Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-1-2012

CFD Modeling of Tapered Hole Microperforated Panels

J Stuart Bolton *Purdue University,* bolton@purdue.edu

Nicholas Kim Purdue University

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Bolton, J Stuart and Kim, Nicholas, "CFD Modeling of Tapered Hole Microperforated Panels" (2012). *Publications of the Ray W. Herrick Laboratories*. Paper 68. http://docs.lib.purdue.edu/herrick/68

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Nicholas Kim and J. Stuart Bolton Ray W. Herrick Labs Purdue University

> *Internoise 2012 Aug 21, 2012*

Introduction

Microperforated material

Dissipation

- In hole
- Along outer surface
- Within shearing fluid

Analytical models

Maa (1975) and Guo et al. (2008) account for first two

Introduction

Microperforated panel

Real materials do not have regular hole shapes and so are not suitable for analytical treatment

Introduction

Objective

By using computational fluid dynamics approach, calculate dynamic flow resistance for tapered hole microperforated panel considering flow through one hole and compare with existing formulation

Guo's Model

Integration Method

Analytical Solution (Randeberg, 2000)

Based on Guo's model, Randeberg used integration method. (used α = 4 for sharp edged)

$$Y = Re \left\{ \sum_{n=1}^{N} \frac{j\omega\Delta z}{\sigma_n c} \left[1 - \frac{2}{k_n \sqrt{-j}} \frac{J_1(k_n \sqrt{-j})}{J_0(k_n \sqrt{-j})} \right]^{-1} \right\} + \frac{\alpha R_s}{\sigma_1 \rho c} + \frac{\alpha R_s}{\sigma_N \rho c}$$

Previous work (sharp-edged hole)

The value of α vs. Frequency

In these graphs, it is shown that α is a function of frequency, thickness, and hole diameter

Previous work (sharp-edged hole)

Flow resistance computed by Fluent vs. β

α, end correction coefficient inGuo model, is dependent onfrequency.

$$\alpha = \beta f^{-0.5}$$

 β is function of thickness, hole diameter, and porosity.

$$\beta = 16.9 \frac{t}{d} + 152.8$$

8

Geometry

Geometry of CFD model

CFD Parameters

10

36 Cases with 9 different thicknesses

TORIES

(t = 0.1016 mm - 0.9144 mm)

XX	d ₁ [mm]	d ₂ [mm]		d ₁ [mm]	d ₂ [mm]		d ₁ [mm]	d ₂ [mm]
Case1	0.1016	0.127	Case13	0.127	0.254	Case25	0.1778	0.2794
Case2	0.1016	0.1524	Case14	0.127	0.2794	Case26	0.1778	0.3048
Case3	0.1016	0.1778	Case15	0.127	0.3048	Case27	0.2032	0.2286
Case4	0.1016	0.2032	Case16	0.1524	0.1778	Case28	0.2032	0.254
Case5	0.1016	0.2286	Case17	0.1524	0.2032	Case29	0.2032	0.2794
Case6	0.1016	0.254	Case18	0.1524	0.2286	Case30	0.2032	0.3048
Case7	0.1016	0.2794	Case19	0.1524	0.254	Case31	0.2286	0.254
Case8	0.1016	0.3048	Case20	0.1524	0.2794	Case32	0.2286	0.2794
Case9	0.127	0.1524	Case21	0.1524	0.3048	Case33	0.2286	0.3048
Case10	0.127	0.1778	Case22	0.1778	0.2032	Case34	0.254	0.2794
Case11	0.127	0.2032	Case23	0.1778	0.2286	Case35	0.254	0.3048
Case12	0.127	0.2286	Case24	0.1778	0.254	Case36	0.2794	0.3048

Input velocity

Input velocity and pressure

Inlet velocity was chosen to be a Hann windowed, 5 kHz halfsine wave having a maximum value of 1 mm/s in order to cover the frequency range up to 10 kHz

Pressure & velocity results from simulation

$t = 0.4064 \text{ mm}, d_1 = 0.1016 \text{ mm}, d_2 = 0.2032 \text{ mm}, \sigma = 0.02$

Contours of Static Pressure (pascal)

 Aug 14, 2012
 Velocity Vectors Colored By Velocity Magnitude (m/s)
 Aug 14, 2012

 ANSYS FLUENT 12.1 (2d, dp, pbns, lam)
 ANSYS FLUENT 12.1 (2d, dp, pbns, lam)
 Aug 14, 2012

Flow Direction

Flow resistance & reactance

 $(t = 0.4064 \text{ mm}, \sigma = 0.02, d_1 = 0.1016 \text{ mm}, d_2 = 0.2032 \text{ mm})$

flow direction

Dynamic flow resistance and reactance

Fixed diameter of inlet hole

 $(t = 0.4064 \text{ mm}, \sigma = 0.02, d_1 = 0.1016 \text{ mm})$

Dynamic flow resistance and reactance

Fixed diameter of outlet hole

 $(t = 0.4064 \text{ mm}, \sigma = 0.02, d_1 = 0.3.48 \text{ mm})$

Compared CFD Result with Guo Model

Flow resistance & reactance

 $(t = 0.4064 \text{ mm}, \sigma = 0.02, d_1 = 0.1016 \text{ mm}, d_2 = 0.2032 \text{ mm})$

Dynamic flow resistance and reactance

Error correction factor *α*

In the previous work (sharp-edged cylindrical hole)

$$\alpha = (16.9\frac{t}{d} + 152.8)f^{-0.5}$$
$$\alpha = \beta f^{-0.5}$$

Make β a function as thickness, inlet diameter, and outlet diameter.

$$\beta = \left(16.9\frac{t}{d_1} + 153\right) f(t, d_1, d_2)$$

Dynamic flow resistance and reactance

Define $f(t, d_1, d_2)$

RATORIES

(left is fixed by $d_1 = 0.1016$ mm, and right is fixed by $d_2 = 0.3048$ mm) Inversely proportional to thickness and almost linear

$$f(t, d_1, d_2) = a \left(1 - \frac{d_2}{d_1} \right) t + 1$$

18

Define slope a

By second order Newton interpolation

$$a = \left(6.66 \left(\frac{d_1}{d_2}\right)^2 - 7.07 \left(\frac{d_1}{d_2}\right) + 3.06\right) \times 10^4$$

$d_1 = 0.1016 \text{ mm}, d_2 = 0.2032 \text{ mm}, \sigma = 0.02$

$t = 0.4064 \text{ mm}, d_2 = 0.2032 \text{ mm}, \sigma = 0.02$

$t = 0.4064 \text{ mm}, d_1 = 0.1016 \text{ mm}, \sigma = 0.02$

- By changing the definition of α , which is defined by Guo *et al.*, accuracy can be improved
- By making β a function of thickness, inlet hole diameter, and outlet hole diameter (as below), we can define dynamic flow resistance for any tapered hole.

$$\beta = \{ \left(6.66 \left(\frac{d_1}{d_2} \right)^2 - 7.07 \left(\frac{d_1}{d_2} \right) + 3.06 \right) \times 10^4 \times \left(1 - \frac{d_2}{d_1} \right) t + 1 \} (16.9 \frac{t}{d_1} + 152.8)$$

Subset Future : Make complete definition of α and an examination of the effect of square or slit hole geometry

Acknowledgements

Thanks to :

Thomas Herdtle of 3M Corporation, St. Paul, Minnesota, for his useful, practical advice at an early stage of this work.

