
The Journal of Problem Solving • volume 5, no. 1 (Fall 2012)
18

Relevancy in Problem Solving: A Computational Framework

Johan Kwisthout1

Abstract
When computer scientists discuss the computational complexity of, for example, finding
the shortest path from building A to building B in some town or city, their starting point
typically is a formal description of the problem at hand, e.g., a graph with weights on
every edge where buildings correspond to vertices, routes between buildings to edges,
and route-distances to edge-weights. Given such a formal description, either tractability
or intractability of the problem is established, by proving that the problem either enjoys
a polynomial time algorithm or is NP-hard. However, this problem description is in fact
an abstraction of the actual problem of being in A and desiring to go to B: it focuses on
the relevant aspects of the problem (e.g., distances between landmarks and crossings)
and leaves out a lot of irrelevant details.

This abstraction step is often overlooked, but may well contribute to the overall
complexity of solving the problem at hand. For example, it appears that “going from A
to B” is rather easy to abstract: it is fairly clear that the distance between A and the next
crossing is relevant, and that the color of the roof of B is typically not. However, when the
problem to be solved is “make X love me”, where the current state is (assumed to be) “X
doesn’t love me”, it is hard to agree on all the relevant aspects of this problem.

In this paper a computational framework is presented in order to formally inves-
tigate the notion of relevance in finding a suitable problem representation. It is shown
that it is in itself intractable in general to find a minimal relevant subset of all problem
dimensions that might or might not be relevant to the problem. Starting from a compu-
tational complexity stance, this paper aims to contribute a computational framework of
‘relevancy’ in problem solving, in order to be able to separate ‘easy to abstract’ from ‘hard
to abstract’ problems. This framework is then used to discuss results in the literature on
representation, (insight) problem solving and individual differences in the abstraction
task, e.g., when experts in a particular domain are compared with novice problem solvers.

Keywords
relevancy, abstraction, computational complexity, formal modeling, problem solving

1 Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands. Please
direct correspondence to johank@cs.ru.nl.

http://dx.doi.org/10.7771/1932-6246.1141

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/10241056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Relevancy in Problem Solving: A Computational Framework 19

• volume 5, no. 1 (Fall 2012)

Introduction

One of Leonhard Euler’s most famous contributions to mathematics was his treatment
of the Seven Bridges of Königsberg problem1. The city of Königsberg is set on both sides
of the Pregel River. Both parts of the city, and two islands in the river, are connected us-
ing seven bridges. Euler was asked whether one was able to go for a stroll on a Sunday
afternoon, passing each bridge exactly once and returning where one started the trip.
Euler proved that the answer to this question was ‘no’—no such tour exists (Euler, 1741).

Euler’s main contribution, arguably, was not in the actual result, but in the way he
tackled the problem. He quickly realized that the route one might take between the con-
secutive crossing of two bridges was irrelevant to solving the problem. The only relevant
aspects of the problem are to be found in the topology of the bridges: which bridge con-
nects which landmass. While solving the actual problem, Euler laid out the foundations
of graph theory: in nowadays terms, each landmass corresponds to a vertex, and each
bridge to an edge connecting vertices. The actual problem could be abstracted into a
graph problem: given a graph G, does it contain an Euler tour, i.e., a tour connecting all
vertices and traversing each edge in G exactly once?

However clever and thoughtful, Euler’s treatment of the problem is quite typical of
the way humans solve problems: by focusing on the relevant aspects of the problem only,
dismissing details that are irrelevant. Nevertheless, we do make mistakes—some more than
others. We sometimes include aspects that are not relevant (e.g., we might conclude that
the distance between two bridges is relevant), leading to suboptimal representations; we
sometimes weed out too many aspects (e.g., we might dismiss multiple bridges between
two landmasses, focusing on a connectivity problem instead), leading to representations
that may not lead to a correct solution.

Figure 1. A problem and its formal description. Here the computational problem is to find
a shortest path between two designated points S and T in a graph. It is formalized as an
input-output mapping.
1 http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

The Journal of Problem Solving •

20 J. Kwisthout

In general, it appears that the problem of finding a relevant abstraction significantly
contributes to the overall complexity of solving the actual problem. Despite this observa-
tion, when studying a particular problem, a computational complexity analysis typically
assumes that a relevant abstraction of the problem is readily available. For example, as-
sume one wants to find one’s way in an unknown city; in particular, one desires to travel
from one’s current location to the downtown hotel, using the shortest possible route. This
‘real-world problem,’ which we will denote ΠR, naturally translates into the computational
problem ΠC of finding the shortest path in a graph with weighted edges and designated
starting and ending points, as depicted in Figure 1. Such an abstract computational
problem, cast into an input-output mapping, can then act as the starting point of a com-
putational complexity analysis. We encode arbitrary instances of ΠC into input strings for
a particular computational device (e.g., a Turing machine) and investigate whether the
corresponding outputs can be computed efficiently, for example, in time, polynomial in
the input size. In order for the problem to be tractably solvable, we require that the en-
coding is reasonable (we do not want to artificially increase the input size) and that the
computation is feasible (Figure 2).

In this classical notion of computational complexity, however, we deal with abstract
problems only, i.e., in order to assess the computational complexity of a particular prob-
lem, we do not take the abstraction step itself into account. However, there is increasing
evidence from psychology (see, Ash, Cushen, & Wiley, 2009 for an overview) that finding
a useful representation of a problem can be as hard as computing a solution to the (rep-
resentation of the) problem. In order to construct and analyze computational models of

Figure 2. The classical computational complexity view on solving problems. A particular
problem instance, expressible as a formal input-output mapping, is to be encoded in some
computer-readable encoding; typically, but not necessarily, a string of binary numbers.
The encoded instance is then fed as input to a computing device like a Turing Machine.
In order for the problem to be solved tractably, we demand that the encoding is reason-
able, i.e., that we do not ‘blow up’ the size of the instance, and that the computation is
feasible, i.e., that the time needed to compute the output corresponding to a particular
input, takes time, polynomial in the input size.

Relevancy in Problem Solving: A Computational Framework 21

• volume 5, no. 1 (Fall 2012)

cognitive processes like problem solving (in a broad sense, including problems like inten-
tion recognition (Baker, Saxe, & Tenenbaum, 2009), visual perception (Cavanagh, 2011),
analogy (Keane, 1988) and others), we need to address the issue of representation as well
as the issue of computation.

This observation inspires an enhanced notion of computational complexity (Figure
3), where the abstraction step is explicit. The starting point of a complexity analysis here
no longer is the abstract computational problem ΠC, but the real world problem ΠR: for
this problem to be feasibly solvable, we not only require reasonable encodings and trac-
table computations, but also relevant abstractions. As an example, in the find-our-hotel
problem, the distance between crossings is typically a relevant characteristic that should
be included in the abstract computational problem. The color of the roof of the hotel is
typically not relevant and thus should not be included in the abstraction. It will be clear
that we can ‘mess up’ with the complexity analysis by inflating the problem instances,
in a similar way as we can use unreasonable encodings, such that the resulting running
time of the algorithm solving the problem—which is measured as a function on the input
size—no longer reflects the actual difficulty of solving the problem.

In the remainder of this paper, we introduce a computational framework capturing
the relevancy problem in Section 2. In Section 3 we discuss hard-to-abstract and easy-

Figure 3. The enhanced computational complexity view on solving problems. Here we
make an explicit distinction between the actual problem in the real world, i.e., finding
one’s way in an unknown city, and the abstract computational problem: finding a short-
est path between two points. In addition to the previous demands on the encoding and
the computation, we also demand that the abstraction captures the relevant aspects of
the problem in the real world, e.g., distances between crossings, and abstracts away from
many typically irrelevant details.

The Journal of Problem Solving •

22 J. Kwisthout

to-abstract problems, and in Section 4 the framework is put into context by discussing
related research on representation, abstraction, and (insight) problem solving. In Section
5 we conclude and propose further research. A formal NP-hardness proof of the abstrac-
tion problem is given in the Appendix.

A Computational Framework for the Relevancy Problem

In the previous section we introduced an enhanced view on computational complexity
analyses, which makes the abstraction step from the real world problem ΠR to abstract
computational model ΠC explicit. Informally, this abstraction step seeks to isolate the
relevant aspects of ΠR. In this section we introduce a computational framework capturing
this abstraction step.

In the context of this paper, we see solving a problem ΠR simply as a transition from a
problem-state to a solution-state, given some function fΠ mapping problems to solutions2.
For example, the problem state might denote “Standing in front of King’s Cross Railway
station” and the solution state might denote “Walking on Trafalgar Square”. Alternatively,
these states might respectively denote “Sitting at the table, frowning and holding an
unsolved nine-dot-puzzle” and “Standing up from the table, smiling and waving with a
solved nine-dot-puzzle” or the problem and solution state may even refer to “X doesn’t
love me” and “X does love me,” respectively. Note that the descriptions of these states are
limited and can be extended ad infinitum, to encompass the entire state of the universe.
When I am actually standing in front of King’s Cross, I observe that there is a yellow car
passing by, a business man is talking into his cell phone, the sun is shining and someone
is just buying a newspaper at the local kiosk. Apart from everything that I observe through
my senses, there is another infinite amount of information describing the current state,
for example that it is raining in Uganda, that someone in Brooklyn just emptied her glass,
and that the amount of radiation from the Pleiades is slightly above yesterday’s level.

The bottom line here is that there are a massive amount of properties describing each
state, yet hardly any of this information is relevant here. It is difficult to imagine a situa-
tion where the amount of radiation from the Pleiades influences the way I go from King’s
Cross to Trafalgar Square. In our problem solving, we abstract from all of these irrelevant
properties immediately and focus on what is relevant, e.g., the underground train system
connecting nearby stops, or the current time—if it’s 3 a.m., we will probably need to take
a taxi. Furthermore, while we assume that there is exactly one problem state (i.e., the state
that I am currently in), many states qualify as a solution: me standing on Trafalgar Square
with either bus 5, 11 or 15 riding by all are valid solution states.
2 We are aware of the fact that this is just one notion of solving a problem. Other notions may include ‘ex-
plain why s is a solution to fΠ(p)’ or ‘find a function fΠ matching s and p’ or ‘find a p that matches some given
constraints’. In the context of this paper, we will assume that s and p are fully known and observable and
leave other notions of solving a problem to future work.

Relevancy in Problem Solving: A Computational Framework 23

• volume 5, no. 1 (Fall 2012)

We formalize “problem solving in the real world” as finding a transition from one point
p in a state space (describing the initial problem state) to another point s in a solution
region S of the state space, where the dimensions of the state space describe properties
of p and s. Such a point corresponds to what McCarthy and Hayes (1969) call a situation:
a complete state of the universe at a particular instant of time. Some of these dimensions
may correspond to properties we typically regard as irrelevant, like “current amount of
radiation from the Pleiades”. Other dimensions correspond to obviously relevant proper-
ties, like “distance to the nearest underground station”.

We assume that the number of dimensions N is massive, and that each dimension
d ∈ N can take an arbitrary (yet, for the sake of the formal analysis, bounded) number
of values. Problem solving can then be formally defined as the transition from p ∈ CN to
s ∈ S ⊆ CN, where C denotes the maximal cardinality (or resolution) of the dimensions.
The transition typically is in the form of some action plan, i.e., a set of intermediate
states that allows us to move from p to s. Observe that N may—and will—be very large.
Typically, only a small subset of N corresponds to relevant properties. We denote that
subset with M, and assert that the actual transition from p to s is independent of values
of dimensions outside M: whether the radiation from the Pleiades sums up to γ1 or γ2 will
not influence my action plan, consisting of me taking the first available tube to Charing
Cross. Our abstraction problem now is the problem of finding such a relevant subset
M ⊆ N. We formalize the above informal notions into computational problems as follows.
By the notation x↓M, we refer to the vector that is obtained from x by omitting all dimen-
sions of x that are not in M. Furthermore, we assume that both p and s are fully observable
and that every problem actually has a solution, i.e., S is non-empty.

Problem solving

Input: An input vector p ∈ CN, denoting the problem-state; an output region S ⊆ CN,
denoting the solution-space, such that fΠ(p) = S for a particular function fΠ mapping in-
stances of a problem Π to solutions to these instances; an objective function oΠ such that
oΠ(s) = 1 if s ∈ S, and oΠ(s) = 0 otherwise.
Output: A sequence of vectors A1, . . . ,Ak ∈ CN, defining an action plan to obtain s ∈ S from p.

AbstrAction

Input: A function fΠ mapping instances of a problem Π to solutions to these instances,
with corresponding objective function oΠ.
Output: The smallest non-empty subset M ⊆ N such that for every s ∈ CN, oΠ(s) = oΠ(s↓M).

Without doubt, part of abstracting a real world problem into a computational problem is
in bringing down the resolution of the problem dimensions (Palmer, 1978). For example,
even when the distance to the nearest tube is a relevant dimension, we do not need to
represent it in millimeters to construct action plans. However, we leave this aspect out of
the abstraction problem, for reasons explained in Section 3.

The Journal of Problem Solving •

24 J. Kwisthout

Note that in the context of this paper we are not particularly interested in the action
plans themselves, nor in how they are to be constructed or executed; our interest lies in
the fundamental properties of the abstraction problem, i.e., the problem of obtaining the
relevant characteristics of the original problem and omitting the non-relevant details.
We do not focus on the question how we solve this abstraction problem, but rather on
what makes it hard: we seek to find the sources of complexity of the abstraction problem.

In the next section we will discuss particular instances of the abstraction problem
and discuss why some instances of the abstraction problem appear to be fairly easy,
why others appear to be hard. We will introduce the notion of expected relevancy to help
explain which dimensions are typically considered relevant, and others are considered
irrelevant (or not considered at all), and how this notion can help in discriminating hard
and easy to abstract problems.

Hard and Easy Abstraction Problems

For some problems, finding a good abstraction appears to be fairly easy. Most of us will
agree that, for solving the problem of finding the shortest path to the downtown hotel,
distances between crossings and landmarks are relevant characteristics of the problem
that should be preserved in the abstraction, and the structure of the tiles in the pavement
are irrelevant details that should be left out. It is not too hard to settle on a subset M of
relevant dimensions in this problem. The problem generalizes well to similar problems,
like finding the shortest path to the library.

Other problems are much harder to abstract. One such problem might be: “Make X
love me” where the (presumed) begin-state p is: “X doesn’t love me” and the desired end
state is in the region S corresponding with “X does love me.” Here, there is for many dimen-
sions d general disagreement whether d ∈ M or not; arguably, there are many relevant
dimensions. We will have a hard time explaining the relevant dimensions to others; in fact,
it will be an educated guess at best. It is not well understood what the relevant dimen-
sions are here. The problem does not well generalize to “Make Z love me”, as typically the
set of relevant dimensions will be different.

Are there problems that are inherently hard to abstract? In the context of the proposed
formal framework, the answer can be an unambiguous ‘yes’. This need not surprise us,
as the abstraction problem closely relates to the frame problem in artificial intelligence:
the fundamental problem of deciding which information is relevant in order to make
inferences, where in potential everything might be relevant3 (Fodor, 1987). We show in

3 There are many definitions of the frame problem; see, e.g., Haselager (1997) for an overview. Originally, the
frame problem was restricted to the purely logical problem of deducing what stays the same as the result
of an action (McCarthy & Hayes, 1969); we refer to a more general definition that sees the frame problem as
a representational and inferential issue.

Relevancy in Problem Solving: A Computational Framework 25

• volume 5, no. 1 (Fall 2012)

the Appendix, using a computational complexity analysis, that it is NP-hard4 to decide in
general that a particular dimension is relevant, and thus that no polynomial time algorithm
can solve the AbstrAction problem in polynomial time unless P = NP. Furthermore, we
show that the (initial) resolution of the dimensions is in itself not a source of complexity:
the AbstrAction problem happens to be intractable (i.e., NP-hard), even if all dimensions
have a resolution of two, that is, even if all dimensions in the real world problem would
be binary (like yes/no, old/young, close/far). So, the intractability of finding a suitable
abstraction cannot be ascribed to the task of bringing down the resolution of the dimen-
sions to manageable sizes.

To discuss why the “Make X love me” problem is harder to abstract than “Find shortest
path to hotel” we investigate when a dimension is typically considered (by the problem
solver) to be irrelevant. It has been noted before (Kaplan & Simon, 1990, p. 403) that “[We]
are not equipped with generators for searching the space of ‘all possible representations’”.
Hayes and Simon (1974) also demonstrate that, when confronted with a problem to solve,
subjects don’t deliberately choose among possible problem representations, but select the
representation that is most obvious from the problem description at hand. Various studies
on insight problem solving (e.g., Kaplan & Simon, 1990; Knöblich, Ohlsson, Haider, & Rhe-
nius, 1999) suggest that we stick to a particular representation and we often need strong
‘counter forces’ (like hints) to reconsider what is and isn’t relevant in solving the problem.
These results suggest that we are typically able to quickly discriminate between features
that are considered relevant or irrelevant (although we may be mistaken sometimes).

In the context of our formal framework, we introduce the notion of the expected
relevancy δd of a dimension as some function mapping dimensions to the interval [0,
1], where 0 denotes absolutely irrelevant and 1 denotes absolutely relevant. We assert that
the expected relevancy of a dimension is a subjective measure, conditioned on prior
knowledge or experience, heuristics, and newly arriving information (such as hints from
the experimenter, or consistent failure to solve the problem). Typically, the expected rel-
evancy δd for a dimension d would be low if variation along the value of the dimension
is not considered likely to affect the outcome of the problem solving activity. This notion
of relevance corresponds to Wilson and Sperber’s approach where “an input is relevant to
an individual when its processing in a context of available assumptions yields (. . .) a worth-
while difference to the individual’s representation of the world” (Wilson and Sperber, 2004,
p. 608). It is also related to Gorayska and Lindsay’s goal-oriented approach, where an
aspect is relevant towards a goal if there is some action plan from the current state to the
goal where this aspect plays an essential role (Gorayska & Lindsay, 1993). In a somewhat

4 We assume that the reader is familiar with the notions P and NP for computational problems that can be
decided, respectively for which a candidate solution can be verified, in polynomial time; the notion of NP-
hardness, indicating presumed intractability of the computational problem, and the assumed inequality of
P and NP. We refer the reader to, e.g., Garey and Johnson (1979) for a thorough discussion of these concepts.

The Journal of Problem Solving •

26 J. Kwisthout

different context, Müller, van Rooij, and Wareham (2009) proposed a related notion of a
relevant set of transformations in similarity judging.

Note that the expected relevancy δd is a subjective measure that is typically estimated
by the problem solver. Given this notion of expected relevancy, we suggest that one only
includes dimensions in a abstraction that have a high expected relevancy. Naturally, mak-
ing such an abstraction is easy when there are only few dimensions with a high expected
relevancy, and hard when there are (many) dimensions with a high expected relevancy
(“Everything appears to be relevant!”) and when there are (many) dimensions for which the
expected relevancy is difficult to estimate (“I don’t know what is relevant!”).

We should emphasize that we do not propose or even suggest that a problem solver
actually consciously computes expected relevancies. Our cognitive processes often behave
roughly according to the laws of probability theory, without the brain actually perform-
ing probabilistic inference before making a decision (Chater & Oaksford, 2008); similarly,
abstractions can be made roughly according to the expected relevancy of the dimensions
without (consciously) computing them. We do suggest that expected relevancy may be
a measure that can be used to describe why some problems are harder to abstract than
others. Likewise, we suggest that it may be a useful way of explaining individual differ-
ences in finding an abstraction, as well as explaining why people sometimes (like in insight
problem solving) make unsuitable abstractions.

Discussion

The ability to solve problems is often considered to be one of the most complex intel-
lectual abilities of mankind; it is therefore not surprising that studying (computational
models of) problem solving is a key topic in cognitive science, perhaps with the seminal
work of Newell and Simon (1972) as most impressive example. Even when we restrict our-
selves to a narrow definition of problem solving (finding an action plan from a problem
state to a solution state) there is a wild variety in the difficulty of problems to be solved.
Naturally, some problems are more difficult than others. Funke (1991) contrasts simple
and complex problems using criteria like the transparency of the problem and solution
definitions, as well as complexity of the problem in terms of number and connectivity of
variables. Complex problems may have intransparent definitions and large and highly
connected problem spaces.

Here, some of the criteria for complexity appear to stem from representing the prob-
lem, while some others from solving the already represented problem. For some problems,
it is both easy to find a suitable formal representation (i.e., a suitable abstraction of the
real world problem) and solve the problem; finding the shortest path to the downtown
hotel is such a problem. Finding a winning strategy in Go is fairly easy to cast into a formal

Relevancy in Problem Solving: A Computational Framework 27

• volume 5, no. 1 (Fall 2012)

computational problem, but intractable to solve; other problems are easy to solve once
we have a suitable representation.

As already noticed by Newell and Simon (1972), some problem solving processes
are incremental in nature. They require only fairly routine or analytic steps to solve; the
problem solver knows how the problem is to be solved, he or she just needs to apply the
needed steps. While this may require in itself considerable intellectual effort, this type of
problem solving can be characterized by a steadily increasing Feeling-of-Warmth (Metcalfe,
1986). Other problem solving processes, in contrast, involve non-incremental, discontinu-
ous, or creative steps to “pass beyond a barrier”. These problems are often denoted as
insight problems (Smith, 1995; Sternberg & Davidson, 1995; Chu & MacGregor, 2011) as
they typically require some insight or aha-erlebnis to solve. In such problems, Metcalfe
(1986) found a sharp increase in Feeling-of-Warmth towards the end of the problem
solving process. In these insight problems, the problem solver typically starts with an
inappropriate representation, and the problem can only be solved when the problem
solver realizes that the problem representation should be changed in order to ‘break the
barrier’, for example (as in the Representational Change Theory) by relaxing some of the
constraints (Ohlsson, 1992).

Kaplan and Simon (1990) mention a few perceptual cues in the Mutilated Check-
erboard Problem5 that help the participants to gain more insight in the problem, e.g.,
draw the attention on the (lack of) parity of the squares on the board. Apart from these
‘external’ forces (like hints and cues), they also mention more ‘internal’ means by which
participants gained insight in the problem. In particular, they hypothesize that noticing
invariants (features in the problem that do not change; e.g., in every partial covering
two black squares remain uncovered) helps the problem solver in concluding that a re-
representation of the problem is needed (after noticing that the color of the squares is
a relevant feature). The reconsideration of features after either external or internal cues
corresponds with the increase expected relevancy of the respective dimensions.

Insight problems thus are typically problems for which solutions are fairly easy to
determine, once the correct representation is found. The correct representation is an
appropriate abstraction that leaves out the irrelevant details but includes all the aspects
of the problem that are relevant in finding a solution. An example is a variant of the so-
called Nine Dots Problem. Assume you were given a sheet of paper, with nine black dots
on it, ordered in a three-by-three square (Figure 4a), and are asked whether it is possible
to connect the nine dots using only three connected straight lines. While the notion of
problem solving here is slightly different as the solution itself is required (rather than a
path to a given solution), the act of abstracting the problem is similar. We quickly (and
likely, unconsciously) classify the way in which the dots are ordered as relevant for solving

5 A problem in which participants are presented a checkerboard with two opposite squares (upper-right
and lower-left, i.e., squares of the same color) removed and asked whether the board could be completely
covered by domino pieces.

The Journal of Problem Solving •

28 J. Kwisthout

the problem, and the thickness of the paper, the color of the dots, the exact placement
of the dots on the paper, the current time, weather conditions, and NASDAQ-index as
irrelevant. What makes this problem hard to solve is that we typically regard one aspect
of the problem as irrelevant while it is in fact crucial in solving the problem, namely, the
size of the dots. In typical mathematics-like problems, a ‘dot’ refers to a point, a zero-
dimensional point in space. We abstract the problem by seeing it as nine points that need
to be connected. In this particular problem, however, the dots have area, and one can
connect them using three straight lines if we don’t connect them at their center, but (like
in Figure 4b) make use of the area of the dots. It is, however, fully explainable that we did
not (initially) include the area of the dots as a relevant aspect that needed to be included
in the representation, as it has a low expected relevancy.

As expected relevancy of a dimension is a subjective measure, it can also be used to
explain individual differences in problem solving. Having domain-relevant expertise or
knowledge typically influences the problem solving activity. This knowledge, however,
can be a “two-edged sword” (Kaplan and Simon, 1990, p. 399) as it may both help and
hinder the problem solver. It may help in discriminating between relevant and irrelevant
aspects of the problem domain: novices may experience difficulties in assessing the
expected relevancy of many dimensions. Experts, on the other hand, may bring in their
past experience and knowledge to bring down the number of relevant dimensions to
a manageable size. On the other hand, the expert may suffer from functional fixedness
(Duncker, 1945)—the expert’s prior knowledge (for example, “in mathematical problems,
a point typically is dimensionless and has no area”) may hinder his or her ability to solve
the problem, as the expected relevancy of the dimension ‘area of the dots’ is low because
of previous experiences. A novice that may not have any experience with mathematical
puzzles may lack such a bias and may not immediately dismiss this dimension because
of low expected relevancy. An extreme example of such an expert blind spot was given by
Kaplan and Simon (1990, p. 379) where a very persistent graduate student in Chemical
Engineering spent 18 hours on the Mutilated Checkerboard Problem, filling over 60 pages

Figure 4. An example of the Nine-Dots-Puzzle (a) and a possible solution (b). Note that the
solution depends on the dots being two-dimensional objects, rather than being dimen-
sionless points in space.

Relevancy in Problem Solving: A Computational Framework 29

• volume 5, no. 1 (Fall 2012)

in a notebook with all sorts of mathematical invariants, yet missing the parity of the color
of the squares that are covered by a domino piece as a relevant dimension.

Conclusion

Whether a problem solving situation is trivial or complex depends on many factors; some
of which can be classified as representational factors, others as computational factors.
The computational complexity of (an abstraction of) a problem is a well-studied area, with
its own conferences, research groups, and the famous $ 1,000,000 question6 whether the
classes P and NP are equal or different. The representational complexity of a problem—how
hard is it to find a suitable formal representation of a problem—has received much less
attention from computer science. In this paper we proposed one possible computational
framework for studying the representational complexity of a problem and related it to
intuitive notions of hard and easy to abstract problems using the expected relevancy
measure. We proposed that humans experience difficulty in finding a suitable abstrac-
tion if there are many features with a high expected relevancy, or when the expected
relevancy of many features is difficult to assess. This notion of expected relevancy was
then used to explain why people experience difficulties solving insight problems like the
Nine Dot Problem. Furthermore, this notion was used to explain both the possible help
and hindrance of previous experience or knowledge.

While the expected relevancy is a subjective measure on a problem aspect, it can
be shown that, within this framework, there exist problems that are inherently hard to
abstract7. In future work it would be very interesting if these hard problems can be char-
acterized in some way such that they can be formally separated from the easy problems.
Furthermore, while it is NP-hard to find a minimal subset of relevant aspects, we do not
have formal results yet on approximation (finding a subset that is guaranteed to be almost
minimal) or randomization (finding a subset that is minimal with a high probability, but may
be way off in extreme cases) strategies of abstraction. Lastly, we did not address the ques-
tion how people8 assess the expected relevancy of a dimension; we believe it is beyond
the scope of this paper (and the author’s expertise) to make any claims on this subject.

6 The Clay Mathematics Institute has denoted this open problem as one of the “Millennium Prize” problems
and offers a $ 1,000,000 prize for anyone proving either P = NP or (much more likely) P ≠ NP.
7 This may not be surprising given similar results for the Feature Selection problem in machine learning
(Koller & Sahami, 1996; John, Kohavi, & Pfleger, 1994; Bin, Jiarong, & Yadong, 1997).
8 Or, for that matter, an artificial intelligence. Note that we did not suggest that expected relevancies were
to be computed for every possible dimension—that would lead to a frame problem ‘in disguise’.

The Journal of Problem Solving •

30 J. Kwisthout

Acknowledgments

This paper is based on the presentation that the author delivered at the Dagstuhl Semi-
nar on Computer Science & Problem Solving: New Foundations. I am indebted to the
participants of this seminar for valuable feedback and suggestions. In particular, I wish to
thank Tom Heskes, Iris van Rooij, Todd Wareham, Stefan Leijnen, Mark Blokpoel, and two
anonymous reviewers for helpful discussions, literature suggestions, and feedback on
earlier versions of this paper, and Bas Maes for designing the figures in the paper.

References
Ash, I. K., Cushen, P. J., & Wiley, J. (2009). Obstacles in investigating the role of restructuring

in insightful problem solving. Journal of Problem Solving, 2(2), 6–41.

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning.
Cognition, 113, 329–349. http://dx.doi.org/10.1016/j.cognition.2009.07.005

Bin, C., Jiarong, H., & Yadong, W. (1997). The minimum feature subset selection problem.
Journal of Computer Science & Technology, 12(2), 145–153.

Cavanagh, P. (2011). Visual cognition. Vision Research, 51(13), 2011, 1538–1551.

Chater, N., & Oaksford, M. (2008). The probabilistic mind: Prospects for Bayesian cogni-
tive science. Oxford University Press, Cary, NC. http://dx.doi.org/10.1093/acprof:o
so/9780199216093.001.0001

Chu, Y., & MacGregor, J. N. (2011). Human performance on insight problem solving: A
review. Journal of Problem Solving, 3(2), 119–150.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), Whole No. 270).

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii aca-
demiae scientiarum Petropolitanae, 8, 128–140. Retrieved from http://www.math.
dartmouth.edu/~euler/pages/E053.html.

Fodor, J. A. (1987). Modules, frames, fridgeons, sleeping dogs, and the music of the spheres.
In Z.W. Pylyshyn (Ed.), The robot’s dilemma: the frame problem in artificial intelligence.
Norwood, NJ: Ablex.

Funke, J. (1991). Solving complex problems: Exploration and control of complex social
systems. In R. J. Sternberg and P. A. Frensch (Eds.): Complex problem solving: Principles
and mechanisms. Hillsday, NJ: Lawrence Erlbaum Assocates.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of
NP-completeness. San Francisco, CA: W.H. Freeman and Co.

Gorayska, B., & Lindsay, R. (1993). The roots of relevance. Journal of Pragmatics, 19(4),
301–323. http://dx.doi.org/10.1016/0378-2166(93)90091-3

Haselager, W. F. G. (1997). Cognitive science and folk psychology: The right frame of mind.
London: Sage.

Relevancy in Problem Solving: A Computational Framework 31

• volume 5, no. 1 (Fall 2012)

Hayes, J. R., & Simon, H. A. (1974). Understanding written problem instructions. In L. Gregg
(Ed.), Knowledge and cognition. Potomac, MD: Lawrence Erlbaum Associates.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection
problem. Proceedings of the Eleventh International Conference on Machine Learning,
pp. 121–129.

Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22, 374–419.
http://dx.doi.org/10.1016/0010-0285(90)90008-R

Keane, M. T. (1988). Analogical problem solving. Oxford, UK: Halsted Press.

Knöblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk
decomposition in insight problem solving. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 25(6), 1534–1555. http://dx.doi.org/10.1037/0278-
7393.25.6.1534

Koller, D., & Sahami, M. (1996). Toward optimal feature selection. Proceedings of the Thir-
teenth International Conference on Machine Learning, pp. 284–292.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science, 11, 65–100. http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. 4).
Edinburgh, UK: Edinburgh University Press.

Metcalfe, J. (1986). Premonitions of insight predict impending error. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 12(4), 623–634. http://dx.doi.
org/10.1037/0278-7393.12.4.623

Müller, M., van Rooij, I., & Wareham, T. (2009). Similarity as tractable transformation. Pro-
ceedings of the 31st Annual Conference of the Cognitive Science Society, pp. 50–55.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S. (1992). Information-processing explanations of insight and related phenom-
ena. In M. Keane & K. Gilhooly (Eds.), Advances in the Psychology of Thinking (pp 1–44).
Hemel Hempstead, UK: Harvester-Wheatsheaf.

Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B.
Lloyd (Eds.), Cognition and categorization, 259–303. Hillsday, NJ: Lawrence Elbaum
Associates.

Simon, H. A. (1978). On the forms of mental representation. In C. W. Savage (Ed.), Percep-
tion and Cognition: Issues in the Foundations of Psychology (pp. 3–18). Minneapolis,
MN: University of Minnesota.

Smith, S. M. (1995). Fixation, incubation, and insight in memory, problem solving, and
creativity. In S. M. Smith, T. B. Ward, & R. A. Finke (Eds.), The creative cognition approach
(pp. 135–155). MIT Press, Cambridge, MA.

Sternberg, R. J., & Davidson, J. E. (Eds.) (1995). The nature of insight. Cambridge, MA: MIT
Press.

The Journal of Problem Solving •

32 J. Kwisthout

Wilson, D., & Sperber, D. (2004). Relevance theory. In Horn, L. R. & Ward, G. (Eds.) The hand-
book of pragmatics (pp. 607–632.). Oxford, UK: Blackwell.

Appendix

In the Appendix, we argue that it is in general intractable to solve the AbstrAction problem
defined in Section 3, that is, to find the smallest relevant subset M of the set of all dimen-
sions N. In particular, we show that it is NP-hard in general to decide whether a particular
dimension is relevant. We start by defining two computational decision problems, and
show that they are encapsulated in the AbstrAction problem mentioned above. Then we
proceed to prove NP-completeness, respectively co-NP-completeness, of these decision
problems, thus establishing the above mentioned results. We assume that the reader
is familiar with the complexity classes P, NP and co-NP, and with intractability proofs in
general. We refer to textbooks like Garey and Johnson (1979) for more background.

We call a variable xi redundant in a Boolean formula φ if xi’s truth assignment does
not influence the characteristic function9 1φ of φ. In other words, xi is redundant in φ if
1φ(xi = 0) = 1φ(xi = 1). In contrast, xi is relevant in φ if 1φ(xi = 0) ≠ 1φ(xi = 1), that is, if xi’s truth
assignment does influence the characteristic function. These notions induce the following
decision problems.

isA-relevAnt vAriAble

Input: Boolean formula φ with n variables, describing the characteristic function
1φ: {0,1}n → {1, 0}, designated variable xi ∈ φ.
Question: Is xi a relevant variable in φ, that is, is 1φ(xi = 1) ≠ 1φ(xi = 0)?

isA-redundAnt vAriAble

Input: Boolean formula φ with n variables, describing the characteristic function
1φ: {0,1}n → {1, 0}, designated variable xi ∈ φ.
Question: Is xi a redundant variable in φ, that is, is 1φ(xi = 1) = 1φ(xi = 0)?

It can be readily shown that these problems are closely related to the AbstrAction
problem: every variable in φ translates to a (binary valued) dimension in CN

 with d as des-
ignated dimension corresponding to xi; fΠ outputs a state corresponding to a satisfying
truth instantiation; the characteristic function 1φ then corresponds with the objective
function oΠ. We denote the problem state p as an arbitrary vector in this space and the
solution space S as a region in CN

 corresponding with the satisfying truth instantiations.
The smallest subset M of N such that oΠ(s) = oΠ(s↓M) now contains only dimensions that
correspond to relevant variables; any other dimension d’ ∈ N \ M corresponds to a re-

9 The characteristic function of a Boolean formula φ, denoted by 1φ, maps truth assignments to φ to {0, 1},
such that 1φ(x) = 1 iff. x denotes a satisfying truth assignment, and 0 otherwise.

Relevancy in Problem Solving: A Computational Framework 33

• volume 5, no. 1 (Fall 2012)

dundant variable. Naturally, any algorithm that solves AbstrAction can also be used to
decide isA-relevAnt vAriAble and isA-redundAnt vAriAble: from φ, construct an AbstrAction
instance as described above and compute M; xi is relevant if and only if xi ∈ M, otherwise
xi is redundant. As M ⊆ N, this computation can be done in polynomial time. As we will
show shortly that deciding isA-relevAnt vAriAble and isA-redundAnt vAriAble is NP-complete,
respectively co-NP-complete, it follows that computing the relevant subset of dimensions
(or deciding whether a particular dimension is relevant) for fΠ is intractable, unless P = NP.

Theorem: isA-relevAnt vAriAble and isA-redundAnt vAriAble are NP-complete, respectively
co-NP-complete.

Proof. To prove NP-completeness, we reduce isA-relevAnt vAriAble from the well-known
NP-complete sAtisfiAbility problem (given a Boolean formula φ with n variables; is φ
satisfiable?). Membership of NP follows as we can verify in polynomial time a certificate,
consisting of a tuple of two truth assignments (x, x’) such that 1φ(x) ≠ 1φ(x’). NP-hardness is
proven as follows. Let ψ be an instance of sAtisfiAbility with n variables and let φ = ψ ∧ xn+1.

→ If xn+1 is a relevant variable, then ψ is satisfiable, as there exists by definition at least
one truth assignment to φ such that 1φ(ψ ∧ xn+1 = true) ≠ 1φ(ψ ∧ xn+1 = false), and given that
ψ ∧ xn+1 = false always evaluates to false, we have that ψ is necessarily satisfiable.

← if ψ is satisfiable, then xn+1 is a relevant variable as 1φ(ψ ∧ xn+1 = true) ≠ 1φ(ψ ∧ xn+1
= false) for any satisfiable truth instantiation to ψ, given that ψ ∧ xn+1 = false always evalu-
ates to false.

As we can obviously construct the above reduction in polynomial time, that proves
that isA-relevAnt vAriAble is NP-complete. The co-NP-completeness proof of isA-redundAnt
vAriAble is almost similar, save that we reduce from the co-NP-complete problem tAu-
tology (given a Boolean formula φ with n variables; is φ a contradiction?) and we prove
membership in co-NP by providing the same certificate as above, but now used as a
counterexample.

(Q.E.D.)

