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Abstract—nanoHUB.org is arguably the largest online 
nanotechnology user facility in the world. Just between July 
2010 and June 2011 it served 177,823 users. 10,477 users ran 
393,648 simulation jobs on a variety of computational 
resources ranging from HUBzero-based virtual execution hosts 
for rapid, interactive runs as well as grid-based resources for 
computationally-intense runs. We believe that as such our 
users experience a fully operational scientific “cloud”-based 
infrastructure even though it is not using “standard” 
computational cloud infrastructures such as EC2. In this paper 
we explore the use of standard computational cloud-based 
resources to determine whether they can deliver satisfactory 
outcomes for our users without requiring high personnel costs 
for configuration.  In a science gateway environment, the 
assignment of jobs to the appropriate computational resource 
is not trivial.  Resource availability, wait time, time to 
completion, and likelihood of job success must all be 
considered in order to transparently deliver an acceptable level 
of service to our users.  In this paper, we present preliminary 
results examining the benefits and drawbacks of utilizing 
standard computational cloud resources as one potential venue 
for nanoHUB computational runs.  In summary we find that 
cloud resources performed competitively with other grid 
resources in terms of wait time, CPU usage, and success in a 
multiple job submission strategy. 

Keywords-science gateway; nanotechnology; nanoHUB; grid 
computing; cloud computing; performance monitoring; 
HUBzero; cyber-environments 

I.  INTRODUCTION 
nanoHUB.org is recognized as the largest Internet-based 

nanotechnology user facility in the world, serving over 
177,000 users annually in 172 countries [1].  The 
infrastructure that underlies nanoHUB is called HUBzero® 
[2]. nanoHUB hosts a wide and growing variety of resources 
used heavily for education and research [3,4]. As of July 
2011, these resources include 55 full courses, 1657 online 
lectures, and 212 simulation tools.  Analysis of 719 citations 
in the scientific literature of nanoHUB.org demonstrates use 
of our simulation programs and resources by educators, 
researchers, and experimentalists outside the nanoHUB 
community [5]. For our users, nanoHUB itself aims to act as 
a cloud of tools, compute services, and compute hardware 
resources focused primarily on enhancing scientific inquiry. 
Over 10,000 users performed simulation runs on 

nanoHUB.org in the last year.  Many of these runs are fast, 
interactive simulations that execute well in our HUBzero-
based virtual execution hosts. However, an increasing 
number of simulations run on nanoHUB.org are 
computationally intense, requiring multiple cores in a true 
parallel environment or, for more modest parallel runs, the 
ability to execute in a distributed environment on many serial 
machines. Like the user base represented in many 
engineering and science cyber-environments (also referred to 
interchangeably as science gateways), nanoHUB.org users 
are not computational experts. They usually prefer to focus 
on performing domain-specific computations and require a 
transparent environment for job submissions that returns 
results quickly and reliably [6].  Most of these users are 
unaware of computational details such as MPI, OpenMP, or 
batch queues.  At nanoHUB, we continue to explore and 
refine methods for optimizing the job submission process 
and use of available computational resources to best serve 
the interests of our users.  

In this paper, we attempt to characterize the benefits and 
drawbacks of using standard computational cloud resources 
as part of the nanoHUB job submissions process. Our 
ultimate goal is to understand how cloud-based 
computational resources could affect the user experience in 
the context of simulation use within engineering and science 
cyber-environments such as nanoHUB.org. 

 

II. BACKGROUND 
There is much discussion in the literature concerning the 

definition and evolution of cloud computing and how it 
relates to cluster and grid computing.  One view is that cloud 
computing has evolved from cluster and grid computing and 
yet possesses several notable differences [7].  A typical grid 
job in the science gateway context will be deployed to a 
specific physical resource, possibly remote from submission 
site, via a community account with specific instructions and 
through a scheduling engine.  The job may wait in a queue 
until the designated host is available for execution.  Access 
and configuration parameters are controlled at the execution 
host.   

Cloud computing, in contrast, consists of a large, 
centralized, underlying hardware system over which virtual 
machines (VMs) can be spawned as necessary and 
dynamically configured to provide run-time environments 
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for a variety of jobs [8].  In this context, the cloud provides 
Infrastructure as a Service (IaaS) [9]. Commercial systems 
such as Amazon’s Elastic Compute Cloud (EC2), provide 
access on demand under a “pay as you use” model [10].     

A recent study [11] compared the cost to an institution to 
utilize a local community cluster in comparison to accessing 
commercial cloud services. This study concluded that while 
for most use cases, the cost of using a local community 
cluster would be less than costs associated with utilizing 
cloud services, there were cases when the cloud would be the 
better choice. For example, for research groups with low 
utilization of their queues or in situations where time to 
completion was a high priority, cloud services would offer 
advantages over traditional grid resources. When security 
and logistics issues are addressed, utilizing cloud services in 
conjunction with other resources can be an effective 
approach to managing fluctuations in demand [12].  
However, a careful approach to scheduling is necessary in 
order to balance costs against user requirements [13]. 

Engineering and science cyber-environments such as 
nanoHUB.org attract users with the promise to provide a 
high quality user experience when using simulation tools and 
services. One of the primary factors affecting user 
experience when using cloud services is the performance of 
the applications themselves. Performance of many 
applications in a cloud is generally comparable in terms of 
CPU, memory, and MPI performance to typical commodity 
Gigabit Ethernet-based clusters [14]. One of the most notable 
shortcomings for high-performance computing in cloud 
computing is network performance [15], as observed in 
benchmarks run on Amazon EC2. Also, I/O intensive 
applications performed substantially worse under EC2’s 
Gigabit Ethernet inter-connect and comparatively slower file 
system [16]. Typically, applications that work well in a cloud 
environment are loosely-coupled and CPU-intensive, without 
heavy communication or I/O requirements. 

Science gateways such as nanoHUB have traditionally 
deployed computationally intense jobs to local cluster 
resources as well as to grid resources such as the TeraGrid 
[17], Open Science Grid (OSG) [18], and DiaGrid [19]. An 
initial study on grid submissions from nanoHUB.org to a 
variety of grid resources indicated better success rates with 
jobs submitted to local clusters than to remote grid sites [20].   

In November 2008, a joint nanoHUB-OSG Task Force 
[21] began to address issues related to effectively utilizing 
grid resources through a science gateway such as nanoHUB.  
One of the outcomes from this task force was the 
development of a grid probe system used to test grid site 
health and direct jobs based on the results. The grid probe is 
a simple program sent at regular intervals to various grid 
sites. The resulting response times of the probes are actively 
utilized to direct production job submissions from nanoHUB. 
In essence, the grid probe system provided us with some 
intelligence on where to guide user jobs where there was no 
guidance before. Over 1 million probe results have been 
collected since this project began. 

Success rates for production runs from nanoHUB.org 
submitted based on grid probe results indicate that there is 
still a significant failure rate for real jobs sent to TeraGrid, 

OSG, and others,  with as many as half of them failing for 
reasons ranging from user error to grid errors (see Table 1). 
Further work is planned in order to develop more complex 
probes that are more representative of actual jobs. 

The fundamental question that is being posed here is if 
standard cloud computing infrastructures can raise the level 
of service in comparison to standard grid computing 
infrastructures.  This paper documents some of our first 
results that address this overall complex issue. 

 
Table 1.  Success Rates for Grid Submissions from 

nanoHUB.org 

 TeraGrid 
(778 runs) 

OSG  
(29,448 runs) 

Local Cluster 
(61,124 runs) 

Successful 49% 52% 84% 
Failed 51% 48% 16% 

 

III. THE TESTING PROCESS 

A. Job submission process to the cloud 
As an extension to the work described in the previous 

section, we propose to determine whether the cloud presents 
an alternate or supplemental venue for job submissions and 
how the success rates for production jobs sent to the cloud 
compare with that for grid jobs and jobs submitted to local 
clusters.  Our work is focused on job submissions from 
environments such as nanoHUB.org that are aimed to serve 
end users without any grid or cloud programming knowledge 
or access. We aim to determine both the benefits and 
drawbacks of utilizing the cloud as part of our computational 
resources.  It is expected that the virtualization in the cloud 
environment will offer the benefit of jobs not having to wait 
in a queue, as well as the ability to provide a known 
execution environment in the virtual containers. 

We used Purdue’s cloud computing test bed, “Wispy” 
[22], an IaaS type cloud service, as our venue for cloud 
submission.  Wispy operates the Nimbus v2.7 software 
produced by the Science Clouds Project [23]. Within Wispy, 
there are 32 nodes with 4 cores at 2.3GHz (96 cores in total), 
and 16GB of memory on each node. Each node has 250GB 
of local disk. Each physical node in Wispy is connected with 
gigabit Ethernet, with IP addresses directly connected to 
Purdue’s public Internet.  For virtualization, Wispy uses the 
KVM [24] hypervisor, which is included by default in Red 
Hat Enterprise Linux distributions.  Figure 1 illustrates the 
components and protocols utilized by the Wispy cloud 
service. 

For this study, sixteen virtual machines were configured 
with the ability to run a maximum of two jobs per machine, 
with a machine being terminated after 30 minutes of idle 
time.  If no available slots were open on an already running 
machine, a new machine was opened.  The virtual machines 
have a maximum lifetime of 24 hours. Jobs are not scheduled 
if they cannot complete in the remaining time. 

The selection of the number of virtual machines and jobs 
per machine was somewhat arbitrary.  For this initial set of 
tests, our intent was to explore the behavior of the cloud 
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without unduly stressing it.  Future work may be considered 
which will vary these parameters and compare results.  It 
should be noted that during these tests, the load on Wispy 
was essentially nanoHUB jobs. In most cases, we had the 
entire cloud to ourselves.  We recognize this as a limitation 
of the current study.  This issue will be addressed in the 
future. While there is no traditional queue, there is a 2-3 
minute start up time for each virtual machine, but as long as 
the machines are kept busy, this is generally a one-time cost. 

 

Figure 1.  Components and Protocols used in Wispy Cloud 
Service 

The testing approach was based on real user experience 
and desired outcomes and was structured to simulate real 
interactive sessions in which time to completion counts and 
where a variety of venues are available for job submission. 
To begin our tests, a set of three representative applications 
that are regularly utilized by nanoHUB users were selected:  
Nanowire [25], NanoFET [26], and CNTFET [27].  All three 
applications run on a single core and generally take more 
than two minutes to run.  They were selected for these tests 
because they are some of the more common applications run 
on nanHUB.org and are generally sent to grid resources.  In 
addition to Wispy, we utilized other venues available for 
nanoHUB jobs, including BoilerGrid [28], DiaGrid, OSG 
Factory [29], OSG, a dedicated local queue available to 
nanoHUB (rcac-ncn-hub), as well as standard local queues 
(rcac-standby).  Table 2 provides details on the capabilities 
of the hardware used. 

 
Table 2.  Hardware specifications  

Site Groups CPU RAM
BoilerGrid 
/DiaGrid 

2.5 GHz Quad-Core AMD 2380   
2.1 GHz 12-Core AMD 6172      
2.33 GHz Quad-Core Intel E5410 

32G
48G 
16G

RCAC: 
   ncn-hub/ 
   standby 

2.5 GHz Quad-Core AMD 2380   
2.1 GHz 12-Core AMD 6172      

32G
48G 

Wispy 2.3 GHz Intel Xeon 5140 16G
OSG Various Intel/AMD – 2.5GHz avg 12G
OSG Factory Various Intel/AMD – 2.4GHz avg 18G

 

Each of the three applications were randomly submitted 
to three venues at the same time with data being collected in 
log files in order to compare success rates as well as wait 
time, wall time, and CPU time across the venues.  These data 
are discussed in the next section.   

IV. RESULTS AND DISCUSSION 
Initial testing resulted in a total of 17,871 runs submitted 

across the venues.  A run was considered to be successful 
only if the following two conditions were met: (i) it 
completed successfully; and (ii) it was the first to finish in 
the set of parallel runs that were submitted to various venues.  
Once one run in the set completed successfully, the 
redundant runs were terminated.  This approach follows a 
common multiple submission strategy shown to improve job 
completion time, and used by both nanoHUB.org and other 
sites [30].   A small percentage of jobs terminated due to 
errors, accounting for about 4% of all the runs.  

Table 3 and Figure 2 show the resulting data. It should be 
noted that due to scheduled hardware maintenance issues at 
Purdue University, there were reduced job submissions to the 
local RCAC queues and to Wispy, compared to the number 
of job submitted to other grid sites. 

 
Table 3.  Detailed Numerical Results of the Test Runs 

Venue Success-
ful 

Errors Lost 
Race 

Total 

BoilerGrid 1198 356 1760 3314 
DiaGrid 1635 0 1429 3064 

OSG 667 95 2527 3289 
OSG Factory 1108 33 2140 3281 
rcac-ncn-hub 681 139 591 1411 
Rcac-standby 344 118 489 951 

Wispy 980 53 1528 2561 
Total 6613 794 10464 17871 

 

 
Figure 2. Visual representation of the numerical results of 

Table 3 on a relative scale. 

In analyzing these data, DiaGrid experienced the highest 
success rate, with 53% of jobs submitted winning the race.  
However, this number is slightly skewed by the fact that 
there were times when the local queues and Wispy were not 
available, thereby reducing the number of resources available 
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to compete.  It is not surprising to see that th
ncn-hub queue, even with downtime, r
percentage of successful runs, with 48%.  N
essentially a zero wait time, but it is a faster
than Wispy (see Table 2).  After the dedicat
had the next highest success rate at 38%. 
closely by BoilerGrid and our local rcac-sta
at 36% success and finally OSG Factory at
was expected that using OSG Factory Glidei
faster completion time than OSG, since, on
available at one of their sites, the hold 
continues. This expectation was verified b
OSG Factory having a significantly higher 
regular OSG sites, which had a 20% success

Figure 3 shows the average wait times
with the CPU and wall times for jobs e
venue.  The shortest wait times are found 
standby, and the dedicated rcac-ncn-hub que
expect the dedicated queue as well as th
would have short wait times.  For the c
should typically only consist of the time n
new virtual machines.  As long as the cloud 
time is kept to a minimum.  The standby que
low wait times.  This could be attributed 
outside job submissions.  OSG had signific
times than the local resources, but lower tha
perhaps due to the wide variety of sit
submission.  OSG Factory had an average 
double of OSG.  BoilerGrid and DiaGrid als
significantly higher than the Wispy and the l

OSG shows the longest CPU time and 
may account for its low success rate in th
tests.  The local standby queue had the short
and wall times, with all other sites exhib
similar range. 

Figure 3.  Average Wait, CPU, and Wall time

Figure 4 illustrates the utilization of th
machines on Wispy over the time of this st
shows a blue line each time a machine is 
time is fairly short.  Yellow represents an
machine not currently running any jobs.  
remain idle up to 30 minutes before i

he dedicated rcac-
returned a high 
Not only is there 
r, newer machine 
ted queue, Wispy 
 It was followed 
andy queue, both 
t 34% success. It 
in would result in 
nce a machine is 
on the resource 

by the data, with 
success rate than 

s rate.  
s plotted together 
executed at each 

on Wispy, rcac-
eue.   One would 
e cloud test bed 
loud, wait times 
eeded to start up 
is kept busy, that 
eue also had very 
to low levels of 
antly longer wait 

an the other grids, 
tes available for 
wait time nearly 

so had wait times 
local queues. 
wall time, which 

he context of our 
test average CPU 
biting times in a 

 
es for each venue 

he sixteen virtual 
tudy.  The figure 
created, but this 

n active but idle 
A machine can 

it is terminated.  

Magenta represents a machine runni
represents a machine running the ma

Zero usage between hours 
corresponds to scheduled outages d
upgrades at Purdue computing f
beginning of the tests and the rest
new VMs can be seen being activate
are busy with two jobs.   

 

Figure 4.  Loads on virtual machin

Long stretches of green on VMs
and 054 are not indicative of a VM
24 hour maximum lifetime, but r
monitoring code. In some cases, th
not recognize that a VM had finishe
in use.  This problem has been cor
only noticeable effect would be 
machines rather than reusing these 
were available.  The three long patc
top of the chart for VM040, VM042
a problem with the OSG Factory so
submission threads to essentially be
in VMs left open due to subseq
unable to proceed until the problem 

For the most part, machine u
efficient, with each machine only 
times over the course of the tests a
be added to the full capacity of sixte

The results of these preliminary 
provider such as Wispy is competiti
the ones used in this experiment, 
even a dedicated machine.  Wisp
average wait time and had the seco
time for successful runs out of all th

V. FUTURE W

Expanding the use of computatio
a science gateway that has learned to
user experience is a multi-faceted p
involves testing, evaluating, buildin
making the transition to the cloud t
that is made up of scientists whos
science, not the detailed process 
certainly not the development of infr

ing a single job and green 
aximum of two jobs.   

56-214 and 234-312 
due to mechanical system 
facilities.  At both the 
tart after the suspension, 
ed when all existing VMs 

 
nes for this experiment 

s 041, 042, 045, 046, 050, 
M running longer than the 
rather an issue with the 
he monitoring system did 
ed and registered it as still 
rrected in the code.  The 

the spawning of new 
existing machines if they 
ches of magenta near the 

2, and VM043 result from 
oftware which caused job 
e put on hold and resulted 
quent submissions being 
was resolved.   

use appears to be fairly 
being terminated a few 

and new VMs needing to 
een only a few times. 
tests indicate that a cloud 
ve, for serial jobs such as 
with grid resources and 

py exhibited the lowest 
ond lowest average CPU 
e venues. 

WORK 
onal cloud technology for 
o build reliability into the 
project.  Any such effort 
g, documenting, and then 
transparent to a user-base 
se primary focus is their 
of submitting jobs, and 

frastructure.   
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 The first step in this project was to create 
applications that could begin to test and to document the 
reliability and feasibility of this back-end infrastructure.  The 
next phase of our work will evaluate different scheduling 
methods that enable access to the cloud and allow instant 
access from HUBzero-based environments. The next step 
involves the movement to more complex, multi-core job 
executions across multiple virtual machines.  The long term 
goal will be to offer standard container sets for different 
combinations of compilers, operating systems, and OS 
versions, along with the appropriate methods to schedule 
these job runs.  Another end goal is to provide a simple-
enough configuration definition to allow the developer to 
declare the properties of each deployable VM.  As we 
expand our understanding of the intricacies involved with 
sending nanoHUB jobs to the cloud, we will begin to explore 
the use of commercial large cloud vendor services such as 
Amazon’s EC2 and evaluate real job performance in 
commercial clouds, just as we have evaluated real jobs sent 
to grid computing venues. 

A review of our long-term goals for cloud access shows 
there are several concerns that will have to be monitored 
throughout the project.  One of the main concerns is being 
able to automate enough of the standard computational cloud 
access container so as not to overload an over-allocated 
cyber infrastructure staff.  In order to maintain this service 
for a large customer base, there must be a balance between 
developer autonomy for standard requests and being able to 
satisfy requests for custom builds.  Another balancing act 
involves allowing scientific tool developers to request 
custom virtual machines for their individual requirements 
and being able to also immediately assess the security of the 
VM.  Coinciding with these issues is the continual evaluation 
of related resource provisioning policies and the monitoring 
of the robustness of the job submissions.  A historical view 
of this robustness will be maintained to continue to 
strengthen the selection of remote backend resources.   

As nanoHUB.org delves into the evolving world of cloud 
computing, our highest goal is to increase the service 
offering and job flexibility while still maintaining the 
reliability and high user experience that the customer-base 
has grown to expect.  Careful planning and execution of this 
project will be essential to meeting that goal.  

VI. CONCLUSIONS 
This paper presents preliminary results from our tests of 

using the “standard” computational cloud to supplement our 
use of grid resources for computationally intense simulation 
runs.  Our initial results validate that one of the strengths of 
the cloud is for urgent, time-sensitive runs, whether or not 
other resources are available.  However, dedicated or high 
priority queues can also provide similar performance.  Grid 
resources where priority may be beyond the control of the 
submitter, were consistently outperformed by the cloud and 
by more dedicated resources.   

Performance is only part of the equation.  Cost and ease 
of submission must also be considered.  For many research 
groups with existing infrastructures, costs for computing 
venues may have already been absorbed in terms of purchase 

and support costs paid.  In those cases, the extra expenditure 
for cloud resources must be considered carefully.  In 
addition, the amount of support time that is required for 
submissions to the various venues will play a big part in 
determining where to submit jobs.  The winning venue may 
not be the fastest, but rather the venue that allows the 
Cyberinfrastructure Operation Team to most easily connect 
to and submit jobs on behalf of users, who are not 
computational scientists. 

We have just begun to explore the potential of clouds for 
a science gateway site and the results are promising.    There 
is clearly further work to be done in this area.  The 
applications selected for this study were typical serial jobs.  
To truly test the capabilities of the cloud, more 
computationally intense runs need to be tested.  Additionally, 
it might be informative to repeat these runs with a cloud 
venue under “stress.”  During our tests, the cloud was not 
highly utilized by other computations.  We would like to 
stress the cloud to try to identify whether limits in its 
elasticity could potentially affect our runs.   

The fields of utility, cluster, cloud, and grid computing 
continue to evolve quickly.  It is to the benefit of a science 
gateway site such as nanoHUB.org to continually evolve our 
use of computational resources to best benefit our users, and 
this research clearly shows that a cloud strategy should be 
part of the equation. 

We emphasize here that many of our users and supporters 
think of nanoHUB.org as a completely operational 
computational cloud computing environment that serves end 
users, rather than computational scientists who are interested 
in the computational cloud itself. “Standard” cloud 
computing infrastructures as they are discussed by the cloud 
computing community may turn out to be a very strong 
contributor to the 10,000+ end-user experiences on 
nanoHUB.org.  
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