
Purdue University
Purdue e-Pubs

College of Technology Directed Projects College of Technology Theses and Projects

7-23-2010

A CAD INTERFACE FOR PRODUCT
CUSTOMIZATION
Eddy Efendy
Purdue University - Main Campus, eefendy@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techdirproj

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Efendy, Eddy, "A CAD INTERFACE FOR PRODUCT CUSTOMIZATION" (2010). College of Technology Directed Projects. Paper 24.
http://docs.lib.purdue.edu/techdirproj/24

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techdirproj?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techdirproj?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages

C o l l e g e o f T e c h n o l o g y

A CAD INTERFACE FOR PRODUCT CUSTOMIZATION

In partial fulfillment of the requirements for the
Degree of Master of Science in Technology

A Directed Project Proposal

By

Eddy Efendy

Purdue
University

West Lafayette, Indiana

Committee Member Approval Signature Date

Richard M. French , Co-Chair_____________________________________ ___________

Bradley C. Harriger , Co-Chair___________________________________ ____________

Henry W. Kraebber , Member____________________________________ ____________

A CAD Interface for Product Customization 2

TABLE OF CONTENTS

Executive Summary .. 3
Introduction ... 4
Statement of the Problem .. 6
Significance of the Problem .. 7
Statement of the Purpose .. 9
Definitions... 11
Assumptions .. 11
Delimitations ... 12
Limitations .. 12
Literature Review.. 14
Methodology ... 22
 Time Action Plan.. 22
 Programming Approach ... 23
 Code Development ... 31
 Establising Base Model.. 37
Result ... 50
Conclusion and Future Improvement .. 52
References ... 55
Appendices .. 58
 Appendix A – Single Cutaway Customization Form .. 59
 Appendix B – Double Cutaway Customization Form ... 60
 Appendix C – Visual Basic Code .. 61

A CAD Interface for Product Customization 3

Executive Summary

Product customization has become more prevalent in today’s manufacturing industry. In

fact, given a choice in today’s society and taking into consideration the present technology,

customers would prefer a product that can be built according to their specific needs and desires

(Kumar, 2008). Customization of a product is typically done by an individual possessing the

necessary product knowledge and design skills and applying them to the interpretation of the

customer’s desired requirements and specifications. This process is generally costly and time-

consuming. As computer-aided design (CAD) software grows in terms of control and

functionality, the potential exists to place common customization requests in the hands of the

customer. This capability will permit even customers with little to no CAD skills to customize a

product within a defined range of specifications.

 This project has created an intelligent interface to allow a consumer with minimal CAD

knowledge to interact with the software to make desired, common customizations to an existing

product design. The user-interface was developed using the Visual Basic programming language

and the CAD software’s built in application programming interface (API) command structure.

This process allows the automation of select embedded CAD productivity tools whereby the

customer is able to modify specific parameters to manipulate the shape of their product and

automatically generate a 3-dimensional computer-aided model reflecting their specific

modifications.

 This project utilized a solid body electric guitar body as the product example for this

study. The methodology for this project is described, as well as specific limitation ranges and/or

constraints that were placed on the parametric parameters of the guitar body. Due to the complex

shape of the product and the unpredictable desires of the customer for customizing the product,

A CAD Interface for Product Customization 4

the parametric sketch was constrained to limit the kind of transformation the parametric model

was able to do.

 The result of this project was the development of an interactive design tool that prevents

design engineers from needing to design the same product family repeatedly to suit the needs of

the customer, thereby reducing the design time and mistakes while enhancing the consistency of

the product.

Introduction

 The concept of mass customization has become increasingly popular since the 1990’s

(Pine, 1993). This is due to customization offerings a competitive advantage to companies with

increased customer value. Furthermore, in keeping with the evolving paradigm of mass

customization, Meyer and Utterback (1992) also introduced the concept of product family

design, where standardized products can be replaced with specific features and functionality

according to customers’ specific needs and desires. One may conclude by these studies that by

automating the design process to allow the customer more range of direct, interactive control

with the design, companies could experience a significant reduction in operation costs.

 With today’s emerging markets and product variety, it is very important for industrial

companies to explore product customization to capture customer attention and deliver true

customer value. The challenges are formidable, especially with today’s customers who

consistently demand “a product with the highest quality, fastest delivery, and highest level of

product customization” (Kumar, 2008). Unfortunately, most of today’s product customization

falls under the category of customized standardization (Lampel & Mintzberg, 1996), where the

customers are not involved in the design and manufacturing process, as depicted in Figure 1

below.

A CAD Interface for Product Customization 5

Figure 1. Customized Standardization Strategy (Lampel & Mintzberg, 1996)

Customization is a widely studied subject. Kumar (2008) and Siddique and Boddu (2003)

concurred that with today’s expanding World Wide Web, product customization has made

tremendous progress. However, according to Kumar (2008), there is a notable lack of movement

towards product customization for manufacturers.

 According to the survey result by Wilson (2007), “CAD is the primary tool used to

support the customization process (92%). The implication is that the customization process is

primarily drawing-driven based on tribal knowledge with heavy engineering involvement in the

specification process.” Unfortunately, the survey also implied that “There is very little

integration of tools within the customization process…The lack of integration implies that there

is a significant amount of manual intervention within the customization process requiring time

and resources, and leaving opportunity for errors.”

A CAD Interface for Product Customization 6

 The study performed by Wilson (2007) shows a need to increase customer involvement

in customizing a product during design and manufacturing process. Therefore, the overall nature

of the project was to develop an application for producing customized products for customers

with poor or no skill in CAD software. This project focused on developing an interface for the

customers to use to modify product appearance by seamlessly integrating several software

applications. In other words, the customer is now able to shape a product to their satisfaction

without needing to know how to use CAD software. This participatory design method is the

newest step in customer satisfaction.

Statement of the Problem

Traditionally, individuals seeking to purchase products tend to shop at stores or over the

Internet. Unfortunately, most of the product’s appearance and features have been designed and

produced by the company. The only customization that can be made to the product by the

customer is no more than a cosmetic change, such as texture and color (Dauner, Launder,

Stimpfig, & Reuter, 1998).

According to Kumar (2008), this type of product customization is becoming inadequate

for today’s society. However, most manufacturing companies produce products in bulk is

because they are trying to lower production costs. Unfortunately, this focus allows the company

to lose sight of customer’s unique requirements (Holweg & Pil, 2001).

Therefore, one of the growing challenges for twenty-first century manufacturing

companies is to keep up with the unique demand from customers and competitive pressure to

reduce cost. Build-to-Order (BTO) is the dominant approach used in today’s manufacturing

industries to solve those problems. BTO refers to products that are custom build according to

A CAD Interface for Product Customization 7

what customers want. Yet, only 14% have embraced mass customization, which is “ironic given

that BTO is a “customer driven” strategy.” as confirmed in Figure 2 below (Wilson, 2007).

Figure2. Demand strategies in which most companies employ (Wilson, 2007)

Moreover, to deliver customer requests, design engineering spends most of their time on

the drawing board, designing customized products to the customers’ liking. That is due to the

fact that “engineering is uniquely positioned to optimize the fit between a customer’s needs and

manufacturing, this is time very well spent. Unfortunately, much of the time spent is low-value

activity” (Wilson, 2007).

 Unfortunately, customers have limited knowledge on the design process of a product.

Therefore, to bridge the gap between design engineering and the end user, this research focused

on developing an interface through which potential buyers could customize the appearance of

any given product, without being an expert in the design software.

Significance of the Problem

One fundamental factor in product customization is communication concerning

customer’s specific requirement. Sadly enough, one of the difficulties of product customization

A CAD Interface for Product Customization 8

is the lack of understanding between the design engineer and the customer (Åhlström &

Westbrook, 1999). If the design engineers misinterpret the customer’s request, worthless work

could occur. As previously mentioned, product customization is a time consuming process for

the design engineers. Many companies cannot respond quickly enough, and for this reason, most

manufacturing companies produce products in bulk, which often results in an oversupply of

inventory and diminishing profits if they cannot find a customer. Therefore, there was a definite

perceived need to undertake this project. This project provides the customer with a direct,

interactive tool to modify a product’s design without the need for skills or knowledge of any

specific CAD system, only knowledge of the product. Once the product is designed and

documented according to customer’s desired specifications, the manufacturing process can then

be initiated.

 This project provides a tool to assist the efficiency of the design process as it applies to

the customization of manufactured products. Failure to explore this area only contributes to the

continued inefficiencies of the design process whereby a customer can only acquire

predominantly standard products that have been predesigned and manufactured by a company,

with little to no opportunity for customer input on possible product design modifications that

would better serve the customer’s needs or desires.

 Customers place a great value on personalized products because they are able to form a

bond with the product that will consequently have an impact on the brand and the company.

Customization not only increases customer satisfaction, it can also increase market share

according to Åhlström and Westbrook (1999). Furthermore, according to Wilson (2007),

manufacturing companies can also reap a benefit by charging a higher premium price for

customized products.

A CAD Interface for Product Customization 9

 A project in this area is timely; according to Wilson (2007), “Market demand for

customized products is increasing and expected to continue to grow. 63% of respondents have

seen an increase in demand in the last five years, and 26% anticipate that the growth rate will be

between 25% and 50% in the next two years.”

 According to Piller (2007), in order to survive in today’s market; many manufacturing

companies are offering the customers the ability to customize a product appearance to their

liking. Therefore, product customizations are significant for today’s manufacturing industry, in

order to gain a competitive edge among their competition. A better understanding regarding

product customization and its impact on the customers can lead to a superior manufacturing

process, which in turn will improve customer satisfaction.

Statement of Purpose

 According to Wilson (2007), “one of the primary barriers to customization effort is the

lack of knowledge the customers have on option…There are huge opportunities for improvement

in sales and operational effectiveness to be gained by addressing this issue.” as revealed in

Figure 3 below.

Figure 3. Barriers to customization (Wilson, 2007)

A CAD Interface for Product Customization 10

The purpose of this project was to create a tool to allow customers to be more involved in

the design phase for product customization through the use of an interface that is seamlessly

integrated with CAD’s system API. Figure 4 displays the system architecture for this project.

Figure 4. The system architecture

Basic activities and information flow of the system architecture are summarized by the

following description:

1. A user-interface form was developed for the customers using Visual Basic language.

2. Customers input values for pre-identified feature dimensions for a product mode.

3. A new product model will then be design according to the customer’s parameter values

via CAD’s system application programming interface (API).

In short, this technique provides customers with the ability to make design changes to the

product without the need to possess design skills in CAD software. In essence, this method

attempted to close the gap of misinterpretation in product customization between the design

engineers and the customers. Most importantly, this project educates the customer about what

options are available for them.

Interface

Parametric Sketching of
the base model

User’s Input

CAD’s system application
programming interface (API)

3-D CAD
model output

A CAD Interface for Product Customization 11

Definitions

API – Application Programming Interface refers to the accessibility of the software functions

that can be called automatically/programmatically (Lombard, 2007). For instance, “you can use

Autodesk Inventor’s API to write a program that will perform the same types of operations you

can perform when using Autodesk Inventor interactively.” (Autodesk Inventor Object Library,

2009)

CAD – Computer Aided Design refers to computer software that aid in the design/drafting of a

part/product.

VB – “Visual Basic is one of the software industry’s most popular development language for

creating standalone software components, including executable programs, ActiveX controls and

COM components.” (Autodesk Inventor Object Library, 2009)

VBA – Visual Basic for Applications is the subset of Visual Basic that is designed to provide

development capabilities inside any other individual software application. It provides

programming development tools required to customize application and integration solutions.

(Keenan, 1999)

Assumptions

The following assumptions were made at the beginning of the project.

1) Since this project relied greatly on software integration, the most important assumption

was that all the software used can be integrated together.

2) The CAD’s API needed to be able to provide the appropriate commands for

communicating with the identified design tools within the Inventor.

3) Customers do not have to have CAD software knowledge.

A CAD Interface for Product Customization 12

4) The customers should be knowledgeable about specific product guitar families so it is

easier to answer the questions provided by the user interface.

Delimitations

Some delimitations of this project were as follow:

1. SolidWorks software was chosen for this project over other Computer Aided Design

(CAD) software because the personal investigator has more expertise in SolidWorks

software than any other CAD software.

2. The framework for this project was focused on the customization of a family of electric

guitars due to the personal investigator’s involvement in the guitar workshop at Purdue

University. This activity lays the ground work for the future of the guitar workshop.

3. This project focused on single-cutaway and double-cutaway guitar shapes because of

their well-known fundamental basic shape.

4. Due to the shape complexity of the guitar, customers are limited to specific cutaway

styles.

5. In order to maintain design integrity, customization ranges for the cutaway style was

limited.

Limitation

The project was limited by several factors.

1) The CAD software used is an educational version. Therefore, there was no guarantee of

full performance as compared with the industrial versions of the software.

2) Software compatibility between the selected software packages was limited due to

software versions.

A CAD Interface for Product Customization 13

3) All aspects of the product design were limited to the design tools that were available in

the CAD software.

4) The development of the user interface of this project was dependent on the commands

available in the CAD’s API structure.

A CAD Interface for Product Customization 14

Literature Review

Introduction

Product customization is not a new concept. The demand and the number of studies done

in this area have grown exponentially since the beginning of the 1990’s (Pine, 1993);

nevertheless, there is much room for continued research (Kumar, 2008). For this particular

project, the review of the literature was conducted in order to compare, contrast, and analyze

previous practices in product customization.

Before conducting the review of literature, the project was thoroughly discussed with

Professor Bradley Harriger, Professor of Mechanical Engineering Technology. This discussion

provided some guidance as how to appropriately create a suitable outline of information for the

review of literature.

Product customization is a very broad expression, including many specific classifications.

Knowing the classifications of product customization was crucial for the continuation of this

project in order to understand the background of the project’s specific focus. Once the

classifications of product customization were explained, prior methods according to these

classifications were then gathered to be analyzed. Finally, since this project utilized

programming language in customizing a product, further review of literature was searched and

studied to see what had been done so far.

Therefore, to illustrate this, the review of literature was focused on the amalgamation of

information concerning:

1. Classifications of product customization

2. Prior methods in product customization interfacing

3. The utilization of programming language in product customization

A CAD Interface for Product Customization 15

Methodology in Conducting the Review of Literature

Key terms used in product customization were identified so that a search for reference

material could be conducted. These key terms were used individually and in combination and

included such phrases as “Product Customization,” “Computer Aided Design (CAD) Custom

Product,” “Visual Basic Application (VBA) CAD,” and “Application Programming Interface

(API) CAD” Using these mentioned keywords, a search was conducted via the search engine on

engineeringvillage.com, an online catalog subscribed to by Purdue University. This website

contains engineering journal articles from a plethora of research databases such as Elsevier,

Compendex, Pergamon, and Informaworld. Additional recourses such as internet search engine,

Autodesk Inventor Object Library, and textbooks on the subject of Visual Basic were also used.

Results of Review of Literature

 As mentioned, the review of literature was divided into three categories, in which journal

articles were reviewed for relevant information.

1. Classifications of product customization. Organizations view customization in various

ways. In order to have a clear idea about customizations, this review of literature began with a

framework to identify and classify customizations. Coates and Wolff (1995), Lampel and

Mintzberg (1996), and Gilmore and Pine (1997) have classified customizations according to the

customer’s involvement. Although their perspectives are different from one another, they do

overlap in some areas.

Coates and Wolff (1995) categorized customization in terms of manufacturing practice:

soft customization and hard customization. Soft customization is when the customer does not

A CAD Interface for Product Customization 16

interfere during the design and fabrication processes, whereas in hard customization, the

customer is fairly involve in those aforementioned processes.

Lampel and Mintzberg (1996) perceived customization in a more detailed way when

compared to Coates and Wolff (1995). Lampel and Mintzberg (1996) perceived customization as

particular strategy, depending on how much involvement the customer has in the value chain of a

manufacturing firm. Lampel and Mintzberg (1996) have developed a manufacturing firm value

chains into four structures: design, fabrication, assembly, and distribution. Therefore, depending

on the customer’s involvement within the value chain, Lampel and Mintzberg (1996) came up

with five different strategies as depicted in Figure 5 below.

Figure 5. A Continuum of Strategies (Lampel & Mintzberg, 1996)

• Pure Standardization refers to a product that has already been completely built by the

company, where the customer has no influence over the produced product.

A CAD Interface for Product Customization 17

• Segmented Standardization is where the company responds to the specific need of

different group of customer, and therefore, the company makes different types of

products according to that specific group of customer.

• Customized Standardization refers when the product is customized for the customers at

the end of the production phase (at the assembly point).

• Tailored Customization is where the company has a basic design of a product and is able

to tailor the product according to the customer’s desire.

• Pure Customization is when the customers are able to customize the product from the

beginning of the value chain.

Lastly, Gilmore and Pine (1997) have recognized four distinct approached to mass

customization: collaborative, adaptive, cosmetic, and transparent customization, as depicted in

Figure 6 below. This approach is designed to facilitate managers to determine the type of

customization they should pursue in their organization.

Figure 6. The Four Approaches to Customization (Gilmore & Pine, 1997)

• Collaborative customization is where the product is tailored according to the customer’s

need but the fabrication and assembly side are standardized.

A CAD Interface for Product Customization 18

• Adaptive customization is where the product is standard but designed to be customizable

according to customer’s need.

• Cosmetic customization is where the product remains standard but the product

presentation is tailored to customer’s need.

• Transparent customization is where the product is customized without the customer’s

explicit knowledge

These classifications further clarify the direction for this project. The following conclusion is

made as a result of the aforementioned information. The objective of this project was classified

towards hard customization according to Coates. More specifically, this project was classified

towards tailored customization according to Lampel, and collaborative customization according

to Gilmore.

2. Prior methods in product customization interfacing. The operation-strategy for

product customization has evolved over the last four decades. Kumar (2008) summarized how

the priority of competition has changed over time: “price until the mid 1980s, quality until the

early 1990s, flexibility until the mid 1990s, and agility or responsive thereafter.” Aside from the

customization strategies aforementioned, there have also been numerous methodologies and

technologies that support the development of product customization as the customer continues to

demand a product with the highest level of personal satisfaction. This section will review how

technologies support information transfer from customers to manufacturers and what

technologies makes product customization possible.

The following are some previously-made attempts at establishing an involved customer-

manufacturer communication link. Researchers such as Siddique and Boddu (2003) and Yen and

Ng (2000) have developed Web-based product customization systems. However, both Yen and

A CAD Interface for Product Customization 19

Ng (2000) and Siddique and Boddu (2003) present their work differently. Yen and Ng (2000)

proposed an electronic catalog for custom products, which is stored on the World Wide Web.

Meanwhile, Siddique and Boddu (2003) procedures on product customization are more detailed,

using Web related tools to collect user specification and generate an automatic CAD model of a

product according to customer requirements.

In both scenarios, the specifications from customers are fed into CAD systems. Clearly, it

seems that CAD systems are the main enabling technologies that support product customization.

This is expected because CAD systems allow design changes expeditiously. However, to

communicate with the CAD system, a generic programming language must be utilized.

Correspondingly, Siddique and Boddu (2003) used a C programming language to communicate

with an Application Program Interface (API) for CAD software to generate the product model

according to customer specification.

 Therefore, narrowing the focus on the usage of programming language to enhance the

customer’s satisfaction, the following literature review analyzes how programming language is

used to assist people who don’t know anything about CAD.

3. The utilization of programming language in product customization. Programming

language has been around since the beginning of the twentieth century. Since then, programming

language has evolved tremendously, in both research and industry. One of the most popular

programming languages is Visual Basic (VB) because of its simplicity, and therefore, it is used

by many beginner programmers. Today, almost all software, including CAD software has Visual

Basic for Application (VBA) built into their application. VBA is another version of VB that was

designed to provide custom solutions in all aspects of the host application.

A CAD Interface for Product Customization 20

 According to Keenen (1999), “Because VBA has been embraced within automation; a

single common development language can now be used among multiple software products in a

manufacturing application.” To this, Keenan (1999) also addresses that with VBA assistance,

“Manufacturers also are starting to realize the benefits of connecting processes across factories,

among software programs of all kinds. VBA allows this integration among software programs

that are controlling processes for not only the device layer and control layer, but also the

information layer.”

The utilization of VBA is abundance. Researchers such as Prince, Ryan, and Mincer

(2005), Seppanen (2000), Gattamelata, Pezzuti, and Valentini (2006), and Sanson (2006) have

successfully used Visual Basic to integrate and customize software to meet the needs of their

application. Prince, Ryan, and Mincer (2005) are able to design, model, and analyze a simply

supported shaft instantaneously by merely entering a few parameters in Visual Basic.

Meanwhile, Seppanen (2000) used Visual Basic to modify a model data in Arena simulation

software by changing some parameters in Microsoft Excel software. With similar technique,

Gattamelata, Pezzuti, and Valentini (2006) used Application Programming Interface (API) in

CAD system to re-construct a tessellated surface from a 3d laser scanner into an editable solid

feature in CAD software. Lastly, Sanson (2006) utilized Application Programming Interface

(API) to assist inexperienced non-optical designers to execute repetitive optical design tasks.

Conclusion

In today’s global society, product customization has become part of an important

manufacturing strategy. This review of literature provided further clarifications for the project

objectives in which theoretical aspects with reference to product customization concepts and

classifications were discussed. The divisions made by Coates and Wolff (1995), Lampel and

A CAD Interface for Product Customization 21

Mintzberg (1996), and Gilmore and Pine (1997) were all suitable for this project. Furthermore,

the literature review reveals that much product customization research and application has been

done. Moreover, to implement product customization, programming language, particularly,

Visual Basic plays an important role in integrating different manufacturing technologies.

A CAD Interface for Product Customization 22

Methodology

This project creates an application that automates the design process for a customized

product. The focus of this project is to develop a user-interface where customer options and size

parameters are collected and used to manipulate the shape of the product to automatically

generate a 3-dimensional computer-aided design model according to the customer’s specific

needs.

This project took between January 2010 and July 2010 as depicted in the time action plan

below. Table 1 below summarizes key project tasks and their timeline. The shaded boxes within

the table indicate the project’s start time and completion dates. Preliminary work involved

software design and familiarization. The latter parts of the project involved developing the user

interface layout and code testing.

Table 1

Directed Project Time Action Plan

Level Task

2010

January February March April May June July

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

1 Programming Approach:

1.1 Software Design

1.2 Software Familiarization

2 Code Development:

2.1 Designing user interface layout

2.2 Code Implementation and Testing

3 Establishing Base Model:

3.1 Constructing a single cutaway model

3.2 Constructing a double cutaway model

3.3 Determining the level of customization

3.4 Defining range and customization limit
for the customer

4 Reporting

A CAD Interface for Product Customization 23

1. Programming Approach. During this phase, each piece of software used in the project

was researched to understand its basic functionality, compatibility and interoperability. Software

design and familiarization was also examined as a part of this phase as well prior to starting the

development of the code. The software design activity included the development of a

strategy/plan for the creation of the software interface application that was the primary focus of

this project. Once the strategy was determined, further research on software specific codes was

necessary to become familiar with their coding commands, syntax structure and format. The

result of the project provides customers with the ability to make design changes to a product via

a user-interface form without the need to possess any type of CAD software skills. In the

simplest sense, customers input values for pre-identified feature dimensions for a product model

and the developed software program will automatically generate a new model based on the

parameters. Figure 7 shows a basic block diagram for this procedure.

.

Figure 7. Basic system architecture of the project

While the basic concept of the application is relatively simple, the planning, layout and

logic behind the development of the application interface was challenging and quite involved.

Visual Basic 2008 Express and SolidWorks were the selected software packages for creating the

user interface form and the 3D solid model respectively.

One key element needed for the success of this project was a thorough understanding of

the CAD tools available in SolidWorks for generating multiple part configurations. SolidWorks

allows the development of part configurations through the use of a design table. A design table

uses an Excel spreadsheet to allow a user to enter part feature information to create a new

User’s Input
3-D CAD
model output

User-Interface
form

A CAD Interface for Product Customization 24

version or versions of a product by changing selected part dimensions or by suppressing part

features. The Excel Spreadsheet can be automatically linked to the SolidWorks software, so

when a person edits the data in Excel spreadsheet externally, SolidWorks will create the new

model or models based on the entered data.

To make sure that these pieces of software would worked properly together, software

compatibility was checked before going any further. It was found that each software uses a

common programming structure called an application programming interface (API) which

enables knowledgeable software users to create tools using some version of the Visual Basic

programming language to interact with the software. It was discovered that one could accomplish

this interaction using two basic approaches depending on the type of tool being developed and

the type of user interaction desired. Those approaches included: VBA, Add-Ins (DLL or EXE),

and Standalone EXE, as depicted in Figure 8.

Add-In

(EXE)

Standalone

EXE

Excel/SolidWorks

Add-In

(DLL) VBA

Excel/Solidworks

Data

Figure 8. Accessing Excel/Solidworks API

A CAD Interface for Product Customization 25

The purpose of this project is to provide the customer the ability to make design changes

to the product with little to no functional skills or knowledge of CAD software. There are

basically two fundamental ways to accomplish this project, customize a model from within

SolidWorks or customize the model outside of the SolidWorks software. Therefore, customizing

the model from within the CAD software would defeat the purpose of this project since the user

would need some level of functional knowledge of the CAD software.

Based on the criteria for this project, the Standalone EXE was selected as the method of

choice for this project. A Standalone EXE is an independent program that is capable to control

other software and has its own interface. In this case, Visual Basic software was used as the

Standalone EXE to interactively work within the SolidWorks and Excel software to customize a

model.

Therefore, the three main pieces of software and their basic purpose for this project are as

the follows:

- Visual Basic – Creates the user-interface form and integrates SolidWorks and Excel

together using each software’s API command structure.

- SolidWorks – 3D solid model creation

- Microsoft Excel – Customer’s parameter values are entered in.

1.1 Software Design. There are hundreds of published API commands for the software

used in this project. Reading and comprehending each and every API code would have taken a

very long time, creating unnecessary work and time. It was decided to break down the tasks

required from each software and then focus on more specific API commands that would

accomplish the projects goals.

A CAD Interface for Product Customization 26

Since the basic principle for each software had been realized, a more detailed description

of the project’s integration structure is depicted in Figure 9 and explained as follows: once the

user has submitted parameter values into the user-interface form, the parameter values will

automatically be entered in Microsoft Excel, which in turn updates the SolidWorks 3D model

automatically, and the result will be displayed back to the user-interface form for the customer to

compare.

Figure 9. Detailed system architecture of the project

For the customer to automatically enter the parameter values into the Excel, several Excel

API commands needed to be focused on, specifically opening an existing file, adding the data to

the file, saving the file, and lastly closing the Excel file.

Since the Excel file is linked to a Solidworks file, the part model will be automatically

updated once it is recognized or identified by the SolidWorks software. Similar to the Excel API

commands, some important SolidWorks API commands required included: how to automatically

open the Solidworks file, link the Excel file, select the updated part configuration, save and close

the SolidWorks file, and display the newly created configuration.

Although the API commands for creating the user-interface form is moderately simple,

the essence role for Visual Basic was to be able to manipulate/control Microsoft Excel and

3

1
User’s Input

3-D CAD
model output

User-Interface
form

(Visual Basic)

Microsoft
Excel

SolidWorks

2
4

5

A CAD Interface for Product Customization 27

SolidWorks using their API commands to work internally as if it were part of Visual Basic

codes.

Based on the detailed system architecture of the project, the crucial API commands for

each piece of software are depicted in Figure 10.

Figure 10. Crucial API commands

1.2 Software Familiarization. To become familiar with the software, essential API

commands were studied in detail according to the software design. Manuals, books, and software

websites were used to assist with software familiarization. It is during this phase that the detail of

imperative codes mentioned above will be discuss and understand completely.

Visual Basic
Express

Software Integration for Excel

Software Integration for SolidWorks

Basic Instructions such as: input,
output, conditional execution, etc

Microsoft
Excel

Open File

Add Data

Save File

Close File

SolidWorks

Open File

Close File

Save File As: solidworks, picture, and edrawing file

Selecting the updated File

A CAD Interface for Product Customization 28

Using Visual Basic to establish the communication links between Microsoft Excel and

SolidWorks was critical for the success of this project. To do this, both a SolidWorks and an

Excel “type” library were referenced. A “type” library is where API commands are stored and

referencing other software “type” libraries allows Visual Basic to access their API structure and

control the software within Visual Basic. The location of the software type library is placed

under the “Project Properties” as shown in Figure 11. For this project, Microsoft Excel Object

Library 11.0 Object Library and SldWorks 2007 Type Library are then added at the “COM” tab

as shown in Figure 12. With that, Visual Basic is now able to access SolidWorks’s and Microsoft

Excel’s API commands.

Figure 11. Project Properties in Visual Basic

A CAD Interface for Product Customization 29

Figure 12. Adding both Excel and SolidWorks Type Library

To automatically enter the customer’s parameter value from the user-interface form into

the Excel, Visual Basic must use Excel API commands. The following are the techniques and

codes used to enter the data automatically.

Since the Excel Workbook for the Design Table is saved somewhere in a folder, the

following code was used to open a workbook file named “GuitarDesignTable.xls” located on

drive D:

Workbooks.Open(“D:\GuitarDesignTable.xls”)

A CAD Interface for Product Customization 30

 Once the Excel Workbook was opened, the parameter value can now be automatically

entered by the following code:

Workbooks. Range (“A1”).Select ()

Workbooks.ActiveCell.FormulaR1C1 = “53”

 Entering the parameter value into a cell involves first selecting the desired cell and then

passing the numbers into that cell. The example codes select the “A1” cell with a value of “53”.

Data can be entered with similar codes, with the exception of changing the cell selection and

input value.

The Excel Workbook must now be saved and exited once the data has been entered so

SolidWorks can use the updated Excel Spreadsheet. The codes are as follow:

Workbooks.Save()

Workbooks.Close()

Since the Excel Spreadsheet is linked to SolidWorks, a new part model has been created

according to the parameter values. To display the customized model back to the user-interface

form, Visual Basic must use SolidWorks API commands.

When the new model is created, SolidWorks automatically displays a message box to

inform the user that a new model was created, which requires an undesired human interaction.

The following API commands were discovered to automatically skip the message box when

opening the SolidWorks file.

SldWorks.OpenDoc6("C:\Telecaster Design Table.sldprt", 1, 1)

“OpenDoc6” is the code to open a SolidWorks file. The filename is located in the C drive

with a filename of “Telecaster Design Table”. The first numbers represent the type of document

that is going to be opened as, which in this case is a part model. The second numbers represent

the mode in which the document is opened as, in this case suppressing any dialog boxes.

A CAD Interface for Product Customization 31

Since the new part model is not automatically displayed in SolidWorks, API commands

must be used to display the results of the user’s interactions. The modified model needs to be

selected with API command. The following are the codes to select the new configuration.

SldWorks.SelectByID2(“Filename”, “CONFIGURATION”)

“SelectByID2” is the code for selecting a specified entity. “Filename” is the name of the

object that would like to be displayed. “CONFIGURATION” represents the type of object that

needs to be presented, which in this case is a “configuration” option.

Once the new configuration model is displayed, the new model must now be saved as a

picture file so it can be displayed on the user-interface form for the customer to see and compare.

The following is the code to do that.

SldWorks.SaveBMP(“filename location”, width, height)

Last is to close the SolidWorks file so whenever the customer decides to put in a new

parameter value to the model, the SolidWorks file can be re-used. The code is as follows:

SldWorks.CloseDoc(“filename”)

Obviously there are many more codes involved in this project, but previously stated are

the primary codes used for this project. For further information regarding the Excel and

SolidWorks codes can be refer in Appendix C pg. 66 – pg.70.

2. Code Development. It is during this phase that the user-interface form and code

implementation were created. Several important aspects must be carefully considered during this

process. Some of these aspects are:

- Layout / Packaging – This aspect is mainly concerned with the user-interface form. User

friendliness is the main criteria for the user-interface form. The

A CAD Interface for Product Customization 32

components and information of the form should be clear, easy to

follow and understand.

- Reusability – The user-interface form components should be reusable in redesigning the

model parts.

- Reliability – The software code should be able to perform according to the stated

requirement.

- Robustness – The software code should operate and withstand an invalid input from the

customers.

2.1 Designing user-interface layout. Visual Basic was used to establish a design layout

for the user interface form. The basic layout of this project is shown in Figure 13 below.

Figure 13. Basic Form Layout

The first form gives the user choice between customizing single cutaway or double

cutaway guitar as shown in Figure 14. The layout of the first form is very straightforward. It

shows two guitar models with two buttons from which the customer could choose to modify the

model.

(Form 2)

Double Cutaway
Customization

(Form 3)

Single Cutaway
Customization

(Form 1)

Option Form

Double Cutaway
Customization

Or

Single Cutaway
Customization

A CAD Interface for Product Customization 33

Figure 14. Welcome Form

Once the customer chooses which model they want to modify, they are brought to a

different form. Both second and third layout forms are the same. They are divided into five

sections as shown in Figure 15. The explanations are as follows:

Figure 15. Customization layout form

2

3

4

5

 1
6

A CAD Interface for Product Customization 34

The first section in the user-interface form is where the original model is displayed with

the current dimension. This is to show the customer the original body shape. Labels on top of the

picture box allow the customer to distinguish between the original and modified model.

Moreover, the picture shows the specific types of customization that customers can make to

specific areas of the guitar body. Once the model is customized, the second picture box will

show the updated model with the current values of the customized model. These two sections

purposefully comprise a large portion of the user-interface form to allow the customer to

compare both models more thoroughly.

Figure 16. Section 3 - Data input for the user-interface form

The third section of the form, shown in Figure 16, details the customer input section of

the form. This section consists of labels, textbox, and radio button. The labels identify the

parameters that can be changed by the user, as well as, the parameter ranges used for each

A CAD Interface for Product Customization 35

customization. The textbox is where the customer enters parameter values. A reset button is also

provided if they decide to change all the parameters. Lastly, the customer is able to select guitar

pickups configuration using a radio button input as well.

Figure 17 shows the fourth section of user-interface form consisting of three buttons that

are available for providing additional programmed functionality.

Figure 17. Section 4 - User-define form button

Once the customer is satisfied with his interactions and selections, he/she can select the

“Automate Design” button to submit the values to the software application. The “Automate

Design” button will transfer the customer’s parameter values into the Excel Spreadsheet, which

in turn updates the model in the SolidWorks. This updated model will then be displayed in the

customized picture box. If the customer would like to see the model in 3D, the “View

customized model in 3D model” button can be selected. This will bring up a viewer window

where the customer can inspect the part more thoroughly. If the customers are interested in

comparing multiple configurations in 3D, they can select the “Compare all the models in 3D”

button. This will bring up two viewer windows for the customer to compare the model side by

side.

The fifth section of the user-interface form represents a list box and a button, as shown in

Figure 18.

A CAD Interface for Product Customization 36

Figure 18. Section 5 - User-interface picture selection

Customers are allowed to do several iterations to customize the guitar. Each time the

customer creates a new model, the model will be saved in the “Previous model” list box. When

the customers are trying to remember the shape of their previous design, they can choose the

previous model from the list box and press the “Show Picture” button and the model will appear

on the above picture box for the customer to compare.

The last section of the user-interface form is shown in Figure 19.

Figure 19. Section 6 - File Selection of the user-interface form

Similar to the previous section, the customer’s model is listed in the list box. The

customers are only able to choose one model out of several iterations that they could have made.

Once the customer selects the “Save this file” button, the file that they chose will be saved and

the program will automatically close.

A CAD Interface for Product Customization 37

In general, designing these forms required a basic simplicity, where all the design

elements are clear, easy to follow and understand by the customer.

2.2 Code Implementation and testing. During code implementation, many error-checking

procedures were put in place to make sure that the codes are reliable and robust according to the

expectation. Basic reasoning is implemented for error checking codes. Some of the implemented

error checking will be discussed in this section.

All the textboxes in the user-interface form are protected with error checking codes to

make sure that the customer cannot enter any invalid input. The customers are only allowed to

enter numeric and decimal points into the textbox parametric values. Additionally, textboxes are

not allowed to be left unfilled.

Since multiple users will access this software, the customers are allowed to enter a unique

filename that will be placed in a special folder. The folder of this filename is routinely checked

so if other users entered the same filename, it will be denied. Every user will have a specific

filename that they can use.

Once the error checking codes were in place, evaluation and testing of the codes were

able to take place to see if any additional error checking needed to be added. Selected volunteers

were used to evaluate the reliability and robustness of the software and user-interface form and

provide informal feedback.

3. Establishing Base Model. During the design procedure, a single and double cutaway

guitar model was favored due to their well-known basic shape. Mottola (2009) used several

parameters to fully describe an outline for the standard guitar model as depicted in Figure 20

below.

A CAD Interface for Product Customization 38

Figure 20. Standard guitar body model design features (Mottola, 2009)

 The processes and parameters that are developed by Mottola are highly valuable for the

purpose of this project. Unfortunately, given the constraints imposed by the wood blank used for

this project, several of the feature parameters that are recommended by Mottola could not be

used. However, his procedures used to design a guitar body outline are highly important and

were used for this project.

3.1 Constructing a single cutaway model. During the body outline design for the single

cutaway model, ratios of the guitar shape are checked and compared constantly to represent the

shape of Fender’s Telecaster style guitar (TSG). However, the most important criteria are that the

parameters of this model have to satisfy the limit imposed by the wood blank. Unfortunately, as

previously mentioned, given the constraint of the wood blank, the parameters and the ratio given

by Mottola could not be met. Table 2 lists the guitar body outline parameters to fully describe the

model. The techniques and procedure of the constructing the outline are discussed afterwards.

A CAD Interface for Product Customization 39

Construction lines for the guitar widths must first be drawn to mark the location for the circular

arcs as depicted in Figure 21.

Table 2

Parameter values for Single Cutaway model construction

Overall Length 16.75"

Lower-bout width 12.50"

Lower-bout radius 5.00"

Waist width 9.00"

Waist radius 3.20"

Waist offset from tail end 10.70"

Upper-bout width 11.20"

Upper-bout radius 4.00"

Upper-bout offset from tail end 15.00"

Left Hill Cutaway 1.67"

Right Valley Cutaway 1.00"

Right Hill Cutaway 0.55"

Figure 21. Construction Line

Using the aforementioned parameters, circular arcs were drawn and connected by tangent

lines. This particular guitar model shape has a dead flat tail end and neck. To better visualize the

A CAD Interface for Product Customization 40

guitar model as a whole, these lines were then mirrored along the centerline as shown in Figure

22.

Figure 22. Basic Single Cutaway Form

To finish, the construction of the cutaways is drawn next. Again, the basic parameter

shapes for the cutaways are attuned solely to (TSG). The right side cutaway is a little more

intricate than the left side cutaway. Depending on the desired depth and width for the single

cutaway guitar, the radius of the “right valley” cutaway can be adjusted and it is drawn tangent to

the edge of the fingerboard. Meanwhile, the radius of the “left valley” cutaway is left constant

due to the basic shape of TSG. Both “right hill” and “left hill” cutaways are placed tangent to the

upper-bout arch. A tangent straight line is then drawn between the “valley” and “hill” cutaways.

To make the guitar outline look more fluid, it is a good idea to make the cutaway radii as large as

possible (Mottola, 2009). The final shape of the single cutaway guitar model is shown in Figure

23.

A CAD Interface for Product Customization 41

Figure 23. Single Cutaway Final Form

3.2 Constructing a double cutaway model. The shape for double cutaway model is based

on Fender’s Stratocaster style guitar (SSG). Similar with the single cutaway guitar body

parameter, the ratios of the guitar shape are checked and compared constantly so to mimic the

shape of a Stratocaster guitar from Fender. The parameters for the model is solely bound by the

wood blank and listed in Table 3.

A CAD Interface for Product Customization 42

Table 3

Parameter values for Double Cutaway model construction

Overall Length 15.75"

Lower-bout width 12.62"

Lower-bout radius 4.50"

Waist width 8.80"

Waist radius 4.50"

Waist offset from tail end 10.27"

Left Hill Cutaway 0.70"

Left Valley Cutaway 1.00"

Right Valley Cutaway 1.00"

Right Hill Cutaway 0.40"

The technique for construction of the double cutaway model is similar with the single

cutaway model but with a small twist. The upper bout arc and width is excluded during the initial

construction of the double cutaway guitar because the SSG model has an asymmetrical cutaways

shape. Only the lower-bout arc and waist arc, along with tangent lines are drawn to give the

fundamental body shape of the Stratocaster model. Similarly, this particular guitar model has a

dead flat tail end and neck. Figure 24 shows the initial construction of the double cutaway model

with the aforementioned parameters.

A CAD Interface for Product Customization 43

Figure 24.Basic Double Cutaway Form

The double cutaway guitar has a more pronounced cutaway than the single cutaway

guitar. To make a more nuanced design, both cutaway “hills” are connected with secondary

curves instead of a straight tangent line. The final shape of the double cutaway guitar model is

shown in Figure 25 with the aforementioned parameters.

A CAD Interface for Product Customization 44

Figure 25. Double Cutaway Final Form

3.3 Determining the level of customization. The level of customization is highly

dependent on the constraints that are applied to the model. Some values are mutually exclusive

so some parameter values tend to affect each other. For instance, if no line was constrained,

changing the waist arc will change the overall length of the guitar as shown in Figure 26.

A CAD Interface for Product Customization 45

Figure 26. Waist arc customization with no constraint

 Another example, if the tail end and flat neck are the only segments that are constrained,

changing the waist arc will cause the model to be asymmetrical as shown in Figure 27.

Therefore, keep in mind that since each line of the drawing is tangent to its succeeding and

preceding line, changing any parameter values will affect other segments of the model.

A CAD Interface for Product Customization 46

Figure 27. Waist arc customization model with flat neck and end tail constraint

 The level of customization needs to be determined before making any decisions in

constraining any segments. One of the requirements for this project is to be able to customize the

cutaway shape. Any other customizations are welcome and it is counted as an additional

advantage.

 Both single and double cutaway guitar models have similar problems when determining

what to constrain in order to be able to do cutaway customization. Changing the size of the

cutaway without constraining any segment on the model will result in a change in the size of the

neck flat as shown in Figure 28.

A CAD Interface for Product Customization 47

Figure 28. Cutaway Customization with no constraint

Since the size of the neck flat has to fit the actual guitar neck, putting a constraint on the

neck flat is required. However, constraining the neck flat is not enough to customize the cutaway

shape. Even though the neck flat is constrained, changing the cutaway shape may cause the

guitar model to be asymmetrical. To solve this problem, the tail end segment has to be

constrained as well. Yet, another problem still appears after constraining both neck flat and tail

end when changing the size of the cutaway. The guitar width could shift unevenly when

changing the cutaway size. Constraining either the waist arc or the lower-bout arc will cause the

shape of the cutaway to be distorted. One final idea is to constrain the secondary curves on the

Stratocaster and upper-bout arc on the Telecaster. Therefore, by constraining these three

segments, the tail end, neck flat and secondary curves, as shown in Figure 29, almost all the

A CAD Interface for Product Customization 48

circular arcs can be customized to give the customers more options in customizing the model

shape.

Figure 29. Ideal cutaway customization

With the chosen constraint segment, changing the cutaway size will not affect the width

of the guitar. However, altering the size of the lower-bout arc and waist arc will change the width

of the guitar.

3.4 Defining the range and customization limit for the customer. The size of the wood

blank (22” x 14”) plays a crucial role in determining the range and limit for the customization.

Another limitation for establishing the range and limit for the customization, is figuring out the

effect of changing each parameters size. Altering both lower-bout arc and waist arc sizes will

have no effect in the guitar width if both sizes are changed the opposite way. The width of the

guitar will be larger when both lower-bout arc and waist arc sizes are changed in the same

A CAD Interface for Product Customization 49

direction. Thus, this effect gives the range and limitation for both lower-bout arc and waist arc

sizes.

Because of the applied constraints, changing the left side and the right side cutaway will

not affect the other side of the cutaway. Furthermore, the change in cutaway will not affect the

width of the guitar and therefore the only criterion of the limit and range for the cutaway is the

shape of the cutaway. As long as the guitar shape is not distorted, the limit and the range for the

cutaway can be established. Table 4 below lists the range and limit for the guitar customization.

Table 4

Limit and Range for guitar customization

Single Cutaway

Left Hill Cutaway 1.30" - 2.24"

Right Valley Cutaway 0.70" -1.10"

Right Hill Cutaway 0.10" - 1.00"

Waist Radius 2.80" - 4.00"

Lower-bout Radius 4.00" - 5.00"

Double Cutaway

Left Hill Cutaway 0.10" - 1.00"

Left Valley Cutaway 0.50" - 1.00"

Right Valley Cutaway 0.70" - 1.10"

Right Hill Cutaway 0.10" -0.80"

Waist Radius 4.10" - 4.90"

Lower-bout Radius 4.10" - 4.90"

A CAD Interface for Product Customization 50

Results

The purpose for this project was to provide customers with the ability to make design

changes to the product without the need to possess any type of skills in CAD software by using a

user-interface form. More specifically, this project is focused on changing a guitar model with

simple parameter values. This project could help to lay the groundwork for the future of the

guitar workshop at Purdue University, particularly on the design and manufacturing side of the

workshop. It can also provide the participants the ability to make a more customized guitar for

themselves.

With this project, customers could change the shape of the guitar, ranging from

customizing the cutaway design to customizing the size of the guitar. Of course, certain

limitations are in place so the shape of the guitar won’t be distorted. The possibilities for this

project are endless because changing the cutaway design would not affect the width of the guitar

and vise versa. Figure 30 shows guitar model design results from the lower end of the limit

provided and the upper end of the limit for both models.

Figure 30. Single Cutaway lower vs. upper limit customization

A CAD Interface for Product Customization 51

As you can see in the model, depending on the parameter values, customers can

customize the guitar shape, from a sharper cutaway style to a softer cutaway style, from a

rounded tail end to a flatter tail end, and many other variations. Furthermore, the customer can

choose different varieties of pickup style with a different style of body shape. Therefore, the

possibilities for customization are considerable.

A CAD Interface for Product Customization 52

Conclusions and Future Improvement

 The main objective of the project is to provide customers with the ability to make design

changes to a product via a user-interface form without the need to possess of CAD software

skills, bridging the gap between design engineering and the end user. Due to the personal

investigator’s association with the guitar workshop at Purdue University, the framework for this

project is focused on the customization of a family of electric guitars. During the design process,

the customer gives some parameter values for a model and the program automatically generate

the model based on the parameters given. Based on the work done for this project, once the

important criteria of the project are understood, the API commands that are needed to complete

the project are relatively simple to determine.

The result of this study demonstrates that the level of customization greatly depends on

the constraints that are applied to the model. The framework for this project is to focus on

customizing the cutaway and the width of the guitar. Because of the constraints that are applied

on the model, the cutaway does not change the width of the guitar and vise versa.

The possibilities of future improvement for this project are endless. Aside from changing

the cutaway and the guitar size with parameter values, another improvement would be the ability

to change the guitar body style, from single cutaway to double cutaway by segmenting the guitar

shape into quadrants. With this configuration, the customer can choose which quadrant to modify

based on several design choices.

A CAD Interface for Product Customization 53

Figure 31. Possible Future Design by segmenting the guitar shape into quadrants

Figure 31 illustrates that the end users are able to choose the cutaway shape using the

quadrant method. This improvement will allow the customer to have more options than before.

Coupled with the work done for this project, the end users can also customize the cutaway shape

after choosing the type of the cutaway style.

This project begins to lay the ground work for the future of the guitar workshop at Purdue

University, particularly with the design and manufacturing side of the workshop. This project

can be further improved by providing access to the software over the internet. The design

interface developed will allow customers in future workshops to customize their guitar body

style prior to arriving on campus.

A CAD Interface for Product Customization 54

In conclusion, while this project made some significant strides in product customization,

there are plenty of opportunities for improvement within the project. Future expansion of this

project could be applied to different brands of CAD software since most have similar capabilities

and API command structures. Therefore, the possibilities are infinite with this type of project.

The concepts developed for this project can be used for any family of products with a broad

scope of design opportunities.

A CAD Interface for Product Customization 55

Reference

Åhlström, P., & Westbrook, R. (1999). Implications of mass customization for operations

management. International Journal of Operation & Production Management, 19 (3), pp.

262-274.

Autodesk Inventor Object Library. (2009). How do I access the API?

Coates, J. F., & Wolff, M. F. (1995). Customization promises sharp competitive edge. Research

Technology Management, 38 (6), pp. 6-7.

Dauner, J., Launder, J., Stimpfig, E., & Reuter, D. (1998). 3D Product presentation online: The

virtual design exhibition. Proc. VRML 1998, Monterey, CA.

Gattamelata, D., Pezzuti, E., & Valentini, P. P. (2006.). Using application programming interface

to integrate reverse engineering methodologies into solidworks. XVII congresso di

Ingegneria Grafica INGEGRAF, Barcellona, Spagna

Gilmore, J. H., & Pine, B. J. (1997). The four faces of mass customization. Harvard Business

Review, 75(1), pp. 91-101.

Holweg, M & Pil, F. K. (2001). Successful build-to-order strategies start with the customer.

Sloan Management Review, 43 (1), pp. 74-83.

Keenen, B. (1999). VBA lets users add value to software applications. Instrumentation &

Control System. 72 (1), pp. 55-8.

Kumar, A. (2008). From mass customization to mass production: a strategic

 transformation [Electronic version]. International Journal of Flexible Manufacturing

 Systems, 19, 533-547.

Lampel, J., & Mintzberg, H. (1996). Customizing Customization. Sloan Management Review, 38

(1), 21-30.

A CAD Interface for Product Customization 56

Meyer, M. H., & Utterback, J. M. (1992). The product family and the dynamics of core

capability. Sloan Management Review,34, pp. 29-47.

Mottola, R. M. (2009). A method for the design of the guitar body outline. American Lutherie,

97, pp. 52-61

Piller, F. T. (2007). Observations on the present and future of mass customization. International

Journal of Flexible Manufacturing Systems, 19, 630-636.

Pine, B. J. (1993). Mass customization: the new frontier in business competition. Harvard

 Business School Press, Boston.

Prince, S. P., Ryan, R. G., & Mincer, T. (2005). Common API: Using visual basic to

communicate between engineering design and analytical software tools. Proceedings of the

2005 American Society for Engineering Education Annual Conference & Exposition, pp.

1939-1951

Sanson, M. C. (2006). Use of an application programming interface (API) to allow non-optical

designers to perform specific optical evaluations. International Optical Design

Conference,6342.

Seppanen, M. S. (2000). Developing industrial strength simulation models using visual basic for

applications (VBA). Proceedings of the 2000 Winter Simulation Conference, 1, pp. 77-82.

Siddique, Z., & Boddu, K. R. (2003). A mass customization information framework for

integration of customer in the configuration-design of a customized product. Artificial

intelligence for engineering design, analysis and manufacturing, 18, 71-86.

Wilson, J. (2007). Mass customization and build to order practices: an engineering perspective.

Cincom Systems Report.

A CAD Interface for Product Customization 57

Yen, B. P-C., & Ng, K.Y.M. (2000). Web-based virtual reality catalog in electronic commerce.

Proceedings of the 33rd Hawaii International Conference System Sciences, Maui, Hawaii.

A CAD Interface for Product Customization 58

APPENDICES

A) Single Cutaway Customization Form

B) Double Cutaway Customization Form

C) Visual Basic Codes

Appendix A – Single Cutaway Customization Form

A CAD Interface for Product Customization 60

Appendix B – Double Cutaway Customization Form

A CAD Interface for Product Customization 61

Appendix C – Visual Basic Codes

Public Class TelecasterForm

 Public solidworksFolder As String = "C:\Documents and Settings\Eddy Efendy\Desktop\Solidwork Files"

 Public mainFolder As String = "C:\Documents and Settings\Eddy Efendy\Desktop\Main Files"

 Public picsFolder As String = "C:\Documents and Settings\Eddy Efendy\Desktop\Picture Files"

 Public Sub FillTheListSld()

 lstTeleBox.Items.Clear()

 lstTeleBox.Enabled = False

 Me.Cursor = Cursors.WaitCursor

 Me.Refresh()

 For Each sldptrFile As String In My.Computer.FileSystem.GetFiles(solidworksFolder,

FileIO.SearchOption.SearchTopLevelOnly, "*.sldprt")

 Dim fileName As String = Replace(My.Computer.FileSystem.GetName(sldptrFile),

My.Computer.FileSystem.GetFileInfo(sldptrFile).Extension, "")

 lstTeleBox.Items.Add(fileName)

 Next

 Me.Cursor = Cursors.Default

 lstTeleBox.Enabled = True

 End Sub

 Public Sub FillTheListPic()

 lstTelePicBox.Items.Clear()

A CAD Interface for Product Customization 62

 lstTelePicBox.Enabled = False

 Me.Cursor = Cursors.WaitCursor

 Me.Refresh()

 For Each picFile As String In My.Computer.FileSystem.GetFiles(picsFolder,

FileIO.SearchOption.SearchTopLevelOnly, "*.JPG")

 Dim picfileNames As String = Replace(My.Computer.FileSystem.GetName(picFile),

My.Computer.FileSystem.GetFileInfo(picFile).Extension, "")

 lstTelePicBox.Items.Add(picfileNames)

 Next

 Me.Cursor = Cursors.Default

 lstTelePicBox.Enabled = True

 End Sub

 ' --- Limiting the KeyPress -------------------------------------

 Private Sub txtLeftCutawayRadius_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs) Handles txtLeftCutawayRadius.KeyPress

 If Not Char.IsDigit(e.KeyChar) And Not Char.IsControl(e.KeyChar) And Not e.KeyChar = "." Then

 e.Handled = True

 End If

 End Sub

 Private Sub txtLowerBoutRadius_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs) Handles txtLowerBoutRadius.KeyPress

 If Not Char.IsDigit(e.KeyChar) And Not Char.IsControl(e.KeyChar) And Not e.KeyChar = "." Then

 e.Handled = True

 End If

 End Sub

 Private Sub txtRightCutawayRadius_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs) Handles txtRightCutawayRadius.KeyPress

 If Not Char.IsDigit(e.KeyChar) And Not Char.IsControl(e.KeyChar) And Not e.KeyChar = "." Then

A CAD Interface for Product Customization 63

 e.Handled = True

 End If

 End Sub

 Private Sub txtRightValleyRadius_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs) Handles txtRightValleyRadius.KeyPress

 If Not Char.IsDigit(e.KeyChar) And Not Char.IsControl(e.KeyChar) And Not e.KeyChar = "." Then

 e.Handled = True

 End If

 End Sub

 Private Sub txtWaistRadius_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs) Handles txtWaistRadius.KeyPress

 If Not Char.IsDigit(e.KeyChar) And Not Char.IsControl(e.KeyChar) And Not e.KeyChar = "." Then

 e.Handled = True

 End If

 End Sub

 Private Sub txtFilename_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyPressEventArgs) Handles txtFilename.KeyPress

 If e.KeyChar = "." Then

 e.Handled = True

 End If

 End Sub

 '---------------------------------------Automate Button Control ---------------------------------------

 Private Sub btnAutomateTele_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnAutomateTele.Click

 Dim filename As String

 Dim leftcutaway As String

 Dim rightvalley As String

 Dim rightcutaway As String

 Dim waist As String

 Dim lowerbout As String

A CAD Interface for Product Customization 64

 Dim searchText As String = Trim(txtFilename.Text) & ".*"

 Dim fileExists As Boolean = False

 For Each a As String In My.Computer.FileSystem.GetFiles(solidworksFolder,

FileIO.SearchOption.SearchTopLevelOnly, searchText)

 fileExists = True

 Exit For

 Next

 For Each b As String In My.Computer.FileSystem.GetFiles(mainFolder,

FileIO.SearchOption.SearchTopLevelOnly, searchText)

 fileExists = True

 Exit For

 Next

 If fileExists Then

 MessageBox.Show("The file " & Trim(txtFilename.Text) & " already exists.", _

 "File Error", MessageBoxButtons.OK, MessageBoxIcon.Warning)

 txtFilename.Clear()

 txtFilename.Focus()

 Else

 filename = txtFilename.Text

 leftcutaway = txtLeftCutawayRadius.Text

 rightvalley = txtRightValleyRadius.Text

 rightcutaway = txtRightCutawayRadius.Text

 waist = txtWaistRadius.Text

 lowerbout = txtLowerBoutRadius.Text

'-- ERROR CHECKING --

 If filename = "" Then

 MessageBox.Show("Please enter a filename that you would like to SaveAs!", "ERROR!",

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Exit Sub

 End If

A CAD Interface for Product Customization 65

 If leftcutaway = "" Then

 MessageBox.Show("Please enter the Left Cutaway Radius!", "ERROR!", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 Exit Sub

 End If

 If leftcutaway < 1.3 Or leftcutaway > 2.24 Then

 MessageBox.Show("The Left Cutaway Radius must be more than 1.3 and less than 2.24!",

"ERROR!", MessageBoxButtons.OK, MessageBoxIcon.Error)

 txtLeftCutawayRadius.Focus()

 Exit Sub

 End If

 If rightvalley = "" Then

 MessageBox.Show("Please enter the Right Valley Radius!", "ERROR!", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 Exit Sub

 End If

 If rightvalley < 0.7 Or rightvalley > 1.1 Then

 MessageBox.Show("The Right Valley Radius must be more than 0.7 and less than 1.1!",

"ERROR!", MessageBoxButtons.OK, MessageBoxIcon.Error)

 txtRightValleyRadius.Focus()

 Exit Sub

 End If

 If rightcutaway = "" Then

 MessageBox.Show("Please enter the Right Cutaway Radius!", "ERROR!", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 Exit Sub

 End If

 If rightcutaway < 0.1 Or rightcutaway > 1 Then

 MessageBox.Show("The Right Cutaway Radius must be more than 0.1 and less than 1.0!",

"ERROR!", MessageBoxButtons.OK, MessageBoxIcon.Error)

 txtRightCutawayRadius.Focus()

 Exit Sub

 End If

A CAD Interface for Product Customization 66

 If waist = "" Then

 MessageBox.Show("Please enter the Waist Radius!", "ERROR!", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 Exit Sub

 End If

 If waist < 2.8 Or waist > 4 Then

 MessageBox.Show("The Waist Radius must be more than 2.8 and less than 4.0!", "ERROR!",

MessageBoxButtons.OK, MessageBoxIcon.Error)

 txtWaistRadius.Focus()

 Exit Sub

 End If

 If lowerbout = "" Then

 MessageBox.Show("Please enter the Lowerbout Radius!", "ERROR!", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 Exit Sub

 End If

 If lowerbout < 4 Or lowerbout > 5 Then

 MessageBox.Show("The Lowerbout Radius must be more than 4.0 and less than 5.0!", "ERROR!",

MessageBoxButtons.OK, MessageBoxIcon.Error)

 txtLowerBoutRadius.Focus()

 Exit Sub

 End If

'-- EXCEL CODE --

 Dim objExcel As New Excel.Application

 Dim xlsWB As Excel.Workbook

 xlsWB = objExcel.Workbooks.Open("C:\Directed Project (Solidwork and Visual

Basic)\Solidwork\Design Table\Telecaster with Design Table\Telecaster Design Table.xls")

 objExcel.Range("A4").Select()

A CAD Interface for Product Customization 67

 objExcel.ActiveCell.FormulaR1C1 = filename

 objExcel.Range("B4").Select()

 objExcel.ActiveCell.FormulaR1C1 = leftcutaway

 objExcel.Range("C4").Select()

 objExcel.ActiveCell.FormulaR1C1 = rightcutaway

 objExcel.Range("D4").Select()

 objExcel.ActiveCell.FormulaR1C1 = rightvalley

 objExcel.Range("E4").Select()

 objExcel.ActiveCell.FormulaR1C1 = waist

 objExcel.Range("F4").Select()

 objExcel.ActiveCell.FormulaR1C1 = lowerbout

 If rb2Hum.Checked = True Then

 objExcel.Range("G4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "U"

 objExcel.Range("H4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "S"

 objExcel.Range("I4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "S"

 ElseIf rb2Singlesand1Hum.Checked = True Then

 objExcel.Range("G4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "S"

 objExcel.Range("H4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "S"

 objExcel.Range("I4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "U"

A CAD Interface for Product Customization 68

 ElseIf rb3Singles.Checked = True Then

 objExcel.Range("G4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "S"

 objExcel.Range("H4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "U"

 objExcel.Range("I4").Select()

 objExcel.ActiveCell.FormulaR1C1 = "S"

 Else

 MessageBox.Show("Please choose which pickups configuration!", "ERROR!",

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Exit Sub

 End If

 xlsWB.Save()

 xlsWB.Close()

 objExcel = Nothing

 xlsWB = Nothing

'-- SOLIDWORK CODE --------------------------------

 Dim swApp As SldWorks.SldWorks

 Dim Part As SldWorks.ModelDoc2

 Dim boolstatus As Boolean

A CAD Interface for Product Customization 69

 Dim longstatus As Long, longwarnings As Long

 swApp = New SldWorks.SldWorks()

 swApp.Visible = True

 Part = swApp.OpenDoc6("C:\Directed Project (Solidwork and Visual Basic)\Solidwork\Design

Table\Telecaster with Design Table\Telecaster Design Table.SLDPRT", 1, 1, "", longstatus, longwarnings)

 Part.Visible = True

 swApp.Visible = True

 swApp.ActiveDoc.ActiveView.FrameState = 1

 boolstatus = Part.Extension.SelectByID2(filename, "CONFIGURATIONS", 0, 0, 0, False, 0, Nothing,

0)

 Part.ShowConfiguration(filename)

 Part.ShowNamedView2("*Top", 5)

 Part.ViewZoomtofit2()

 Part.DeleteDesignTable()

 Part.SaveAsSilent("C:\Documents and Settings\Eddy Efendy\Desktop\Solidwork Files\" & filename &

".SLDPRT", 1)

 Part.ShowNamedView2("*Top", 5)

 Part.ViewZoomtofit2()

 Part.SaveBMP("C:\Documents and Settings\Eddy Efendy\Desktop\Picture Files\" & filename &

".JPG", 740, 872)

 Part.SaveAsSilent("C:\Documents and Settings\Eddy Efendy\Desktop\eDrawings Files\" & filename &

".EPRT", 1)

A CAD Interface for Product Customization 70

 swApp.CloseDoc("Telecaster Design Table")

 swApp.ExitApp()

 picCustomizedTele.Image = Image.FromFile("C:\Documents and Settings\Eddy Efendy\Desktop\Picture

Files\" & filename & ".JPG")

 swApp = Nothing

 Part = Nothing

 btnTeleSaved.Enabled = False

 lstTeleBox.SelectionMode = SelectionMode.One

 FillTheListSld()

 btnRemindTele.Enabled = False

 lstTelePicBox.SelectionMode = SelectionMode.One

 FillTheListPic()

 End If

 End Sub

'-- 3D VIEW BUTTON --

 Private Sub btn3DViewTelecaster_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btn3DViewTelecaster.Click

 Dim userName As String

 userName = txtFilename.Text

 Dim StartEdrawing As New System.Diagnostics.Process()

 Dim StartEdrawingInfo As New System.Diagnostics.ProcessStartInfo()

A CAD Interface for Product Customization 71

 StartEdrawingInfo.FileName = "C:\Program Files\Common Files\eDrawings2007\EModelViewer.exe"

 StartEdrawingInfo.Arguments = "C:\Documents and Settings\Eddy Efendy\Desktop\eDrawings Files\" &

userName & ".eprt"

 StartEdrawingInfo.CreateNoWindow = False

 StartEdrawingInfo.UseShellExecute = False

 StartEdrawing.StartInfo = StartEdrawingInfo

 StartEdrawing.Start()

 End Sub

'--- RESET BUTTON ---

 Private Sub btnTeleReset_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnTeleReset.Click

 txtFilename.Text = ""

 txtLeftCutawayRadius.Text = ""

 txtRightValleyRadius.Text = ""

 txtRightCutawayRadius.Text = ""

 txtWaistRadius.Text = ""

 txtLowerBoutRadius.Text = ""

 picCustomizedTele.Image = Nothing

 rb2Hum.Checked = False

 rb2Singlesand1Hum.Checked = False

 rb3Singles.Checked = False

 btnRemindTele.Enabled = False

 lstTelePicBox.SelectionMode = SelectionMode.One

 FillTheListPic()

A CAD Interface for Product Customization 72

 btnTeleSaved.Enabled = False

 lstTeleBox.SelectionMode = SelectionMode.One

 FillTheListSld()

 End Sub

 Private Sub lstTelePicBox_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs)

Handles lstTelePicBox.SelectedIndexChanged

 If lstTelePicBox.SelectedItems.Count > 0 Then

 btnRemindTele.Enabled = True

 Else

 btnRemindTele.Enabled = False

 End If

 End Sub

 Private Sub lstTeleBox_SelectedIndexChanged(ByVal sender As Object, ByVal e As System.EventArgs)

Handles lstTeleBox.SelectedIndexChanged

 If lstTeleBox.SelectedItems.Count > 0 Then

 btnTeleSaved.Enabled = True

 Else

 btnTeleSaved.Enabled = False

 End If

 End Sub

 Private Sub btnRemindTele_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnRemindTele.Click

 Dim picfileName As String = lstTelePicBox.SelectedItem

 Dim fullpicFromPath As String = picsFolder & "\" & picfileName & ".JPG"

 picCustomizedTele.Image = Image.FromFile(fullpicFromPath)

A CAD Interface for Product Customization 73

 End Sub

 Private Sub btnTele3DCompare_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnTele3DCompare.Click

 Me.Visible = False

 TeleCompareForm.ShowDialog()

 End Sub

 Private Sub btnTeleSaved_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnTeleSaved.Click

 Dim fileName As String = lstTeleBox.SelectedItem

 Dim fullFromPath As String = solidworksFolder & "\" & fileName & ".SLDPRT"

 Dim fullToPath As String = "C:\Documents and Settings\Eddy Efendy\Desktop\Main Files\" & fileName &

".SLDPRT"

 My.Computer.FileSystem.MoveFile(fullFromPath, fullToPath, True)

 Me.Visible = False

 MessageBox.Show("Thank you for Participating in Guitar Customization", "Thank you",

MessageBoxButtons.OK, MessageBoxIcon.None)

 Me.Close()

 End Sub

End Class

	Purdue University
	Purdue e-Pubs
	7-23-2010

	A CAD INTERFACE FOR PRODUCT CUSTOMIZATION
	Eddy Efendy

