Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-1-2012

Influence of Boundary Conditions on the Prediction Accuracy of a Biot-based Poroelastic Model for Melamine Foam

J Stuart Bolton Purdue University, bolton@purdue.edu

Ryan A. Schultz

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Bolton, J Stuart and Schultz, Ryan A., "Influence of Boundary Conditions on the Prediction Accuracy of a Biot-based Poroelastic Model for Melamine Foam" (2012). *Publications of the Ray W. Herrick Laboratories*. Paper 66. http://docs.lib.purdue.edu/herrick/66

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Influence of Boundary Conditions on the Prediction Accuracy of a Biot-based Poroelastic Model for Melamine Foam

Research Assistant: Ryan Schultz

Advisor: Dr. J. S. Bolton

Contents

But Why?

Poroelastic Materials

Poroelastic Materials:

- 2 phases: solid frame saturated with fluid
- Pore cells: closed, open, partially reticulated

Melamine Foam

- Open Cell
- Good acoustic, fire, thermal properties

Boundary Conditions

Facing Conditions

Boundary Conditions

Mounting Conditions

Measurement: Apparatus

2-Mic Absorption

♦ 4-Mic Transmission Loss

Measurement: Sample Fit

Absorption Measurement Results

The Biot Theory: Terminology

Symbol	Parameter	Unit
ϕ	Porosity	-
σ	Flow Resistivity	$\mathrm{Ns/m^4}$
α_{∞}	Tortuosity	-
Ν	Shear Modulus	kPa
u	Poisson's Ratio	-
η	Loss Factor	-
Λ	Viscous Characteristic Length	$\mu{ m m}$
Λ'	Thermal Characteristic Length	$\mu{ m m}$
$ ho_1$	Bulk Density	kg/m^3

The Biot Theory

• Stress-Strain Relations $\sigma_x = Pe_x + Q\epsilon_x$

$$s = R\epsilon_x + Qe_x$$

Dynamic Relations

$$\frac{\partial \sigma_x}{\partial x} = \rho_1 \frac{\partial^2 u_x}{\partial t^2} + \rho_a \frac{\partial^2}{\partial t^2} (u_x - U_x) + b \frac{\partial}{\partial t} (u_x - U_x)$$

$$\frac{\partial s}{\partial x} = \rho_a \frac{\partial^2}{\partial t^2} (U_x - u_x) + b \frac{\partial}{\partial t} (U_x - u_x)$$

$$Qe_x + R\epsilon_x = -\omega^2(\rho_{12}u_x + \rho_{22}U_x)$$
$$Pe_x + Q\epsilon_x = -\omega^2(\rho_{11}u_x + \rho_{12}U_x)$$

Solution of Field Variables: Example

Solution for Field Variables:

- Insert expressions for field variables into constraint relations for Front & Rear surfaces and Mounting condition.
- Number of equations = Number of unknown field variables + Reflection coefficient
- Solve the linear system

$$\begin{pmatrix} (1-\phi)p_{\text{ext}} = p_1 \\ \phi p_{\text{ext}} = p_2 \\ v_{\text{ext}} = (1-\phi)v_1 + \phi v_2 \\ v_1 = 0 \\ v_2 = 0 \end{pmatrix} \begin{bmatrix} -(1-\phi) & -f_1 & f_1 & -f_2 & f_2 \\ -\phi & -g_1 & g_1 & -g_2 & g_2 \\ 1/Z_c & d_1 & d_1 & d_2 & d_2 \\ 0 & W_1 & W_1^{-1} & W_2 & W_2^{-1} \\ 0 & b_1W_1 & b_1W_1^{-1} & b_2W_2 & b_2W_2^{-1} \end{bmatrix} \begin{cases} R \\ C_1 \\ C_2 \\ C_3 \\ C_4 \end{cases} = \begin{cases} (1-\phi) \\ \phi \\ 1/Z_c \\ 0 \\ 0 \end{cases}$$

Intensity in the Porous Material

*time-averaged rate of energy transmission through a unit area

Intensity

Intensity: By Phases

No Facing + Gap

Glued Facing + Fixed

Intensity: By Wave Type

No Facing + Gap

Glued Facing + Fixed

Predictions vs. Measurements

Predictions vs. Measurements

Helmholtz Resonator Effect

Stiffness
$$s = \rho_0 c_0^2 S^2 / V$$

Total Acoustic Impedance $z = 1/(1/z_H + 1/z_f)$

Helmholtz Resonator Effect

Helmholtz Resonator Effect

Measured Glued Facing + Fixed with Edge Sealed

- Measured acoustical properties of melamine foam using two- and four-microphone standing wave tube techniques
- Developed a 1-dimensional formulation of the Biot theory for wave propagation in poroelastic materials
- Explored the intensity distribution among the two phases & two wave types
 - Intensity distribution is dependent on the imposed boundary conditions
 - Frame-borne wave type decays much more slowly than airborne wave type
 - Exchange between wave types is more significant at higher frequencies
- Compared model predictions with measurements
- Determined that model-measurement agreement appears to be dependent on the boundary conditions applied to the foam sample
 - Agreement appears to deteriorate when Frame plays a larger role

- Measured acoustical properties of melamine foam using two- and four-microphone standing wave tube techniques
- Developed a 1-dimensional formulation of the Biot theory for wave propagation in poroelastic materials
- Explored the intensity distribution among the two phases & two wave types
 - Intensity distribution is dependent on the imposed boundary conditions
 - Frame-borne wave type decays much more slowly than airborne wave type
 - Exchange between wave types is more significant at higher frequencies
- Compared model predictions with measurements
- Determined that model-measurement agreement appears to be dependent on the boundary conditions applied to the foam sample
 - Agreement appears to deteriorate when Frame plays a larger role

- Measured acoustical properties of melamine foam using two- and four-microphone standing wave tube techniques
- Developed a 1-dimensional formulation of the Biot theory for wave propagation in poroelastic materials
- Explored the intensity distribution among the two phases & two wave types
 - Intensity distribution is dependent on the imposed boundary conditions
 - Frame-borne wave type decays much more slowly than airborne wave type
 - Exchange between wave types is more significant at higher frequencies
- Compared model predictions with measurements
- Determined that model-measurement agreement appears to be dependent on the boundary conditions applied to the foam sample
 - Agreement appears to deteriorate when Frame plays a larger role

- Measured acoustical properties of melamine foam using two- and four-microphone standing wave tube techniques
- Developed a 1-dimensional formulation of the Biot theory for wave propagation in poroelastic materials
- Explored the intensity distribution among the two phases & two wave types
 - Intensity distribution is dependent on the imposed boundary conditions
 - Frame-borne wave type decays much more slowly than airborne wave type
 - Exchange between wave types is more significant at higher frequencies
- Compared model predictions with measurements
- Determined that model-measurement agreement appears to be dependent on the boundary conditions applied to the foam sample
 - Agreement appears to deteriorate when Frame plays a larger role

- Measured acoustical properties of melamine foam using two- and four-microphone standing wave tube techniques
- Developed a 1-dimensional formulation of the Biot theory for wave propagation in poroelastic materials
- Explored the intensity distribution among the two phases & two wave types
 - Intensity distribution is dependent on the imposed boundary conditions
 - Frame-borne wave type decays much more slowly than airborne wave type
 - Exchange between wave types is more significant at higher frequencies
- Compared model predictions with measurements
- Determined that model-measurement agreement appears to be dependent on the boundary conditions applied to the foam sample
 - Agreement appears to deteriorate when Frame plays a larger role

Thank you!

Questions?

Measurement: Sample Fit

Field Variables

Air

 Particle
Velocity

$$v_2 = j\omega(b_1C_1e^{jk_1x} + b_1C_2e^{-jk_1x} + b_2C_3e^{jk_2x} + b_2C_4e^{-jk_2x})$$

 Acoustic
Pressure
 $p_2 = -g_1C_1e^{jk_1x} + g_1C_2e^{-jk_1x} - g_2C_3e^{jk_2x} + g_2C_4e^{-jk_2x}$

Field Variables

Intensity

$I_{\text{foam}} = \frac{1}{2} \operatorname{Re}\{p_1 v_1^*\} +$	$\frac{1}{2}\operatorname{Re}\{p_2v_2^*\}$	We have expressions for the acoustic velocity and pressure in each phase		
Frame				
Particle Velocity	$v_1 = j\omega \left(C_1 e^{jk_1x} + C_2 e^{-jk_1x} + C_3 e^{jk_2x} + C_4 e^{-jk_2x} \right)$			
Acoustic Pressure	$p_1 = -f_1 C_1 e^{jk}$	$f_{21x} + f_1 C_2 e^{-jk_1x} - f_2 C_3 e^{jk_2x} + f_2 C_4 e^{-jk_2x}$		

Air				
Particle Velocity	$v_2 = j\omega \left(b_1 C_1 e^{jk_1 x} + b_1 C_2 e^{-jk_1 x} + b_2 C_3 e^{jk_2 x} + b_2 C_4 e^{-jk_2 x} \right)$			
Acoustic Pressure	$p_2 = -g_1 C_1 e^{jk_1 x} + g_1 C_2 e^{-jk_1 x} - g_2 C_3 e^{jk_2 x} + g_2 C_4 e^{-jk_2 x}$			

Intensity

$$I_{\text{foam}} = \frac{1}{2} \operatorname{Re}\{p_1 v_1^*\} + \frac{1}{2} \operatorname{Re}\{p_2 v_2^*\}$$

Apply the field variable equations, expand and separate terms by wave type

TL Measurement Results

Parameter Estimation

Improve Prediction-Measurement Agreement

- Uncertain of parameter values:
 - Porosity
 - Flow Resistivity
 - Tortuosity
 - Characteristic Length
 - Shear Modulus
 - Loss Factor
- Allow these to take a range of values & predict absorption coefficients
- Find the parameter set that best predicts the measured absorption coefficient

Parameter Estimation

Improve Prediction-Measurement Agreement

- Uncertain of parameter values:
 - Porosity
 - Flow Resistivity
 - Tortuosity
 - Characteristic Length
 - Shear Modulus
 - Loss Factor
- Allow these to take a range of values & predict absorption coefficients
- Find the parameter set that best predicts the measured absorption coefficient

Measurement: Theory

Sound Field:

$$P = Ae^{-jk_0x} + Be^{jk_0x}$$
Unknowns
$$P = e^{-jk_0x} + Re^{jk_0x}$$

$$v = \frac{1}{\rho c} \left(e^{-jk_0x} - Re^{jk_0x} \right)$$

Pressure at 2 Points:

$$P_1 = Ae^{jk_0(L_1+s_1)} + Be^{-jk_0(L_1+s_1)}$$

$$P_2 = Ae^{jk_0L_1} + Be^{-jk_0L_1}$$

Acoustical Properties:

$$R = B/A$$

$$\alpha = 1 - |R|^2$$

Poroelastic Material Modeling

Zwikker & Kosten:

- Extension of Kirchhoff's theory for cylindrical pore sections
- Found there are two waves that propagate in an elastic porous material
- Elastic frame, normal incidence
- Rosin, Lauriks et al., Bolton

Biot:

- Generalized theory using 3-D continuum mechanics, allows for 3-D wave propagation by 2 dilatational and 1 shear wave
- Widely applied: soils, foams
- Described & modified by: Allard and Atalla, Bolton et al.

Modifications of Biot Theory:

- Modifications of Coupling Terms:
 - Bolton, Johnson et al., Pride et al., Wilson, Kino
 - Bolton, Champoux-Allard, Lafarge, Kino

Mass & Elastic Coefficients

Elastic Coefficients

Mass Coefficients

N = G $P = A + 2G + K_f (1 - \phi)^2 / \phi$ $Q = (1 - \phi) K_f$ $R = \phi K_f$

$$\rho_{11} = \rho_1 + \rho_a + b/j\omega$$
$$\rho_{12} = -\rho_a - b/j\omega$$
$$\rho_{22} = \phi\rho_0 + \rho_a + b/j\omega$$

$$\begin{split} \frac{\partial \sigma_x}{\partial x} &= \rho_1 \frac{\partial^2 u_x}{\partial t^2} + \rho_a \frac{\partial^2}{\partial t^2} (u_x - U_x) + b \frac{\partial}{\partial t} (u_x - U_x) \\ \hline \text{Inertial Coupling Term} & \text{Viscous Coupling Term} \\ \rho_a &= \phi \rho_0 (\alpha_\infty - 1) & b = \sigma \phi^2 G(w) / j \omega \end{split}$$

Boundary Condition Constraints

Sensitivity to Model Inputs

Key Findings:

- Sample Depth
- Porosity
- Flow Resistivity
- Thermal Characteristic Length
- Bulk Density

Key Findings:

- Facing Area Density
- Porosity
- Bulk Density
- Shear Modulus
- Poisson's Ratio
- Loss Factor

