Purdue University Purdue e-Pubs

Aviation Technology Graduate Student Publications

Department of Aviation Technology

4-11-2011

Electric Motor & Power Source Selection for Small Aircraft Propulsion

Jeremy Fehrenbacher

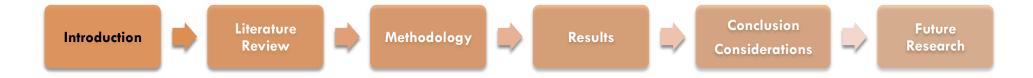
Follow this and additional works at: http://docs.lib.purdue.edu/atgrads

Fehrenbacher, Jeremy, "Electric Motor & Power Source Selection for Small Aircraft Propulsion" (2011). *Aviation Technology Graduate Student Publications*. Paper 6. http://docs.lib.purdue.edu/atgrads/6

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

ELECTRIC MOTOR & POWER SOURCE SELECTION FOR SMALL AIRCRAFT PROPULSION

Committee Council


David L. Stanley, Chair Dr. Mary E. Johnson Jeffrey Honchell

April 11, 2011

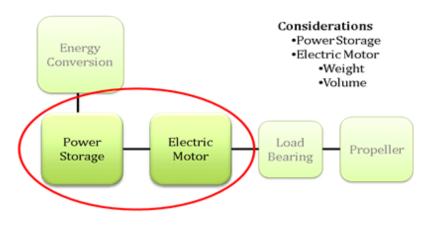
A Directed Project by Jeremy Fehrenbacher

Outline

- □ Introduction
- Literature Review
- Methodology
- Results
- Conclusion/Considerations
- Future Research

Research Question Scope Significance Assumptions Limitations Delimitations

Research Question & Scope


Research Question

Can current electric motor and power storage technologies conceptually support flight operations for a Cessna 172K in terms of aircraft performance criteria?

Performance Criteria
 Takeoff
 Cruise

Scope

- Electric Motor Integration
- Power Storage Integration
 - Pugh Matrix analysis

Significance

Industry push for alternative fuels and propulsion modules

 Electric motor efficiencies are greater than internal combustion engine efficiencies

Electric motor unaffected by environmental changes

Statement of Purpose

- 6
- Recent aviation research provides incremental improvements
 - (i.e. increased piston size, increased piston count, turbochargers, etc.)
- Improvements bandage the dilemma of relying on unsustainable fuels; they do not solve the problem
- Environmental Protection Agency (EPA) has threatened the use of lead in aviation fuels
 - Tetraethyl lead (TEL) is a required additive on some aviation engines to increase octane rating, serve as an antiknock agent, and prevent premature detonation

Assumptions

- Motor and power storage manufacturers will release technical product data
- Environmental variables will operate at standard day
 - Humidity: 0%
 - Altitude: Sea Level
 - □ Air Density: 0.00237 slug/ft³
 - Temperature: 59°F
 - Barometric Pressure: 14.7 lb/in²
 - Air Velocity: 3.62 x 10^{-7} lb-s/ft²
 - Wind Velocity: 0 knots

Limitations & Delimitations

Limitations

- Product market availability
- Electromagnetic Force grounding
- Propeller
 - Oil supply
 - RPM vs. Tip speed
- Power Storage
 - Physical Size
 - Weight

Delimitations

- Aircraft: Cessna 172K
- □ Engine: Lycoming O-320-E2D
- Lycoming vs. Electric motor Comparison
 - Horsepower
 - Torque
 - Qualitative analysis
- Power storage technology
 - Heat dissipation consideration
- Thrust production module
 - i.e. ducted fan

Literature Review

Applicable Research Electric Flight Committees Preferred Motor Characteristics Applicable Motor Technology Applicable Battery Technology Aircraft Integration Benefits of Electric Propulsion Pugh Matrices

Applicable Research

NASA/Glenn Research Center Funded Research High Temperature Superconducting Motors Cessna 172 Application (Masson & Luongo): Replaced 200 HP engine with 220 HP electric motor Reduced weight from 160 kg to 28 kg Disadvantage: deep, cryogenic cooling Magnetically levitated ducted fan (Emerson) Notre Dame/Nanjing University Research Electrically-powered unmanned aerial vehicle Disadvantage: additional required power

Electric Flight Committees

- Regulators
 - ASTM International Committee
 - F37: Light Sport Aircraft all-electric aircraft standards
 - Federal Aviation Administration (FAA)
 - "Companies and industries (to) prove technology first"
 - **European Aviation Safety Agency (EASA)**
 - "We are open minded to new technology as long as they are safe enough"
 - CAFÉ Foundation
 - Non-for-profit organization (originally an EAA chapter) focused on advancing personal aircraft technology
 - Green Flight Challenge:
 - NASA Funded: \$1.65M
 - July 11-17, 2011 in Santa Rosa, California

Preferred Motor Characteristics

1. Direct Current (DC) 2. Brushless

	AC Motor	DC Motor		Brushed Motor	Brushless Motor
	Higher Torque/ Horsepower Capabilities	Less Rotor Heat		Simplicity of Control Simplicity of Maintenance	Less Maintenance More Controllable Speed/ Torque Settings
Pros	No Permanent Magnet	Wide Spectrum of Optimal Power Setting		Lower Cost of Construction	No Voltage Drop Across Brushes
	Magnetic Field Strength Adjustable	No Efficiency Losses due to DC to AC Conversion	Pros	Simpler Control Unit Extreme	High Output Power
	Cost Advantage			Environmental Operation	Small Frame Size
Cons	Optimal Power Factor: 85 percent Cumbersome to	Permanent Magnet Expensive			High Speed Range Low Electromagnetic Forces
	Control			Higher Electromagnetic Force	High Cost of Construction
	3. Pancak Config	ce uration	Cons	Poor Heat Dissipation Continuing Maintenance Lower Operating Speed Speed/Torque Less Optimized	Complexity/Expense of Control Unit
	Electric Motor &	Power Source Selection For Sn	nall Aircra	ft Propulsion April	11, 2011

Applicable Motor Technology

Motor Selection

- Raser Technologies G-100 Generator
 - 160 HP; 406 ft-lb torque; 172 lbs
- Lange Aviation: EA42 Electric Motor
 - 52 HP; 64 lbs
- Tesla Motors: Roadster Motor
 - 288 HP; 115 lbs
- U. S. Hybrid: HPM 450 Motor
 - 161 HP; 143 lbs
- Inapplicable Motors
 - High Temperature Superconducting: Cryogenic cooling
 - Baldor Motors: D50150P-BV(without controller):150 HP, <u>1519 lbs</u>

Applicable Battery Technology

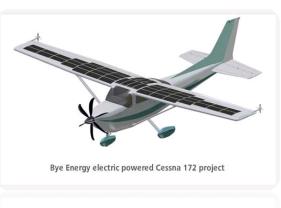
Li-lon Batteries

- Large electric capacity to weight ratio
- Disadvantage: Pressure change issues
 - February 7, 2006: UPS Flight 1307: Li-Ion batteries overheated due to pressure changes & ignited surrounding materials
- Li-Polymer Batteries
 - Similar chemical makeup as Li-lon batteries, but are less affected by altitude variations
 - Potential power to weight ratio: 0.25 kW/lb

Avgas power to weight ratio: 6.0 kW/lb

Aircraft Integration

- Sailplane Sector
 - Pipistrel
 - Lange Aviation
 - Max Weight: 1455 lbs
 - Motor: 42 kW/57 HP DC brushless motor
- Proof of Concept Aircraft
 - The Boeing Company
 - Diamond Dimona motorglider: 55 knot; 20 minute flight
 - - VTOL Puffin: 60 HP; 259 knot V_{ne}; 80 km range


Aircraft Integration

16

Commercial Production Aircraft

Bye Energy

- November 2010, Bye Energy announces the all-electric Cessna 172:
 - Phase 1: 40 to 45 lbs motor; 1 hour flight time
 - Phase 2: 6-bladed propeller; solar panels; regenerative circuitry

Bye Energy electric powered Cessna 172 project

□ Yuneec e430

General		Batteries	
Seat Quantity	2	Туре	Li-Po
Empty Wt w/ Batteries	561 lbs	Weight	184 lbs
Useful Load	385 lbs	Voltage	133.2V
Flight Time (hours)	1.5 to 3.0	Amperage	100 Ah
Motor		Flight Characteristics	
Output	40Kw	Maximum Speed	95 mph
	54 hp	Cruise Speed	60 mph
Size (diameter)	9.45 in	Glide Ratio	24:1
Weight	42 lbs		
Controller Weight	15.4 lbs		

Benefits of Electric Propulsion

Efficiency

Electric Motor: 95%

Internal Combustion Engines: 18% to 23%

Audibility

From 150 meters electric motors peak 50 decibels

- Roughly comparable to volume level of a conversation
- Heat Factor
 - Electric motors have a reduced thermal heat signature in comparison to the internal combustion engine
 - Beneficial in hostile territories

Benefits of Electric Propulsion

Maintenance

Electric motors have less moving parts and controls

- Fewer controls, wear points, and reduction in potential for system failure
- Less internal heat
 - Reduction in heat related engine failures
 - Reduction in use of costly materials (i.e. inconel)
- Improved safety & reliability

Benefits of Electric Propulsion

- Environmental Factors
 - Atmospheric Variables
 - Internal combustion engine performance is affected by:
 - Fuel input
 - Altitude
 - Humidity
 - Air temperature/pressure
 - Relative aircraft speed
 - Electric motors are not affected by these variables
 - Emissions
 - Some aviation piston engines require tetra ethyl lead (TEL) additives to prevent premature detonation and increase octane level
 - EPA has pushed to aviation industry to eliminate the use of the lead found in TEL
 - Electric motors do not produce CO or hydrocarbons directly

Pugh Matrices

- Six Sigma based tool
 - Commonly used with a Quality Function Deployment
- Evaluates options against one another
- Details the importance of each variable, then compares variables to product selection
 - Provides prioritization between options
 - Demonstrates overall significance between options

		Safety	Inflation	Rate of	Management	Stability	Compatibility	Totals
		Risk	Risk	Return	Difficulty		With Current	
							Business	
	Real Estate Rentals	9	7	5	9	9	9	112.5
	Blimpie Franchise	5	6	4	3	6	9	74.0
	Carpet Cleaning Business	3	6	4	3	5	9	64.5
	Note Buying Business	6	8	6	6	7	9	97.5
	Retail Convenience Store	4	4	3	3	6	9	61.0
	Business Consultant	9	5	4	6	8	9	96.0
	Investment Advisor	7	7	9	6	7	7	105.5
	Web Designer	7	5	5	6	7	6	86.5
	Lifestyle Consultant	6	4	7	6	6	9	87.0
	Travel Specialist	6	7	7	6	5	9	94.5
	Internet Business	8	7	9	8	7	8	114.5
	Weight	4	3	3	2	1.5	1	
	Weight		3	3	2	1.5	1	
Electric Motor &		electio	on For	Small	Aircraf	t Prop	ulsion	April 11, 2011

Example of a Decision Matrix

Study Design Measurement and Instrumentation Mission Profile Sampling Approach Deliverables

Study Design

- Study Framework
 - Quantitative Analysis: analysis of crucial operations
 - Baseline Cessna 172K engine: Lycoming O-320-E2D piston engine
 - Alternative propulsion: electric motor and supporting technologies
 - Analysis of crucial aircraft operations
 - Takeoff, cruise, climb rate, maximum payload, and aircraft range
 - Qualitative Analysis
 - Benefits of electrical propulsion

Study Design

Pugh matrix: Technology Selection

- 1. Analyze commercially available potential motors and power storage devices
- 2. Define the feasible range/aircraft parameters
 - Filter out options that do not fall within the feasible range
- 3. Design a Pugh matrix to evaluate the following criteria for each technology
 - a) Motors
 - Maximum continuous horsepower
 - Maximum torque vs. RPM
 - Physical weight
 - Physical dimensions
 - Cooling techniques
 - Required controller
 - Gear reduction

- b) Power Storage
 - Physical weight
 - Physical dimensions
 - Continuous voltage capability
 - Maximum voltage capability
 - Continuous ampere-hour capability
 - Maximum ampere-hour capability
 - Capable of high altitudes

Study Design

- 4. After technology has been evaluated, a motor solution is decided
 - Motor is the primary driver of electrical propulsion
- 5. After motor has been selected, power storage solution is decided
 - Power storage selection limited by physical space and weight available

Measurement and Instrumentation

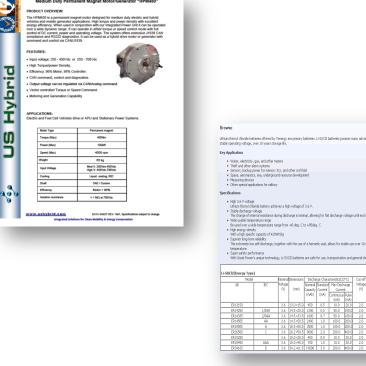
Manufacturer's Data Airframe and powerplant information in Type Certificate Data Sheet (TCDS) Aircraft flight characteristics Center of Gravity range Specific weights Electric Motor/Power Storage Data Manufacturer's data publicly distributed

V. Model 172L 4 PCL-SM / Model 172K, 4 PCL-SM	Normal Category). 2 PCLM (Utility Cat (Normal Category), 2 PCLM (Utility Ca	erory), approved December 15, 1967 (seary), approved May 9, 1968	
Engine	Lycoming O-320-E2D		
*Fuel	80/87 minimum grade aviation ga	soline	
*Engine Limits	For all operations, 2700 rpm (150	hp)	
Propeller Amits	Net over 1320, not 1 Dis additional lower (b) Spinner, Dwy (1953)20 (c) Spinner, Dwy (1953)20 (c) Spinner, Dwy (1953)20 (c) McCasley 141/754/TM bio Casley 141/754/TM bio Casley 141/754/TM (c) McCasley 141/60/TM Static type at maximum Network 150, not 1 (c) McCasley 141/60/TM Static type at maximum Network 150, not 1 (c) Spinner, Dwy (1550)21 (c) Spinner,	permittable throttle setting; dot 1266 (new Note 3) n, not under 74 in. 8042 and 1260 (new Note 3) n, not under 74 in. 7553 permittable throttle setting; n, not under 74 in. 8042 sci permittable (new Note 3) n, not under 74 in. 8042	
 Airspeed Limits (CAS) 	Maneuvering Maximum structural cruising Never exceed Flaps extended	122 mph (106 knots) 140 mph (122 knots) 174 mph (151 knots) 100 mph (87 knots)	
C.G. Range	Landplane Normal category Utility category	(+38.5) to (+47.3) at 2300 lbs. (+35.0) to (+47.3) at 1950 lbs. or less (+35.5) to (+40.5) at 2000 lbs. (+35.0) to (+40.5) at 1950 lbs. or less	
	Seaplane (Edo 89-2000 or 89A20 Normal category Straight line variation between po	(+39.8) to (+45.5) at 2220 lbs. (+36.4) to (+45.5) at 1825 lbs. or less	

Mission Profile

CAFÉ Foundation: Green Flight Challenge Funded through respectable organizations Accessible and accepted rules/regulations **CAFÉ** Performance Requirements: Range: 200 statue miles, with 30 min reserve Altitude: Visual Flight Rules (VFR) at \geq 4000 feet Speed: \geq 100 mph average on each of two 200 mile flights Takeoff Distance: < 2000 feet from brake release to clear</p> a 50 foot obstacle

Mission Profile


- Cessna 172K with Lycoming O-320-E2D flight characteristics
 - Climb Rate: 721 feet per minute
 - Cruise: 112.5 HP at 130 mph
 - Landing Distance: 150 feet over a 50 foot obstacle
- FAA approved Aircraft Weight and Balance Handbook
 - Standard weight of pilot: 170 lbs

Sampling Approach

Lycoming O-320-E2D Performance Charts

Model	-A2C, -A2I -CIA, -CII -C3A, -C3I -EIC, -EIF	A, -A1B, -A2A, -A2B, D, -A3A, -A3B, -A3C, B, -C1A, -C2B, -C2C, B, -C3C, -E1A, -E1B, -E1J, -E2A, -E2B, D, -E2F, -E2G, -E2H, I	0-330-HIAD, -HIBD, HIAD, -HIBD, HIAD, -HIBD	O-320-BIABIB, -B2A, -B2B, -B2C, -B2D, -B3A, -B3B, -B3C, -B2E -D1A, -D1B, -D1C, -D1D, -D1F, -D2A, -D2B, -D2C, -D2F, -D2G, -D2H, -D2J, -D3G	_
Туре	4H0A				
Rating Max. continuous, h.p. r.p.m. full throttle at:					
Sea level pressure altitude	150-2700		160-2700	160-2700	
Takeoff, h.p. r.p.m. full throttle at: Sea level pressure altitude	150-2700 (See NOTE 8)	160-2700 See NOTE 8	160-2700 (See NOTE 8)	
Fuel (Minimum grade aviation gasoline) Carburetion***	\$0/87* Volare** M	(A-4SPA	100 or 100LL*	91/96* (-B2D,-D1D-Volare	
Pressure limits	See NOTE	2		HA-6)	
Pump Drive Oil, Lubrication (Lubricants should conform to the	See NOTE	3 Specification			
specifications as listed or to subsequent revisions thereto)	No. 301-F				
Oil sump capacity, Qt. Usable oil sump capacity, Qt.	8 6		6 4	8 6	
Temperature Limits Pressure Limits	See NOTE See NOTE	1	::	::	
Ignition					
Dual magnetos Timing BTC	See NOTE	9	25	25	
Spark plugs	See NOTE	4			
Compression					
Bore and stroke, in. Displacement, cu. in.	5.125 x 3.8 319.8	/5			
Compression ratio	7.00:1		9.00:1	8.50:1	
Weight (dry) Lb. C.G. location (dry)	See NOTE			••	
From face of propeller mounting flange, in.	14.25	14.57	14.25	14.25 14.70	
Off propeller shaft C.L., in.	.97 Below .03 Right (-E2D, -E3	.71 Below .12 Left D, -E2H, -E3H)	.97 Below .00 (on C.L.)	.97 Below .79 Below .03 Right .11 Left (-B1D, -D1D)
Propeller shaft-specification A.S. 127 Integral flanged hub	SAE 2 mod	lified			
Crankshaft dampers (torsional)	-		-	-	
 See latest revision of Lycoming Ser Volare formerly Precision Airmoti See latest revision of Lycoming S 	ve Corporation	n formally Marvel-Schel	bler		
NOTES: "" indicates "same as preceding m "—" indicates "does not apply."	odel."				

Electric Motor/Power Storage Specifications

Deliverables

Final Outcome

- Potentially viable option for electrical propulsion using commercially available technologies
- Explain capabilities of selected motors and power storage devices
- Center of gravity analysis
- Benefits of electrical propulsion in comparison to internal combustion engines

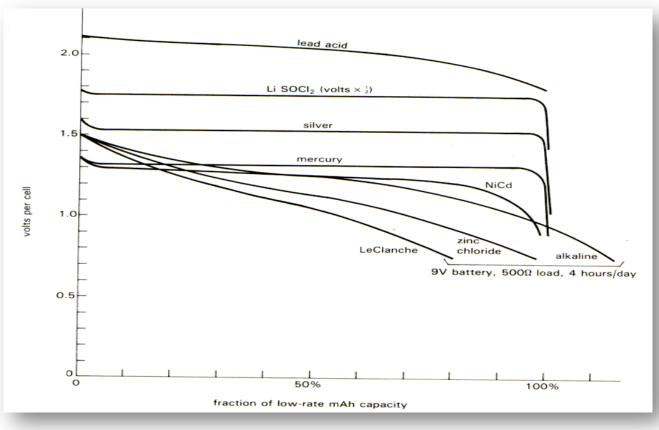
Pugh Matrices Mission Profile Center of Gravity Analysis Electric vs. Piston Application Financial Analysis

Motor Pugh Matrix

						-	
Scale: (0) to (10)		Lycoming O-32	0-E2D	Raser Tech G	100	Lange EA42	
Criteria	Importance	Measured	Weight	Measured	Weight	Measured	Weight
Horsepower	10.0	150.0	.0	160.0	10.0	51.6	5.0
RPM @ Max Horsepower	8.0	2700.0	.0	4000.0	7.0	1800.0	9.0
Power Consumption (Amp-hour)	7.0	N/A	.0	160.0	9.0	133.0 to 202.0	8.0
Weight (lbs)	9.0	268.0	.0	172.0	8.0	64.2	10.0
Volume/ L x OD (in ³)	7.0	29.6 x 32.2 x 23.2	.0	9.5 x 13.5	10.0	10.7 x 9.8	10.0
TOTAL			.0		361.0		338.0

		BASELINE				-	
Scale: (0) to (10)	Scale: (0) to (10)		Lycoming O-320-E2D		Tesla Motors		M 450
Criteria		Measured	Weight	Measured	Weight	Measured	Weight
Horsepower		150.0	.0	288.0	10.0	161.0	10.0
RPM @ Max Horsepower		2700.0	.0	5000.0 to 6000.0	7.0	2500.0 to 4000.0	10.0
Power Consumption (Amp-hour)		N/A	.0	573.0	4.0	171.0 to 267.0	9.0
Weight (lbs)		268.0	.0	115.0	10.0	143.0	9.0
Volume/ L x OD (in ³)		29.6 x 32.2 x 23.2	.0	<0-320	10.0	7.0 x 17.0	10.0
TOTAL			.0		344.0		394.0

Battery Pugh Matrix


$C_{color}(10)$ to (1)	0)	BASELINE					-	
Scale: (-10) to (1	0)	100LL		Tenergy				stems
Criteria	Importance	TOOLL	Li-Pol	ymer	Li-SC	DCl ₂	Prism	atic
Citteria	importance	Weight	Measured	Weight	Measured	Weight	Measured	Weight
Power Capacity/Weight (Watt-hour/Ibs)	10.0	5849.0	64.500	-4.0	230.000	0.0	62.300	-4.0
Power Delivery Capability (1 = Yes/0 = No)	7.0	1.0	1.000	10.0	1.000	10.0	1.000	10.0
Power Capacity/Volume (Watt-hour/in ³)	7.0	5109.0	.005	-2.0	.024	0.0	.001	-6.0
TOTAL		.0		16.0		70.0		-12.0

Capita: (10) to (10	\	BASELINE							
Scale: (-10) to (10)	10011	Valence			Saft			
Criteria		100LL	LiFe N	laPIO₄	VL45	E Fe	VL-5	2E	
Criteria		Weight	Measured	Weight	Measured	Weight	Measured	Weight	
Power Capacity/Weight (Watt-hour/Ibs)		5849.0	41.100	-6.0	68.700	-4.0	84.900	-2.0	
Power Delivery Capability (1 = Yes/0 = No)		1.0	1.000	10.0	1.000	10.0	1.000	10.0	
Power Capacity/Volume (Watt-hour/in ³)		5109.0	.004	-3.0	.006	-2.0	.008	-1.0	
TOTAL		.0		-11.0		16.0		43.0	

Motor & Battery Selection Review

- U.S. Hybrids: HPM 450 Motor
 - Voltage: 450 Vdc to 700 Vdc
 - Efficiency: > 96%
 - Power: 120 kW/161 HP
 - Torque: 450 Nm
 - Weight: 143 lbs
 - RPM @ Max Horsepower: 2500 RPM
 - Utilized in Sikorsky Firefly helicopter

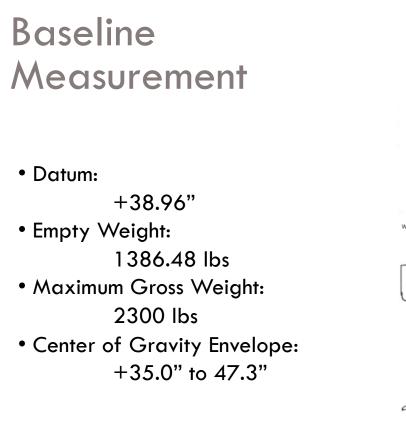
- Tenergy: Li-SOCL₂ Batteries
 - Power: 3.63V ; 19Ah
 - Energy density: 926 Watt-Hour/Ibs
 - Total Required Batteries: 2637
 - Operating Temperature: -40°C to +85°C
 - Shelf Life: 10+ years
 - Total Weight: 622 lbs
 - Intended for Aviation/ Aerospace applications

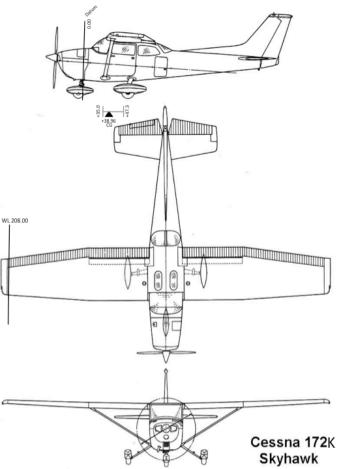
(Purdue University College of Technology, 2010)

34 Battery Discharge Rate

Mission Profile

Electric Flight Profile Breakdown

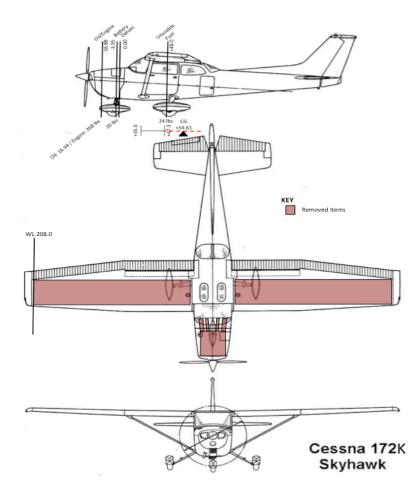

	E	Electric Flight Profile Breakdown					
Flight Operation	Amps Used	Minutes	Amp-Minute				
Takeoff	200	6		1200			
Cruise	150	109		16350			
Landing Approach	128	6		768			
Landing Approach	112	8		896			
Тахі	64	3		192			
30 Minute Reserve	150	30		4500			
	TOTAL			23906			
	Amp-Minutes Av	vailable	Amps in Range?	20000			
		24000		Yes			


Mission Profile/Electric Solution Comparison

	Requirements	Electric Solution
Range (miles)	200.0	285.0
Fuel Reserve (min)	30.0	30.0
Altitude (ft)	≥ 4000.0	4000.0
Average Speed (mph)	≥ 100.0	132.6
Takeoff Distance (ft)	≤ 2000.0	1685.0
Clear 50 ft obstacle?	Yes	Yes
Pilot Weight (lbs)	170.0	170.0
Climb Rate (ft/min)	721.0	721.0
Cruise (hp)	112.5	120.6
Cruise (mph)	130.0	140.0
Landing Distance (ft)	1500.0	1340.0
Clear 50 ft obstacle?	Yes	Yes

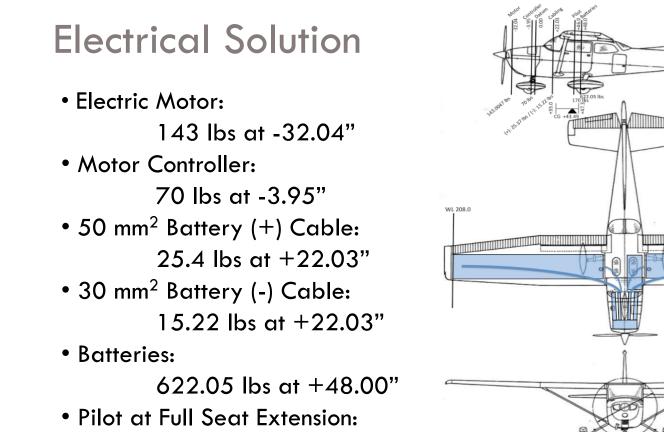
Speed/Distance Analysis

	Speed (MPH)	Hours	Distance Traveled
Takeoff	87.50	0.10	8.75
Cruise	140.00	1.82	254.33
Landing Approach	102.00	0.10	10.20
Landing Approach	89.00	0.13	11.87
	TOTAL	2.15	285.15
	Average Speed		132.63


36

Baseline Cessna 172K Center of Gravity

Empty Weight Calculation


- Lycoming O-320-E2D: 268 lbs at -16.88"
 SAE 50 Engine Oil: 16.94 lbs at -16.88"
 Original Battery:
 - 20 lbs at -3.95"
- Unusable Fuel: 24 lbs at +48.00"

Final CG Location: +51.61" Total Aircraft Weight: 1058 lbs

37

Empty Weight Cessna 172K Center of Gravity

170 lbs at +46.00"

Electrical Solution Cessna 172K Center of Gravity

Final CG Location: +43.49" Total Aircraft Weight: 2103 lbs

38

Center of Gravity Envelope: +35.0" to 47.3" Maximum Gross Weight: 2300 lbs

Cessna 172K Skyhawk

Electrical vs. Piston Application

Piston Engine

- Potential Efficiency: 20-40%
- Max Torque: several thousand RPM
- Multiple moving parts
- CG changes
- Pollutants

Electric Motor

- Potential Efficiency:
 >94%
- Max Torque: Instantaneous
- □ Single moving part
- □ CG stationary
- Lack of emissions

Financial Analysis

- 40
- □ For this research, cost is a deliverable, not a driver
- □ Total cost of electrical solution: \$118,308
 - Electrical motor: \$68,000
 - Batteries: \$19.00/ battery
- Estimated profit from sold components: \$13,097
- Total cost of electrical implementation: \$105,211

Conclusion/Considerations

Conclusions

Electrical solution meets or exceeds all project requirements

- 285 mile range at max cruise with 30 minute backup
- Aircraft operates within center of gravity limits
- Aircraft operates within airframe weight limits
- Average speed of 132 mph
- Batteries are not affected by altitude changes

West Lafayette, IN to

St. Louis, MO:230 MilesNashville, TN:313 Miles

Future Research

Fuel Cell Integration Solar Cell Integration Capacitor Integration

Fuel Cell Integration

- Solid Oxide Fuel Cell (SOFC)
 - Delphi to be commercially
 - available in 2012
 - 5 kW Output
 - SOFC Emissions (per kWh):
 - CO: < 8 grams
 - NMHC: < 0.2 grams
 - Lycoming IO-320 Emissions at takeoff (per hour):
 - CO: 2205 grams
 - NMHC: 49578 grams
 - Operating Temperature: 800°C-1000°C
 - No use of precious metals

Solar Cell Integration

- Companies
 - First Solar
 - Sanyo Electric
 - Sunpower Corporation
 - Suntech
 - Sharp
- Sharp
 - 142 Watt/1000 Volt Output
 - 10.0% efficiency
 - Extracts light from a wider solar spectrum
 - 25-year warranty

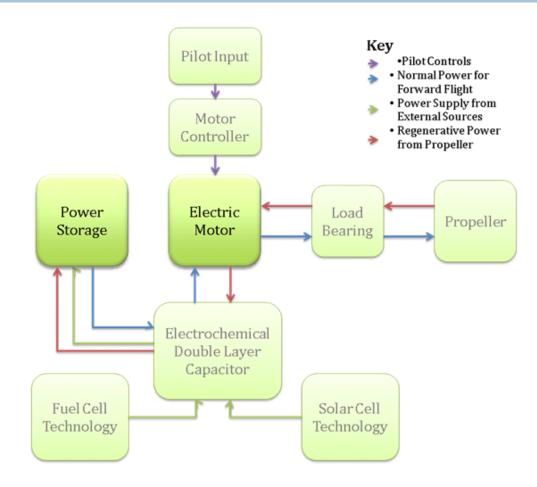
Capacitor Integration

46

Electrochemical Double Layer Capacitors (EDLC)

Companies

- Maxwell Technologies
- The Tecate Group


Reduce battery deep cycle damage

- Wired between batteries and motor to provide a buffer
- Potential for regenerative power

Future Research

47

Outline

- □ Introduction
- Literature Review
- Methodology
- Results
- Conclusion/Considerations
- Future Research

