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ABSTRACT 

Phase change cooling schemes involving passive heat spreading devices, such as heat pipes and vapor 

chambers, are widely adopted for thermal management of high heat-flux technologies. In this study, 

carbon nanotubes (CNTs) are fabricated on a 200 μm thick sintered copper powder wick layer using a 

microwave plasma enhanced chemical vapor deposition technique. A physical vapor deposition process is 

used to coat the CNTs with a varying thickness of copper to promote surface wetting with the working 

fluid, water. Thermal performance of the bare sintered copper powder sample (without CNTs) and the 

copper-functionalized CNT-coated sintered copper powder wick samples is compared using an 

experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. A notable 

reduction in the boiling incipience superheat is observed for the nanostructured samples. Additionally, 

nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat 

flux, supporting heat fluxes up to 457 W/cm
2
 from a 5 mm × 5 mm heat input area, while maintaining 

lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is 

attributed primarily to the improved surface wettability. Dynamic contact angle measurements are 

conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and 

confirm the increase in hydrophilicity with increasing coating thickness.  

Keywords: vapor chamber; heat pipe; carbon nanotube (CNT); dryout heat flux; boiling; surface 

functionalization 

 

NOMENCLATURE 

Ac heat input area, m
2
 

dbr breakthrough bubble diameter, m 

g acceleration due to gravity, m/s
2
 

hfg heat of vaporization, J/kg 

k thermal conductivity, W/mK 

q′′ input heat flux, W/cm
2 

T temperature, °C 

t thickness, m 

Vcl contact line velocity, m/s 

x thermocouple location, m 

 

Greek symbols 

ε volumetric porosity 
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θa equilibrium advancing contact angle, deg 

θr equilibrium receding contact angle, deg 

λu instability wavelength on a surface with microscale coating, m 

ρ density, kg/m
3
 

σ surface tension, N/m 

τf total droplet infiltration time, s 

 

Subscripts 

250 nm  Sintered powder sample with 250 nm copper coating on CNTs 

750 nm  Sintered powder sample with 750 nm copper coating on CNTs 

bare  bare sintered powder sample (no CNTs)   

CHF, porous Critical heat flux on a porous surface 

Cu copper property 

dryout dryout heat flux 

g vapor 

l liquid 

ref vapor reference temperature 

s solder 

sat saturation temperature 
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1. Introduction 

Thermal analysis of three-dimensional circuit architectures, currently being developed for logic, memory, 

and opto-electronic device integration, points towards significantly higher waste heat energy densities and 

increased temperature non-uniformities in 3-D devices [1]. Adequate thermal management of these 

evolving chip architectures is therefore critical to maintaining acceptable device temperatures and 

improving the reliability and longevity of future electronic systems. Phase-change cooling schemes have 

emerged as a prominent thermal management solution because of their potential to achieve high heat 

dissipation rates while maintaining uniform device temperatures. Various cooling schemes with active 

liquid pumping, such as microchannel cooling [2, 3], jet impingement cooling [4, 5] and spray cooling 

[6], continue to be topics of intense research, and have considerably reduced the thermal resistance 

between the chip and the ambient when employing phase change [7]. However, implementation of 

pumped liquid cooling schemes is becoming increasingly difficult in real systems due to demanding space 

and weight constraints. In contrast, devices that employ passive phase-change cooling, such as heat pipes 

and vapor chambers, can be more easily incorporated into realistic systems for efficient heat removal. 

 

The operating principle of a vapor chamber is analogous to that of a heat pipe; however, the term vapor 

chamber typically refers to spreading devices that spread heat from a small evaporator area to a large 

condenser surface over a short fluid working distance. In a typical vapor chamber, an optimized charge of 

working fluid is housed in a thin-walled copper shell at a reduced pressure corresponding to the desired 

operating saturation temperature. Evaporation/boiling occurs in a liquid-saturated porous wick structure 

lining the heated evaporator side. The resulting vapor pressure differential drives flow towards the 

condenser side. Capillary pressure passively transports the condensed working fluid back to the heat input 

area of the wick structure, closing the fluid-thermal cycle and allowing continuous removal of heat. 

Figure 1 depicts a schematic diagram of the internal transport processes in a vapor chamber with a 

sintered copper powder layer as the wick structure on the evaporator side; the sintered wick is coated with 

carbon nanotubes (CNTs) in the figure. Vapor chambers are relatively inexpensive, offer high reliability, 

and allow for packaging adaptability, making them an attractive and reliable solution for next-generation 

electronic systems. However, current-generation vapor chambers are limited by the maximum supported 

thermal loads and heat flux.  

 

The maximum heat flux supported by a vapor chamber is dictated primarily by the liquid replenishment 

capability of the evaporator wick structure. The thermal resistance posed by the conduction path through 

the wick material and by phase change at the liquid-vapor interface is critical in determining the overall 

device resistance and the maximum amount of heat that can be transported by the vapor chamber. Hence, 
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it is critical that a thorough understanding of the evaporative/boiling heat transfer mechanisms in the 

evaporator wick structure be obtained. 

 

The boiling incipience superheat and the dryout heat flux constitute two important design criteria for a 

wick structure. With increasing temperature non-uniformities and the presence of local hot spots in dense 

circuit-packaging designs, operation of a vapor chamber in the boiling regime proves advantageous 

because of the enhanced heat transfer coefficients and lower overall thermal resistance associated with the 

wick structure [8]. Reduction of the surface superheat temperature at which the transition from 

evaporation to boiling occurs is desirable because it would provide operation in the boiling regime over a 

wider range of operational heat fluxes and avoid the temperature excursion associated with this transition. 

Extending the dryout heat flux, which is the maximum supported heat flux, to a level of 1 kW/cm
2 

or 

greater [9] is decisive for thermal management of future electronic systems. A high-heat-flux vapor 

chamber should maximize the permeability of the wick to liquid flow to minimize the pressure drop, 

while simultaneously providing sufficient capillary pressure to draw enough liquid to the evaporator to 

support the maximum heat flux desired.  

  

A number of studies dedicated to understanding the influence of wick parameters (such as wick thickness, 

sintered particle diameter and  porosity) on thermal performance have imparted a good understanding of 

the respective performance trends for monoporous wicks that possess a single characteristic pore size [8, 

10, 11]. Several modifications to traditional monoporous wicks have been proposed in prior work [12-16] 

to improve the dryout heat flux and to decrease the thermal resistance of the wick structure to meet the 

cooling requirements for ultra-high heat flux applications. Semenic and Catton [12] compared the critical 

heat flux (CHF) of monoporous and biporous wicks (wicks with two different pore sizes) using water as 

the working fluid, under sub-atmospheric saturation pressure (< 13 kPa) conditions and reported high 

CHF values of 520 W/cm
2
 and 990 W/cm

2
 at superheats of 50 °C and 147 °C for 800 μm and 3000 μm 

thick biporous wicks, respectively. They argued that monoporous wicks are not suitable for supporting 

high heat dissipation rates because as the pore size is decreased to yield improved capillary forces 

required at high heat fluxes, this also leads to more efficient vapor trapping and the prevent of liquid 

feeding; this supports local dryout. In contrast, the two characteristic pore sizes of biporous wicks may be 

optimized to provide adequate vapor release sites via the larger pores while maintaining sufficiently high 

capillarity to prevent dryout via the smaller pores. Nevertheless, thick biporous wicks may not find 

practical use due to the high wick resistance and the high resulting wall superheat. Zhao and Chen [13] 

investigated the thermal performance of sintered copper wicks with microgrooves in the direction of 

liquid flow of widths ranging from 150-500 μm. Compared to a randomly distributed pattern of vapor exit 
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pathways in biporous wicks, microgrooves provided aligned passages for vapor to exit the wick, and 

extended the CHF by as much as 350% compared to monoporous wicks.  

 

Nanostructuring of the heat transfer surface has been pursued as an alternate approach for achieving 

superior thermal performance in pool boiling and vapor chambers. Nanostructuring could provide an 

additional capillary length scale for improved fluid wicking while preserving the micron-scale vapor 

escape locations available in traditional microstructured wicks. Nanostructured coatings provide pore 

radii on the order of a few tens of nanometer, at least two orders of magnitude less than the few tens of 

micron pore sizes prevalent in traditional porous surfaces, and hence provide high capillary pressures to 

overcome the viscous drag on fluid flow at the microscale and delay capillary dryout. Chen et al. [17] 

reported high CHF values (~ 200 W/cm
2
) and heat transfer coefficients (~ 6 W/cm

2
K) in pool boiling 

studies on flat silicon surfaces individually coated with dense arrays of Si nanowires fabricated by 

electro-less etching and Cu nanowires synthesized by electroplating of Cu into nanoporous alumina 

templates. The observed enhancement was attributed to superhydrophilicity and enhanced capillary 

pumping of the nanowire arrays. Yao et al. [18] investigated the effect of the height of Cu and Si 

nanowires fabricated by inexpensive electrochemical methods and observed that taller nanowire arrays 

enhanced pool boiling performance by providing stable active nucleation sites. Nam et al. [19] 

nanostructured copper micropost wicks by chemical oxidation to form CuO nanostructures. CHF values 

greater than 500 W/cm
2 

were reported for a 2 × 2 mm
2 

heat input area but decreased to 200 W/cm
2
 in the 

case of a 5 × 5 mm
2 

heat input area. Ding et al. [20] fabricated 3 cm × 3 cm × 600 μm thick vapor 

chamber devices with hair-like nanostructured titania grown on Ti pillars, though only very low heat 

fluxes (< 10 W/cm
2
) were examined during thermal testing.  

 

Complete coverage and patterning of wick surfaces with carbon nanotubes (CNTs) has found 

considerable interest in the research community [14, 15, 21]. CNTs are cylindrical nanostructures  of 

graphitic carbon with outer diameters ranging from 1 to 100 nm and typical lengths from 1 to 50 μm. 

Apart from the benefits of nanostructuring discussed above, CNTs also possess high intrinsic thermal 

conductivity and a tunable porosity. Ujereh et al. [22] performed pool boiling experiments on CNT-

coated silicon and copper substrates with distinct patterned areas of coverage and differing CNT array 

densities. Surfaces coated entirely with CNTs eliminated the large incipience superheat overshoot and the 

resulting substantial temperature drop upon incipience observed in the case of bare silicon and copper 

surfaces. CNT forests grown on silicon substrates [23]  were reported to augment CHF values by 25% 

compared to bare silicon surfaces in addition to enhancing heat flux dissipated in the film boiling regime. 

Mechanisms proposed for this augmentation included increased surface areas for heat transfer provided 
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by CNTs in the form of ‘nanofins’ and disruption and possible collapse of the vapor film in the film 

boiling regime resulting in improved transient quenching of the CNT surface compared to a bare silicon 

substrate. While these two studies utilized highly wetting dielectric fluids, water is the preferred working 

fluid for use in vapor chambers for electronics cooling applications. Pool boiling experiments on hybrid 

sintered/CNT surface [24] employing deionized water as the working fluid revealed a significant 

reduction in boiling incipience superheat compared to a plain flat copper surface. 

 

It is essential to distinguish the heat transfer mechanisms encountered in pool boiling experiments from 

those seen in vapor chamber operation. In a vapor chamber, liquid migration to the heat input area occurs 

through capillary action in the wick structure and heat transfer occurs by evaporation at the liquid-vapor 

free interface at lower surface superheats and by boiling at the solid-liquid interface at higher surface 

superheats. In the case of pool boiling, the surface is completely submerged in liquid and heat is 

dissipated by natural convection until the surface temperature is high enough to initiate nucleate boiling. 

Therefore, any performance augmentation due to CNTs that were previously shown for pool boiling must 

be evaluated under capillary feeding conditions that exist in a vapor chamber. 

 

The inherent hydrophobic nature of CNTs, however, limits their usage with water in vapor chambers. 

Several surface functionalization techniques for promoting CNT surface wetting behavior have been 

explored. Cai and Chen [14] used a 2% hydrochloric acid-treatment process to improve the surface 

wettability of CNTs. Using this technique, a CNT biwick structure consisting of parallel CNT stripes 100 

μm wide and 50 μm apart was fabricated and heat dissipation capacities of up to 600 W/cm
2
 were 

demonstrated. Hashimoto et al. [15] deposited CNTs on a 1.5 mm thick layer of sintered copper powder 

by thermal chemical vapor deposition (CVD) and rendered them hydrophilic via exposure to ultraviolet 

(UV) radiation. Experiments were conducted to demonstrate that CNT-coated wicks removed heat fluxes 

up to 500 W/cm
2 

at a superheat of ~33 °C, compared to a baseline sample without CNT-coating at a 

superheat of ~45 °C at the same heat flux. The prevailing hypothesis to explain the surface wettability 

switch of CNTs in response to UV light exposure is based on the assisted adsorption of hydrophilic 

hydroxyl groups [25]. This method could conceivably minimize the surface degradation of CNTs 

compared to acid treatment processes, and potentially facilitate scalability.  Nevertheless, this 

methodology is not expected to be feasible for continuous operation in thin vapor chambers due to likely 

degradation of surface wettability of UV-exposed CNT-coated wicks over time. The hydrophilic behavior 

of CNTs conformally coated with copper was previously demonstrated by our group [16, 21]. This 

method is advantageous for use in vapor chambers due to long-term compatibility of the copper coating 

with water.  
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In recent work [16], the thermal characteristics of 1 mm thick monolithic and patterned sintered copper 

powder wicks were evaluated with and without a functionalized CNT coating. Patterning of the wick 

structure with a grid of square recesses reaching down to the substrate provided a low resistance vapor 

exit path to improve performance during vigorous boiling. Growth of a CNT array directly on the 

substrate in the patterned recesses in the wick structure did not provide any enhancement as they 

remained flooded during testing. A similar study was then conducted with 200 μm thick sintered powder 

layers only a few particle layers deep and compatible for use in ultra-thin vapor chambers [26]. The 

intention was to compare the heat transfer enhancement mechanisms for the different wick layer 

thicknesses. While patterned samples without CNT coating reduced the dryout heat flux due to capillary 

fluid starvation over the surface, a CNT array grown in the patterned recesses resulted in active wicking 

of the fluid and increased the dryout heat flux. However, this study revealed that for 200 μm thick wicks, 

monolithic samples generally outperformed grid-patterned samples due to the increase in the available 

liquid feeding area. In all test cases in the above studies [16, 26], CNT-coated wick structures were shown 

to reduce the superheat at boiling incipience, motivating a detailed study of boiling incipience for CNT-

coated monolithic wicks [26]. In this study, a functionalized CNT coating was shown to reduce the mean 

surface superheat at the boiling incipience point by 5.6 °C compared to monolithic samples.  

 

In the present work, we explore means of increasing the dryout heat flux of nanostructured monolithic 

wicks to accommodate the ever-increasing thermal loads of high-performance power electronics, while 

preserving the reduction in the boiling incipience superheat achieved in the previous work. We evaluate 

200 μm thick nanostructured wicks with different nominal thicknesses of the copper coating deposited on 

the CNTs, and compare their thermal and surface wetting characteristics with a bare sintered powder 

sample (without CNTs). 

 

2. Sample fabrication, experimental setup, and test procedure 

The sample fabrication process and the characterization procedure consistently employed for all the 

samples is described here in detail. The design of the experimental test facility used to simulate fluid 

transport in a vapor chamber and the test protocol for obtaining temperature and heat flux measurements 

are then described, followed by the experimental setup used to perform contact angle measurements on 

porous wick samples and the test procedure employed to ascertain the relative surface wettability between 

the samples. 
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2.1 Sample fabrication 

Four nominally identical sintered copper powder wick samples coated with CNTs are functionalized with 

varying nominal copper coating thickness of CNTs for assessing their relative thermal performance. The 

first sample is a bare sintered powder sample without CNTs and is used as a standard for comparison. The 

other three samples consist of CNT-coated wicks with 250, 500, and 750 nm of nominal copper coating 

thickness, respectively. The copper powder sintering, CNT synthesis, and hydrophilic functionalization 

procedures are maintained consistent for all the four samples. 

 

2.1.1 Sintered powder wick fabrication 

Similar to our previous work [26], the sintered powder samples consist of a 0.381 mm thick base solid 

substrate made of laminated 13%-74%-13% copper-molybdenum-copper (Cu/Mo/Cu) sheets with a 200 

μm thick top layer of sintered copper powder functioning as the wick structure. Copper particles of 100 

μm average diameter are used for all samples. The sintering process involves setting the copper powder 

into a mold and exposing it to a high-temperature forming gas environment. The resulting structure has a 

volumetric porosity of approximately 50%. The top sintered layer blankets the central 20.3 mm × 20.3 

mm of the 25.4 mm × 25.4 mm solid substrate, leaving adequate flat edges for sealing to the experimental 

chamber wall. All the samples used in this work are fabricated by Thermacore, Inc.  

 

2.1.2 Carbon nanotube synthesis and functionalization 

CNT synthesis and functionalization consists of three major processing steps, namely catalyst metal 

deposition, CNT growth by microwave plasma chemical vapor deposition (MPCVD), and physical vapor 

deposition of copper to functionalize the CNTs. The samples received from Thermacore, Inc., are 

subjected to a cleaning procedure involving acetone and isopropanol to remove any potential 

contamination or organic residues. A tri-layer catalyst stack of 30 nm Ti, 7.5 nm Al, and 5 nm Fe thick 

layers is deposited, in this order, on the central wick structure using a Varian electron beam physical 

vapor deposition system. The deposition rates of Ti, Al, and Fe catalyst layers are 2 Å/s, 1.5 Å/s, and 0.8 

Å/s, respectively. The Ti layer improves anchoring of the CNTs to the sintered powder/substrate, while 

the Al surfactant layer prevents the agglomeration of Fe nanocatalyst particles during CNT growth. The 

Fe layer provides nucleation and active catalytic growth sites for the CNTs. Multi-walled CNTs are 

grown on the catalyzed samples in a SEKI AX5200s MPCVD system. A detailed description of the CNT 

growth procedure is provided in [27]. In brief, the sample is placed in the chamber and vacuum pumps 

reduce the system pressure to 266 Pa (~2 Torr). The catalyzed sample is then annealed at 900 °C under 10 

Torr of N2 to create Fe nanocatalyst particles on the surface. CNTs are grown for 10 minutes under a 300 
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W plasma power with 50 sccm of H2 and 10 sccm of CH4. The system is then allowed to cool and the 

sample is removed. 

 

CNT functionalization is carried out using a physical vapor deposition process. The three CNT-coated 

samples are functionalized with 250 nm, 500 nm, and 750 nm nominal thicknesses of copper coating, 

respectively. It is important to note that nominal thickness is the thickness recorded by the crystal 

monitor, defined as the layer thickness deposited on a flat plate, and is not the actual thickness of the 

copper coating on the nanotubes. Typical values of actual copper coating thickness of CNTs 

corresponding to the nominal coating thickness recorded by the crystal monitor are discussed in section 

2.1.3. The relatively lower binding energy of the copper atom on the CNT surface (0.10-0.14 eV/atom 

[28]), compared to other transition metals, promotes diffusion and collision of copper adatoms, leading to 

their agglomeration. When high deposition rates are used, the latent energy released by the condensing 

atom can give rise to appreciable substrate heating. A higher substrate temperature further enhances 

agglomeration of copper adatoms and can eventually lead to a non-uniform copper coating on the surface 

of the CNTs. In order to minimize non-uniformities in the copper coating, the deposition rates are 

maintained at 3 Å/s during the entire process. A lower deposition rate of 1 Å/s is used for the first 25 

nm of the copper coating and a slightly higher rate of 3 Å/s is used during the remainder of the vapor 

deposition process. Any minor surface oxidation which might occur during storage is removed by 

subjecting the CNT-functionalized samples to a 300 W hydrogen plasma in the MPCVD chamber for 10 

minutes with the substrate temperature at 100 °C prior to thermal testing. Digital images of the uncoated 

baseline sample (Fig.2 (a)) and the three CNT-coated samples (Fig.2 (b)-(d)) after the hydrogen plasma 

reduction procedure are shown in Fig. 2. 

2.1.3 Sample characterization 

Low- and high-magnification scanning electron microscopy (SEM) images of the multi-walled CNTs 

grown on the three samples with varying copper coating thickness are obtained using a Hitachi S-4800 

field emission microscope and are presented in Fig. 3. As opposed to flat substrates, where vertically 

aligned CNT growth is obtained for similar growth conditions, the three-dimensional surface curvature of 

the sintered copper powder gives rise to randomly oriented meshes of CNTs of non-uniform height 

ranging between 1-10 μm.  A characterization study was carried out to compare the penetration depth of 

the coated copper on the moderate-density, randomly oriented CNTs grown on sintered copper powder 

versus that on high-density, vertically-aligned CNTs grown on a flat copper substrate. As shown in Fig. 4 

(a), in the case of vertically aligned CNTs coated with a 250 nm nominal copper coating thickness, the 

penetration depth into the 20-35 μm long CNTs is less than 5% of the total length.  
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The random orientation, shorter length, and moderate density of CNTs grown on sintered wick structures, 

on the other hand, proved to be beneficial in obtaining a conformal copper coating along the entire length 

of the CNTs. SEM images (Fig. 3) of the three CNT-coated samples reveal that the entire exposed surface 

area of the CNTs is conformally coated with the evaporated copper, thereby promoting surface wettability 

and interstitial wicking of liquid. High-magnification SEM images of the three samples also expose a 

clear trend with respect to copper coating thickness. An increase in the nominal copper coating thickness 

resulted in larger effective diameters of the functionalized CNTs, in agreement with intuitive volumetric 

conservation. A quantitative estimate of the overall CNT diameter distribution for the randomly oriented 

CNTs is not attempted since automated image processing techniques typically employed for such 

estimation lack acceptable accuracy. The diameters of CNTs shown in Fig. 3 (b2)-(d2) are determined 

from manual image processing to be 85 nm, 154 nm and 275 nm corresponding to 250, 500 and 750 nm 

samples respectively. Based on similar images of nanotubes obtained across the surfaces, these diameters 

are fairly representative. Although these numbers do not represent the entire range of CNT diameters for 

the three samples, they show that the functionalized CNT diameters can increase by at least a factor of 

three from the 250 nm to 750 nm nominal copper coating thickness samples. To enhance readability and 

avoid repetition, the CNT-samples coated with 250, 500, and 750 nm of nominal copper coating thickness 

will be henceforth referred to as the 250 nm, 500 nm and 750 nm samples, respectively.   

 

2.2 Test facility and procedure for thermal metrology 

The experimental setup, designed to mimic the internal conditions of a vapor chamber, is equipped to 

measure the substrate temperature of the wick structure when subjected to different heat fluxes as 

deionized water is supplied by capillary action. A detailed description of the experimental facility can be 

found in [8]. The experimental facility and procedure is described in brief here. Fig. 5 (a) shows a 

diagram of the experimental test chamber along with the heater block assembly. The test chamber is built 

from insulating PEEK and polycarbonate walls, which enclose a liquid bath with the surface level fixed 

precisely 8.25 mm beneath the heated area of the wick surface. During operation, as water evaporates 

from the wick surface, it is replenished by capillary-feeding from the bath.  The vapor space and the 

liquid water bath are maintained at saturation temperature (100 °C) and at atmospheric pressure as 

monitored via internal thermocouples and a pressure transducer. 

 

In situ flow visualization of the wick surface is made possible using a Photron Fastcam-X 1024 PCI high-

speed camera attached to a rigid borescope that is inserted into the test chamber through a seal in the wall. 

The camera records video at up to 10,000 frames per second and can be used to view normally and at a 45 
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deg angle to the wick surface, permitting clear distinction of vapor formation regimes (i.e., evaporation 

versus boiling). 

 

The heater block assembly (Fig. 5 (b)), enclosed in a ceramic insulating shell, is designed to supply a high 

heat flux input to the back of the wick substrate. The test sample is soldered to a copper heater block (heat 

source area of 5 mm x 5 mm) with a 0.102 mm thick Pb-Sn solder joint (conductivity ks = 50 W/mK) in a 

specially designed graphite stand with a recessed pocket to hold the sample [8]. An inert argon gas 

environment is maintained throughout the soldering process to prevent potential surface oxidation at 

200 °C. The high thermal conductivity and precise thickness of the solder is essential to minimize the 

uncertainty in thermal resistance across the interface, especially at high heat fluxes. The copper heater 

block and sample assembly is sealed vertically against the test chamber (Fig. 5 (a)).  

 

As mentioned in section 2.1.2, all samples are exposed to a hydrogen plasma in the MPCVD chamber 

prior to thermal testing. Additionally, the same test protocols are employed as in [16], permitting one-to-

one comparison against previous results. The test procedure begins by boiling water in the chamber 

vigorously in order to purge all non-condensable gases and produce a saturated water vapor environment. 

Each sample is subjected during testing to a series of increasing heat fluxes. For each test point, an 

electrical input is supplied to the embedded cartridge heaters and the system temperatures are allowed to 

stabilize. Steady state is defined by a variation in the substrate temperature of less than 0.1 °C/min being 

achieved for a period of 10 minutes. The high-speed camera is used to record the corresponding 

evaporation or boiling process for each heat flux test point following acquisition of the steady state 

temperature data. This ensures that the reference thermocouple in the vapor space is not inadvertently 

heated to yield spurious temperature readings due to the high-intensity lighting.  

 

Test results are reported in the form of a boiling curve. Each heat flux versus temperature point is 

generated from time-averaging 5 minutes of steady-state data. The measured linear temperature drop 

along a rake of thermocouples (T1 to T4) embedded along the centerline of the copper heater block 

determines the heat flux q′′ according to Fourier’s law for one-dimensional heat flow. This calculation 

methodology allows a determination of the actual heat flux, and accounts for heat losses through the 

heater block insulation. The substrate temperature Tsubstrate is found by extrapolating the measured 

temperature gradient to the substrate and accounting for the temperature drop across the solder joint 

according to 

5 4
4

( )
" s

substrate

Cu s

x x t
T T q

k k

 
   

   (1)  
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where the copper conductivity kCu is taken as 400 W/mK.  An uncertainty analysis is used to predict the 

uncertainties in heat flux and substrate temperature by propagating the error due to the following 

quantities: ± 0.3 °C in T, ± 0.08 mm in x, ± 25% in ts, ± 5% in ks, and ± 1x10
-4 

mm
2
 in Ac. 

 

2.3 Test facility and procedure for surface wettability measurements 

The liquid-surface contact angle is a critical property that governs the capillary pressure supplied by a 

liquid meniscus in a porous structure. A lowered contact angle can increase the supplied capillary 

pressure substantially, thereby extending the capillary limit. For an impermeable surface, macroscopic 

static contact angles measured by placing a sessile droplet onto the surface provide a quantitative measure 

of the surface wettability. In the case of porous structures, since the wetting liquid droplets infiltrate the 

micro- and nano-scale pores, analogous measurement of a static contact angle is not possible. Hence, 

measurement of transient macroscopic contact angles that vary as a droplet infiltrates the porous surface 

(referred to as the dynamic contact angle) is employed for surface wetting characterization of porous wick 

structures.   

 

A schematic diagram of the experimental setup used to record droplet infiltration into the wick surface is 

shown in Fig. 6 (a). A corresponding photograph of the experimental facility is provided in Fig. 6 (b). 

Contact angle experiments are conducted using a Ramé-Hart digital goniometer model 290 equipped with 

an automatic droplet dispensing system. A Jensen Global 32 gage HPX stainless steel needle is used for 

dispensing sessile deionized water droplets. The needle is attached to the automatic droplet dispensing 

system that allows for precise control over the volume and flow rate of droplet deposition on the porous 

surface using the DROPimage software. The small diameter of the needle also allows for a minimal 

droplet volume of 4.5 μl to fall onto the surface under gravity. Videos are recorded at a speed of 2000 

frames per second with a Photron Fastcam-X 1024 PCI high-speed camera. The camera lens provides a 

magnification of 0.01 mm/pixel over a 512 × 512 pixel image. A high-intensity Sunoptics Surgical Titan 

300 W xenon light source is used to provide sufficient contrast between the liquid droplet and the air 

during imaging. 

The procedure adopted for performing dynamic contact angle measurements is as follows. All the 

measurements are performed at room temperature and standard atmospheric pressure. The surface of the 

tilt stage is initially leveled with the help of tilt adjustment knobs and a spirit level. The sample is then 

placed on the tilt stage between the glass slides. The glass slides, affixed to the tilt stage, serve as 

alignment markers and ensure repeatable placement of the sample at the same location between trials. 

Each contact angle measurement trial involves automatic dispensing of a single 4.5 μl deionized water 
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droplet from a syringe pump while simultaneously recording video of the droplet infiltration into the 

porous wick sample. After each trial, the wick surface is thoroughly dried with a high pressure nitrogen 

gun to remove any absorbed water which might affect subsequent measurements. While performing the 

droplet deposition experiments, it is essential to maintain low Weber numbers to ensure rapid momentum 

dissipation and to prevent any splashing. Yarin [29] reviewed droplet impact dynamics on various 

surfaces and referred the initial droplet impact as a deposition regime. Gunjal et al. [30] placed water 

droplets on glass surfaces and noted that this regime occurred for Weber numbers less than 3, but referred 

to it as an oscillation regime due to the inherent ripples caused by the impact of the droplet with the 

surface. Clarke et al. [31] confirmed that, for porous surfaces, no splashing would occur for a We less 

than 1, but oscillations are ever-present despite the dominance of capillary forces. The three stages of 

droplet infiltration proposed by Hilpert and Ben-David [32] also assume that the droplet impacts the 

surface with a low Weber number such that no rebound or splashing will occur. In the current study, a 

dispensed droplet volume of 4.5 μl resulted in a pinch-off droplet diameter of 2 mm and a measured 

deposition velocity of 0.08 m/s, resulting in a Weber number of 0.175. For this Weber number, the 

observed droplet impact is in the deposition regime, but moderate interface oscillations are still observed. 

3. Results and discussion 

3.1 Capillary-fed evaporation and boiling results 

Quantitative and qualitative results for the capillary-fed boiling experiments conducted in a heat flux-

controlled mode are presented. Experiments cease when a large temperature rise associated with the total 

dryout of the wick is observed. The heat flux (from a 5 mm × 5 mm heat input area) versus substrate 

superheat temperature for all the four samples is plotted in Fig. 7. Finer increments of heat flux are used 

in the evaporation regime to capture the transition to boiling. To enhance readability of data for heat 

fluxes less than 90 W/cm
2
, a zoomed version of the graph is depicted in the inset. Uncertainty values of ± 

0.5 °C and ± 5 W/cm
2
 on the abscissa and the ordinate are omitted. Maximum uncertainties of heat flux 

and substrate superheat are 5.1 W/cm
2
 and 3.0°C respectively. 

 

3.1.1 Effect of varying CNT copper coating thickness on overall thermal performance  

The boiling curve for the bare sintered copper powder sample without CNTs shows three distinct regimes 

consistent with our observations in a recent study [26]. At low heat fluxes (< 50 W/cm
2
), the substrate 

superheat is relatively low and heat transfer occurs by thin-film evaporation from the liquid-vapor 

interface at the top sintered particle layer. At moderately high heat fluxes (between 50 and 350 W/cm
2
), 

heat transfer is dominated by boiling at the substrate-wick interface and capillary pressure generated in 

the pores of the wick continue to assist liquid flow to the central heated portion. Between these regimes, 
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an abrupt transition to boiling occurs at a surface superheat of 7.9 °C, and results in a noticeable drop in 

substrate temperature. Boiling incipience is also characterized by a sharp reduction in the evaporator 

thermal resistance, as shown in Fig. 8. The evaporator thermal resistance is defined as 

"

( )substrate ref
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c

T T
R

q A


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 (2) 

As opposed to the evaporation regime where conduction through the wick adds to the overall thermal 

resistance from the substrate to the vapor, the wick conduction resistance is bypassed under boiling 

conditions leading to an overall reduction in thermal resistance [8]. Beyond a heat flux input of 350 

W/cm
2
, a partial dryout is observed in the central region of the wick leading to a reduced heat transfer 

coefficient, evident from the reduced slope of the boiling curve. This performance degradation trend 

continues until total dryout is observed. In this study, the last heat flux test point for which steady-state 

conditions are reached is designated as the dryout heat flux. A qualitative comparison of the estimated 

dryout heat flux for all the samples is provided in a later subsection. In the case of the bare baseline 

sample, the dryout heat flux is found to be 437 W/cm
2
 at a surface superheat of 23.3°C. The dryout heat 

flux of this 200 μm uncoated wick is lower than the value reported earlier for 1 mm thick wicks [16], 

consistent with the previously reported trends [12]. 

 

The 250 nm sample displays similar evaporation and boiling regimes as a bare sintered powder sample. 

The substrate superheats of the baseline and the 250 nm sample are also very similar and 

indistinguishable within experimental uncertainty throughout the boiling regime. Based on the thermal 

performance data and in situ visualization, the transition from the evaporation to boiling regime is found 

to occur at a lower surface superheat of 6.0 °C for the 250 nm copper coated CNT sample compared to 

the baseline sample. Although boiling incipience temperature is reduced, the dryout heat flux for the 250 

nm sample is degraded, and occurs at 356 W/cm
2
. CNT samples with 500 nm and 750 nm copper coating 

thickness also exhibit an earlier transition to the boiling regime, consistent with our previous results [26]. 

Incipience substrate superheat temperatures of 2.3 °C and 2.1 °C are measured for the 500 nm and 750 

nm samples, respectively, as opposed to 7.9 °C and 6.0 °C for the bare and 250 nm coated samples.  

 

Apart from the reduction in boiling incipience superheat, another performance enhancement trend is 

discernible with increasing copper coating thickness; an increase in thickness improves the thermal 

performance in both the evaporation and boiling regimes. Comparison of thermal resistances of the four 

samples (Fig. 8) clearly shows that the samples with thicker copper coating (500 nm and 750 nm) 

demonstrate lower overall resistances compared to the bare and 250 nm coated sample. The maximum 

reduction in thermal resistance, in the amount of 0.34 °C/W compared to the bare sample, was achieved 
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with the 750 nm sample at a heat flux of ~20 W/cm
2
. Compared to the 250 nm sample, the 500 nm and 

the 750 nm samples also show an increased dryout heat flux of approximately 457 W/cm
2
 (corresponding 

to respective surface superheat temperatures of 20.9 °C and 13.9 °C). 

 

The propensity of CNTs to initiate bubble nucleation at lower surface superheats was previously reported 

in pool boiling studies [22, 24]  as well as for CNT-enhanced wicks [16, 26]. It is notable that this 

phenomenon is independent of wick thickness for millimeter and sub-millimeter thick wicks.  

 

3.1.2 Effect of varying copper coating thickness on dryout heat flux 

The boiling performance plot (Fig. 7) and the flow visualization acquired through high-speed imaging can 

be used to estimate the dryout heat flux of the four samples. It is noted here that the capillary limit is the 

proposed mechanism for dryout for the wick structures considered in this study (justified by an analysis 

presented in a later section). Figure 9 compares the partial dryout area in the central heated region for the 

250 nm, 500 nm, and the 750 nm samples for corresponding final heat flux test points (356 W/cm
2
, 457 

W/cm
2 

and 457 W/cm
2
,
 
respectively). These images are extracted from the flow visualization videos 

recorded with a high-speed camera at the same magnification. As a general trend, a consistently 

diminishing partial dryout area is observed with an increase in the copper coating thickness. It is clear that 

the partial dryout area for the 250 nm sample is larger even at a comparatively lower heat flux test point 

of 356 W/cm
2 

than the other samples. This suggests that, at this heat flux test point, the fluid encountered 

significant pressure drop along the path due to the viscous drag forces preventing liquid replenishment 

leading to partial dryout of the central region. Therefore, even though the 250 nm sample is able to 

dissipate 356 W/cm
2 

at approximately the same substrate temperature (~14 °C) as the 500 nm sample, the 

thinner copper-coating resulted in a structure not capable of generating adequate capillary pressure above 

this heat flux. 

 

Both the 500 nm and the 750 nm samples effectively dissipate 457 W/cm
2
 at the last test point prior to 

total dryout. However, the 750 nm sample is able to do so at a reduced superheat of 13.9 °C as opposed to 

20.9 °C for the 500 nm sample. This performance enhancement trend is supported by the smaller partial 

dryout area observed for the 750 nm sample at this heat flux (Fig. 9), commensurate with a lower surface-

averaged thermal resistance. The relatively small dryout area and reduced operating temperature of the 

750 nm sample at the final heat flux test point suggest that the maximum heat flux supported by the 750 

nm sample is highest. Since the baseline bare sample dissipates a slightly reduced heat flux of 437 W/cm
2
 

at a relatively higher superheat of 23.9 °C, we may conclude that it has a comparatively lower dryout heat 
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flux than the 500 nm and 750 nm samples. Based on the above discussion, the CNT-coated sample 

functionalized with 750 nm performs best. 

 

The dryout heat flux of the best performing sample in the current study compares favorably to the 

corresponding values reported in the literature for thin wick structures (typically < 1 mm). The CHF of 

sintered copper mesh wicks with thicknesses in the range 0.21-0.82 mm were reported to be as high as 

368 W/cm
2
 at a surface superheat of 23 °C [11]. Semenic and Catton [12] demonstrated maximum CHF 

(corresponding superheat) values of 300 W/cm
2
 (21 °C) and 520 W/cm

2
 (50 °C) for the thin monoporous 

and biporous wicks, respectively. Zhao and Chen [13] showed a dryout heat flux of 350 W/cm
2
 for a 3 

mm thick wick with microgrooves. Our recent investigation of 1 mm sintered powder wicks [16] revealed 

a dryout heat flux of 514 W/cm
2
 (46 °C)

 
for bare sintered wicks without patterning, while the 

corresponding value increased to 560 W/cm
2
 (35 °C) for grid-patterned sintered wicks. The 200 μm thick 

sintered wicks evaluated in this study are compatible with sub-mm vapor chambers and show high CHF 

values (457 W/cm
2
) at a reduced surface superheat of 13.9 °C.  

 

3.1.3 Mechanism of dryout 

We demonstrate here that the capillary limit is the mechanism for dryout of the wick structures 

investigated in this study. Dryout of a wick surface can occur either by the hydrodynamic instability 

mechanism originally proposed by Zuber [33], commonly referred to as the critical heat flux (CHF), or by 

a liquid replenishment mechanism (i.e., the capillary limit). The hydrodynamic instability limit is reached 

when the interfaces of the liquid-vapor counterflow columns become Helmholtz-unstable. Liter and 

Kaviany [34] demonstrated that the hydrodynamic limit can be significantly increased using modulated 

porous structures which provide preferential flow paths for liquid and vapor, thereby reducing the 

liquid/vapor counterflow situations and aiding non-hydrodynamical determination of the critical 

instability wavelength. Various other studies also report a significant increase in critical heat flux (CHF) 

of uniformly coated porous surfaces compared to plain surfaces investigated under natural convection 

boiling conditions [17, 35]. Reasons for this reported enhancement include heat transfer from extended 

surfaces, an increase in nucleation site density, and enhanced lateral liquid replenishment to the active 

nucleation sites via capillary action that reduces the liquid-vapor counterflow resistance.  

 

The hydrodynamic limit of a bare sintered powder sample without CNTs can be estimated using an 

extension of Zuber’s theory suggested by Polezhaev and Kovalev [36] for porous surfaces. A similar 

analysis has been employed by others with satisfactory predictions [17, 34]. Using a volumetric porosity ε 

of 0.5±0.02, an average breakthrough bubble diameter dbr of 42 μm (determined from the average pore 
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diameter ), and thermophysical properties of water at saturation temperature (100 °C), the hydrodynamic 

limit of the bare sample is estimated to be 906±102 W/cm
2
 using: 
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This estimated value of the maximum heat flux constrained by hydrodynamical instabilities is much 

higher than the observed value of 437 W/cm
2 
for the bare baseline sample. Thin porous layers such as the 

one employed here (wick thickness of 200 μm) exhibit relatively low resistance to vapor escape and can 

extend the hydrodynamic instability limit to large values. As long as the bubble nucleating at the wick-

substrate interface can easily escape from the wick structure and prevent the formation of an insulating 

vapor film, the hydrodynamic limit is not encountered. Equivalent arguments hold for nanostructured 

wick surfaces which also enhance lateral liquid replenishment due to high capillary pressures. Also, since 

the heat flux values reported in Fig. 7 are based on the 5 mm x 5 mm input area, the actual heat flux 

encountered at the base of the wick structure is somewhat lower due to the spreading of heat in the Cu-

Mo-Cu substrate.  

 

This analysis suggests that dryout of all the wick samples in this study was brought about, instead, by the 

capillary limit, also referred to as the liquid replenishment limit. A capillary limit is reached in a wick 

structure when the pressure drop due to viscous and gravitational forces exceeds the capillary pressure 

generated in the pores. As the heat flux is incremented, the liquid flow rate increases to compensate for 

the increased evaporative mass transport, which also results in higher viscous-drag resistance. Because of 

this effect, as the maximum dryout heat flux is approached, partial radial dryout of the surface begins in 

the central-most regions of the wick most readily deprived of liquid, and eventually leads to total dryout 

of the wick structure at high heat fluxes.  

 

3.1.4 Surface morphology after thermal testing 

A digital image of the 750 nm sample taken after thermal testing is presented in Fig. 10 (a). Based on the 

surface morphology characterization via the electron micrographs in Figs 10 (b) through (g), two distinct 

regions may be delineated on the wick structure: 1) the central 5 mm x 5 mm region over which the 

localized heat input was supplied (and subsequently dryout was observed) during thermal testing, and 2) 

the external region that aided the capillary pumping of the liquid to the central region. Fig. 10 (b) and Fig. 
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10 (c), (d) show low- and high-magnification SEM images of the external regions of the wick structure, 

respectively. These images reveal no observable differences in the surface morphology of the micron-

sized sintered copper powder and the nano-porous CNTs before (Fig. 3) and after (Fig. 10) thermal 

testing. In certain areas of the external region (Fig. 10 (d)) however, Ostwald ripening of the copper 

coating on the CNTs (i.e., migration to and agglomeration at the CNT tips) is observed. Ostwald ripening 

is believed to occur at higher substrate temperatures because migration of the copper coating yields a 

surface energy minimum.  

 

The images of the central dryout region reveal significant differences in surface morphology of the 

sintered powder following thermal testing. While the original sintered copper powder particles were 100 

μm in average diameter, smaller particles on the order of tens of microns in diameter are formed on the 

larger particle surfaces following testing, as shown in Fig. 10 (e). In several regions of the exposed 

surface of the Cu-Mo-Cu substrate (Fig. 10 (f)) and the larger sintered particles (Fig. 10 (g)), cracking and 

degradation is observed. In addition, CNTs grown on the sintered powder in the dryout area are also 

found to have detached after testing. While it is difficult to ascertain the exact cause of this structural 

damage to the central region of the wick surface post-testing, it is believed to have occurred at or near the 

dryout heat flux test point. This theory is supported by prior capillary-fed [37] and pool boiling [24] 

investigations in which CNT-coated samples were evaluated below the dryout heat flux, and at least 

partial CNT coverage was observed to be retained post-testing. In future studies, thermal cycling tests at 

moderate heat fluxes will be performed to evaluate structural degradation of these wick samples over 

time. 

 

3.2 Dynamic contact angle measurements 

To ascertain and compare the surface wetting behavior of bare (no CNTs) and copper-functionalized 

CNT-coated porous wick surfaces and to demonstrate the enhanced surface wettability with thicker 

copper coatings, dynamic contact angle measurements are performed for the bare sintered powder, and 

the 250 nm and 750 nm coated samples.  

 

Droplet infiltration into porous media has been investigated in prior studies. Denesuk [38] developed an 

analytical model for droplet suction into porous media, treating the individual pores as vertical cylinders 

into which liquid penetrates.  The model was developed for two limiting cases – a fixed contact line with 

varying contact angle, and a fixed contact angle with varying contact area – but did not provide any 

insight into when these regimes might occur.  Bacri and Brochard [39] observed similar pinned and 

unpinned contact line regimes by forcing a water-glycerol droplet into a porous membrane.  Clarke et al. 
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[31] extended this investigation to analyze the infiltration regimes of droplets falling onto porous surfaces 

with a low Weber number.  Placement of water/glycerol/hexylene glycol droplets onto microporous filter 

membranes revealed three clear infiltration regimes as illustrated in Fig. 11: 

(1) The droplet initially spreads over the surface and the contact angle slowly decreases until a 

macroscopic equilibrium advancing contact angle θa is reached and the contact line velocity Vcl gradually 

tends to zero. 

(2) The contact line remains fixed as the contact angle decreases until the macroscopic equilibrium 

receding contact angle θr is reached. 

(3) The contact angle remains fixed at θr and the contact line recedes until the droplet is completely 

absorbed into the surface and disappears. 

These three regimes were later referred to as stages of increasing drawing area (IDA), constant drawing 

area (CDA), and decreasing drawing area (DDA) by Hilpert and Ben-David [32], who developed a 

generalized analytical model that was in agreement with the experimentally measured infiltration 

behavior and could predict the conditions under which each regime would occur. The total time of the 

droplet infiltration is denoted by τf. The contact angle of interest for the porous surface is bounded by the 

θa and θr values. 

3.2.1 Effect of varying copper coating thickness on surface wettability 

The samples used for these measurements, namely, the bare sample without CNTs, 250 nm coated, and 

750 nm coated samples are nominally identical to the samples used for thermal testing and the same 

processing conditions were stringently adopted during sample fabrication (as described in section 2). To 

remove any minor surface oxidation, all the samples are treated with a 300 W hydrogen plasma for 10 

minutes with the substrate temperature at 100°C in the same MPCVD system used for CNT synthesis. 

Fifteen measurement trials were performed on each sample on the exact same region of the wick surface 

with the aid of alignment markers. Despite the drying procedure employed, it was observed that following 

approximately the fifth successive trial, the sample wetting behavior changed and total time of droplet 

infiltration, τf, reduced with a further increase in the number of trials. Hence, only the initial trials with the 

same total droplet infiltration time are selected for exhaustive analysis.  The results presented here 

correspond to trial numbers 3, 4, and 5 for each sample. 

 

Representative stages of droplet infiltration are shown in Fig. 12. It is clear that oscillations are prevalent 

during the first few milliseconds of droplet impact. The inertial forces persist during the IDA phase and 

become weak during the later stages. As expected, the contact angle decreases as a function of time 
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through IDA and CDA phases. The drawing radius can be seen to remain relatively constant in the CDA 

phase before complete droplet absorption occurs in the DDA phase. 

Two separate algorithms were developed in-house using MATLAB’s optimized Prewitt edge-detection 

algorithm and image processing toolbox to determine the dynamic contact angles and drawing radius of 

the droplets from the high-speed videos. It is noted that depending on the surface wetting behavior, the 

droplet infiltration process might start and end during any of the three phases. All the three phases (IDA, 

CDA and DDA) are observed using water with the three samples tested herein. During the later stages of 

droplet infiltration (at the end of the CDA phase and throughout the entire DDA phase), the contact angle 

and drawing radius determination becomes less accurate, and hence, the analysis is performed only while 

these parameters may be reliably obtained (typically until about halfway through the CDA phase). The 

mean drawing radius and contact angle, averaged over three trials, are extracted from the high-speed 

videos for each sample and are plotted as a function of time in Fig. 13.  

 

As indicated in the figure, the left y-axis plots the drawing radius, while the contact angle is plotted on the 

right y-axis. The interface radius increases almost linearly with time for all three samples, with 

approximately the same slope until time τ = 7.5 ms. During the same time, the contact angles of all three 

samples decrease exponentially from an initial contact angle value of θi ≈ 150°. This phase of droplet 

infiltration is denoted as the IDA phase. In the second stage of droplet infiltration, referred to as the CDA 

phase, the time-averaged drawing radius remains constant with minor oscillations due to inertial forces, 

while the contact angle continues to decrease exponentially. Since the CDA phase is relatively shorter for 

the 750 nm coated sample, fewer data points are available from the analysis for this sample. The 

equilibrium advancing contact angle θa for each sample is calculated as the contact angle at the 

intersection of the IDA and the CDA phase based on the fitted exponential curve. While a higher θa value 

of ~44° is extracted for the bare and the 250 nm coated sample, the 750 nm coated sample exhibits a θa 

value of ~35°.  

 

The procedure described above allows for prediction of the equilibrium advancing contact angle θa, which 

is the upper bound for the equilibrium liquid-solid static contact angle. The equilibrium receding contact 

angle θr is not ascertained due to the extremely low contact angles observed. However, θr can be 

qualitatively inferred from the total droplet infiltration time based on the analytical results obtained in 

[32]. Physically, a shorter infiltration time at constant wick permeability is a consequence of an increased 

capillary pressure, which is dependent on the contact angle. Assuming an equilibrium static contact angle 

θ bounded by θa and θr is used for predicting capillary pressure of the wick structure, lowering either of 
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these values promotes capillarity and consequently reduces τf. A comparison of the τf values for the three 

samples is obtained from high-speed imaging and is tabulated as an inset in Fig. 13. These values reveal 

that the total droplet infiltration time of 29.5 ms for the 750 nm sample is the lowest of the three samples. 

Since the θa value for the 750 nm sample obtained from the preceding experiments is also lower in 

comparison to the other two samples, it clearly indicates that the thickest coating considered here yields 

the highest capillarity and likely the lowest equilibrium receding contact angle θr among the three 

samples. Based on the same argument, when θa values of two porous surfaces are alike, the surface with a 

shorter droplet penetration time will correspond to a lower θr, provided the permeability is held constant. 

Hilpert and Ben-David [32] draw a similar conclusion from their analytical model. This argument may be 

employed to find relative θr values for the bare and 250 nm samples. Based on a shorter infiltration time 

(67.5 ms) for the bare sample compared to the 250 nm sample (with the largest τf   of 117 ms), it is 

concluded that the θr is lower for the bare sample. To summarize the results from this section, (θa, θr) 750nm 

< (θa, θr) bare ≤ (θa, θr) 250nm. 

 

3.2.2 Implications of enhanced surface wettability on the estimated dryout heat flux 

In section 3.1.2, the dryout heat flux of the samples was qualitatively estimated and it was concluded that 

(q”dryout) 750nm > (q”dryout) bare > (q”dryout) 250nm. The surface wettability trend matches the trend in the dryout 

heat flux, as would be expected for a capillary-limited dryout phenomenon. It should be noted that the 

contact angles reported in the prior section are measured at room temperature. The contact angles at 

higher liquid temperatures (≈100 °C) encountered during boiling would differ from the reported values 

due to temperature-dependence. The temperature dependence of contact angle on polished and roughened 

(but not porous) surfaces has been reported in [40, 41], wherein the authors observe constant contact 

angles in the low temperature regime (typically less than 100°C) and a linearly decreasing trend for higher 

temperatures. Based on these results from the literature, the actual contact angles during thermal testing 

are expected to be lower than the values reported here for room temperature; however, we expect no 

changes in the trend of changes in surface wettability for the samples. Hence, given liquid replenishment-

limited conditions, the 750 nm sample with the lowest predicted contact angle is concluded to most 

effectively feed liquid to the wick region which explains the observed maximum heat flux dissipation for 

this sample among the samples tested. The copper coating on the CNTs functions very well as a 

hydrophilic coating and could be potentially exploited for other applications requiring enhanced surface 

wetting. 

 

Although nominal copper coating thicknesses larger than 750 nm were not experimentally investigated in 

this study, we expect that the improved thermal performance brought forth by improved surface 
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wettability and higher capillary pressures will eventually be neutralized, as the coating thickness is 

increased further, by a decrease in flow permeability. This trade-off is expected to lead to an optimum 

copper coating thickness for achieving overall thermal performance enhancement. 

 

4. Conclusions 

Sintered copper powder wicks of 200 μm thickness, nanostructured with carbon nanotubes rendered 

hydrophilic with different thicknesses of a copper coating, are examined as a means to achieve enhanced 

thermal performance and dissipate higher heat fluxes in vapor chambers. Thermal performance tests are 

undertaken using a capillary-fed boiling test facility designed to simulate a vapor chamber environment. 

Surface wetting characterization of the samples is carried out with a goniometer test setup equipped with 

high-speed imaging capability to capture the infiltration of water droplets into the porous surface. The 

resulting surface wettability trends are compared to the thermal performance trends for different copper 

coating thicknesses on the CNTs, and the mechanisms of enhancement are revealed. The key conclusions 

are summarized as follows: 

(1) An increase in the copper coating thickness, indicated by larger effective coated carbon nanotube 

diameters, enhances capillary action resulting from the creation of hydrophilic nanoscale pores 

and overall increased wettability of the porous structure. 

(2) Thermal performance tests reveal reduced boiling incipience superheat temperatures, enhanced 

heat transfer coefficients, and lower overall thermal resistance for the CNT-coated wicks with the 

thicker copper coatings. 

(3) Higher dryout heat fluxes are supported by the thicker copper coatings on the CNTs. The 

estimated capillary dryout heat flux trend is substantiated by dynamic contact angle 

measurements performed to ascertain the relative surface wettability. 
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Figure captions 

Fig. 1. Schematic diagram detailing the operation of a vapor chamber with a nanostructured capillary 

wick.  

Fig. 2. Digital images of the (a) bare sintered powder sample and CNT-coated sample with (b) 250 nm, 

(c) 500 nm, and (d) 750 nm nominal copper coating thicknesses. 

Fig. 3. (a) A low-magnification SEM image of CNT-coated sintered powder sample, and high-

magnification SEM images of CNT-coated sintered powder samples functionalized with (b) 250 nm, (c) 

500 nm, and (d) 750 nm of nominal copper coating thickness. 

Fig. 4. Depth penetration study of 250 nm nominal copper coating deposited on CNTs synthesized on (a) 

a flat copper substrate, and (b) a sintered copper powder wick. 

Fig. 5. Schematic diagram of (a) the experimental setup, and (b) the heater block and sample assembly. 

Fig. 6. (a) Schematic diagram, and (b) photograph of the goniometer setup used for dynamic contact angle 

measurements. 
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Fig. 7. Comparison of boiling curves for the bare sintered powder sample and the CNT-coated samples 

functionalized with 250 nm, 500 nm and 750 nm nominal thickness of copper coating. The maximum 

heat flux values in each case represent approximate dryout points. 

Fig. 8. Comparison of overall thermal resistance for the bare sintered powder sample and the CNT-coated 

samples functionalized with 250 nm, 500 nm and 750 nm nominal thickness of copper coating. 

Fig. 9. Comparative partial dryout area (highlighted by a dashed line) for CNT-coated samples 

functionalized with (a) 250 nm, (b) 500 nm, and (c) 750 nm nominal thickness of copper coating.  

Fig. 10. (a) Digital, (b) low-magnification SEM, and (c), (d) high-magnification SEM images of the 

external region of the 750 nm sample wick surface after thermal testing. (e), (f) Low- and (g) high-

magnification SEM images of the dryout area of the wick surface after thermal testing. 

Fig. 11. Three phases of droplet infiltration on a porous surface, according to [32]. During the increasing 

drawing area (IDA) phase, the drawing area increases from A1 to A2 while the contact angle decreases to 

the equilibrium advancing contact angle θa.
 
The contact angle continues to decrease from θa to the 

equilibrium receding contact angle θr at a constant drawing area in the constant drawing area (CDA) 

phase. During the decreasing drawing area (DDA) phase, the drawing area decreases until the droplet is 

completely absorbed.  

Fig. 12. Representative stages of droplet infiltration for the 250 nm coated sample. 

Fig. 13. Variation of drawing radius (in mm) and contact angle (in deg) as a function of time during 

droplet infiltration on bare, 250 nm and 750 nm samples.  
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