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Abstract—The single π−orbital model for graphene has been 
successful for extended, perfectly flat sheets.  However, it cannot 
model hydrogen passivation, multi-layer structures, or rippled 
sheets.  We address these shortcomings by adding a full 
complement of d-orbitals to the traditional {s,p} set.  To model 
strain behavior and multi-layer structures we fit scaling 
exponents and introduce a long-range scaling modulation 
function.  We apply the model to rippled graphene nanoribbons 
and bi-layer graphene sheets. 

Keywords-graphene, density-functional theory, tight-binding 

I. INTRODUCTION

 The single π−orbital Wallace model[1] has been 
successfully used to model extended, perfectly flat graphene 
sheets, where the bands decouple into two non-interacting sets, 
the σ− and π−bands; in this case the largely pz-like π−bands are 
most relevant for transport.  However, this model has 
significant limitations: artificial symmetries, and critically, no 
ability to model hydrogen-passivated nanoribbons (GNRs).  
Because experimental GNRs usually have passivated edges, the 
Wallace model[1] cannot simulate experiments.  To remedy 
these problems we have recently developed a six-band {p,d}
model for the π−bands of flat graphene[2].   

 Real graphene structures, in contrast, generally have 
ripples and corrugations:  Ishigami, et. al.[3] find that graphene 
on Si02 substrates at least partially conforms to the substrate, 
with local strains up to 1%.  These ripples couple the σ− and 
π−bands, so that a proper approach for device modeling such as 
graphene FETs[4], must reproduce both sets of bands, 
accommodate in- and out-of-plane strains, and accurately 
model the long-range interactions of bilayer graphene.  Also, 
the approach must be computationally efficient and suitable for 
interfacing with other semiconductor tight-binding models in 
order to simulate devices with graphene active regions. 

 These requirements, together with the success of our 
six-band {p,d} model, point to an {s,p,d} model as the best 
compromise between accurate reproduction of the DFT 
graphene bands and computational efficiency.  This approach 
has enough orbitals to permit fitting the graphene bands most 
involved in transport, as well as improving the ability to model 
the strain behavior of important gaps.  The paper is organized 

as follows:  Sec. II introduces the {s,p,d} model for both bulk 
and strained graphene and Sec. III presents the results of 
applying the model to rippled graphene nanostructures and 
bilayer graphene.  Sec. IV presents our conclusions.   

II. MODEL

A. Bulk 
In order to treat imperfect graphene sheets and 

nanostructures we have enlarged the customary graphene {s,p}
model by adding all of the d-orbitals, similar to our expansion 
of the single π−orbital model[2].  For flat graphene the bands 
are decoupled as before:  The σ−bands are spanned by 
{s,px,py,dxy,dx2-y2,d3z2-r2} and as before the π−bands by { pz,dyz,
dzx,}.  Figure 1 shows the full graphene bands of our model 
along with the DFT+GW bands they are parameterized to fit.  
Lines show the tight-binding bands and symbols (diamonds) 
the DFT+GW bands.  The bands reproduced by our model are 
also similar to those of a recent DFT calculation using s-, p-,
and d-like localized basis functions[5]. 

The number and density of bands in the DFT+GW 
calculation show that no reasonably-sized tight-binding model 
will be able to reproduce the full bandstructure.  Experience in 
attempting parameterizations of these bands, together with 
some characteristics of the {s,p,d} σ−bands, suggests that 
multiple s- and p-, and possibly multiple d-levels would be 
necessary to faithfully reproduce all of the bands in the energy 
range shown in Fig. 1.  For example, the gap at Γ between the 
doubly-degenerate σ−valence- and conduction-bands remains 
mostly determined by the sum of p-orbital nearest-neighbor 
parameters ( )pp ppV Vσ π+ .  In spite of these limitations, the 
{s,p,d} basis for the σ−bands remains the best compromise 
between accuracy and efficiency.  The computational cost of a 
multiple-{s,p,d} basis would exceed any potential benefit. 

B. Strain 
For small distortions (bond-length changes of a few 

percent), empirical tight-binding models customarily adopt a 
generalized Harrison-type (power-law) scaling: 

Identify applicable sponsor/s here. (sponsors)



( ) ( )
,

0

, ,

0

d
V d V

d

α βη

α β α β

−

=
� �
� �
� �

 (1)

where ( ),V dα β  is a two-center integral, d is the actual bond-

length, d0 is the ideal bond-length, ( )0

,Vα β  is the ideal two-center 
integral, and ηα,β the scaling exponent (positive).  However, 
this behavior does not hold for large bond-length changes as 
exist in multi-layer graphene structures.  Exponentials[7], 
powers modulated by a Fermi-Dirac cutoff[8] or  products of 
powers and exponentials[9] have been employed as scaling 
functions to achieve faster decay at large bond-lengths.  We 
have found an effective form to be a double-modulated scaling: 
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In Eqs. (3) and (4) we use the same Fermi cutoff parameter, α,
and long-range scaling, μ, for all two-center integrals.  

As shown in Figs. 2-3 this modulation function retains 
Harrison-type[6] scaling for small distortions while decaying 
more rapidly at longer ranges, as is necessary for modeling bi- 
and multi-layer graphene.  The Harrison exponents[6] are fit to 
scaled DFT-gaps under hydrostatic and uniaxial [10] strain; the 
strain definition is given in Pereria, et. al.[7].  Although the 
basis set is expanded from the minimal tight-binding basis 
customarily employed, the number and density of DFT bands 
make it impossible to simultaneously fit all gaps under all 
strain conditions.   We therefore concentrate on fitting the most 
important gaps for graphene nanostructures.  Figs. 4 and 5 
show the strain behavior of the two inequivalent M points 
under uniaxial [10] strain.  A good fit is achieved for these 
gaps. 

Figure 1:  Bands of graphene as calculated with DFT+GW (solid black 
diamonds) and the tight-binding fit of the σ-bands (red lines) and π-bands (blue 
lines). 

Figure 2:  Full scaling function, eq. (4) (blue line), and numerator of second 
term of eq. (4), which controls the long-range behavior (red line with circles).   



Figure 3:  Deviation from 1.0 of full scaling function, eq. (4) (blue line with 
squares).  Note that out to around +5% bond-length variation f > 0.995, thus 
preserving Harrison[6] scaling for small changes in bond-length.   

Figure 4:  Behavior of the M1 gaps under uniaxial [10] strain.  The DFT-LDA 
gap is scaled by the ratio of the zero-strain DFT+GW to DFT-LDA gap. 

Figure 5:  Behavior of the M5 gaps under uniaxial [10] strain.  The DFT-LDA 
gap is scaled by the ratio of the zero-strain DFT+GW to DFT-LDA gap.  

III. RESULTS

We apply the model to rippled graphene nanostructures and 
bilayer graphene.  The rippled armchair graphene nanoribbons 
are of with 8 nm and length 40, 70, or 100 nm; the ripples are 
determined with molecular dynamics simulations using 
LAMMPS[10].  For each length the transmission and resistance 
are the averages over 20 different samples; in the resistance 

calculation a small (0.1mV) bias is taken along the nanoribbon 
length.   

Fig. 6 plots the averaged transmission through these 
nanoribbons as well as the transmission through an ideal 
nanoribbon (“ballistic”).  Because the ripples are out-of-plane 
they induce couplings not only between bands in the respective 
σ− and π−sets but also between the σ− and π−bands.  The 
transmission becomes very noisy with only vestiges of the 
stairstep behavior of the ballistic case.  The resistance, Fig. 7, is 
seen to increase for longer nanoribbons due to increased 
scattering along the ribbon.  Finally we calculate the tight-
binding bands of bilayer graphene, as shown in Fig. 8.  The 
bands exhibit the expected duplication along with a very small 
splitting at K.

Figure 6:  Transmission of 8 nm wide rippled graphene nanoribbons of various 
lengths.  For reference, the transmission of a perfectly flat 8 nm nanoribbon is 
included (“ballistic”). 



Figure 7:  Resistance of 8 nm wide rippled graphene nanoribbons of differing 
lengths (40, 70, or 100 nm) at different Fermi levels.  The zero of energy is 
taken at mid-gap (Γ) for each nanoribbon. 

Figure 8:  Bands of bilayer graphene as calculated with the {s,p,d} tight-biding 
model and our new scaling function, eq. (4). 

IV. CONCLUSIONS

We have introduced an enhanced {s, p, d} model for 
graphene, in order to treat strained, rippled, and multi-layer 
structures.  The bulk and strain parameters are optimized to 
reproduce DFT results for the technologically important gaps.  
Because Harrison-type[6] scaling does not work well for the 
long-range interactions of multi-layer graphene, we introduce a 
long-range scaling modulation function to treat these structures.  
We find that the model gives good results for rippled graphene 
nanoribbons as well as bi-layer graphene sheets.  
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