try to clarify possible differences in the meaning 
of “problem solving” in the fields of computer science and cognitive psychology. Neither 
of the definitions below is complete or comprehensive. Our goal is to highlight general 
differences across these disciplines that may, if unobserved, lead to misinterpretation.

Problem Solving in Computer Science

Problem solving is a key aspect of computer science. Computer scientists refer to finding 
a solution to a computational problem with an algorithm, exemplified in Introduction to 
Algorithms (Cormen et al., 2003, p. 6), which states “a correct algorithm solves the given 
computational problem.” In this case, the known algorithm is used to go from any given 
input to its corresponding output. Given a computational problem and any particular 
input, an algorithm outlines a set of steps that will yield a correct output, as shown in 
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Figure 1. Depending on the type of problem, there may be more than one correct output 
since, according to the corresponding measure of correctness, they may be equivalent. 
For example, in finding the shortest route from point A to point B, there may be multiple 
paths of equal (and optimal) length that correctly lead from point A to point B.

Problem solving is also used when attempting to identify an algorithm to solve a 
known problem, as shown in Figure 2. Where it has been shown that there is likely no 
polynomial time algorithm, computer scientists will search for approximation algorithms, 
fixed-parameter tractable algorithms4 or heuristics.  

Human Problem Solving

We contrast the previous definition of problem solving to a model of problem solving 
in Human Problem Solving (Newell & Simon, 1972, p. 137): “The problem solver is given a 
description of the solution . . . and is required to find an alternative process description 
that will specify how to generate it.” This reflects one theory of human problem solving. 
Given some start state, the problem solver’s aim is to reach some specified goal state, and 
as shown in Figure 3, they reach that goal through a search process (Newell & Simon, 1972). 
For some problems, this may require only one step, but for complex problems where a 
path to the goal state is not necessarily clear, the problem solver may identify sub-goals 
between the start state and final goal. In general, we observe that these sub-goals fall into 
at least two different categories, correct and opportunistic. Sub-goals are correct when they 
always lie on a path to a correct solution. Other sub-goals are opportunistic, in that they 
meet a short-term goal, but do not necessarily lead to a correct final goal state. Participants 

Figure 1. An algorithm solves a given problem.

Figure 2. Searching the problem space for an algorithm.

4 A fixed-parameter tractable (FPT) algorithm solves a problem with input of size n and a specified parameter 
of a fixed value k, in time that is polynomial in terms of n, although it can be exponential or worse in terms 
of k (Downey & Fellows, 1999). Parameterized problems that are fixed-parameter tractable are members of 
the complexity class FPT.
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may choose an opportunistic sub-goal, for example, because they have incorrectly inter-
preted the final goal, or because no correct sub-goal can be identified (e.g., due to time 
constraint, motivation, difficulty). In this case, the application of opportunistic sub-goals 
is a heuristic step. We remark, however, that both correct and opportunistic sub-goals can 
be carried out either correctly or incorrectly.  

The types of problems investigated by Newell and Simon are simpler than the problem 
presented in this paper. It is important to question whether or not the means-ends analysis 
model of investigating problem solving still holds for more complex problems like Mini-
mum Vertex Cover. It is of interest in future work to investigate whether other models, for 
instance Gigerenzer’s Adaptive Toolbox, may also be relevant (Gigerenzer & Selten, 2001).

We highlight the similarities between the ideas presented in Figures 2 and 3. In both 
cases, the individual is searching for a path to the goal. In this sense, human problem 
solving and problem solving in the field of computer science are similar. However, in 
computer science, this search is usually more rigorous: in computer science we require 
a general solution that works for all instances of the problem, whereas humans may not 
always achieve such a general solution as they are typically asked to solve particular in-
stances of a problem.

The Vertex Cover Problem

Given an undirected graph G with edges E, and vertices V, a vertex cover is a subset U of V 
such that every edge in E is incident to a vertex in U. A minimum vertex cover of G is one 
where the number of vertices in U is minimized.  

For example, Figure 4 shows an undirected graph with five vertices (A, B, C, D, and E) 
and six edges ((A, D), (E, D), (D, B), (D, C), (B, C), and (E, C)). The vertices {E, D, B} constitute a 
vertex cover. The vertices {D, C} are a minimum vertex cover. 

In this article we concern ourselves only with undirected graphs. Unlike directed 
graphs, in undirected graphs, no directions are associated with the edges. The degree of 
a vertex is the number of edges that are incident to it. Vertex D is of degree four, whereas 
vertex A is of degree one.

Figure 3. Human problem solving.



Human Performance on Hard Non-Euclidean Graph Problems 39

• volume 5, no. 1 (Fall 2012)

There are many real world applications of the Vertex Cover problem (VC). For example, 
the Minimum Vertex Cover (MVC) problem comes into play in scheduling problems. A 
scheduling problem can be modeled as a graph, where the vertices represent tasks or 
times, and an edge between vertices means that a conflict exists between those times or 
tasks. Finding the minimum number of tasks that needs to be removed in order to resolve 
all conflicts is equivalent to finding a minimum vertex cover.

The Minimum Vertex Cover problem, namely finding a minimum vertex cover for a 
given undirected graph, is NP-hard. This means that likely no polynomial time algorithm 
for the problem exists. However, the parameterized decision version of Minimum Vertex 
Cover—in which we ask, for a given graph G and a positive integer k, whether there exists 
a vertex cover that contains at most k vertices—has been shown to be in FPT for parameter 
k. In this case, there exists, for example, an algorithm that runs in time O(2k n), that is, it is 
polynomial in terms of n, and exponential in terms of k (Downey & Fellows, 1972). Though 
in FPT, the Minimum Vertex Cover problem is also NP-hard.5

For parameterized problems that are shown to be in FPT, there typically exist polyno-
mial-time rules that can be applied to an instance of the problem leading to a reduction 
in the size of the instance. For Vertex Cover, we propose two of these rules, the Degree 
1 rule (D1) and the Degree 2 rule (D2) (see, e.g., Stege, 2000), as possible techniques hu-
mans may apply to instances of VC. These rules were inspired by known rules from the 
FPT literature and have the advantage of being both simple, and optimal. Other possible 
rules exist as well, which we will discuss briefly in the Future Lines of Study section, but for 
this study we focus on these two only.  

Figure 4. An undirected graph.

5 We observe a direct connection between the decision version and the optimization version of Vertex Cover: 
If the decision version of Vertex Cover was not NP-hard but solvable in polynomial time, then the Minimum 
Vertex Cover Problem also would be solvable in polynomial time as one has only to try the decision version 
for all possible values of k.
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Degree 1 Rule

Where there are one or more vertices of degree one connected to a vertex v, it is never 
wrong to select v as part of a minimum vertex cover.  For example, in the graph in Figure 
4 vertex D is such a vertex, and is part of a minimum vertex cover.   

Degree 2 Rule

Given a triplet of vertices, (u, v, w), that are connected by the edges (u, v), (v, w) and (u, 
w), at least two of these vertices must be in a minimum vertex cover. Furthermore, if one 
of these vertices, say u, is of only degree two, then it is optimal to include v and w in the 
vertex cover.  For example, in Figure 4 vertices B, D and C are such a triplet, and vertices 
C and D are in the minimum vertex cover.

Both the D1 and D2 rules are a special case of a stronger rule. Although we chose to 
examine only these two special cases, it is possible that people may be able to recognize 
other cases of this generalized rule, under certain circumstances. Given a graph G with 
vertices V, and edges E: 

For any subset U of V that forms a clique, at least (|U| – 1) vertices must 
be in the minimum vertex cover. A clique is a set of k vertices where each 
vertex is connected by an edge to every other vertex in the clique. The D2 
and D1 rules are special cases where k = 3 or k = 2, respectively.

Purpose of the Study 

The main purpose of this study is to identify what effect problem-instance size and layout 
have on human performance on the Minimum Vertex Cover problem. Like the E-TSP, this 
problem can easily be presented in the plane. However, it differs in that it is a non-Euclidean 
problem. A secondary purpose of the study is to determine whether individuals adopt 
specific techniques while solving instances of the Minimum Vertex Cover problem. These 
techniques include the D1 and D2 reduction rules identified in the previous section, as 
well as the opportunistic technique of adding vertices of highest degree to the cover, 
which in the literature is referred to as the greedy method (Cormen et al., 2003). All these 
techniques can be likened to sub-goals that participants may identify when the path to 
the goal is not readily apparent, and whether or not participants apply them may give 
some insight as to sub-goals they identify. Finally, the study aims to investigate the quality 
of human solutions to instances of the Minimum Vertex Cover problem.

Graph Layout

How does the layout of instances of Vertex Cover relate to human performance? Two 
manipulations were used in the study: symmetry and planarity of the graphs. We hy-
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pothesized that participants’ performance would be negatively impacted by instances 
of the graphs that were depicted with crossings. Crossings were believed to increase 
problem difficulty as they may impact individuals’ ability to discriminate and maintain 
distinctions between edges and the connectivity of specific vertices. Similarly, it was 
hypothesized that instances presented in a symmetric or ordered format would be less 
challenging because participants could use redundancy in the layout to their advantage, 
for example by replicating successful selections applied to one part of a graph in other, 
similarly configured parts. 

Techniques

Participants, as novices, are asked to solve the given MVC instance—without the knowl-
edge of an a priori algorithm or procedure that will always yield the correct result. That 
is, given the initial state, they must choose to add vertices to the Vertex Cover until the 
goal state is achieved. The initial state is a particular instance with no vertices yet in the 
vertex cover. The goal state, as given in the instructions, is a set of vertices that meets the 
following criteria: all edges in the graph are incident to at least one vertex in the set (called 
the vertex cover), and the set includes the fewest number of vertices possible.  

Three techniques were suggested that participants might identify to solve instances 
of the Minimum Vertex Cover problem. Two techniques were chosen based on known 
reduction rules employed on FPT algorithms solving the parameterized Vertex Cover 
problem, and one technique was identified based on observation of humans solving 
instances of Vertex Cover.  

The first two techniques are the D1 and D2 rules described above. The third technique 
is one that was identified as a candidate based on the hypothesis that a likely sub-goal is 
to cover as many edges as possible in one step. Choosing high-degree vertices that are 
not yet included in the vertex cover satisfies this goal. It is important to note, however, that 
this technique does not always lead to an optimal solution. This generally non-optimal 

Figure 5. Graph 21.1a with optimal (a) and non-optimal (b) vertex cover in black.
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technique will be referred to as opportunistic. Graph 21.1a in Figures 5a and 5b is resistant 
to the opportunistic approach, and is shown in Figure 5a with a minimum vertex cover 
of size 12. The highest degree vertex in the graph is not included in the cover. In Figure 
5b, this graph is depicted with a sub-optimal minimum vertex cover of size 13, with the 
highest degree vertex included in the cover.  Conversely, the minimum vertex cover of 
Graph 17a, in Figure 6, includes the highest degree vertex at the centre. This graph, unlike 
Graph 21.1a is not resistant to the opportunistic technique.

When the path to the goal state may not be apparent for a given initial state, novices 
are known to apply the general search strategy means-ends analysis (Newell & Simon, 
1972). Under this strategy, sub-goals are chosen based on eliminating differences be-
tween the current state and the goal state.  For the Minimum Vertex Cover problem, these 
differences may be dependent on how the subject interprets the problem. Participants 
may see the task of “covering all edges” as the main goal, and may interpret the task as 
optimally choosing a vertex to add to the cover such that the number of edges covered 
by this vertex is maximized. Participants may also use a more global strategy to identify 
vertices that are best added to the cover, independent of the magnitude of their degree. 
These sub-goals may be related to specific techniques that individuals adopt and they 
may not be mutually exclusive. It is hypothesized that the opportunistic technique may 
be an indication of the application of an edge covering sub-goal, whereas the D1 and D2 
rules may be indicative of a vertex adding sub-goal.

As part of our goal to examine sub-goals that problem solvers develop as they gain 
experience with Vertex Cover instances, we randomly assigned participants to two groups 
that differed with respect to instance order. Group A received an instance set with instances 
resistant to the opportunistic technique in the first half of the set. We anticipated that this 
group might be more likely to be cautious when considering the opportunistic technique 
as they proceeded through the latter part of the set. Group B received the instance set 

Figure 6. Graph 17 with optimal vertex cover in black.
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reversed: instances resistant to the opportunistic techniques were only in the second half 
of the set of instances. We were also interested whether early experience with instances 
resistant to the opportunistic approach would affect performance on other measures of 
problem solving optimization. 

Quality of Solutions

In studies of human performance on computationally hard optimization problems, the 
quality of solutions can be measured in a number of ways, including optimality, speed, and 
classes of solutions that exhibit different qualities. For the purpose of this study, quality 
was measured by forming a ratio between the number of vertices included in the cover 
and the minimum number of vertices actually required to complete a cover (that is, the 
optimal solution). Further, we investigate how this measure of performance is related to 
instance size, layout, and order of problem set presentation.  

Methodology

Participants

Fourteen University of Victoria students participated in the study to earn extra credit in an 
undergraduate psychology course. Each participant was given a set of graphs on which 
they were asked to find a minimum vertex cover. Participants were randomly assigned 
to one of two groups, Group A (8 participants) and Group B (6 participants). The only 
difference between the groups was the order in which the instances were given, and all 
participants completed the same 24 instances.  

Instrument

Six different graphs, with 8, 16, 17, 21, 21 and 28 vertices, were created digitally by hand. 
Four different versions of each graph were created, resulting a total of 24 graphs. Each 
graph was presented on a separate page of paper, and participants were given a pen to 
write with. Graphs are named according to the number of vertices they contain. Note that 
two graphs with 21 vertices are named 21 and 21.1 for clarity. The properties of each of 
these graphs are outlined in Table 1. Note that n refers to the number of vertices in the 
graph, and e refers to the number of edges. Two graphs were generated with D1-candidate 
vertices (Graphs 16 and 21). These graphs are shown in Figures 8a and 7a. The remaining 
graphs were generated with D2 candidate vertices (graphs 8, 17, 21.1 and 28) shown in 
Figures 7b, 7c, 7d, and 7e. One of these graphs (21.1) was generated such that including 
the highest degree vertex in the vertex cover would also guarantee a sub-optimal solu-
tion. The four versions of this graph are termed resistant to the opportunistic technique. 
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The four versions of each graph were generated according to a factorial manipula-
tion of two variables: planarity (plane and nonplane) and neatness (neat and nonneat). 
Plane graphs were arranged so that edges did not cross one another.  Neat graphs were 
laid out so that the vertices were positioned, as much as possible, in an orderly and  
symmetrical layout. The four variants of Graph 16 are shown in Figure 8 and described 
in Table 2.

Figure 7. Graphs 21, 8, 21.1, 17 and 28.
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These 24 graphs were divided into two sets: Set X and Set Y.  Set X contained all 
four variants of graph 21.1 that were resistant to the opportunistic technique and Set 
Y contained no graphs that were resistant to that technique. Within each set, a single 
fixed random order for presentation of the 12 graphs was established and used for all 
participants. The only variation in presentation order for the graphs was that Group A 
first received Set X followed by Set Y, and Group B received Set Y followed by Set X. Thus, 
Group A experienced instances resistant to the opportunistic technique in the first half 
of their instance set, whereas Group B did not encounter any until the second half of the 
instance set. The specific order of instances in Set X and Set Y are presented in Table 3.

Table 1. Properties of the six main graphs.

ID n e Optimal VC Opportunistic

8 8 11 3 yes

16 16 21 8 yes

17 17 32 9 yes

21 21 20 5 yes

21.1 21 24 12 no

28 28 34 16 yes

ID Neat Plane

16a yes yes

16b yes no

16c no yes

16d no No

Table 2. Four variants of Graph 16.

Table 3. Graph order in sets X and Y.

X 21.1a 16a 28a 21.1b 21.1d 28d 16d 28b 17c 28c 14c 21.1c

Y 8a 21c 17a 8b 21b 16b 17d 8c 21d 17b 21a 8d



The Journal of Problem Solving •

46 S. Carruthers, M. E. J. Masson, and U. Stege

Procedure

In order to make the Vertex Cover problem relevant, it was described to participants as The 
Guard Problem as follows: Find the fewest guards necessary to protect the art in the corridors 
of the art gallery. On each page is a drawing of the layout of an art gallery.  The circles repre-
sent guard-posts, and lines represent corridors containing priceless art. That is, participants 
were asked to place the fewest guards necessary to protect all the corridors. This problem 
description is equivalent to the Minimum Vertex Cover problem. Participants were asked 
to number the guards consecutively as they placed them, starting at one. They were al-
lowed to indicate that they changed their mind about a choice by crossing out a previously 
numbered vertex. Participants were asked to not reuse crossed out numbers but rather to 
continue numbering where they had left off. Participants were allowed to make notes or 
other marks on the instances as they worked out their solution. Three trial instances were 
presented to each participant to ensure that he or she understood the problem described. 
A time limit of two minutes per instance was given to the participants, but not enforced. 
All participants were given one hour to complete all the instances (including instructions 
and trial instances).  No feedback was given between instances.

Figure 8. Four variants of Graph 16.
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Analysis

Participants’ responses on each instance were coded, vertex by vertex, in the order that 
vertices were chosen for the cover. Each vertex was coded based on the state of the graph 
at the time that it was added to the cover as a candidate of each of the three techniques 
(D1 rule, D2 rule, or opportunistic). A vertex was deemed a candidate for the D1 technique 
if it was connected to vertices that were of degree one. A vertex was deemed a candidate 
for the D2 technique if it was in a triangle of vertices, of degree greater than two, and 
there was at least one other vertex in the triangle with degree two. Finally, each vertex 
was coded for greediness based on its degree relative to all other vertices in the graph. 
A score of 0 was given to a vertex with degree as high or higher than all other vertices. 
A score of 1 was given to a vertex with degree one less than a vertex of score 0, a score 
of 2 was given to a vertex with degree one less than a vertex with score 1, and so forth.  

All solutions that included a valid vertex cover were included in the analysis. Solu-
tions were deemed to have a valid vertex cover if the vertices selected by the participant 
covered all edges. A solution was not considered valid if it was impossible to interpret 
which vertices were in the cover, or for which the order in which the vertices were added 
was not clear (for example if a number was repeated).  

Results

In total, 40 solutions (11.9%) were excluded from our analysis because they did not con-
tain a valid vertex cover. For each participant, the percentage of excluded solutions was 
calculated for each graph type. Neither graph type nor group significantly influenced the 
percentage of exclusions.

Graph Layout and Type

To investigate possible variation in the quality of participant solution as a function of graph 
type, the number of covered vertices and the optimal number were used to compute the 
percent above optimal (PAO) for each solution. Then, for each participant, the mean PAO 
was calculated for each of the four graph types: neat-plane, neat-nonplane, nonneat-plane 
and nonneat-nonplane. These results are shown in Figure 9a. A repeated-measures analysis 
of variance was performed on these data with group (A or B) as a between-subjects factor. 
Strong effects were seen for neatness (F = 8.41, p < 0.02), and neatness also interacted 
with group (F = 5.68, p < 0.05). Surprisingly, performance was better overall on nonneat 
instances than on neat ones. This is in contradiction to our hypothesis that participants’ 
performance would be positively impacted by neatness, as they could use redundancy 
to their advantage. 
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Mean PAO was also separately calculated for opportunistic and non-opportunistic 
graphs for each participant. These results are shown in Figure 9b. There was no significant 
difference between mean PAO on these two types of graph.  

Techniques

D1-Candidate Vertices.

In order to investigate whether or not participants were sensitive to D1-candidate ver-
tices, their solutions were coded and analyzed as follows. For each of the six graphs, the 
first vertex added to the cover by participants was coded as either a candidate for the 
D1 technique or not. The results are presented in Table 4. The results for the remaining 
vertices are not considered here because adding a vertex to the cover disrupts the state 
(that is, the vertices and edges that remain to be considered) of the graph, so the type is 
no longer constant across all instances and all participants. On Graphs 17, 21.1 and 28 the 
number of D1-candidate choices was zero, as there were no D1 candidate choices at the 
onset. Participants, however, clearly tended to choose D1-candidate vertices on graphs 
16 and 21, even though there were many other vertices in these graphs that were not 
D1-candidates. The number and ratio of D1-Candidate vertices on Graphs 16 and 21 are 
shown in Table 5. A chi-square test was computed for each of the two instances that con-
tained D1 candidates to provide a statistical test of the preference for D1 vertices. These 
tests showed that for both instances, the preference for D1 candidates was substantially 
greater than would be expected if subjects had been selecting the initial vertex at random 
from among D1 and non-D1 vertices, ps < .001. This strong preference for D1 candidates, 
when available, was present in both Group A and Group B.

Figure 9. Mean percent above optimal coverage as a function of group and type of graph. 
Error bars are 95% within-subject confidence intervals which allow meaningful compari-
sons among the types of graphs.
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D2-Candidate Vertices. 

For each of the six graphs, the first vertex added to the cover by participants was coded as 
either a candidate for the D2 technique or not, and are presented in Table 6. Participants 
were prone to identify D2-candidate vertices when they were available for selection, al-
though the effect was not as strong as for D1-candidate vertices. Nevertheless, chi-square 
tests for instances 8, 17, and 21.1 showed that participants strongly preferred to begin 

Graph Type D1-candidate choice Non D1-candidate choice

16 D1 48 3

21 D1 55 0

8 Not D1 0 55

17 Not D1 0 44

21.1 Not D1 0 46

28 Not D1 0 45
Table 4. D1-candidate choices by graph type.

Graph D1-candidates Non D1-candidates Ratio

16 8 8 0.5

21 5 16 0.24
Table 5. Ratio of D1-candidate vertices.

Graph Type D2-candidate choice Non D2-candidate choice

8 D2 24 31

17 D2 43 1

21.1 D2 18 28

28 D2 11 34

16 Not D2 0 51

21 Not D2 0 55
Table 6. D2-candidate choices by graph type.

Graph D2-candidates Non D2-candidates Ratio

8 2 6 0.25

17 8 9 0.47

21.1 4 17 0.19

28 7 21 0.25
Table 7. Ratio of D2-candidate.
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with a D2 candidate, relative to what would be expected by chance, based on the ratio of 
D2 to non-D2 candidate vertices as shown in Table 7, ps < .005. These effects were large 
across both Group A and Group B. Instance 28, despite containing D2 candidates, did not 
show this effect.

Opportunistic Choices. 

The greediness score for the first vertex added to each cover was calculated relative to the 
degree of all other vertices in the graph. These scores were based on the degree range of 
each graph. For example, Graph 14’s vertices have a maximum degree of 4, therefore the 
range for the greediness score for vertices on this graph was 0 (same degree as highest 
degree vertex) to 3 (3 fewer edges than the highest degree vertex). The score was then 
inverted, and divided by the maximum to give a scaled relative greediness score. The 
mean greediness score was calculated for each participant, across opportunistic and 
non-opportunistic instances. Repeated measures analysis of these variables revealed no 
significant results. 

Instance Size and PAO

Mean PAO was calculated across all participants for each instance size (both in terms of 
|E| and |N|), however no significant correlation between PAO and instance size was found.

Discussion

The goal of this study was to determine what impact graph layout and instance size have 
on human performance on instances of Minimum Vertex Cover problems. Further we in-
vestigated whether or not participants would identify specific techniques while working 
on instances of Minimum Vertex Cover problems. Lastly, we investigated if the introduction 
to instances resistant to one of these techniques has an impact on performance. In this 
section we review the implications of our results, and consider future avenues of study.

Graph Layout

The results support our hypothesis that graph layout would affect performance, but 
not in the manner anticipated. Participants’ performance, as measured in terms of PAO, 
was impacted by neatness. Surprisingly, mean PAO was better on nonneat graphs than 
on neat graphs (regardless of the number of crossings in the instances) contrary to our 
hypothesis that neatness would have a positive impact on performance. Furthermore, 
Group A’s PAO was better than Group B’s on neat graphs. It is unclear what the implica-
tions of these results are. But participants in both groups mentioned in debriefing that 
they tended to work from the “outside” of the graph. Starting at the outside of the graph 
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could yield different results on neat graphs than on nonneat. It may be that identifying the 
outside area is more difficult in nonneat graphs, and that human performance improves 
when avoiding outside areas, or at least concentrating on central areas of the graphs. In 
order to better determine how neatness impacts performance, further study is needed, 
perhaps by manipulating the types of vertices present on the periphery of the graph on 
neat and nonneat graphs. It appears that crossings do not negatively impact performance. 
This contradicts our hypothesis that crossings would make it harder for participants to 
discriminate between edges and the connectivity of specific vertices. It remains to be 
seen, however, if this holds for larger instances, both in terms of n and e.

Techniques

Of the three techniques we identified as candidates, both those based on FPT reduction 
rules were clearly adopted by participants.  

D1-Candidate Vertices

Participants were highly likely to choose D1-candidate vertices to add to the vertex cover 
on instances where they were available. This indicates that participants are likely able to 
identify the D1 technique when attempting to solve instances of MVC, and provide insight 
into a sub-goal commonly identified by novices. Many participants mentioned during 
debriefing that they noticed that D1-candidate vertices were good to add to the cover. 
This technique appears to be easily identified by novices.  

D2-Candidate Vertices

Participants were very likely to choose to add D2-candidate vertices where they were 
available, specifically on Graphs 8, 17, and 21.1. This trend was not present on instances 
of Graph 28, indicating that, although individuals may be able to apply the D2 technique 
under certain circumstances, some aspect of Graph 28 appears to have caused interfer-
ence. The complexity of this technique may contribute to the lack of clarity, as the D2 
technique relies upon identifying three mutually connected vertices: one of degree two, 
and two of higher degree. During debriefing, some participants stated that they noticed 
that in a triangle of vertices, two vertices had to be included in the vertex cover, but it 
was not articulated that they noticed that it was optimal to not include the degree two 
vertex in the cover. This technique is more complex, and may not be as readily apparent 
to all participants. Further study is needed to determine what factors contribute to partici-
pants’ ability to apply the D2 technique. For instance, since all instances presented were 
exclusively D1 or D2 type graphs, it was not possible to determine if these techniques 
interfere with each other, or if one is more dominant than the other. The third technique, 
the opportunistic technique, was not clearly adopted by participants. However, its early 
introduction in Group A may be connected to that groups’ lower overall PAO. 
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Opportunistic Graphs 

Group A was given an instance set that included graphs resistant to the opportunistic ap-
proach in the first half of the instance set, whereas Group B was not introduced to these 
graphs until the second half of the instance set. There was no significant difference in the 
use of the opportunistic technique by Group A vs. Group B. This could be a result of the 
small number of instances (four) that were resistant to the opportunistic technique. The 
difference in PAO between the two groups, however, may indicate that early introduction 
to these opportunistic-resistant graphs lead Group A to shift their strategies, resulting in 
lower PAO. Being introduced to instances that contradicted a natural assumption, that high 
degree vertices should be considered for the vertex cover, may have influenced Group 
A’s choice of techniques overall. Although they were not less likely to pick high degree 
vertices at the onset, this does not preclude the possibility that they avoided them further 
along in the process of selecting vertices for the vertex cover. The overall lower PAO of 
participants in Group A, indicates some difference in technique.  

Instance Size and PAO

Although there were no significant differences in mean PAO based on either measure of 
instance size, the implication of this outcome is not immediately clear.  Larger instance 
sizes may reveal a clearer relationship between instance size and difficulty. 

Future Lines of Study

This study was a first look at human performance on the computationally hard problem 
Minimum Vertex Cover. As such, there are a number of avenues that remain to be inves-
tigated.  We briefly address some of these lines of study.

This analysis focused mainly on PAO as a measure of performance, however there are 
other measures that should be considered as well. One aspect that was not considered in 
this study was the length of time taken to solve instances of Minimum Vertex Cover. It may 
be possible to classify the difficulty of instances based on mean time to complete. This, 
taken into consideration with instance properties such as D1- and D2-candidate vertices, 
may provide insight into what strategies participants are more prone to apply. Another 
measure of performance is the number of moves (forward and backward) required to 
solve instances, which may provide different insight into strategies that participants use 
to solve instances. 

Given that Group A and Group B in this study showed significant differences, it is 
natural to wonder what impact experience and learning have on performance. By manipu-
lating problem ordering, we can investigate whether individuals recognize non-optimal 
strategies, and learn to avoid them, or learn to consistently apply optimal techniques.  
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Large instances of this problem may be challenging in part due to limitations of 
working memory. This burden may be lessened through the use of cognitive aids. A 
next logical step is to develop a digital interface for the presentation of instances of this 
problem that would allow user interaction, providing cognitive aids to reduce the load 
on working memory and make it easier for participants to determine the quality of their 
solution. If we consider a means-end analysis approach, participants also need to make 
quality comparisons of the current state of the instance to the goal state. This process 
might be assisted by marking all incident edges when a vertex is selected, allowing par-
ticipants to more clearly determine the impact and quality of the inclusion of a vertex in 
the cover. The inverse, being able to easily see the impact of removing a vertex from the 
cover, may also be useful. This would allow not only linear backtracking, but also hyper-
jumping: the ability to undo any selected vertex not just the most recently chosen one. 
Finally, feedback at the end of solving each instance about the quality of solution may 
also provide participants with vital evaluative information regarding completed covers 
as well as motivation on subsequent instances.  
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