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Relevancy in Problem Solving: A Computational Framework

Johan Kwisthout1

Abstract
When computer scientists discuss the computational complexity of, for example, finding 
the shortest path from building A to building B in some town or city, their starting point 
typically is a formal description of the problem at hand, e.g., a graph with weights on 
every edge where buildings correspond to vertices, routes between buildings to edges, 
and route-distances to edge-weights. Given such a formal description, either tractability 
or intractability of the problem is established, by proving that the problem either enjoys 
a polynomial time algorithm or is NP-hard. However, this problem description is in fact 
an abstraction of the actual problem of being in A and desiring to go to B: it focuses on 
the relevant aspects of the problem (e.g., distances between landmarks and crossings) 
and leaves out a lot of irrelevant details.

This abstraction step is often overlooked, but may well contribute to the overall 
complexity of solving the problem at hand. For example, it appears that “going from A 
to B” is rather easy to abstract: it is fairly clear that the distance between A and the next 
crossing is relevant, and that the color of the roof of B is typically not. However, when the 
problem to be solved is “make X love me”, where the current state is (assumed to be) “X 
doesn’t love me”, it is hard to agree on all the relevant aspects of this problem.

In this paper a computational framework is presented in order to formally inves-
tigate the notion of relevance in finding a suitable problem representation. It is shown 
that it is in itself intractable in general to find a minimal relevant subset of all problem 
dimensions that might or might not be relevant to the problem. Starting from a compu-
tational complexity stance, this paper aims to contribute a computational framework of 
‘relevancy’ in problem solving, in order to be able to separate ‘easy to abstract’ from ‘hard 
to abstract’ problems. This framework is then used to discuss results in the literature on 
representation, (insight) problem solving and individual differences in the abstraction 
task, e.g., when experts in a particular domain are compared with novice problem solvers. 
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Introduction

One of Leonhard Euler’s most famous contributions to mathematics was his treatment 
of the Seven Bridges of Königsberg problem1. The city of Königsberg is set on both sides 
of the Pregel River. Both parts of the city, and two islands in the river, are connected us-
ing seven bridges. Euler was asked whether one was able to go for a stroll on a Sunday 
afternoon, passing each bridge exactly once and returning where one started the trip. 
Euler proved that the answer to this question was ‘no’—no such tour exists (Euler, 1741).

Euler’s main contribution, arguably, was not in the actual result, but in the way he 
tackled the problem. He quickly realized that the route one might take between the con-
secutive crossing of two bridges was irrelevant to solving the problem. The only relevant 
aspects of the problem are to be found in the topology of the bridges: which bridge con-
nects which landmass. While solving the actual problem, Euler laid out the foundations 
of graph theory: in nowadays terms, each landmass corresponds to a vertex, and each 
bridge to an edge connecting vertices. The actual problem could be abstracted into a 
graph problem: given a graph G, does it contain an Euler tour, i.e., a tour connecting all 
vertices and traversing each edge in G exactly once?

However clever and thoughtful, Euler’s treatment of the problem is quite typical of 
the way humans solve problems: by focusing on the relevant aspects of the problem only, 
dismissing details that are irrelevant. Nevertheless, we do make mistakes—some more than 
others. We sometimes include aspects that are not relevant (e.g., we might conclude that 
the distance between two bridges is relevant), leading to suboptimal representations; we 
sometimes weed out too many aspects (e.g., we might dismiss multiple bridges between 
two landmasses, focusing on a connectivity problem instead), leading to representations 
that may not lead to a correct solution.

Figure 1. A problem and its formal description. Here the computational problem is to find 
a shortest path between two designated points S and T in a graph. It is formalized as an 
input-output mapping.
1 http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg



The Journal of Problem Solving •

20 J. Kwisthout

In general, it appears that the problem of finding a relevant abstraction significantly 
contributes to the overall complexity of solving the actual problem. Despite this observa-
tion, when studying a particular problem, a computational complexity analysis typically 
assumes that a relevant abstraction of the problem is readily available. For example, as-
sume one wants to find one’s way in an unknown city; in particular, one desires to travel 
from one’s current location to the downtown hotel, using the shortest possible route. This 
‘real-world problem,’ which we will denote ΠR, naturally translates into the computational 
problem ΠC of finding the shortest path in a graph with weighted edges and designated 
starting and ending points, as depicted in Figure 1. Such an abstract computational 
problem, cast into an input-output mapping, can then act as the starting point of a com-
putational complexity analysis. We encode arbitrary instances of ΠC into input strings for 
a particular computational device (e.g., a Turing machine) and investigate whether the 
corresponding outputs can be computed efficiently, for example, in time, polynomial in 
the input size. In order for the problem to be tractably solvable, we require that the en-
coding is reasonable (we do not want to artificially increase the input size) and that the 
computation is feasible (Figure 2).

In this classical notion of computational complexity, however, we deal with abstract 
problems only, i.e., in order to assess the computational complexity of a particular prob-
lem, we do not take the abstraction step itself into account. However, there is increasing 
evidence from psychology (see, Ash, Cushen, & Wiley, 2009 for an overview) that finding 
a useful representation of a problem can be as hard as computing a solution to the (rep-
resentation of the) problem. In order to construct and analyze computational models of 

Figure 2. The classical computational complexity view on solving problems. A particular 
problem instance, expressible as a formal input-output mapping, is to be encoded in some 
computer-readable encoding; typically, but not necessarily, a string of binary numbers. 
The encoded instance is then fed as input to a computing device like a Turing Machine. 
In order for the problem to be solved tractably, we demand that the encoding is reason-
able, i.e., that we do not ‘blow up’ the size of the instance, and that the computation is 
feasible, i.e., that the time needed to compute the output corresponding to a particular 
input, takes time, polynomial in the input size.
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cognitive processes like problem solving (in a broad sense, including problems like inten-
tion recognition (Baker, Saxe, & Tenenbaum, 2009), visual perception (Cavanagh, 2011), 
analogy (Keane, 1988) and others), we need to address the issue of representation as well 
as the issue of computation.

This observation inspires an enhanced notion of computational complexity (Figure 
3), where the abstraction step is explicit. The starting point of a complexity analysis here 
no longer is the abstract computational problem ΠC, but the real world problem ΠR: for 
this problem to be feasibly solvable, we not only require reasonable encodings and trac-
table computations, but also relevant abstractions. As an example, in the find-our-hotel 
problem, the distance between crossings is typically a relevant characteristic that should 
be included in the abstract computational problem. The color of the roof of the hotel is 
typically not relevant and thus should not be included in the abstraction. It will be clear 
that we can ‘mess up’ with the complexity analysis by inflating the problem instances, 
in a similar way as we can use unreasonable encodings, such that the resulting running 
time of the algorithm solving the problem—which is measured as a function on the input 
size—no longer reflects the actual difficulty of solving the problem.

In the remainder of this paper, we introduce a computational framework capturing 
the relevancy problem in Section 2. In Section 3 we discuss hard-to-abstract and easy-

Figure 3. The enhanced computational complexity view on solving problems. Here we 
make an explicit distinction between the actual problem in the real world, i.e., finding 
one’s way in an unknown city, and the abstract computational problem: finding a short-
est path between two points. In addition to the previous demands on the encoding and 
the computation, we also demand that the abstraction captures the relevant aspects of 
the problem in the real world, e.g., distances between crossings, and abstracts away from 
many typically irrelevant details.
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to-abstract problems, and in Section 4 the framework is put into context by discussing 
related research on representation, abstraction, and (insight) problem solving. In Section 
5 we conclude and propose further research. A formal NP-hardness proof of the abstrac-
tion problem is given in the Appendix.

A Computational Framework for the Relevancy Problem

In the previous section we introduced an enhanced view on computational complexity 
analyses, which makes the abstraction step from the real world problem ΠR to abstract 
computational model ΠC explicit. Informally, this abstraction step seeks to isolate the 
relevant aspects of ΠR. In this section we introduce a computational framework capturing 
this abstraction step.

In the context of this paper, we see solving a problem ΠR simply as a transition from a 
problem-state to a solution-state, given some function fΠ mapping problems to solutions2. 
For example, the problem state might denote “Standing in front of King’s Cross Railway 
station” and the solution state might denote “Walking on Trafalgar Square”. Alternatively, 
these states might respectively denote “Sitting at the table, frowning and holding an 
unsolved nine-dot-puzzle” and “Standing up from the table, smiling and waving with a 
solved nine-dot-puzzle” or the problem and solution state may even refer to “X doesn’t 
love me” and “X does love me,” respectively. Note that the descriptions of these states are 
limited and can be extended ad infinitum, to encompass the entire state of the universe. 
When I am actually standing in front of King’s Cross, I observe that there is a yellow car 
passing by, a business man is talking into his cell phone, the sun is shining and someone 
is just buying a newspaper at the local kiosk. Apart from everything that I observe through 
my senses, there is another infinite amount of information describing the current state, 
for example that it is raining in Uganda, that someone in Brooklyn just emptied her glass, 
and that the amount of radiation from the Pleiades is slightly above yesterday’s level.

The bottom line here is that there are a massive amount of properties describing each 
state, yet hardly any of this information is relevant here. It is difficult to imagine a situa-
tion where the amount of radiation from the Pleiades influences the way I go from King’s 
Cross to Trafalgar Square. In our problem solving, we abstract from all of these irrelevant 
properties immediately and focus on what is relevant, e.g., the underground train system 
connecting nearby stops, or the current time—if it’s 3 a.m., we will probably need to take 
a taxi. Furthermore, while we assume that there is exactly one problem state (i.e., the state 
that I am currently in), many states qualify as a solution: me standing on Trafalgar Square 
with either bus 5, 11 or 15 riding by all are valid solution states.
2 We are aware of the fact that this is just one notion of solving a problem. Other notions may include ‘ex-
plain why s is a solution to fΠ(p)’ or ‘find a function fΠ matching s and p’ or ‘find a p that matches some given 
constraints’. In the context of this paper, we will assume that s and p are fully known and observable and 
leave other notions of solving a problem to future work.
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We formalize “problem solving in the real world” as finding a transition from one point 
p in a state space (describing the initial problem state) to another point s in a solution 
region S of the state space, where the dimensions of the state space describe properties 
of p and s. Such a point corresponds to what McCarthy and Hayes (1969) call a situation: 
a complete state of the universe at a particular instant of time. Some of these dimensions 
may correspond to properties we typically regard as irrelevant, like “current amount of 
radiation from the Pleiades”. Other dimensions correspond to obviously relevant proper-
ties, like “distance to the nearest underground station”. 

We assume that the number of dimensions N is massive, and that each dimension  
d ∈ N can take an arbitrary (yet, for the sake of the formal analysis, bounded) number 
of values. Problem solving can then be formally defined as the transition from p ∈ CN to  
s ∈ S ⊆ CN, where C denotes the maximal cardinality (or resolution) of the dimensions. 
The transition typically is in the form of some action plan, i.e., a set of intermediate 
states that allows us to move from p to s. Observe that N may—and will—be very large. 
Typically, only a small subset of N corresponds to relevant properties. We denote that 
subset with M, and assert that the actual transition from p to s is independent of values 
of dimensions outside M: whether the radiation from the Pleiades sums up to γ1 or γ2 will 
not influence my action plan, consisting of me taking the first available tube to Charing 
Cross. Our abstraction problem now is the problem of finding such a relevant subset  
M ⊆ N. We formalize the above informal notions into computational problems as follows. 
By the notation x↓M, we refer to the vector that is obtained from x by omitting all dimen-
sions of x that are not in M. Furthermore, we assume that both p and s are fully observable 
and that every problem actually has a solution, i.e., S is non-empty.

Problem solving

Input: An input vector p ∈ CN, denoting the problem-state; an output region S ⊆ CN, 
denoting the solution-space, such that fΠ(p) = S for a particular function fΠ mapping in-
stances of a problem Π to solutions to these instances; an objective function oΠ such that  
oΠ(s) = 1 if s ∈ S, and oΠ(s) = 0 otherwise.
Output: A sequence of vectors A1, . . . ,Ak ∈ CN, defining an action plan to obtain s ∈ S from p.

AbstrAction

Input: A function fΠ mapping instances of a problem Π to solutions to these instances, 
with corresponding objective function oΠ.
Output: The smallest non-empty subset M ⊆ N such that for every s ∈ CN, oΠ(s) = oΠ(s↓M).

Without doubt, part of abstracting a real world problem into a computational problem is 
in bringing down the resolution of the problem dimensions (Palmer, 1978). For example, 
even when the distance to the nearest tube is a relevant dimension, we do not need to 
represent it in millimeters to construct action plans. However, we leave this aspect out of 
the abstraction problem, for reasons explained in Section 3.
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Note that in the context of this paper we are not particularly interested in the action 
plans themselves, nor in how they are to be constructed or executed; our interest lies in 
the fundamental properties of the abstraction problem, i.e., the problem of obtaining the 
relevant characteristics of the original problem and omitting the non-relevant details. 
We do not focus on the question how we solve this abstraction problem, but rather on 
what makes it hard: we seek to find the sources of complexity of the abstraction problem. 

In the next section we will discuss particular instances of the abstraction problem 
and discuss why some instances of the abstraction problem appear to be fairly easy, 
why others appear to be hard. We will introduce the notion of expected relevancy to help 
explain which dimensions are typically considered relevant, and others are considered 
irrelevant (or not considered at all), and how this notion can help in discriminating hard 
and easy to abstract problems. 

Hard and Easy Abstraction Problems

For some problems, finding a good abstraction appears to be fairly easy. Most of us will 
agree that, for solving the problem of finding the shortest path to the downtown hotel, 
distances between crossings and landmarks are relevant characteristics of the problem 
that should be preserved in the abstraction, and the structure of the tiles in the pavement 
are irrelevant details that should be left out. It is not too hard to settle on a subset M of 
relevant dimensions in this problem. The problem generalizes well to similar problems, 
like finding the shortest path to the library. 

Other problems are much harder to abstract. One such problem might be: “Make X 
love me” where the (presumed) begin-state p is: “X doesn’t love me” and the desired end 
state is in the region S corresponding with “X does love me.” Here, there is for many dimen-
sions d general disagreement whether d ∈ M or not; arguably, there are many relevant 
dimensions. We will have a hard time explaining the relevant dimensions to others; in fact, 
it will be an educated guess at best. It is not well understood what the relevant dimen-
sions are here. The problem does not well generalize to “Make Z love me”, as typically the 
set of relevant dimensions will be different.

Are there problems that are inherently hard to abstract? In the context of the proposed 
formal framework, the answer can be an unambiguous ‘yes’. This need not surprise us, 
as the abstraction problem closely relates to the frame problem in artificial intelligence: 
the fundamental problem of deciding which information is relevant in order to make 
inferences, where in potential everything might be relevant3 (Fodor, 1987). We show in 

3 There are many definitions of the frame problem; see, e.g., Haselager (1997) for an overview. Originally, the 
frame problem was restricted to the purely logical problem of deducing what stays the same as the result 
of an action (McCarthy & Hayes, 1969); we refer to a more general definition that sees the frame problem as 
a representational and inferential issue.
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the Appendix, using a computational complexity analysis, that it is NP-hard4 to decide in 
general that a particular dimension is relevant, and thus that no polynomial time algorithm 
can solve the AbstrAction problem in polynomial time unless P = NP. Furthermore, we 
show that the (initial) resolution of the dimensions is in itself not a source of complexity: 
the AbstrAction problem happens to be intractable (i.e., NP-hard), even if all dimensions 
have a resolution of two, that is, even if all dimensions in the real world problem would 
be binary (like yes/no, old/young, close/far). So, the intractability of finding a suitable 
abstraction cannot be ascribed to the task of bringing down the resolution of the dimen-
sions to manageable sizes.

To discuss why the “Make X love me” problem is harder to abstract than “Find shortest 
path to hotel” we investigate when a dimension is typically considered (by the problem 
solver) to be irrelevant. It has been noted before (Kaplan & Simon, 1990, p. 403) that “[We] 
are not equipped with generators for searching the space of ‘all possible representations’”. 
Hayes and Simon (1974) also demonstrate that, when confronted with a problem to solve, 
subjects don’t deliberately choose among possible problem representations, but select the 
representation that is most obvious from the problem description at hand. Various studies 
on insight problem solving (e.g., Kaplan & Simon, 1990; Knöblich, Ohlsson, Haider, & Rhe-
nius, 1999) suggest that we stick to a particular representation and we often need strong 
‘counter forces’ (like hints) to reconsider what is and isn’t relevant in solving the problem. 
These results suggest that we are typically able to quickly discriminate between features 
that are considered relevant or irrelevant (although we may be mistaken sometimes).

In the context of our formal framework, we introduce the notion of the expected 
relevancy δd of a dimension as some function mapping dimensions to the interval [0, 
1], where 0 denotes absolutely irrelevant and 1 denotes absolutely relevant. We assert that 
the expected relevancy of a dimension is a subjective measure, conditioned on prior 
knowledge or experience, heuristics, and newly arriving information (such as hints from 
the experimenter, or consistent failure to solve the problem). Typically, the expected rel-
evancy δd for a dimension d would be low if variation along the value of the dimension 
is not considered likely to affect the outcome of the problem solving activity. This notion 
of relevance corresponds to Wilson and Sperber’s approach where “an input is relevant to 
an individual when its processing in a context of available assumptions yields (. . .) a worth-
while difference to the individual’s representation of the world” (Wilson and Sperber, 2004, 
p. 608). It is also related to Gorayska and Lindsay’s goal-oriented approach, where an 
aspect is relevant towards a goal if there is some action plan from the current state to the 
goal where this aspect plays an essential role (Gorayska & Lindsay, 1993). In a somewhat 

4 We assume that the reader is familiar with the notions P and NP for computational problems that can be 
decided, respectively for which a candidate solution can be verified, in polynomial time; the notion of NP-
hardness, indicating presumed intractability of the computational problem, and the assumed inequality of 
P and NP. We refer the reader to, e.g., Garey and Johnson (1979) for a thorough discussion of these concepts.
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different context, Müller, van Rooij, and Wareham (2009) proposed a related notion of a 
relevant set of transformations in similarity judging.

Note that the expected relevancy δd is a subjective measure that is typically estimated 
by the problem solver. Given this notion of expected relevancy, we suggest that one only 
includes dimensions in a abstraction that have a high expected relevancy. Naturally, mak-
ing such an abstraction is easy when there are only few dimensions with a high expected 
relevancy, and hard when there are (many) dimensions with a high expected relevancy 
(“Everything appears to be relevant!”) and when there are (many) dimensions for which the 
expected relevancy is difficult to estimate (“I don’t know what is relevant!”).

We should emphasize that we do not propose or even suggest that a problem solver 
actually consciously computes expected relevancies. Our cognitive processes often behave 
roughly according to the laws of probability theory, without the brain actually perform-
ing probabilistic inference before making a decision (Chater & Oaksford, 2008); similarly, 
abstractions can be made roughly according to the expected relevancy of the dimensions 
without (consciously) computing them. We do suggest that expected relevancy may be 
a measure that can be used to describe why some problems are harder to abstract than 
others. Likewise, we suggest that it may be a useful way of explaining individual differ-
ences in finding an abstraction, as well as explaining why people sometimes (like in insight 
problem solving) make unsuitable abstractions.

Discussion

The ability to solve problems is often considered to be one of the most complex intel-
lectual abilities of mankind; it is therefore not surprising that studying (computational 
models of ) problem solving is a key topic in cognitive science, perhaps with the seminal 
work of Newell and Simon (1972) as most impressive example. Even when we restrict our-
selves to a narrow definition of problem solving (finding an action plan from a problem 
state to a solution state) there is a wild variety in the difficulty of problems to be solved. 
Naturally, some problems are more difficult than others. Funke (1991) contrasts simple 
and complex problems using criteria like the transparency of the problem and solution 
definitions, as well as complexity of the problem in terms of number and connectivity of 
variables. Complex problems may have intransparent definitions and large and highly 
connected problem spaces.

Here, some of the criteria for complexity appear to stem from representing the prob-
lem, while some others from solving the already represented problem. For some problems, 
it is both easy to find a suitable formal representation (i.e., a suitable abstraction of the 
real world problem) and solve the problem; finding the shortest path to the downtown 
hotel is such a problem. Finding a winning strategy in Go is fairly easy to cast into a formal 
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computational problem, but intractable to solve; other problems are easy to solve once 
we have a suitable representation.

As already noticed by Newell and Simon (1972), some problem solving processes 
are incremental in nature. They require only fairly routine or analytic steps to solve; the 
problem solver knows how the problem is to be solved, he or she just needs to apply the 
needed steps. While this may require in itself considerable intellectual effort, this type of 
problem solving can be characterized by a steadily increasing Feeling-of-Warmth (Metcalfe, 
1986). Other problem solving processes, in contrast, involve non-incremental, discontinu-
ous, or creative steps to “pass beyond a barrier”. These problems are often denoted as 
insight problems (Smith, 1995; Sternberg & Davidson, 1995; Chu & MacGregor, 2011) as 
they typically require some insight or aha-erlebnis to solve. In such problems, Metcalfe 
(1986) found a sharp increase in Feeling-of-Warmth towards the end of the problem 
solving process. In these insight problems, the problem solver typically starts with an 
inappropriate representation, and the problem can only be solved when the problem 
solver realizes that the problem representation should be changed in order to ‘break the 
barrier’, for example (as in the Representational Change Theory) by relaxing some of the 
constraints (Ohlsson, 1992).

Kaplan and Simon (1990) mention a few perceptual cues in the Mutilated Check-
erboard Problem5 that help the participants to gain more insight in the problem, e.g., 
draw the attention on the (lack of ) parity of the squares on the board. Apart from these 
‘external’ forces (like hints and cues), they also mention more ‘internal’ means by which 
participants gained insight in the problem. In particular, they hypothesize that noticing 
invariants (features in the problem that do not change; e.g., in every partial covering 
two black squares remain uncovered) helps the problem solver in concluding that a re-
representation of the problem is needed (after noticing that the color of the squares is 
a relevant feature). The reconsideration of features after either external or internal cues 
corresponds with the increase expected relevancy of the respective dimensions.

Insight problems thus are typically problems for which solutions are fairly easy to 
determine, once the correct representation is found. The correct representation is an 
appropriate abstraction that leaves out the irrelevant details but includes all the aspects 
of the problem that are relevant in finding a solution. An example is a variant of the so-
called Nine Dots Problem. Assume you were given a sheet of paper, with nine black dots 
on it, ordered in a three-by-three square (Figure 4a), and are asked whether it is possible 
to connect the nine dots using only three connected straight lines. While the notion of 
problem solving here is slightly different as the solution itself is required (rather than a 
path to a given solution), the act of abstracting the problem is similar. We quickly (and 
likely, unconsciously) classify the way in which the dots are ordered as relevant for solving 

5 A problem in which participants are presented a checkerboard with two opposite squares (upper-right 
and lower-left, i.e., squares of the same color) removed and asked whether the board could be completely 
covered by domino pieces.
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the problem, and the thickness of the paper, the color of the dots, the exact placement 
of the dots on the paper, the current time, weather conditions, and NASDAQ-index as 
irrelevant. What makes this problem hard to solve is that we typically regard one aspect 
of the problem as irrelevant while it is in fact crucial in solving the problem, namely, the 
size of the dots. In typical mathematics-like problems, a ‘dot’ refers to a point, a zero-
dimensional point in space. We abstract the problem by seeing it as nine points that need 
to be connected. In this particular problem, however, the dots have area, and one can 
connect them using three straight lines if we don’t connect them at their center, but (like 
in Figure 4b) make use of the area of the dots. It is, however, fully explainable that we did 
not (initially) include the area of the dots as a relevant aspect that needed to be included 
in the representation, as it has a low expected relevancy. 

As expected relevancy of a dimension is a subjective measure, it can also be used to 
explain individual differences in problem solving. Having domain-relevant expertise or 
knowledge typically influences the problem solving activity. This knowledge, however, 
can be a “two-edged sword” (Kaplan and Simon, 1990, p. 399) as it may both help and 
hinder the problem solver. It may help in discriminating between relevant and irrelevant 
aspects of the problem domain: novices may experience difficulties in assessing the 
expected relevancy of many dimensions. Experts, on the other hand, may bring in their 
past experience and knowledge to bring down the number of relevant dimensions to 
a manageable size. On the other hand, the expert may suffer from functional fixedness 
(Duncker, 1945)—the expert’s prior knowledge (for example, “in mathematical problems, 
a point typically is dimensionless and has no area”) may hinder his or her ability to solve 
the problem, as the expected relevancy of the dimension ‘area of the dots’ is low because 
of previous experiences. A novice that may not have any experience with mathematical 
puzzles may lack such a bias and may not immediately dismiss this dimension because 
of low expected relevancy. An extreme example of such an expert blind spot was given by 
Kaplan and Simon (1990, p. 379) where a very persistent graduate student in Chemical 
Engineering spent 18 hours on the Mutilated Checkerboard Problem, filling over 60 pages 

Figure 4. An example of the Nine-Dots-Puzzle (a) and a possible solution (b). Note that the 
solution depends on the dots being two-dimensional objects, rather than being dimen-
sionless points in space.
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in a notebook with all sorts of mathematical invariants, yet missing the parity of the color 
of the squares that are covered by a domino piece as a relevant dimension.

Conclusion

Whether a problem solving situation is trivial or complex depends on many factors; some 
of which can be classified as representational factors, others as computational factors. 
The computational complexity of (an abstraction of ) a problem is a well-studied area, with 
its own conferences, research groups, and the famous $ 1,000,000 question6 whether the 
classes P and NP are equal or different. The representational complexity of a problem—how 
hard is it to find a suitable formal representation of a problem—has received much less 
attention from computer science. In this paper we proposed one possible computational 
framework for studying the representational complexity of a problem and related it to 
intuitive notions of hard and easy to abstract problems using the expected relevancy 
measure. We proposed that humans experience difficulty in finding a suitable abstrac-
tion if there are many features with a high expected relevancy, or when the expected 
relevancy of many features is difficult to assess. This notion of expected relevancy was 
then used to explain why people experience difficulties solving insight problems like the 
Nine Dot Problem. Furthermore, this notion was used to explain both the possible help 
and hindrance of previous experience or knowledge.

While the expected relevancy is a subjective measure on a problem aspect, it can 
be shown that, within this framework, there exist problems that are inherently hard to 
abstract7. In future work it would be very interesting if these hard problems can be char-
acterized in some way such that they can be formally separated from the easy problems. 
Furthermore, while it is NP-hard to find a minimal subset of relevant aspects, we do not 
have formal results yet on approximation (finding a subset that is guaranteed to be almost 
minimal) or randomization (finding a subset that is minimal with a high probability, but may 
be way off in extreme cases) strategies of abstraction. Lastly, we did not address the ques-
tion how people8 assess the expected relevancy of a dimension; we believe it is beyond 
the scope of this paper (and the author’s expertise) to make any claims on this subject.

6 The Clay Mathematics Institute has denoted this open problem as one of the “Millennium Prize” problems 
and offers a $ 1,000,000 prize for anyone proving either P = NP or (much more likely) P ≠ NP.
7 This may not be surprising given similar results for the Feature Selection problem in machine learning 
(Koller & Sahami, 1996; John, Kohavi, & Pfleger, 1994; Bin, Jiarong, & Yadong, 1997).
8 Or, for that matter, an artificial intelligence. Note that we did not suggest that expected relevancies were 
to be computed for every possible dimension—that would lead to a frame problem ‘in disguise’.
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Appendix

In the Appendix, we argue that it is in general intractable to solve the AbstrAction problem 
defined in Section 3, that is, to find the smallest relevant subset M of the set of all dimen-
sions N. In particular, we show that it is NP-hard in general to decide whether a particular 
dimension is relevant. We start by defining two computational decision problems, and 
show that they are encapsulated in the AbstrAction problem mentioned above. Then we 
proceed to prove NP-completeness, respectively co-NP-completeness, of these decision 
problems, thus establishing the above mentioned results. We assume that the reader 
is familiar with the complexity classes P, NP and co-NP, and with intractability proofs in 
general. We refer to textbooks like Garey and Johnson (1979) for more background.

We call a variable xi redundant in a Boolean formula φ if xi’s truth assignment does 
not influence the characteristic function9 1φ of φ. In other words, xi is redundant in φ if 
1φ(xi = 0) = 1φ(xi = 1). In contrast, xi is relevant in φ if 1φ(xi = 0) ≠ 1φ(xi = 1), that is, if xi’s truth 
assignment does influence the characteristic function. These notions induce the following 
decision problems.

isA-relevAnt vAriAble 

Input: Boolean formula φ with n variables, describing the characteristic function  
1φ: {0,1}n → {1, 0}, designated variable xi ∈ φ.
Question: Is xi a relevant variable in φ, that is, is 1φ(xi = 1) ≠ 1φ(xi = 0)?

isA-redundAnt vAriAble 

Input: Boolean formula φ with n variables, describing the characteristic function  
1φ: {0,1}n → {1, 0}, designated variable xi ∈ φ.
Question: Is xi a redundant variable in φ, that is, is 1φ(xi = 1) = 1φ(xi = 0)?

It can be readily shown that these problems are closely related to the AbstrAction 
problem: every variable in φ translates to a (binary valued) dimension in CN

 with d as des-
ignated dimension corresponding to xi; fΠ outputs a state corresponding to a satisfying 
truth instantiation; the characteristic function 1φ then corresponds with the objective 
function oΠ. We denote the problem state p as an arbitrary vector in this space and the 
solution space S as a region in CN

 corresponding with the satisfying truth instantiations. 
The smallest subset M of N such that oΠ(s) = oΠ(s↓M) now contains only dimensions that 
correspond to relevant variables; any other dimension d’ ∈ N \ M corresponds to a re-

9 The characteristic function of a Boolean formula φ, denoted by 1φ, maps truth assignments to φ to {0, 1}, 
such that 1φ(x) = 1 iff. x denotes a satisfying truth assignment, and 0 otherwise.
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dundant variable. Naturally, any algorithm that solves AbstrAction can also be used to 
decide isA-relevAnt vAriAble and isA-redundAnt vAriAble: from φ, construct an AbstrAction 
instance as described above and compute M; xi is relevant if and only if xi ∈ M, otherwise 
xi is redundant. As M ⊆ N, this computation can be done in polynomial time. As we will 
show shortly that deciding isA-relevAnt vAriAble and isA-redundAnt vAriAble is NP-complete, 
respectively co-NP-complete, it follows that computing the relevant subset of dimensions 
(or deciding whether a particular dimension is relevant) for fΠ is intractable, unless P = NP.

Theorem: isA-relevAnt vAriAble and isA-redundAnt vAriAble are NP-complete, respectively 
co-NP-complete.

Proof. To prove NP-completeness, we reduce isA-relevAnt vAriAble from the well-known 
NP-complete sAtisfiAbility problem (given a Boolean formula φ with n variables; is φ 
satisfiable?). Membership of NP follows as we can verify in polynomial time a certificate, 
consisting of a tuple of two truth assignments (x, x’) such that 1φ(x) ≠ 1φ(x’). NP-hardness is 
proven as follows. Let ψ be an instance of sAtisfiAbility with n variables and let φ = ψ ∧ xn+1. 

→ If xn+1 is a relevant variable, then ψ is satisfiable, as there exists by definition at least 
one truth assignment to φ such that 1φ(ψ ∧ xn+1 = true) ≠ 1φ(ψ ∧ xn+1 = false), and given that 
ψ ∧ xn+1 = false always evaluates to false, we have that ψ is necessarily satisfiable. 

← if ψ is satisfiable, then xn+1 is a relevant variable as 1φ(ψ ∧ xn+1 = true) ≠ 1φ(ψ ∧ xn+1 
= false) for any satisfiable truth instantiation to ψ, given that ψ ∧ xn+1 = false always evalu-
ates to false.

As we can obviously construct the above reduction in polynomial time, that proves 
that isA-relevAnt vAriAble is NP-complete. The co-NP-completeness proof of isA-redundAnt 
vAriAble is almost similar, save that we reduce from the co-NP-complete problem tAu-
tology (given a Boolean formula φ with n variables; is φ a contradiction?) and we prove 
membership in co-NP by providing the same certificate as above, but now used as a 
counterexample.

(Q.E.D.)


