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Studies in Conjugation: Introductory remarks



Studies in Conjugation

A common theme in problem solving is the reduction of the problem

one is faced with to another to which one already knows the solution.

As a generic example, suppose that we are asked to evaluate the function

F: X -* X.

It is clear that this evaluation is equivalent to the evaluation of the

conjugated function

G = 4> o Fo
(J)"

1
: <j>(X) * <|>(X)

where $ is some invertible "change of variables" and . denotes functional

composition, provided we can evaluate <J>(x) and f\x). For then to compute

y = F(x) we can make the three step computation

a *- <KX )

b *• G(a)

y «-
<t>

(b).

This approach is useful (practically speaking) if we can find a <j) such

that computation of <}>, G, and f 1
all together is simpler than direct

computation of F itself, and we can say in this case that we have reduced

the problem of evaluating F to the easier three-step evaluation.

4

Conjugation, as just illustrated, is a natural way to reduce one

problem to another. Viewed abstractly, one is mapping a problem on one

domain into another domain where the problem's structure is simpler,

solving the problem there, and then mapping the computed solution back

to the original solution space. The wo- "simpler" used here and in

the paragraph above can entail many things — computational ease of

solution (e.g., reduced time or space complexity, or both, of an algorithm



which solves the problem), conceptual simplicity (Intellectual manage-

ability of the problem or brevity of an algorithm for solving the problem),

and so on - but the notion we wish to convey is that see cost criterion
is being reduced through the use of conjugation.

Conjugation is, of course, not a new technique. It has been used

effectively in computing convolutions (as well as the other diverse

applications of the fast Fourier transform), reduction of NP-complete

problems to one another, and mapp ing algorithms onto specific machine

architectures, to name jnst a few areas, This dissertation simply points
out that conjugation plays an important role in the analysis of three

problems discussed here:

Construction of trees using the Huffman algorithm

Rapid evaluation of nonlinear recurrences

Design and assessment of permutation networks.

In each case conjugation reduces the computational or intellectual

complexity of the problem to some degree, providing new insights about
the problem structure and suggesting new ways old algorithms may be

improved upon.

The Huffman algorithm is a well-known method for constructing optimal
binary (or r-ary) trees on a given set of terminal nodes. In the type of
tree construction considered here each node has some associated weight,

and these weights are combined as the construction continues to form

new weights for the intern, nodes of the tree; the Huffman algorithm



merely specifies which nodes are to be combined at any step of the

construction process. Although Huffman's algorithm is extremely simple,

it has important applications in many fields of computer science, from

data compression to roundoff minimization to leaky pipeline detection.

Here a new formulation of weighted tree construction is presented in a

way that leads naturally to a solution of the following question: for

exactly which weight combination functions does the Huffman algorithm

produce optimal trees under exactly which tree cost criteria? It is

shown that quasilinear combination functions (functions that are conjugate

to linear functions) produce optimal trees in conjunction with the Huffman

algorithm under very broad classes of cost criteria. In addition the

known results about Huffman tree construction and related concepts from

information theory and the theory of convex functions are tied together

in a nice way, and some interesting applications are given.

The problem of evaluating nonlinear recurrences rapidly is a difficult

one, but has important applications in the design of algorithms for parallel

^ , th
machines. Generally speaking, we are interested in transforming the m -

order recurrence

*k
= F(xk-l*V2 VJ U<k<n)

to a simpler problem (say, a linear recurrence) which may be solved quickly

in parallel. Until recently the only results for this problem were

negative, but it is shown here how these negative results may be bypassed.

In fact, the first-order, constant-coefficient case of this problem can

always be solved on certain domains — and the theoretical background

and a semi-automatizable methodology for the solution of this case are



outlined and illustrated with a number of examples. Also, some techniques

for reducing the higher-order, non-constant-coefficient recurrence to a

system of linear recurrences are presented.

The section on permutation networks may be divided neatly in two

sections. The first part analyzes the control complexity of the Rearrangeable

Switching Network (RSN)
.

This network achieves a significant savings in

gate complexity over a crossbar through the use of a conjugated Shuffle/

Unshuffle interconnection pattern, but suffers in that the resulting

network is much harder to set to realize a desired permutation (to control).

New control algorithms for the RSN are given here, and it is shown that

if RSN's are recursively constructed in an intelligent way, then the

switches may be controlled much more rapidly than was known before.

Unfortunately, the results are asymptotic in the number of switch inputs,

and are not good enough to be practically worthwhile.

The second part of this section analyzes a number of properties of

Shuffle/Exchange networks. Once the proper machinery is established it

is shown that Lawrie's inverse Omega network, Pease's indirect binary

n-cube, and a network related to the RSN have identical switching capa-

bilities. This result leads to a number of insights on the structure

of the fast Fourier transform (FFT) algorithm, as well as a better general

understanding of these switches: for example, it is shown that the Omega

network is conjugate to the inverse Omega network under the bit reversal

permutation. The inherent permuting power of the networks when used

iteratively is then probed, leading to some non-intuitive results which

have implications on the optimal control of Shuffle/Exchange-type



networks for realizing permutations and broadcast connections

Further work concerning the methodological use of conjugation as

a technique in problem solving is certainly in order, but will not be

addressed here. It is already clear that good upper bounds on the

complexity of a problem (i.e., good algorithms for solving it) may be

derived by considering several conjugated forms of the problem. It

would be interesting to study the "simplest" conjugate form of a

problem; of course such a form exists, but if it could be exhibited

then one could claim in a mildly-restricted sense that he had found

an optimal algorithm for solving the problem. A great advance would

be to determine which problem criteria guarantee us that the best

possible form in which to solve the problem is a conjugate form, for

then lower bounds on the problem's complexity could be studied as well

This would be true even if the simplest conjugate form could not be

found explicitly.



Nuns . . .

J

Nuns fret not at their convent's narrow room;And hermits are contented with their cells-And students with their pensive citadels;
'

fit lulh fr1
'

the WeaVer at his loon,

Hi*h » ^ ^ u
3PPy; b6eS that Soar for bloom,High as the highest Peak of Furness-fells,Will murmur by the hour in foxglove bells:In truth the prison, into which we doom

Ourselves, no prison is: and hence for me,In sundry moods, 'twas pastime to be bound

Pl.^Y^ SOmetS SCanty P lot °f ground;
Pleased if some Souls (for such there needs must be)

^n ^ I /u ^ Welght ° f to° ™ch liberty,Should find brief solace there, as I have found.

— W. Wordsworth, 1807
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Analysis of the Huffman Tree Construction Algorithm



I. Introducti on

Although Huffman's algorithm was first presented in 1952, and

was developed then for a problem in discrete coding [Kuf 52],

it is still undergoing a considerable amount of research as more and

more applications for it are uncovered in various fields. In the last

year alone, Itai [Itai 76], van Leeuwen [vanL 76], Glassey and Karp

[GK 76], and Golumbic [Gol 76] have presented new perspectives on how

the algorithm works and how it or related algorithms can be employed in

new ways. Until the present, however, all research has concentrated on

two variations of the algorithm which respectively minimize total

weighted path length, and measures akin to tree height, of the constructed

tree. Applications for weighted path length minimization include

'(« construction of optimal search trees [Zim 59], [HT 71], [Itai 76],

C2) merging of lists [FB 72], [Liu 76], (3) minimization of absolute error
in sums [Cap 75] and relative error in products (Sam 75], (4) text file

compression [Rub 76], (5) optimal checking for leaky pipelines

and water pollution [GK 76], and of course (6) construction of minimum

redundancy codes [Huf 52]. Applications for tree height minimization

include CD optimal execution time for fanning-in data (in limited task-

scheduling systems, and in arithmetic/Boolean sum- or product accumulation

Ce.g., in dot-products, matrix multiplication), etc.) and related problems
related to speed in parallel processing [Gol 76], and (2) minimization of
error bounds in parse trees of sums [Sam 75] . And this is by no means

a complete list.

Our interest in the algorithm comes mainly from its import in compiling,
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Not only does the algorithm build optimal trees with respect to

execution time, space usage, and roundoff error for many classes of

limited expressions, it does so in near linear time. If N is the number

of leaves in the tree to be constructed, Huffman's algorithm can be

implemented in time 0(N. logN) when a priority queue is used. Moreover,

van Leeuwen has shown that this time bound can be reduced to 0(N) if the

leaf weights are in sorted order [vanL 76]. (This would suggest that the

complexity of the algorithm is lower bounded by 0(N log N)
,
since sorting

is at least that difficult. However an 0(N log N) optimal parsing algorithm

though not linear, is still respectable.) In our opinion the algorithm

has great potential in the development of future compiling algorithms,

as well as other areas of computer science.

This paper addresses and solves in part the following problem. The

two variations of the Huffman algorithm mentioned above are based on the

same construction process, but use different tree cost functions and node-

merging methods. (Specifically, the weighted path- length variation

produces internal nodes having weights equal to the sum of the weights

of its sons, while the tree-height algorithm uses the maximum of the

son weights plus some nonnegative constant. This will all be discussed

in greater detail below.). First, it is not clear why these two apparently

unrelated methods both produce optimal trees. Second, from the point of

view of compiling it would be nice if we could use yet other methods
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to construct trees optima l with respect to some other cost measure
besides tree height and path length. For example, suppose we wish
to construct parse trees for parallel evaluation of products of
arithmetic expressions, optimal with respect to some measure of both
roundoff and space used. Since error bounds in this case correspond
to path-length, and execution time to tree height, an optimal parse
tree cannot be constructed using the Huffman algorithm unless a node-
merging method more complicated than the two above is used. This
problem raises the foliowing question: for exactly which -,„,„,. ..„ ,

,

thAjMfaan algorithm produce o^ under exactly wM( . h _,,
We will show a class of methods exists, encompassing the two standard
methods above, which produces optimal trees with the Huffman algorithm
under corresponding classes of tree cost functions and ties together in
a nxce way some results from information theory and the theory of convex
functions.
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II. Basic Machinery for Huffman Tree Construction

In this section we define the notation to be used for the rest of

the paper. The exposition here is not really introductory and readers

seeking more background are referred to [Knu 68] or [Eve 73]. For the

time being we confine ourselves to binary tree construction until the

essential results are established. The extension to r-ary trees is

then straightforward.

In the binary tree construction problem one is given a set of n+1

leaves having corresponding weights { w^ w
2

, ... , w
n+1

}. Although in

some problems a particular ordering is to be enforced on the leaves

(e.g., [HT 71]) we drop these considerations and presume in this paper

that the final order of the leaves in the constructed tree makes no

difference. Furthermore the weights need not be normalized so that

their sum comes out to be unity or anything like that; we require only

that they be nonnegative and, for convenience, sorted by index:

< w
x

< w
2

< ... < w
n+1

.

Construction of a (full) binary tree on these leaves is then effected by

n merge operations of pairs of available nodes. Each of the nodes in

the pair is marked unavailable and their father (the result of the merge)

is marked available, having as his weight some function of the pair's

weights. Each of the leaves is initially marked available, of course.

Note that n merges are necessary and sufficient since all full binary

trees on n+1 leaves have n internal nodes.
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Simple examples of tree construction are given in Fig. 1 a§b. In Fig. la

the weight combination function used is the sum of the son weights; in

Fig. lb it is their maximum plus 3.14

(a) weight (root) = weight(left son)

+ weight(right son)

(b) weight(root) =

max( weight (left son),
weight(right son) ) + 3.14

Figure 1. Tree Construction

Note that each internal node defines the root of a full binary subtree

of the constructed tree, so tree construction can be defined inductively

in terms of fores^ (collections of trees) in the obvious way: the

construction begins with a forest of n+ l one-node trees and repeatedly

reduces the number of trees by 1 via merge operations until there is only

one tree left.

With this in mind we adopt the following notation:

Wj --
j smallest leaf weight (i.e., w is smallest, w , largest)

i n+i o j

*j
-- path length (distance from the root) of the j

th
leaf

W
i

-- i smallest internal node weight

With each of these the name of the tree or forest in question will be

added in parentheses whenever it is not clear from context which tree or

forest is meant. Thus W.(T) would be the i
th

smallo S t internal node weight
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in the tree T, and I. GF) would be the current path length of w. to the

root of the tree containing it in the forest *. For example, if we

let T and T
2

be the trees in Fig. la and lb respectively, then

W = *iCT2 ) = 1

w
2
(T

x
) = w

2
(T

2
) = 2

W W
3

CV = 3

W = w
4
(T

2
) =4

(lv lv ly V^l 3
=

C 3, 3, 2, 1 )

ilv l
2

, ly £
4
)(T

2
) = ( 2, 2, 2, 2 )

and

0»
1

, W
2

, W
3
)(T

1
) = C 3, 6, 10 )

(Wr W
2

, W
3
)CT

2
) = ( 5.14, 7.14, 10.28 ) .

Finally, if we denote by R
+

the nonnegative reals, let us define the

weight combination function F: rJ -^ R
+

to be the symmetric function used

to produce the weight of internal nodes generated by a merge operation

(cf. Fig. 2), and the n-internal node tree cost function G: R
+
-> R to

be a function on the weights of all the internal nodes of the tree:

Cost(T) = G( W^T), W
2
(T), ... , W

n
(T)) .

Note that if such a tree cost is to be generally useful, it should be

extensible to arbitrary numbers of arguments and not dependent on some

fixed value of n.
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Note that F(x,y) = F(y,x)

(order of leaves in tree
is immaterial)

Fig. 2 Weight combination function F(x, y)
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Huffman's algorithm for binary tree construction is now simple to

state: To build the Huffman tree, merge at each step the two available nodes

of smallest weight (with ties resolved arbitrarily). Now if

F(x,y) = x + y and G sum

then it is not hard to show that the cost of any tree T in this system is

E w (T) £ cn
l<j<n+l J J

which is called the weighted path length of T. Also, if

F(x,y) = max(x,y) + c (c>0) and G = max

then the cost of any tree T in this system is

max ( w (T) c£.(T) )

l<j<n+l J J

and we call this a tree-height measure of T because when c=l and w.=0 for

j=l,...,n+l this cost is exactly the height of T (although it otherwise

has nothing directly to do with tree height)

.

The importance of Huffman's algorithm is that it produces, in time

0(n log n) or less, optimal trees in both of these systems. Proof of

the optimality in the weighted path length system (the one originally

considered by Huffman) can be found in a paper by Zimmerman [Zim 59].

To our knowledge a proof of the optimality of Huffman's algorithm in the

tree-height system has never been published, possibly because Zimmerman's

proof mutatis mutandis will work for it as well, possibly because the

optimality is intuitively clearer. Examples of the construction in both

systems has already been given in Figure 1. In both cases the trees

illustrated are the unique optimal-cost trees; note that although they

have identical initial weights their structures are entirely different.
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III. General Characterization of Hu^fmanTr^ Const ruction

We begin this section with a result from a recent paper by

Glassey and Karp [GK 76], and show how it may be extended in a

natural way to characterize the weight structure obtained in trees

constructed with the Huffman algorithm in general.

Definition A weight seauencp a i c o <.«+ c- u —ign sequence a is a set of nonnegative numbers

CV a
2' '••

•
a
m l suc* that a < a : a , < ... < a .

We define a partial order on weight sequences of equal length as foilows

and
m-

Definition Given two weight sequences a = [a , a , a T12 m-'

Lb2* b2» • •
• » D

ml> we write

a^ b
k k

~~^
lf

i=l
** £

i=l
bi h° ldS f° r a11 k

>
i 1 k < m .

Thg0rem l CGlaSSey 5 Kar^ Let "W = [ Wl (S) , W
2
CS), ... , lys)] be

the weight sequence for the internal nodes in a tree constructed by the binary
Huffman algorithm in the weighted path-length system, and let

WCT) = [WlCT), W
2
CT), .:. , Wn (T)] be the weight sequence for the

internal nodes of any other tree on the same leaf weights. .

T^n »(S) ^ WfD .

Glassey and Karp actually prove the theorem for the general case
of r-ary tree construction, where r may be greater than 2 and the trees

need not be full. The proof, which may be found on pp. 371-373 of
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k k

[GK 76] establishes by induction on k that E *(.(S) . <_ I W^T),

for 1 < k < m. The theorem is a sharpening of the earlier result b>

Hu and Tucker that "Huffman's algorithm gives an optimal m-sum forest"

in the weighted path-length system ([HT 71], p. 518). In any case it is

an important characterization of the Huffman algorithm and will give rise

to most of the results in this paper.

We require a few definitions, including the usual ones for

strict monotonicity and convexity (a functions <J>:U + R is convex if U

is a convex subset of R and for all x,yeU, te[0,l], <J>(tx+(l-t)y) <

t-<J)(x) + (1-t)- <J)(y) ; $ is concave if -<j> is convex). We say also that

4>:U * R is positive if <{>(x) >_ for all x in U, negative if -<J> is

positive, and sign-consistent if
(J)

is positive or negative.

Theorem 2 Let a and b be two weight sequences of length m such that a^b.

If 4> is any concave, strictly increasing function and we define <J>(a) to be the

weight sequence [<|>(a
1
),...,(J>(a

m)l
and similarly for <|>(b), then
n n

<Ka) < 4>(b) i.e., I <J>(a .) '< E <J>(b.) for 1 < n < m.
'

i=l i=l
x " ~

Proof This result is typical in the theory of convex functions. An

elegant proof can be adapted from that of Fuchs [Fuc 47], presented

also in [Mit 70], for the analogous case where <j) is convex. It is

instructive to note that our partial order a ^ b on weight sequences

is equivalent to the "majorization" relation a>b of [HLP 3A] (which
m m

appears widely in the literature) if and only if la = Z b .

1
±

1
1
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Define
D.
1

<Ka
i
)-<Kb.)

a. - b.
L i i

for i=l, ..., m>

where we assume without loss of generality that a-*)., for any i.

Clf a
i=

b. we can delete both from the weight sequences a and b without

disturbing the inequality we wish to prove). Since * is increasing we have

Di > for 1 < i £ m; also since . i b md s
.

nce ^ .

s concaye ^ ^^
k

a

Then a ^ b implies A
R

< B
k for all k,

Therefore for 1 £ n < m,

n-1

* (A
k~

B
k
)(D

k-
D
k+ l

3 + (A -B )D <
k=l * K K+1 n n n —

D
i i D

i +r Set \= A a. and B
k

= E b, for l<k<m
k

t

0r (A
k" Bk^ 1 °-

n-1
I

n-1

kf,
\ "VW * Vn < £ B

k
(D
k
-D

k+1 ) B
n
D
n

J,
(VA

i-P "i £
J

CBi-B.^) D.

n

Z a. D.

n

i=l

n •

li — I b. D.

i=l X *

n

Z (a.-b.) D. <
i=l

x 1 x -

^ <Ka.) - $(b.) < o
i=l

x x ~

n n
r *(a.) < Z <j>(b.) .

i=l i=l
QED
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With the above in mind we can make our extension of the Huffman

tree construction process. For the rest of this paper we assume that

our weight combination function F(x,y) has the quasilinear form

F(x,y) = f l
( A<Kx) + A<Ky) )

where X is some positive constant and
<J>

is a continuous, strictly

monotone function. We restrict the domain of definition of $ to some

interval U of R , which we call the weight space , and require that

F: U 2
-*• U so that F produces a weight when given two weights.

The conjugate linear class of functions this generates has a number of

interesting properties: each such F is increasing since $ is monotone.

Each F is symmetric in its variables and can be extended naturally to

functions of more than two arguments. (This latter property will be

useful at the end of this section when we consider the generalization

of binary to r-ary tree construction.) Moreover when X = 1 F is also

associative

,

i.e.,

F( F(u,v), F(x,y) ) = F( u, F( v, F(x,y) ) ) .

= F( F(x,v), F(u,y) )

= *" 1
C <Ku) + <Hv) + <Kx) + <Ky) )•

Also note that when X = 1 and <J>(x) = x we obtain

F(x,y) = x + y

-- the weight merging function for the weighted path-length system--,

and when X = exp(pc) [c _> 0] and <p(x) = exp(px), then

lim F(x,y) = max(x,y) + c
p-H»

-- the function for the tree-height system. Thus this class of weight

merging functions F is broad enough, in the limit at least, to encompass



21

the two known Huffman-optimal ones. The purpose of this paper is to

show first, what the Huffman algorithm produces with these weight

merging functions; second, which conditions are needed for this produce

to be optimal; and third, why all this is useful.

One assumption we can make immediately is that the strictly

monotone function + is strictly increasing since F is invariant of changes to

the sign of *. For this reason we will frequently make statements below

requiring * to be increasing; if were actually taken to be decreasing

then the statement in question would hold for -*. More restrictions must

be made on and X before we can prove the resulting function F will be

useful to us; these restrictions are mainly embodied in the following

lemma. First we know we must have F: U
2 - U. Also, we need an analogue

of the fact used in the proof of Theorem 1 that F(x,y)=x+y is "non-shrinking"

(in the sense that F(x,y) > max(x,y) ) which guarantees that the k smallest

internal node weights of any constructed tree T comprise the weights of

some subforest of T. We satisfy both these restrictions on F in the

following way:

Lemmas Let *: (j * R be a strictly increasing function and x fee a

positive constant. If F(x,y) - ^^AKx).^^)) is to satisfy F:U 2 - U

and either F Cx,y) < min(x,y) tfx,y«U or F(x,y) > max(x,y) \/X,y<U,

then we must have X > i, and must be sign-consistent on U.

Under these circumstances the quasilinear function F satisfies

F(x,y) < min(x,y) Vx,yeU if is negative (increasing),

F(x,y) ^max(x,y) )/x,y±U if
<f> is positive (increasing).
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X < X M inff
»(x) \ and-

x,yU(x)+*(y)/

Proof Since <$> is increasing we have

F(x,y) > max(x.y) iff X<j>(x) + X*(y) > <D(x) for all x > y in U,

P(x fy) 1 min(x.y) iff H(x) + X<Ky) < <Kx) for all x < y in U.

Neither of these can be true if d> is not sign-consistent ,
for then the

connectivity of the interval U and the continuity of + imply a neighborhood

of zero would exist in <D(U), and for example we could contradict the first

inequality above by selecting *(x) > 0, *(y) = -(*), giving X-0 = > +(x).

So we conclude 4> must be sign-consistent, and find the "shrinking"

condition on F is satisfied when

/ \ (<J> is negative [F(x,y) <_min(x,y)]

def <Hx) \
and<A > Al ==- |^^(x )

+ <(»(y)y ^ is positive [F(x,y) > max(x.y)]

r

<J>
is negative [F(x,y) > max(x,y)]

<

,4> is positive [F(x,y) < min(x,y)]

We now show that the additional condition X > 1 is necessitated by the

requirement that F: U
2 - U by considering what happens to the above

inequalities for all nonzero X (X = is uninteresting, giving F = constant)

CI) Assume X > 1/2. Then since F: U
2 * U we have X(<fr(U)H>(U)) S *(") .

implying 4>(U) must be unbounded, so we have X = and Xi ; 1.

The only nontrivial condition we can satisfy is X >_ \\ = 1,

giving as stated F(x,y) > max(x,y) if
<J>

is positive,

F(x,y) £ min(x,y) if <J>
is negative.

(2) Assume X = 1/2. Since we must always have X < 1/2 and 1/2 < Xi,

there is no way to satisfy either X <_ X or X >_ Xi.

(3) Assume < X < 1/2. Then because X((J)(U)+<J)(U)) £ 4> CU) zero is

a limit point of <KU) , so we get X = and X x > 1/2. Thus

there is agrin no nontrivial way to satisfy either X <_ X or X > Xi.
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As an interesting sidelight, note that when * is positive increasing

the tree constructed by the Huffman algorithm (for any positive A) on the

leaf weights (w^ ... ,w
n+1 > is topological^ isomorphic to the tree that

would be built by the Huffman algorithm with

F(x,y) = A(x + y)

on the leaf weights (4*^), ... .(w
n+1

)>'
- although the actual values of

the internal node weights would be different unless <j>(x)=x. If
<fr is

positive decreasing, by contrast, the tree constructed by the Huffman

algorithm on (w^ ... ,w
n+1 ) is topological^ isomorphic to that which

would be built by the anti-Huffman algorithm (the tree construction

procedure in which the two nodes of greatest weight are merged at each

step) with F(x,y) = A(x-y) on the leaf weights {0(w ), ... ,<J>(w )}.

This all follows from the "order-preserving" properties of monotone

functions. It should be pointed out that when is positive decreasing

and A > 1 the Huffman algorithm could always produce the following tree,

because then F(x,y) < min(x.y) and the smallest weight is always selected:

Fig. 3 Huffman tree with

positive decreasing (j>

This is also the structure of the tree that would be produced if <J> were

positive increasing, A > 1, and the anti-Huffman algorithm were used,

for then we would have F(x,y) > max(x,y) and the largest weight would

always be selected. This type of tree construction is not particularly

interesting but will be covered here for the sake of completeness.
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Lemma 1 establishes when F is a "non-shrinking" or "strictly

shrinking" weight combination function; this puts us in a position

to extend the results of Theorem 1, once we make a few more observations.

If F(x,y) > max(x.y). then it is clear that the k smallest internal

node weights [W^T) , . . . ,Wk
(T)] of a tree T define a subforest of T.

(For, if there is any weight W.(T) in the set corresponding to an

internal node whose son's weight W
.
(T) is not also contained in the

set, then W. (T) < W.(T), for otherwise we would have IV. (T) in the set.

But this is impossible because F(x,y) > max(x,y) implies W.(T) > W^T).)

Thus Lemma 1 asserts that if * is positive (resp. negative) increasing

and X > 1, the resulting internal node weights will have this subforest

characterization: every collection of least (resp. greatest) node

weights define some subforest.

The lemma also shows that, for "non-shrinking" (or "strictly

shrinking") functions F we can assume cj> is positive (and strictly

monotone continuous) instead of assuming it is increasing, since

again F is invariant of sign changes to <J>,
and

<J>
must now be either

positive or negative. This assumption seems to be the natural one to

make in view of the following result.
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™e°rem 3 L" F(x'^ * "*( **« * **W ) be the tree construction

weight cognation function where * is convex, positive, and strictly monotone
and A > i. if, as in THeore™ 1, W(« and W(T) are the weight sequences
for the internal nodes of the trees S and T, constructed respectively by the

Huffman algorithm and by any other way, then

W(S) 4 WfT)

(The same results hold if * Is concavg, negative, and strictly monotone.)

Proof The proof has two cases, accordingly as * is strictly increasing or

strictly decreasing.

CaseJ.:
<f> convex, positive, and strictly increasing.

We accomplish the proof in two steps: using the notation of Theorem 2,

we first show that the weight sequences <W(S)) and WCT)) satisfy

<KW(S)) ^ <f>CW(*))

and then, since f 1
is concave increasing in this case, we can apply Theorem 2

to get V(S) £ W(T) as desired.

If there are n+ l initial leaf weights *V"Vl we have as above

Ito-IVS).....!^)] and WCT) =[w
i(
T),...,W

n
(T)] as the internal

node weight sequences where IV. is the i
th

-smallest such weight. In particular

since W. (S) designates the weight of some internal node which is the root of

some subtree S. of the Huffman tree S, if we define

<&i
= ( J I

w is a leaf of S. }x
J 1

^.(S
i
) = path length of weight w. in the subtree S ,

a
i

= 5 x J x «w

)

then w.(S) = " 1
(«

i
).
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Defining <f. and i.(T.) in an analogous manner, if we set
*» < i j 1

£.(T.)

r x J x
<j>(w )

i
=

J^i
J

then W.(T) = *" 1
(b

i
).

We now claim that the sets a = [a^...^] and b = [b^-.-.b^

are weight sequences satisfying a<b. First of all since <j> is

positive increasing and W(S), W(T) are weight sequences, we know that

a = 4>(W(S)) and b = <KW(T)) are weight sequences; in fact since <J>
"pre-

serves order", if W.(S) < W (S) then a. = W^S)) < -HW^CS)) = a^

and similarly for W(T) and b.

Second, by Lemma 1 we know that F(x,y) > x,y in this case, so the v

k smallest node weights [w^...^] for either S or T correspond to a

subforest F of S or T. This implies

k

I b

i=l
'

£.(T.)
> J 1

(Wj)

i=l je^

n+1
Z ( X + X

2
+ . . . + Xw ) (KWj)

A
n+1 *.(F.)

I ( X J - 1 ) «D(w.)

j = l
J

if X > 1

n+1
I I (F.) 4>(w )

j=l J K J

if X = 1,

with a similar expression holding for £ a. .

i=l
x

We can now directly apply Glassey and Karp's method of proof for

Theorem 1. The proof proceeds by induction on k, where we are trying to

k k
prove a <^ b by showing for all k that -

< 7 b

i=l i=l
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The basis k=l is trivial, and for the induction step there are two

possibilities, depending on the relationship between ^ = *(W (S)) and

*>! = 0*
1
(T)).

Subcase 1 : a = b

In this case we know $ (a,) = &~ l
(h 1 = Ffw u, i ^a ^v <*

1
j v \^d

1
j - htw

x
,w

2
) and we are reduced to the

proof on the set of leaf weights {Ffw ,w 1 w u, \ e u- L& ir i.w
1
,w

2
j, w

3
, ... , w

n+1
>, for which

we have by induction that

k k
E a < £ b .

i=2
x ~

i=2 i .

So,

k k
^ a. < z b.

i=l * i-1
x •

Subcase 2 : a < b

As in Theorem 1, we show there is a tree f with internal weights W. (T) = ^(c.)
lere c= [c ,...,c] satisfies r _ < v1 n

,
* c

i 1 z b and, in addition,
1 <i<k x

i <i <k
x

Cj = a
2

so we have (by reduction to subcase 1)

k k

"i —.

E a
i 1 z c

, lb.
i=l i-1

X ~
i.i

i

completing the proof that a< b Tl> . . .

,

^ This is easily done by taking the

forest F
k

corresponding to the least k weights [w^T) , . . . .jyT)] of T and

defining as before the maximum path length in this forest

£
max

= max
*j CF

k ) •

J

We then choose an internal node having weight yrW 1
Cbj)-FCw

p
,w

a
) whose

2 deaf) sons have path length £^ in F
R

and have leaf !eight s

r

J and w
g

Since^ a
x

< bj < bp we know (w^Ww^} ,1 (w^). Assuming ^ < wJ
let T be the tree constructed exactly like T but with the leaf weights
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w and w , w
s

and *
2

interchanged. Then F
k

is still a subforest of T

(topological ly T and T are isomorphic) and determines a subset of k of

T's internal node weights, and consequently some k-subset of the weight

sequence c. Specifically, if we define f., f., I

.

(T .) exactly as above

so that 1.(1.)

and W.(T) = (^^(c.), then F
k

defines the set

r£L = {i|<f>~*(c.)is the weight of some internal node in F
fc

}

and |£t| = k. Moreover we must have

k

Z c. Z c.

i=i
x ~ ia *

since the first k weights c. are the least such weights. But we also have

k

I c. < S b. .

ieA * i=l

To show this we write for convenience

i_(T) I (J) i
2
CT) iff)

A^X 1 =X r A
2

= X =X

l
k

(T) im IAT) IAT) £
2
(f)

A = X
maX = X

r
= X

s
= X

l
= X

2

m

4>
r

= 4>(w
r ) <t>

s
= *(w

s
) ^ = <t>(w

x
) *

2
£ ^^

Therefore .
>

. and ^ > * and in the case x > 1
T
r — 1 s — ^

since u

we have

So, if X >1,

A, < A and A- < A .

1 — m 2 — m
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I c. Z b.

i=l
x Or)

mC CA
m
-A

1
)C*

1
-*
r ) CA-A,)(,-.) )

I
< .

A trivial modification of this argument gives the proof for JUl. so we

omit it here. Thus we have shown

I c. < l
i=l

1

but since ^(W^T)) .^(FCw/^)) ."^ we have, by reduction t<

subcase 1, that

Therefore

k k
z a < E c. .

i=l
*

i«l
x

:

k k
£ a. < Z b.

i=l
'

i-l
x

and Theorem 3 follows for Case 1, since we have shown that a ^ b, and,

since here
<J>~ is concave increasing we can apply Theorem 2 to get immediately

-1 -1W(S) = 4>

A

(.) ^ ^(b) = W (T).

£ase 2: $ convex, positive, strictly decreasing

Actually in this case the Theorem is something of an understatement.
We are comparing here the weight sequences

and W(T) = ^m.-.^CT).] . [0- 1
(b
n
),...,

-l
(bi)] ,

whe ^e a = [a^...^] and b = [b^...,^] are weight sequences

as » case 1. From the discussion following Lemma 1 we see that
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a would be the internal node weight sequence formed using the

anti-Huffman algorithm on the leaf weights {$(1^),... .(Vl)J *

It follows that a
k

>. b
k

for 1 £ k < a, and thus we easily have

both a^b and W(S)^W(T) as consequences.

Theorem 3 is apparently the most general possible result of its

kind. To show what can happen when <J> is not convex, we consider an example

where j> is concave positive. Let <t>(x) = 7x" ,
X = 1, and U = R

+
so that

F(x,y) = ( S* + »
/

y )
2

»

and suppose we are to build a tree given the leaf weights (1,2,3,4). The

Huffman algorithm produces the treeS

Fig. 4a Huffman tree S

for which we have I W. (S) = 5.83 13.93 37.78 = 57.73, while the tree T

i=l

Fig. 4b Another tree T

has E W.(T) - 9 + 9,90 + 37.78 = 56.68, so W(«)JW(T). That this

i=l
1

phenomenon will always happen when (J) is not convex is a result of the

converse of Theorem 2, which says that

m m

Z 4>(a.) 1 £ *Cb.) for all a<b => <t>
concave increasing.

i=l
x

i=l
1

The proof is easy and we omit it.

In addition to Theorem 3 we have the following characterization

of Huffman construction with the functions F considered in this paper.
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Theorem If F(x,y) . ^W)*A*(y)) where A > 1 and * is increasing,

continuous, and sign-consistent (as in Lemma 1), then

W!(S) 1 W
X
(T) and W

n
(S) < W (T) ,

i.e., the smallest and largest Huffman internal node weights are no larger

than the corresponding smallest and largest node weights in any other tree.

Proof The proof is like that of Theorem 3. We discuss only the case where

I is eositive, so WlCS) = F^) < W^T) follows immediately and we must
show W

n (S) < WnCT). if * is negative, the proof is similar, but there

W
n
CS) = FCwrw

2
1 < W

n
(T) and we must show Wj (S) < W^T). Here we have

, n+1 A.(S)

j=l J

, n+1 Jl.(T)
W
n
(T) . "!( z *J * (w) ,.

and because $ is increasing

W
n
(S) < W

n
(T) iff 4>(W

n
(S)) <_ CITCT))

• or equivalents *• (S) £(T)
iff E x J

<{,(w.) < z \ J
<j,(w.).

We prove this inequality by induction on n, the number of internal nodes

in the constructed tree. As a basis we have Wj (S) = W^Tj for n-1. and

the theorem may be easily verified exhaustively for n=2. For the

induction step we have the familiar two-case proof of Theorems 1 and 3.

In the case »j(S) < ^(T) we construct a tree f such that

^(W
n
(S)) < 0(W

n
(f)) < (KW

n
(T)) in the usual manner: in the tree T we

select an internal node having weight W (T) = F(w ,w ) whose two (leaf)
ST X J

sons have maximal path length l^ = max I (T) in T. Since W. (SI * W, (T)
j

J 11
we know {w

r
,w

s
}rt{Wl ,w

2
} + {w^}. Assuming w

r
< Wg , let f be the tree

constructed exactly like T but with *
r

and w^ Wg and w
2

interchanged.



32

Then W CD = F(wlfw2
) = W^S) so by Case 1 above we have vys) iWn (T).

However we also have
I I (T)

4>(W (T)) - (W
n
(T)) - (X

maX
- X )M*

l
)-*(>i

T
))

+ Cx
max - x

2
)C*Cw

2
)-<J>Cw

s
))

< :

Consequently ^(T) < W
n CD

and we obtain W
n
(S) <__ \W as desired.

Now that we know quasilinear weight combination functions are

interesting, we must address the problem of determining whether an

arbitrary function F(x,y) is in fact quasilinear. Fortunately this is

not too difficult. Consider the following five properties of F:

(1) F(x,y) = F(y,x) for all x,y in U

(2) F(x,y) > max(x.y) for all x,y in U (or < min(x,y) )

(3) F(x,y) 1 F(x,z) if y <_ z for all x,y,z in U (F is increasing)

(4) F(F(u,v),F(x,y)) = F(F(u,x) ,F(v,y)) for all u,v,x,y in U

(F is bisymmetric )

(5) 8F and ^F are bounded on U

"5x ^y

We claim that if F satisfies the first four conditions then it satisfies

the requirements of Theorem A. In addition the fifth condition must be

fulfilled if F is to satisfy the requirements of Theorem 3.

The necessity of the first three conditions is clear, in view of

Lemma 1 and the fact that monotonicity of 4> implies F is increasing.

The fourth condition is less obvious, but Aczel has shown [Acz 66, §6. 4]
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that functions satisfying this bisyinmetry functional equation are

quasilinear. Thus the first four conditions ensure F(x,y) - cff^CxHA^y))
with monotone * and A > 1. We contend that condition (5) is also satisfied

when
<f> is convex, which would permit F to satisfy Theorem 3. Using dot

notation for derivatives we have

^ (x,y) = <J> (A<f>(x)+\<Ky)). A<Kx) = .

X(
^ (x)

<J>(F(x,y))

since f1
^) = 1 / ^(x)). if j is strictly increasing positive then

F(x,y) > max(x,y) and
<f> > 0; if * is strictly decreasing positive then

F(x,y) < min(x.y) and * < (Lemma 1). So if
<f>

is convex increasing

positive we have that j> is positive increasing, in which case

. *<K*> < xi(x)
< x

^(FCx.y)) <J)(max(x,y)) ~

If
4) is convex decreasing positive we obtain the same bound using min(x,y)

since then
|<j>| is positive decreasing. Unfortunately condition (5) does

not imply must be convex, since it is true for lumpy, but near-convex,

functions. It does appear to be a fairly potent test, however: for the

example in Figure 4, we find
Jf

- 1 + (y/x)
1/2

, which is unbounded

on U = R
+ .

This condition seems to characterize when the Huffman algorithm

works: if F grows too quickly, then the algorithm makes mistakes in its

"greedy" selection of nodes to merge. To actually test whether
<J> is convex

or not, the only method currently known is to derive a power series for <ff\

either by repeated differentiation of the functional equation

F(({)'
1
(x),<J)"

1
(x)) =

-1
(2Ax)

followed by equating of coefficients, or else using iterative methods like

the ones in [BK 76] to converge to a truncated series.
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These results will be exploited in section IV. We finish this section by

outlining how the above characterization extends to r-ary tree construction.

Theorem 5 Let everything be defined as in Theorem 3, with the exception

that we let F:U
r - U be the r-ary function (r > 2)

F(Xl ,x
2

, ... ,x
r
) = fh X l^ <Kx.) ).

Then the results of Theorems 3 and 4 still hold.

We omit the proof, which is virtually identical to that of these theorems, with

the changes that we must now define F on less that its full r arguments in

the natural way (In the binary case all constructed trees are full, but

that is no longer true in the r-ary case. If n+1 leaf weights are

provided, the Huffman algorithm selects exactly the 2 + [(n-1) mod (r-1)]

smallest weights for the first weight combination, and this quantity is

not necessarily equal to r; however choosing this many weights guarantees

that all future weight combinations can merge r weights.), and the details

of showing that the tree T gives us inequalities like W(«) £ W(f) i W(T)

are slightly more complicated but no different in method. These details

are covered in Glassey and Karp's proof in [GK 76].
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IV. Cost Functions unde r which Huffman Trees are OpM— i

In section III we described the properties of the internal node

weights in Huffman trees with the weight combination function
'

F(x,y) =
- 1

(A*(x)*A*(y)). In this section we exhibit several classes

of tree cost functions for which the Huffman trees are optimal by

exploiting these results as much as possible. As indicated above

in section II we are considering cost a function of the constructed

internal node weights, so formally

Cost(T) = G(WCT)) = GCWjCT) jyt)).

T^us G: U
n
- R is to be a function under which Huffman internal node

weight sequences have smallest image. We show now that cost functions

that are "Schur concave" (defined momentarily) are important when all

the internal node weights W.(T) are to be taken into consideration.

If one is only interested in max W (T) or min W\ (T) (so: W(T)1 1 n
or W

1
(T), exactly which depending on whether

|<f>| is increasing or

decreasing, where <$> is the function defining F above) then the cost

function need only be increasing. These cost functions are apparently

the most general possible for Huffman construction to be optimal when

the weight combination function F is quasilinear as above. Applications

will be taken up in the next section.

Definition G: U
n
- R is a Schur concave function if

holds for all x^ Xj e U, i,j e {!,... >n }.
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(Note: in the literature on inequalities, when Schur functions are

defined the inequality above is normally reversed. We make our meaning

clear by appending "concave".)

Theorem 6 (Schur & Ostrowski) G(a) < G(b) is true for all weight

sequences a ^ b if and only if G is Schur concave.

Proof The proof appearing here is adapted from [Sch 23] and [Ost 52].

( ==> (Schur))

Select any a - [a.,,... t
a ] such that a^ <_ ... £ a^ t and set

b. = (1-e) a
1
+ e a

2
, b

2
= e a

]

+ (1-e) a
2

, and b^^ = a
±

for i > 2

Then for e <_ 1/2 we have b <_ b
2

and a ^ b. Moreover,

G(b) - G(a) m G((l-£)a
1
+ea

2
,ea

1
+(l-e)a

2
,a

3
,... ) - G(a

1
,a

2
,a

3
, . . . )

^ (a
1
,a

2
,a

3
,...,a

n
) • e^-a^ + -^ ((l-e)a

1
+ea

2
,a

2
,a

3
, . . . ) • e^-a^

where a <= [a
± ,

(l-e^+ea^ and a
£

<s [a^ea^U-e^] , by the mean

value theorem. As e approaches zero the right hand side approaches

Thus if we are to have G(a) <_ G(b) this quantity must be positive, so

G must be Schur concave, since this argument can be repeated for all pairs

of indices i and j (not just 1 and 2).

(
4«ai (Ostrowski))

Given G is Schur concave, fix b and assume that there is an a ^b such

that G(a) > G(b). In particular there will be a maximum such a — so
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assume without loss of generality that G(«) is a maximum. Select indices

k, £, i, and j such that \>b
ji

and a
±

< dj , and define a weight

sequence a" such that a ^ a ^b by setting a « a + e(b - b )

a
j

= a
j
+ £(b

£ " V and % " a
m

for m * i» J- [Note: if there

are no indices k and I such that b
k
> b

£
, we can construct a new

weight sequence b such that a ^ b ^ b which does have such indices

and which can be used to replace b in this proof.] Now set <*,(£) = G (a).

Then

* ,(£)
• (bk-v!^> + cr vs«

> 0.

This contradicts the supposition that a was a maximal point. So there

can be no point a ^ b such that G(a) > G(b) - we must have G(a) < G(b)

It is worth mentioning that all strictly concave functions G (so G" < 0)

are Schur concave — see [Sch 23, p. 12]. Generally speaking the

importance of this theorem has not been properly appreciated; recently

Wong and Yue have found a number of uses for it in storage applications.

See for example [WY 73].

The next three theorems follow as corollaries from Theorem 6 and

Section III. In each we compare the cost of trees S and T built using

the weight combination function F(x,y) of section III, where S is the

tree built by the Huffman algorithm and T is any .other tree. As usual,

W(S) = [W
1
(S),...,W

n
(S)] and W(T) = [W^T) , . . . ,W

n
(T)] denote the

internal node weight sequences for these trees.
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Theorem 7 Let F be as in Theorem 3. Then the Huffman tree -will have

least cost when G is any Schur concave function of the internal node

weights.

Proof This is a simple corollary of Theorem 6, since Theorem 3

guarantees W(S) £ V(T) , so G(W(S)) < G(W(T)).

Theorem 8 Let F(x,y) = 4>~
1
(X<Kx)+X<}>(y)) with X > 1 and <f>

positive

monotone continuous, analogous to Theorem 4. Then the Huffman tree

will have least cost when G is a function of the following form:

If
<J>

is increasing, G = G • <|> where G is Schur concave.

If $ is decreasing, G = G •
<f>

where G is monotone decreasing

(i.e., G(x
1
,...,x

i
,...,x

n
) < G(Xl ,...,x.',...,xn ) ifx

±
±x

±
*).

Proof Note G(W(T)) = G(<J>(W(T))) » G([(|>(W
;L

(T)) 4>(W
n
<T)) ])

.

Using an argument as in the proof of Theorem 3, it is clear that if

4> is increasing then <|>(W(«)) ^ <f>(W(T)), and, if
(J)

is decreasing, then

not only <|>CW(S)) ^ 4>(W(T)) but also (J)(W
±
(S)) < (J>(W

±
(T)) for i=l,...,n

Theorem 6 gives us the first part of the theorem; the second is easy.

Theorem 9 Let F be as in Theorem 4. Then the Huffman tree will have

least cost when G is of the form G(W(T)) = ip(max W
±
(T)) or G(W(T)) =

iKrain W (T)), where ^ is any monotone increasing function.

Proof Immediate from Theorem 4.
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Although these are the only cost functions we discuss here, It

should be made clear that there may be other Huffman-optimal ones.

The functions here prey (thoroughly) on the properties of Huffman

tree internal node weights; discovery of other properties could lead

to other cost criteria favorable for Huffman trees.

It must be emphasized that varying the weight space U can greatly

affect the performance of the Huffman algorithm. Consider the weight

combination function F(x,y) = xy. On U = [0,1] we can take *(x ) = -log(x).

a positive convex decreasing function (the base of the logarithm is

immaterial); from Theorem 6 we know that under cost functions like

G = sum, Huffman trees will be optimal. However on U = [1,«) we have

<Kx) = +log(x), a positive concave increasing function, so under the cost

G = sum there is no guarantee that a Huffman tree will be best. Even

worse, if we choose U = [0,») there is then no sign-consistent strictly

monotone function
<f> determined by F. Thus some of the above theorems

are more restrictive than they appear at first.
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V. Bounds on the weights of Huffman trees

We now know that under certain circumstances generalized from the

weighted path-length tree construction system discussed in section II,

the Huffman algorithm will produce an optimal tree. This generalization

involved appropriate application of quasilinearity and Schur concaveness.

We are led to ask the natural question of whether the "Noiseless Coding

Theorem" (NCT) of information theory generalizes using these notions also.

The NCT states that for the r-ary weighted path-length construction system,

if l ,...,£ denote the respective path lengths of the leaf weights

w ,...,w in the Huffman tree, then we have the inequality

n+1 n+1 n+1

(1) - Z w
t

log
r
(w

i
/w) < I w

i
£
i

< - I w
t

log
r
(w

1
/w) + w

where w = I w , and equality holds on the left iff w
£

= r i for all I.

See, for example, [Gal 68, pp. 50-55] . Since the Huffman tree has the

smallest weighted path length, the inequality gives us a lower bound on

the weighted path-length of any tree; surprisingly it also gives us a

relatively tight upper bound on the Huffman tree. This inequality is

referred to as the NCT because of its original application in estimating

the average number of code symbols per message required to send a set of

encoded messages across a noiseless channel.

Happily the NCT does indeed generalize for tree construction with

quasilinear weight combination functions. We show the generalization in

three consecutive theorems, each involving more general functions than its

predecessor. It is important to notice that the latter two theorems give

bounds only on the root weight of the constructed tree; neither can be
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extended to a statement about weighted path lengt as long as X, the

constant used in defining F, is greater than one. Tke schis* corresponding
to choosing X - X or X > 1 was alraady encountered in the proof of

Theorem 3.

Define the Rfn^i entropy of order a, ^ of a collection of proba-

bilities { P;L , ..., pm> ( so E p±
= 1) by

VP1' P2 Pm> " i~ log
r

( I
PjL

a
).

It is well known that the limit as a - 1 of this Renyi entropy is simply

the Shannon entropy

m
H(Pr P2 , ..., p ) = - I p log (P ).

i=l
1 r 1

We now have the following theorems.

The0rem 10 C°nSider —traction in the weighted path-length system,

so F(Xl ,...,x
r

) = Xl+...+x Then
r

n+1
wH(w

1
/w,w

2
/w,...,w

n
/w) < Zw£ < w(H(w/w,w./w w /w) +

i=l xl n
1)

where w = £ w and 9 o n

i
ana

^i*
^
2 » ••*' £

n
are the Path lengths of w, w in

1 n+i
the Huffman tree. Equality on the left is achieved iff „

±
= r"*i for all it

Proof This is the Noiseless Coding Theorem.
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Theorem 11 If W is the root node weight produced by r-ary Huffman construction

r

with the weight combination function F(x
1

x
r

) - X Z x
±

(X > 1) ,
then

H
ft

< w./w w /w )
H ( Wl/w w

n+1
/w ) + 1

v .

X

£ W < W • X

where a = l/(l+log (X)) and w = Z w
±

. Equality holds on the left iff

r
i = w .° / ( Z w.

a
) for all i.

1
i=l

n+1 l±

Proof Note first that W - Z w X with this weight combination function,

i«l

where {£.} are the path lengths as in Lemma 1. With this, Campbell proves

the left inequality in [Cam 66] by appealing to Holder's inequality

( Z 5j
P

)
1/P

( S r,

j

q
)
1/q 1 £ CjOj (

i + i - 1. P<0 )

1/P "^
with the substitutions p = log (1/X), q = 1 - a, C. = (w./w) r J

,

and r,.
= (w./w)~ P

. The equality condition above is that of Holder, stating

when the values £.
P and r\.^ are "proportional". The upper bound is estab-

lished in two steps: first one shows that choosing the path lengths £ to be

l
±

= r-log
r

( w
i

°t

/ ( Z w
i

a
) ) 1

( from the equality condition) leads to a set of path lengths of a valid

r-ary tree whose root node weight undercuts the stated upper bound.

One then invokes Theorem 4: since the Huffman tree has the smallest root

node weight of all trees, it also undercuts the bound.
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111601:6111 12 If w is the root node weigh produced by Huffman construction with

L-l.
r

F(x
l

x
r> " f ( X I <f>(x.) ) (X > 1)

i-1 *

where $ is a positive, increasing function, then

)

W < ^(w* x

H
a

(^wl>^"".^wn+1
)/w*) + l

•Her. a = l/U+log^X)) and w* = J 4,^), with equality holding iff

"£
i a n+1

* - (» ) / ( 2 4>(W )
a

) for all t

Proof Follows directly from Theorem 11 by replacing w
±

h,^ and
applying * to the bound there . We are uslng the observation after Leimna x

in Section III, that Huffman construction on (w, w^} with F as in

Theorem 12 results in a tree that is identical to what we would obtain
using Huffman construction on HivJ ,. . . .K*M» with F as in Theorem 11.

C°r0llary X Let W be the ro°t weight of the Huffman tree in the tree-height

construction system, with F(^ ^> = max^ ^ + c (c > 0) . ^
log

r
( (^'V6

)

6
) < W < lo ( (f r

Vc )C)
+ Ci

I3! 4—1i=l

Moreover, if ^....,1,^ are the respective path lengths of the leaves

in the tree, then equality is attained on the lower bound iff, for all i,

n+1
o. 1 „„ I tlog ( ( I r V c

) / r
W
i/c ).

1 4—1j-l
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Proof set 4>(x) = r
pX

, X = r
pC

in Theorem 12 and let p * ». This extends

the work of Golumbic [Gol 76], who has proved the above inequality for

the useful case where c = 1 and all the weights w
±

are integral. An

example of the application of this corollary is shown in Figure 5.
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lt t

2
) + 2 nsec.

1 3

Ready times

( < 4 4 6 fi 10

S^ V^ \J

F(x,y) = max(x,y) + 2

Note that corresponding to

Corollary 1 we have

log
2

( ( 2
1/c +2 3/c

+ ...+ 2
12/c

)
c

)

= 15.831729...
( c = 2)

and

15.831729 < 17 < 15.831729 + c.

LIT

is

10 10 11 12

17

Figure 5. Application of Corollary 1:

Huffman AND- tree bounds

14
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VI. Applications and Open Problems

We have just shown that for wide classes of tree construction

systems the Huffman algorithm produces optimal trees. As a first

application of the theorems above (which were derived as extensions

of the traditional weighted path length system F = sum, G = sum) we

prove that Huffman construction in the tree height system

F(x x ) = max(x., ... ,x ) + c (c > 0)

G(W(T)) = max W^T)

is optimal. The demonstration was hinted at in Section III: if we

consider the family of functions

_i r

F(x ... ,x ) =
<f>

( X Z <|>(x ) )
r

i=»l

G(W(T)) = (j)"
1

( Z (})(W
i
(T)) ) or = max W

±
(T)

where 4>(x) = r^
X

, X = r . Then since
(J)

is convex increasing

and X >^ 1, Theorems 8 or 9 imply Huffman trees will have least cost.

Since in the limit as p -* °° we approach the max functions F and G

of the of the tree height construction system, we have established

that Huffman's algorithm is in this case optimal. Demonstrating

this connection was one of the main purposes for starting this

work.
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Another application of this extension of Huffman tree construction

is the generation of codes which are optimal under criteria other than

Huffman's original one, equivalent to weighted path- length [Huf 52]. A

moderate literature has grown up around this subject; it is surprising

that no corresponding analogue of Huffman's algorithm has also been

developed. We outline several known results, including interesting

bounds on average codeword length like that of the Noiseless Coding

Theorem, and then present. these Huffman analogues.

In the context of coding the leaf weights [^ . . . .w^} are proba .

bilities (so Ew. = 1), representing the relative frequencies of occurrence

of a set of Cn*l) messages which are to be encoded into D-ary codewords

(D > 2). Let the length of the message with probability w. be called I.;

we are then interested in minimizing the "quasiarithmetic mean codeword

length" [Acz 74], [Cam 66]

2 3
j=i J y }

or some similar code cost measure; here u is a continuous, strictly

increasing function on R
+

. For example, when u(x) = x we get the

traditional weighted path-length; other "translative" forms of L have

been considered in [Cam 66], [Acz 74], and [Nath 75]. Although this

measure of codeword length is quite general, most special cases treated

in the literature can be handled by the extended Huffman construction

presented here. IVe consider three cases one by one; each is based on

Renyi's entropy of order a
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1
n+1

Here D is the size of the code letter alphabet, i.e., codewords can

be viewed as D-ary numbers. As mentioned in Section V, Renyi's entropy has

the property that its limit, as a + 1, is the usual Shannon entropy

n+1

H(wr ...,w
n+1

) = - I w. log
D
(w.).

Campbell [Cam 65] now defines an exponential codeword length average L(t)

tx
by setting y(x) = D so that

L(t) = \ log
D C I Wj D

t£
j ) = log

A
( Z W

j

A J
)

•

where t > and X = D > 1. He then proves that

(1) lim L(t) = 2 w. I.

t-KI J
J

(2) lim L(t) = max I.

(3) H
a
(w

1
,...,w

n+1
) < L(t) where a = ^ =

; ;
*

A)

-I.

with equality holding when D J = w. /(Ew. ).

Now consider general Huffman construction as discussed in section II with

F(x,y) = A(x+y) and GCK(T)) = log
A
(W
n
(T)). Then

Cost(T) = G(W(T)) = L(t) = L( log
D
(X) ),

so Huffman construction with this weight combination function F produces

optimal exponential-length-cost trees by Theorem 9.

Aczel [Acz 74], besides citing results of Campbell for the degenerate

case t<0 (A<1) above, considers the result v/hen y(x) = (A -1)/(A-T)

(again, A = D ) and shows that

-1
n+1

L(u) = u \ 1 w u (£ ) )

j = l
J J
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satisfies
( ( i Wj °) "* - 1 )/( A - 1 ) < y( Lfll) ,, whfire agaln

a = l/(l+t) = 1/(1 i gD
A). But notice that when F(x,y) = A(x+y)

and G(W(T)) = u'
1

^ I W.(T) ), then because u(m) = 1 A + ... X
m' 1

Cost(T) = G(W(T)) - L (u).

So, by Theorem 7, since G is Schur concave, Huffman construction

with this function F again produces the optimal code tree (identical to

the one constructed for Campbell's average codeword length).

Lastly, Nath has come up with nice results by defining what he calls

the average codeword length of order ct (a > l) [Nath 75]

i
n+1 (a-l)i

L(a) = (a - l)"
1

i g r E w. ^ j
/ w

a
)

j=l :

n+1 t.
= log

x ( I w.
a

A "J
/ w

a
)

where w
a

= I w .

a
and A = D^ 1

). He shows that

H
a
(w

1
,...,w

n+1 ) < L (a) with equality iff w. = D J
"

for all j.

Now when F(x,y) = (AX
a
+ Ay

a
)
V*

and G(W(T)) = log^d)" / w
a

)

we find Cost(T) = G(W(T)) = L (a), so by Theorem 9 Huffman

construction with this function F produces optimal trees here, i.e.,

produces code trees of least average length L(a) . To illustrate this,

we consider construction of an optimal binary code for the ensemble of

13 messages given in [Huf 52]. One of the nice features of L(a) is that

its limit as a - 1 is the traditional average codeword length (weighted

path-length); so in Figure 6 we display optimal code trees for the

ensemble under the cost function L(a) for both a = 1 and a = 2, giving

codeword assignments and L(a) in each case.
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The bounds derived in Corollary 1 of Section V may be used' in any

problem where one is trying to minimize parallel processing time, as Golumbic

has emphasized [Gol 76]; the optimal circuit for fanning-in data which are

ready at different times is the Huffman tree with the max + c weight

combination function, c being the time required to merge the r inputs

of any internal node. M. Dale Skeen of the University of Illinois has

pointed out that Corollary 1 could be used to prove the following result.

We are concerned with constructing a large multiplexor from many

smaller ones. The small multiplexors should all be the same size (have

the same number of inputs), but we are interested in seeing the behavior

of the circuit completion time T
f

as we increase the number r of inputs

of these small multiplexors. Assume that a multiplexor with fan-in r

takes time dog^r)"! to achieve stable output after all its inputs

become stable. Then it is clear that, since a circuit built from binary

(r=2) multiplexors can always be derived immediately from a circuit built

from r-ary (r > 2) multiplexors simply by replacing each r-ary node with

a small balanced binary tree, we must have T
2

< T
r
- the completion

time of the binary Huffman multiplexor is no greater than that of the

r-ary Huffman multiplexor. However the following theorem shows that using

r > 2 does not significantly hurt timing:

Theorem (Skeen) ^ < ^ < ^ + dog,, (r)l

.

*E2°£ By Corollary 1, T
r

< log^ ( Z rVc
)

c
) + c

where c = riog^r)!. Also by Corollary 1 we know that
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T > log 9 ( Z 2
1

) - log ( ( I (2 ) ) )

W. In C
> log

r
( ( I (r) i/C

)

C
).

The last inequality follows since log
a

( Z a** ) is an increasing function

of a, provided all the values x
±

are positive. Combining these results on

T
2

and T
r

we find T
r

" T
2

< c = ri°g
2
(r)1 &S desired *

Other possible applications of this theory being investigated currently

include the construction of optimal restricted-height trees (a much harder

problem than that of restricted-height search trees discussed in [Itai 76],

since no obvious dynamic programming solution exists) and construction of

optimal weighted trees where the weights are vectors with multiple com-

ponents .

There are several open problems. First it would be nice if there

were some criterion like condition (5) at the end of section III which

would enable us to determine whether F satisfies the requirements of

Theorem 3 without having to know explicitly what the conjugating function

4) is. Secondly, it is natural to ask whether there are other nontrivial

construction systems, apart from those considered here, which are optimal

under the Huffman algorithm — or whether we have categorized the most

general circumstances under which Huffman construction is optimal. Tha*.

F must necessarily be quasilinear if G is Schur concave, etc., seems

very plausible yet difficult to prove.
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Last night I went and raced with the Highway Patrol

But that Pontiac done had more guts than mine.

And so I wrapped my tail around a telephone pole

And now my baby she just sits a cryin'.

I'm up in heaven, darlin', now don't you cry;

Ain't no reason why you should be blue.

Just go on out and race a cop in Daddy's old Ford

And you can join me up in heaven, too.

— T. Pynchon, V^
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3

Techniques for Evaluating Nonlinear Recurrences
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I. Introduction

We are concerned here with the evaluation of an m -order recurrence

\ = F<Vl'""X
k-m) U<k<«>

on a parallel machine. It is now well-known that if F is a linear

function of its arguments then there exist efficient, stable parallel

algorithms for evaluating all n iterates in O(log n) time [CKS 76]. If

F is nonlinear, however, then no general methods besides the obvious

0(n) one were known until recently for evaluating the recurrence. In

fact Kung proved that when F is a rational function (ratio of two

polynomials) of degree greater than one and algebraic methods are used,

then parallelism can speed up the recurrence only by at most a constant

factor. Thus a corollary would be that the Newton-Raphson square root

iteration

Vi =
i(xk +V = <\

2 + AV /(2x
k>-

a first order recurrence of degree two, cannot be sped up significantly

by algebraic changes of variables (replacing x, by a rational function

of x, for all k) , forward substitution, and so forth.

Interest in this problem evolved from continuing work on parallelism

supervised by D.J. Kuck at the University of Illinois. Nonlinear

recurrences arise in many serial algorithms (linear algebra routines in

particular) so methods to solve them quickly in parallel would improve

the overall effectiveness of parallel algorithm design. In addition to this,

the PARAFRASE project [Kuck76] has confirmed that nonlinear recurrences

crop up in real FORTRAN programs (though not nearly as often as do linear
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recurrences), suggesting it might be beneficial if a compiler producing

parallel code for these programs could generate something better than

the obvious serial code.

It will be shown here that in many cases (notably the general first-

order nonlinear recurrence with constant coefficients) nonlinear recur-

rences can be transformed into problems which can be rapidly solved on a

parallel machine. The extent to which this transformation process can

be automated is discussed below, and it turns out that the first-order,

constant-coefficient case is essentially automatizable (and hence could

be embedded in a compiler). However, it is not clear that this would

be a useful compiler feature; instead, it would probably be more cost-

effective to train the compiler to recognize and transform several

frequently-used nonlinear recurrences which are linearizable. A number

of special linearizable forms are listed in section III.

This discussion is an expansion of the material appearing in [Par 77],

being much more complete with regard to detail. We concentrate our

attention on the real first-order nonlinear recurrence ^ - F^ )

since it is already difficult and since results for higher orders rely

on the first-order theory. The main thrust of [Par 77] was to show that

there often exist non-algebraic transforms of this problem (bypassing

Kung's theorem by the use of transcendental functions, evaluated within

limited precision) which are linear. More precisely we look for a

nonalgebraic "change of variables" function MxJ = y
fc

such that, for

example,

n <f>

_1
(y) ) = 4>" 1 (sy)
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where s is a constant. Then our iteration becomes

yk+i " sy
k

with yQ
= f 1^) and ^ = 4>(yk

> for k > 0. This linearized

problem is seen to be much easier to evaluate in parallel than the

original nonlinear problem; in fact we have, for any positive k,

^ = F
[k]

(x
Q

) = ^C s
k

(^(x ) ),

F^ denoting the k-fold composition of F.

Unfortunately, after [Par 77] appeared I was made aware that the

above approach to solving nonlinear recurrences has been studied for some

time, though mainly outside the U.S. and then as much as fifty years ago

or more. Schroder iSch 1871] is given credit for having first analyzed

the problem of determining the function cj) which, for a given function F,

satisfies the functional equation

$( F(x) ) = s <)>(x).

This Schroder function <f>,
if invertible, is easily shown to be equivalent

to the change of variables <$> derived above. Since Schroder's work

appeared a large number of papers have accumulated discussing one aspect

or another of the nonlinear iteration problem. Probably the most

complete reference is Kuczma's book [Kuc 68], which is quite thorough

and contains an extensive bibliography. An interesting overview on

iteration also appears in Chapter 2 of [Mel 73] . This discussion will

therefore survey the practical implications of the theoretical background

of the problem only very briefly, giving references to fuller analyses

in the literature, and will lay emphasis instead on some new work

concerning how first-order nonlinear recurrence simplification might
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actually be used in the development of new parallel algorithms or implem-

ented in a compiler. This new work consists of, apart from the synthesis

of germane old material useful for computational purposes, exhibiting a

number of linearizable nonlinear recurrence forms (especially in section

III. 3) and devising a methodology for the linearization of the first-order,

constant-coefficient iteration (which is applied to several examples in

section IV). Throughout the intent has been to make the subject accessible

to parallel algorithm designers interested in the known results, or in

working along these lines.
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II. Theoretical Considerations

In this section we give briefly the definitions needed to discuss

real iterations, particularly of the kind one is apt to find in programs.

An iteration <F, X()>n> is a (possibly infinite) sequence of real values

fx. > where each x. is defined recursively in terms of its predecessor
x

lc
J l<k<n k

by x^ = F(x -,), F being a real-valued function. The modulus E of F

is a subset of the reals on which F is injective (F:E + E) and on which

the iteration is defined. Note that the starting point x
Q

of any iteration

must be contained in the modulus. A submodulus I is a subset of the

modulus which also enjoys the injective property, i.e., F:I * I. (Note:

I may be an open or semi-open set)

.

We write F g C
r
[I] to mean that F is r-times differentiable on the

set I. If r=0 this means F is continuous, and if r=°° then F has derivatives

of all orders — the case we will normally be interested in. A fixed point

£ of F is a point in F's modulus such that F(£) = £. Supposing that

F e C [I], where £ is in I, we say £ is attractive if |F'(0| < lJ

repulsive if |f'(£)| > I; and indifferent if |F'(S)| = 1. (Similar

definitions of attractiveness can be made if F is only continuous.) Also,

00 can be a fixed point, but we alter the definition of attractiveness to

mean that F(x) > x for all sufficiently large x. The intuition behind

this terminology is simply that iterations normally converge to attractive

fixed points and diverge from repulsive ones; Figure 7 should help

clarify this. Formally, if for every fixed point £ of a continuous

function F we define the attractive domain A^(^) of g to be those points

x such that

lim F
[k]

(x) = £
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Figure 7. Iteration function F with fixed points £l, £2
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(F^ denoting the k-fold composition of F) , then it is a theorem that

every attractive fixed point has an open attractive domain contining it,

and that this attractive domain is a submodulus for F [Kuc 68,Thm 0.3].

00

We should point out that the theory of iteration of a real C

function (the problem we will be studying) is embedded inextricably in

the corresponding theory for analytic functions defined on the complex

plane, and a thorough understanding of the former necessitates knowledge

of the latter. For example to explain why the function

F(x) = l/(l-x)

satisfies F(F(F(x))) = x requires us to note that F has fixed points

at (1 + i/3)/2 and that F*s derivatives at these points are primitive

third roots of unity. Note however, that if £ is a complex number then

\(0 cannot contain any real point since F(x) is always real if x is.

Thus it is possible to study real iteration in its own right, though a

greater understanding of what is going on will require study of complex

variables.

We will always be concerned with real iterations near attractive

fixed points, since it turns out that these are the iterations that can

be linearized by finding changes of variables. It is very possible that

a general iteration could get in a cycle of length m, such that x^-i^
= x

fc

for all suitably large k. Such cycles would tend to proliferate near

indifferent fixed points and in areas where F is "noninvertible" (see

below) . Except when m=0 or 1 there is no way that this behavior can be

transformed into a linear behavior, and consequently any linearization

approach used is doomed to fail a priori . However, if we operate only

in the attractive domains of attractive fixed points then something like
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Schroder functions can be found and the problem oan be locally linearized.

Thus our whole approach is to find an invertible change of variables

* - *
c

for each attractive domain A^O which linearizes F on that

domain, i.e.,

(1) F <x > " O^C <Kx) ) for x in ApCO.

The iteration is to be run in the slow, obvious way to start with until

an iterate ^ enters an attractive domain, and then the linearizing

transform can be made and the iteration finished rapidly. Naturally,

many iterations will be started in attractive domains.

Consequently, the results derived here are restrictive in that they

can only be used in attractive domains. Equation (1) above implies a

further restriction, however. To be computationally useful our change
of variables must be invertible, but it is easily seen from (1) that

if F is linearizable then it too is invertible . Therefore, assuming

F e C [Aj.CS)], F must be strictly monotone and we must have

(2) F '<x > * on AyCSMS}.

Note that F'CO = is possible since it is reasonable that <KO = or

+ »; in fact if F is any superlinearly convergent iteration like Newton's

method then we do have F' CO = 0. However, by differentiating Schroder's

equation <|>CFCx)) = s<Kx) we find

(3) 'CO F'CO = $•(£) s

which implies that, if 0' is defined and nonzero at ^ we must have

(4) F'CO = s

determining the constant s of the linearized map CD. Intuitively,

in the linearly convergent case we are finding the map * which "untwists"

the nonlinear function F (x) into the linear function sx, and are solving

our recurrence in the untwisted space.
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Finally we assume for computational reasons that the functions F

we are dealing with are C°° (hence representable by a power series) on

A^S). It is known that if F 6 C^U)] (r 1 1) is invertible with

F'(0 * 0, then there exists a one-parameter set of C
r

solutions <f>
of

equation (1) [Kuc 68,Thms. 6.1-6.2]; and, if * is C
r

then clearly F must

be also. In addition since we will want to compute <j> using power series

it will be expedient to assume a power series expansion for F is not only

available at the fixed points but is convergent in neighborhoods of them

also. Briefly, we are assuming that F is a real analytic function which

is invertible around its fixed points, or more concisely, that F is a

C°°-morphism on all domains of interest to us. Of course, these regularity

assumptions on F could be replaced for computation purposes by the

supposition that F can be well approximated by C°°-morphisms on specific

domains.

With these assumptions we can prove the existence of a real analytic

change of variables function satisfying something like the Schroder

equation (1) on an attractive domain. We use the hedge "something like"

since we will not use the Schroder equation in all cases. To do so

would lead to problems: observe that if we use the natural equation (A)

above and plug it into equation (1) when F'(O=0 or F'(D=1 we produce

unintelligent results. It turns out that these problems can be circum-

vented by not using (4) and by tolerating singularities in the change

of variables function at the fixed point — that is, one can always

find a solution
<J>

to the Schroder equation at an attractive fixed point

(or indifferent fixed point with nontrivial attractive domain) which is
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analytic except possibly at the fixed point itself. (Novice reader of

[Kuc 68] beware: this point is not very clearly made.) However it is

more convenient to simply shift to Batcher's eguaMnn

(5) b(f(x)) « 3(x) y

when F'(0 = 0, and to Abel's equation

(6) a(F(x)) = a(x) +1
when |F'(0| = 1 because the solutions to these equations are easier to

handle near the fixed point than the Schroder solution. It is easy to

see that Schroder 'a. Bo'ttcher's, and Abel's equation are all equivalent

in that an invertible, analytic solution of one leads to an invertible

analytic solution of another (except at the fixed point). The equivalence

of these and several other related functional equations is clarified in

Figure 8. Note that all of these equations are equally potent in

evaluating iterations quickly.

Before we actually state our result on the existence of linearizing

changes of variables, we make the following final assumption. For sim-

plicity we can assume that the fixed point K (in whose attractive domain

we are determining *) is equal to 0. That we can do this without any

loss of generality lies in the following observation: Given F(x) with

fixed point £ } 0, we replace it with

(7) G(x) = T(F(x"
1
(x)))

where t(x) - x + £ if £ is finlte and T(x) = 1/x otherwise> ^
it is easy to see that G has fixed point and if we find * such that

G(x) = ty( s l/f^x) )

then clearly F(x) = cf»( s <f
X

(x ) ) with
<f> defined by

<Kx) = T
_1

(t|;(x)).

Also if £ is finite we find the useful relationship
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Bottcher equation

B(F(x)) = (B(x))
y

inverse

<j> = log 8

Schroder equation

<|>(F(x)) = s <j)(x)

i i

a = log
<f)

1

Abel equation

a(F(x)) = ot(x) + 1

inverse

inverse Bottcher equation

F(B
_1

(y)) = B"
1
(y
y

)

cj)"
1

= B"
1

exp

Poincare equation

F(4>"
1
(y)) = (f^sy)

-1 a-1a =
<J>

exp

inverse
4 +

inverse Abel equation

F(a
_1

(y)) = a
_1

(l+y)

Figure 8. Equivalences between functional equations
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(8) G'(x) - F'(x+0,

so G's derivatives are the same as F's at its fixed point. This puts

us finally in a position to prove the following theorem.

Theorem Given a function F which is analytic and invertible on the

attractive domain A^O) of the attractive or indifferent fixed point 0,

there exists a change of variable function a, 8, or
<f> such that

e"
1

( (3CX))*
1

) if F '(0) = o

"*< s <|>(x)) if < |F'(0)| <

of^C a(x) + 1 ) if |f'(0)| = 1

for x in ^(0)

Proof

The proof is broken down into the different cases determined by
| F '(0)| :

Case 1 < |F'(0)| < 1.

In this case we set the Schroder constant s = F' (0) (so s is positive

iff F is strictly increasing). This case has been well-understood since

Koenigs analyzed it in 1884 [Koe 1884], and is known in the literature

as the "regular case". Koenigs proved that for any analytic F there

exists a one-parameter family of solutions
<fr

of (1) which are analytic

throughout the attractive domain A^O) [Kuc 68, PP . 139-141] , given

formally by

4>
c
(x) = c lim F

[n]
(x)/s

n
.

n-*»

Power series for a particular * may be easily derived as in [LL 59, pp. 131-2]

using the power series coefficients of F. If we write

F(x) = sx + Z a_x
m

m=2

00
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then the Poincare equation (inverse Schroder equation) F(<|> (y)) - <J>
(sy)

leads to
00

' 1
(y) - y + E v"

m»2

where

c
2

= a
2

/ (s " S)

c - a
3

/ (s
3 - s) + 2a

2
/ ((s

3
- s) (s

2
- s))

c^ = a
4

/ (s
4 - s) + (3s+5) a

3
a
2

/ ((s - s) (s - a))

+ (s+5) a
2

3
/ ((s

4
- s)(s

3
- s)(s

2
- s))

and so forth. Once an expansion for <J>" has been derived, the series

for $ is easily obtained by just "reverting 1
' the series for

<J> ;
we

have, corresponding to the expansion above,

00

<J)(x) - x + I d
m
x
m

m=2

where

d
2

= -c
2

d
3

= 2c
2

2
- c

3

«;
3

d
4

= 5c
2
C
3

" C
A

" 5C
2

d
5

= 6c
2
C
A
+ 3°3

2
+ 14c

2

4
" °5 ' 21C

2

2
°3

etc. Again, this expansion for <t> may be derived by comparing power series

coefficients (in this case, of <J)(<|)~ (x)) = x) . However, the formulas

one gets grow very complicated very quickly. Better computational methods

for producing these series have been developed by Brent, Kung, and Traub

[BK 76], [KT 78], [T3 78]. These methods will be discussed below in section IV.
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inspection of equation (1) shows that (,) can be replaced by c*(x)
for any nonzero constant c without disturbing these results (c is the
parameter of the one-parameter of the one-parameter family of solutions 9i
above we arbitrarily chose solutions with leading coefficient one).
Koenigs' theorem guarantees not only the existence of * but also that
it is convergent for some nonzero x, although convergence on all of *,»>
is not guaranteed. tte power series expansion for ,W« for any flxed
k obtained by forming the composition f\ s

k
9 (x) ) should be convergent

- but again, note that computational problems with significance can arise
if |.

|

is either very close to zero or very close to one, as should be
evident from the coefficient formulas.

Case 2 F'(0) . 0.

This is known in the literature as a singular case, with multiplier zero.
What is indicated is that F is very flat in a neighborhood of zero, so
the iteration's convergence to zero will be rapid (superlinear) there.
Clearly the approach used in Case 1 will not work since setting
s - F'(0) does not provide us with anything useful.

One way to show the existence *f . pi \.existence of a C change of variables is to
reduce this case to Caw l k., ,l„ c .,Case 1 by the following artifice of Szekeres [Sze 58,

P.215],[Kuc 68, p. 146]. We assume here that

F(x) = x^A(x) . x^(a0+ alX+ a
2
x
2
+ ...)

where
y is a positive integer greater than 1 and a

Q
is nonzero. (This

same technique works when y is any nonzero real number, like 1/2, but
F is not analytic at zero unless u is a positive integer.) Write

F*(x) = 1 1
-log(F(exp (-1/x) ) ) u/x - log(A(exp(-l/x)))
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which is a transformation of the form (7) above but with t(x) = l/log(l/x).

*

We verify that F (0) =0, and importantly

lim * F
*
(x) = u. ±- (

*
/ (1 - i log A(e-

1/X
)) ) - i

lr>0+
dx **0+

dx y P

Since < |l/y| < 1, we know by reduction that Case 1 that F has a

Schroder function ty
satisfying

F*(x) - if
1

* £*<x) ).

Therefore if we put (J)(x) = i|;(l/log(l/x)) we obtain the Schroder solution

F(x) =
(f."

1
( ^ <()(x) );

moreover we can show formally that

4>(x) = lim log(l/F
[nl

(x)) / \i

n
.

n-*»

It must be pointed out that the function F above is not analytic at zero

-- in fact it is very nonanalytic, as can be seen by approaching zero

from both sides on the real line — and our "reduction" to Case 1 relies

on the fact that if F is C
r

then there exists a C
r

Schroder function

satisfying (1), for any r > [Kuc 68, p. 137]. Thus \\> is not necessarily

analytic and neither is <|>. It is important to notice that <j>
cannot be

differentiable or even continuous at zero here. If it were dif ferentiable

at zero, then equation (3) would give us s = F'(0) = 0. Kuczma repeat-

edly asserts that the only continuous solution of (1) is
(J)

= in this

case, which is confusing until one realizes he assumes that
(J)

is defined
i

at £.

The problems with using Schroder's equation in this case are now

apparent. We circumvent them by solving Bottcher's equation (5) instead.

Analogous to Case 1, Levy and Lessman have shown that the inverse Bottcher

equation F(g
-1

(y)) = 6~ 1
(y

V') for the (popular) case y = 2 can be solved
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by equating power series coefficients to yield

3"1
(y) - I c y

m

n-1 m

where

C
l

=* U*o

c
2

= -a
x

/ (2a
3
)

c
3

- 5a,
2

/ (8a
5
) - a

2
/ (2ao

A
}

. ^ , ^3,

and so on TLL 59,p.l33]. Computational methods for deriving 3"1
to

any desired degree are given below in section IV for all y > 2. Again

once 6" 1 has been discovered, 0(x ) can be derived straightforwardly by

reversion as in Case 1. The nice thing about Bottcher's solution is that

6 is an analytic function and does not have the logarithmic singularity

at zero that the Schroder function *(x) = log $(x) does. This was the

whole purpose of changing functional equations.

Case 3 |F'(0)| = 1.

This is referred to as a singular case, with multiplier unity, and is

the hardest of the three cases to deal with. Here zero is an indifferent

fixed point, but we assume A^O) is a nontrivial attractive domain, so

if F»(0) = +1 we would expect F(x) < x for x in some interval (0,c).

For example F(x) = sin(x) satisfies F(0) = 0, F'(0) = 1, F(x) = x - 0(x
3
) < x,

and always produces an iteration converging to zero. The convergence for

functions in this case is extremely slow (sublinear) when it exists, however

the sine iteration produces iterates x
k

which eventually decrease to

v3/k (1 + 0(log(k)/k)), irrespective of the starting position [Mel 73],
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[deB 61]. This convergence rate is evident from the fact that |F(x)| « |x|

for small |x| , hence \\+1 \
~ \\\ when \\\ ls sma11 -

In the literature F is normally taken to be a complex function, and

|F'(0)| - 1 has a number of possible ramifications depending on the precise

character of the complex number F' (0) (see [Kuc68,ch.VI§§7-10]) .
Here

we have simply F' (0) = +1 since we are concentrating on real functions.

j-9-1 [2]'

Note if F'(0) = -1, however, then F l * J
(x) = F(F(x)) satisfies F l

(0) = +1,

so with a small amount of work we can restrict our attention to the case

F'(0) = +1 and assume
00

(9) F(x) = x - ax
y+1 + Z a x

m
(y > 2)

.

m=u+2

Now it is easy to show by direct substitution that the only analytic

functions F having analytic solutions $ to the Schroder equation (1) are

functions which satisfy

F
[p]

(x) = x

for some positive integer p [Kuc 68, p. 147], i.e., functions which are

equivalent to the identity when forward-substituted p times. If p is

small this is a result of purely negative use to us, since it says a

Schroder change of variables can be found only when we wouldn't need it.

Additionally it is very rare for a function to satisfy F (x) = x:

Kung's results iKung 76] show that the only rational functions having

this property are those of first degree, i.e., of the form

or \ ax + b
F(x) = r—r .

ex + d

(Observe that F(x) = x/(x-l) satisfies F
[2

^(x) = x, and Boole's function

F(x) = l/(l-x) [Boo 70, pp. 292-3] satisfies F^
3
-"(x) = x. Boole derives

general conditions on a,b,c,d for F to satisfy F lpJ
(x) = x [Boo 70, pp. 298-9] .)
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Because of the difficulty in obtaining a change of variables function
the normal shift at this point is to move away from Schroder's equation
to Abel's equation (6). Regrettably the Abel solution aW cannot be
analytic at zero either, as (6) should *ake clear, but its behavior there
can be precisely studied. In fact „ has a pole of order „ (of. (9)) at
the origin, and possibly other lesser singularities as well. Otherwise

>W is analytic for x > 0, behaves like -l/ (l^) near zero, is unique
up to an additive constant, and if y ls any polnt ln^ thgn o ^
be expressed as [Sze 58, p. 218]

a(x) = u, ( a1/w Cun)
1+1/" (,W (x)-pW(v))

)

In spite of this information it is very difficult in general to derive
precise expressions for «(,). There are special cases: when

F« - x/U+x) - x - x
2 + x

3 - ...

one can show that «(,) . (x-l)/x, „-!(„ , 1/(1.x) sat±sfy (g) . ^
here

F ° (x) - x / (1 + nx)

for all x, so we do not really need changes of variables. DeBruijn [deB 61]

develops at length the leading tm of a(x) for the s±ne lteraMon- Methods
for dealing „lth the dlfflculty „ f handUng^ ^^^ ^^ ^
section IV, but these methods consist only in deriving a series for F

[n J(x).

A general procedure for deriving explicit changes of variables is not known
for this case.
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This concludes the discussion of the theorem and the theoretical

background of the problem. There are a number of other interesting

related topics that will not be touched on here, such as fractional

iteration (how does one evaluate F
[1/2]

(x)? etc.). The reader looking

for more information on this, on the complex case, or on higher-order

iterations is referred to [Kuc 68]

.
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III. Special Recurrenpp Forms

In this section we describe three classes of nonlinear recurrences
which cover almost all the examples of linearizable iterations known
to the author. Examples described herein have been compiled from

IB00 70], lKuck74], [Kuc 68], [LL 59], [Mel 73], [M-T 51], [Par 77],
ISch 1871], and other lesser sources. Some of the recurrences are not
first order and do not fit directly in the theoretical discussion above,
but are included here for completeness. Almost all nonlinear recurrences

**
= F'Vl W

which are linearizable in the sense being discussed in this chapter
satisfy the quasilinearity property

(10) F(V— •V " *
_1

( U0(v ), ... ><Kv)) )

where L is a linear function and * is an invertible map on the domain
of iteration, we rould close the section at this, but there are certain
-ps

* which produce interesting forms for F which bear .entioning, and
there are see recurrences - discussed in the third section - for

which completely different techniques are successful.



78

1. Simple Quasllinear Recurrences

Provided L is a linear function, any recurrence of the form (10)

can be linearized with the change of variables yk
= 4,(3^). For example

2
taking (f)(x) = x we see

/ 2 2 . , 2

\ V Vl " V2 + 2V3

is linearizable, and if <j>(x) = log(x) then so is

^ " 2
*k-l

x
k-2

2
7 *k-3

•

There are many interesting forms when $ is a simple map. Taking

<j>(x) - log(l+x) and L(x) = 2x, we find

F(x) = x
2
+2x -* F

[n]
(x) = (x+1)

2
- 1.

If 4>(x) = (1 + log(x))/(l - log(x)) and L(x) = 3x then

F(x) = x(x
2
+3)/(3x

2
+l) -#> F

[n]
(x) = (1+x

3
)/(l-x

3
).

In general, the idea here is that a judicious set of functions $

composed of exponentials, logs, and rational transformations will serve

to generate many interesting rational functions F. Perhaps the most

simple class of such functions are the linear fractional transformations

_, N ax + b
F(x) = -7-7

ex + d

where a,b,c,d are constants; this class arises from choosing
<f>

itself

to be a linear fractional transform. Assuming F is non-degenerate (so

ad-bc JO, c ^ 0) we can get the following closed form for its iterates.

Fr °m
V (

ax + b a _ ad - be
F(x)

ex + d c c(cx+d)

we obtain

F
[n]

(x) = (r
l
+ d / c )

n
^ r

i
x + b/c) " (r

2
+ d/ c )

n
( r

2
x + b/c)

(r
1
+ d/c)

n
(x - r

2
) - (r

2
+ d/c)

n
(x - r^

where r and r are the roots of F(r) = r. This may also be written as
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F (x) = u tanh( arctanhC2^-) + nw ) + v

where u = "V (a-ej + 4b r ir - o ^ ju c; i- ^dc
, v - a - d, and w = arctanh( 2cu ).

2c 2c aTd

If r
l

= r
2

= r we 8et the special form

FW (X ) = (rx + b/c)n + (r + d/c)x
(x - r)n + (r + d/c) *

To reiterate, to reiterate, there are many_ simple quasilinear

recurrences. It is impossible to give a complete enumeration here,

since any list could be extended indefinitely just by repeatedly

selecting new maps
<f>

and conjugating the list with respect to them.

Probably the best method for determining whether a simple map * exists

for any given F is to go ahead and derive the Schroder function

corresponding to F (at least the first few terms in its power series

expansion) using the methods described in section IV. Even if closed

form for the change of variables cannot be gleaned from its power series,

its general behavior (exponential, logarithmic, rational) can be, and

this information used to make more intelligent guesses about its nature.
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2. Special Forms arising from Algebraic Addition Theorems

From the identity

o 2 2
(sin 2y) = 4(sin y) (1 - (sin y) )

we notice that the recurrence ^ = 4x^.(1 - x
fc

) can be transformed to

2

2y under the change of variables (sin y
fc

) - x
fc

, provided that
*k+l

< x. < 1. It follows that

x^ = (sin( 2
k arcsin(^) )

for any k in this iteration. Similar identities give the following list:

F(x) F
[n]

(x) comments

4x(l-x)

4x(l+x)

2x
2
-l

4x + 3x

4x - 3x

3x - 4x

2x/(l-x
2

)

2x/(l+x
2

)

(x
2
-l)/2x

(x
2
+l)/2x

(x
2
+A)/2x

(sin( 2
n

arcsin(v^) ))
2

if < x
Q

< 1

-(sinh(2
n
arcsinh(/^) ))

2
if x

Q
< (equivalent

-(sinh(2
n" 1

arcsinh(/-4x(l-x)) ))
2

to above)

(sinh(2
n
arcsinh(*£) ))

2

cos( 2 arccos(x) )

cosh(2 arccosh(x) )

sinh(3
n

arcsinh(x))

cos /0n cos , NN
, (3 arc ,(x))

cosh cosh

sin (3 arcsin (x))

tan (2 arctan (x))

tanh(2 arctanh(x))

cot (2 arccot (x))

coth(2 arccoth(x))

•/A coth(2
n

arccoth(x/</A)

if X
Q

> 1

separate cases similar

to example above

if x
2

< 1/2

if x
2

> 1/2

Newton-Raphson square-

root iteration
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This list can also be extended indefinitely by examining things of
the form F(x) = t(m t'Vx) ). where t is a trigonometric function. When
m is an integer the result is typically a rational function. For example
the Chebyshev polynomials

T
n/

X
^ ~ cos ( m arccos(x) )

enjoy the relationships

T
m
In]W • ^(x) and -iT^'dx) = -1T (lx) .

Note -iT
m
(ix) = cosh( » arccosh(x) ) and the first few values of T are

Also if we set

Vx
> =

T
2
(x) = 2x^-1

T
3
(x) = 4x

3
- 3x

T
4
(x) = 8x

4
- 8x

2 + 1.

Z ("D
k

(*) 9W , x
2k+1

k=0 2k+1

2 ("l)
k

(m) x
2k

lk=0 2k
J

= tan( m arctan(x) )

where (m)
p

- (*)

<

m-l) . .

.

(m-p+1) and ^ . 1? ^ we ^ ^^^
recurrence forms for F(x) = Sjx) and -i Sjix) . We find

S
2
(x) = 2x/(l-x

2
)

S
3
(x) = (3x-6x

3
)/(l-6x

3
).

Of course, further rational forms can be obtained by conjugating this

list with invertible rational functions. Schroder goes on, for example,

to compute F [nJ
(x ) when

F(x) = f 1
( 2 <Kx) / (1 + (4>(X))

2
) )

like the tangent transform, but where
<J>

is an arbitrary linear fractional

transformation. It is clear that F(x) will be a rational function of

degree two with three degrees of freedom in its coefficients.
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The above results are all derivative of what are known as addition

theorems for complex functions. A function * is said to have an

algebraic addition theorem if there exists a polynomial P(x,y,z) such

that, for all u and v,

P(<J>(u),4>(v),<j)(u+v)) = 0.

Weierstrass showed that the only functions <j>(u) capable of having an

algebraic addition theorem are algebraic functions of u, of exp(iiru/w)

,

or of the Weierstrass elliptic function g>(u| w^u^) ,
where u), u^ and a>

2

are suitable periodicity constants [Mel 73, p. 56] , [For 18, ch. XIII]. The

trigonometric functions are degenerate elliptic functions. One can

derive further results from the elliptic functions themselves. For

example, since

4
sn(2u) = 2sn(u)cn(u)dn(u) / (1 - m sn(u) )

arewhere sn(u|m), cn(u|m) = V 1 - sn (u) , dn(u|m) = Vl - m sn (u)

Jacobian elliptic functions (parametrized by m, with < m < 1)

,

squaring both sides of the identity gives us that

_, , 4x(l-x)(l-mx)
F(x) = 7

(1-mx )

satisfies

F
[n]

(x) = (sn( 2
n

sn
_1
(^ |

m)
|
m) )

2
.

Finally, other types of recurrences may also be solvable using

trigonometric substitutions. Consider the second-order recurrence

X
k+2

= A (x
k+l

+ X
k ) f (x

k+l *k " A)

having the difference-equation format x
jc+2

x
k+i

x
k

= A ^xk+2
+X

k+l
+X

k^

Then purting y, = /\a[ tan(x ) we obtain the linear relationship

yk+2
+ yk+l

+ yk
= arcsin <0) = n7T *
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Interestingly, Milne-Thomson shows [M-T 51,p.431] that recurrences of this

same difference-equation format, but extended in the obvious way to any

order, have an explicit solution involving primitive roots of unity.



84

3. Trading off recurrence order for linearity

When we discussed fractional linear transformations above it was

taken for granted that the coefficients in 'he (first-order) iteration

function F were constant. If instead we have the non-constant-coefficient

iteration

(ID \+l
= F,

:<*k>

then the change of variables approach as dictated above will fail

(miserably). Consider however setting

*k
= U

k I V
k

where the u's and v's are new variables. Substituting this expression

for x in (11) produces

u, , a. u. + b. v,
k+1 k k k k

v, u, + d. v,
k+1 He k k

which can be divided into the first-order, coupled linear system

"k+1
= a

k
U
k
+ b

k
V
k

(12)
v
k+l

= \ + d
k
V
k

*

This is a derivation of the fact that compounded fractional linear trans-

forms can be represented as matrix products:

\+l

'k+1

a
k

b
k

a
i M/a

o
b
o ^0

Matrix multiplication being associative, the value x
fc

can be rapidly

evaluated on a parallel machine. (Note also that a reformulation of this

can be used to find a fast parallel algorithm for first-order linear iteration.)
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Surprisingly, there is another transformation one can make here.

Setting

*k
= Vi ' yk

+ Vi
where the y's are new variables, and substituting for ^ In (11), gives

the second-order linear recurrence

(13) , -
(Vi + d

k )

k+1 " (b
k - \<V (b

k - a
k
d
k>

"fc-1 '

This recurrence can be solved rapidly in parallel as long as (a, d -b ) *
k k k

for each k, i.e., as long as each application of F
k

is non-degenerate

as a fractional linear transformation. Taking the boundary conditions

7 5: lf y
l

= (x +d )/(b0~a d )
'

we can also write this recurrence as

a matrix product

'k+1 (a
k-l

+d
k
)/6

k
1/6

k (a +d
1
)/6

1
1/6

1

1

where 6
fc

= b^a^ for all k .

Except for a few more recurrences to be included below, this discussion

should be closed at this point since it is already far beyond the scope of

the rest of this chapter. However, because the type of recurrences here

are of interest to algorithm designers and compiler writers (of more

interest, probably, than first-order constant-coefficient iteration) we

digress momentarily and present a theory which may be of use in linearizing

recurrences of this kind. The area is especially interesting because it

provides another attack on nonlinear recurrences that is not subject to

the negative results of Kung [Kung76].
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In both of the examples above, a first-order nonlinear recurrence

was changed to a linear one by expanding its order with the introduction

of auxiliary variables. Expansion of order is a little-studied technique

in mathematics, since normally one is interested in just the opposite.

Reduction of order is often accomplished by detecting invariants in the

recurrence system and changing variables in such a way that a dimension

of the system is annihilated. For example the arithmetic-harmonic mean

iteration

vi - \
(a
k
+ V

< 14 > ill,,
Vi 2akV (a

k
+ V ^KW >

satisfies the invariant a^ = a
Q
h for all k. If a

Q
h = A then the

iteration converges to VA, and one can show by induction that in this

case the Newton-Raphson square root iteration

(15) ^+1
= j (x

k + ^)

is equivalent to the arithmetic-harmonic mean, in the sense that

v = a = A/h for all k. Thus the Newton-Raphson iteration is a
in k k

reduction of the arithmetic-harmonic mean.

What we wish to accomplish here is in some sense the inverse operation

of reduction, but with the goal of producing a linear recurrence. There

th , „
are at least two possible expansion strategies: expansion of an m -order

nonlinear recurrence into a coupled system of I m -order linear recurrences

with I _> 2, or expansion of the nonlinear recurrence into an (m-Hl) -order

linear recurrence using a different family of iterates. The fractional

linear transformation problem above exhibits the use of both strategies.

We describe the theory behind each one separately.
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With the coupled system strategy one takes the recurrence

*k+i - w
and finds an expansion function Y of £ argument variables u,v, . . . such

that substitution of

\ - ^VV"" )

into the recurrence definition produces

as) y»cvv ..-. » - f ( Vvv
k
,... ), L

2
(Vv

k ,... ),...)

where 1^, L
2

, ..., L^ are linear functions. Then since x^

(u
k+l

,vk+l"" )s the nonlinear recurrence has been expanded into the

linear system
U
k+1

- L
1
(u
k
,v

k>
... )

V
k+1

= L
2 (VV' >

The fractional linear transformation example (12) showed that V(u,v) = u/v

linearizes (11) since

F
fe

( Y(u,v) ) - f( a
k
u+b

k
v, u+d v ).

The system strategy generalizes in the obvious way for the m
th
-order iteration

*k
= F

k (\-l'\-2' '••• x
k-m);

each x
fc_1

is replaced by *<V±'Vi""- } and one seeks t0 Produce a

system of I m
l
-order linear equations defining u^, ... in terms of

their predecessors.

The intent of the system strategy is therefore to solve the functional

equation (16). The difficulty of finding a solution will rest on the form

of F -- for a good general reference on functional equations, see [Acz 66].
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Two techniques that may be useful in determining Y are differentiating

(16) with respect to different variables (note the assumption that f is

differentiable) and checking its form for different variable values. For

example, suppose we were trying to find an expansion ^ = ^Cu^) for

the Newton-Raphson iteration (15) satisfying the functional equation

F(^(u
k
,v
k
)) = ¥( au

k
+bv

k
, cu

k
+dv

k ),

for some constants a,b,c,d. From (15) we find

k Y(u,v) + A/¥(u,v) ) - y( au+bv, cu+dv ).

However, when we set u = v = we get

¥(0,0) = A.

This suggests that, even if we could find an expression for ¥(u,v)
,
it

would not be very useful computationally (since it seems to require

knowledge of the value of the square root it should help derive).

Finding a linearizing for the Newton-Raphson iteration which does not

use square roots seems very difficult, as we saw in section III. 2 and

will see below in section IV.

The different family strategy seeks to convert the nonlinear iteration

with iterates {x} into a linear one with iterates {y^, where changes of

variables are given by

*k
= \ (yk> yk-r •••

'
y
i'
yo }

yk
= VWr ••• '*i»V'

The intent is that the relationship

"Wi" WWk V V V'k v > w
expresses a linear recurrence among the y's (possibly not a banded recur-
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produces

yk

rence) and that

yk " V \(Jk..-..y ). »W (7W y ) W )

holds for all k. In the fractional linear transfer, example (13) we took

*k
= yk-i /yk

+ a
k-i ' ^k^'Vl'—V'

Solving this recursively for yk
with the boundary conditions given above

k
1 / II (x.-a. , ) = A (V v v \

j=l J j-i \ l\'Vl V*

Restricted forms of the linear frart-,-nn,i <- ^xxnear tractional transformation recurrence (11)

give rise to other interesting changes of variables. If

\+l
= V (

*k
+ d

k >

we obtain the linear recurrence v = A v + i , ue yk+l
d
kyk

+ 1 when we set \ - i/y,,

or formally

*k
= Vyw V = 1/y

k

yk
= \ (x

k»\-r--->V - i/x
k>

If we have the continued fraction iteration

Vi - a
k
+ Vx

k

we get the second-order linear recurrence

yk+l " Vk + Vk-1
k

with the change x. = v /v „_n
He yk/yk-l» yk " n V Essentially this change of

j-0 J

variables was used by stone to produce his "recursive doubling" Lu algorithm
for solving tridiagonal systems in parallel [Sto 73] , and by Sameh and Kuck
for the parallel Givens reduction of tridiagonal matrices [SK 75], Sameh

and Kuck have also employed it in a parallel QR algorithm for symmetric

tridiagonal matrices [SK 77],
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It is difficult to say which of the two strategies presented here is

"better", although it is clear that the solution produced by the different

family approach can always be converted to a coupled system by changing

the linear recurrence yk
= ^^k-l^k-^ •• »w to

yk-l

k-m+1

,2 * ' * *k,m\

• • •

A
k,l ^k

1

1

. . . 1 /

'k-1

'k-2

k-m

Thus in some sense the coupled system strategy is more general. Kuck

has studied the use of the different family strategy in "continued paren-

thesis" and related recurrence forms [Kuck74] . He shows that putting

\"VW inverts

x^ = a, Vl X
k-3

• " *k-2Brf-l

*k-2 *k-4 '" *k-2m

t0 y = a, /y, „ , , which can be linearized in turn like continued
k k k- 2m-

1

fractions. He goes on to show that systems like

*k
= yk-l

(a
k " yk-3

/x
k-2 )

yk
=

*k-l
(b
k " x

k-3 /yk-2 )

can be changed into linear systems by setting x^ = u^^i* 5^
=
VV-l*

Other techniques may work depending on the context. If we examine

i^ 1
N <

2

< 17 > *k+i

then we find that putting x^^ - u
k
/v

k
gives

2 2

V-l \ " v
k

- 1)7(2^)

'k+1
2lL VVk
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This equation is very suggestive when broken into a coupled system on u^

and v
k ,

since it implies that creating the complex number

Z = U + iv
" x + i

yields

2
k k

\ - Re( 2 ), v
k

- im( z
2

)

because (u+iv)
2

= (u
2
-v

2
) + i(2uv). Therefore

^ = Re( (x0+i)
2

) / im( (X()+i)
2
k

) m u^
This can be reexpxessed in matrix form using the standard representation

of complex numbers in 2x2 real matrices

/ u v\
z = u + iv I / 1

,-v u

If we put

then

z =
X

-1 x
o

and in general, if ^ is defined by (17) then

2

We have already shown in III.2 that x
fc

is exactly cotr2
k

arccot(x)), but

it is interesting to see that completely different methods can be used to

obtain closed form for the same iterates. Note also that if we put

w

then

w
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where x, is defined by

Vl =
2

(x
k
+
^)j

the square-root iteration (15) when A - 1. Again we know that x^ is

coth(2
k

arccoth(x)), but the elegant matrix form for the iterates is

surprising.

Lastly we point out that some recurrences may behave linearly depending

on the initial data. In some cases this will be obvious, since a particular

initial value may zero out a nonlinear subexpression in the iteration.

But linearity may sometimes be covert. J.L. Pietenpol (AMM 68 , p. 379, 1961)

showed that

"k+l
=

(
1+x

k
x
k-l

)/x
k-2

is equivalent to the linear recurrence

yk+l
= 4yk-l - yk-3

with x
k

= yk
for all k, provided x

Q
= ^ = x

2
= 1 and Y

3
= x

3
= 2 -

The proof is based on the fact that the y's then satisfy the invariant

yk+lyk-2 " Vk-1 ' U

i.e., y = (1+y y ) /y, „, as can be shown by induction.

In summary, we have exhibited two strategies that may be useful in

solving general nonlinear recurrences, both based on the expansion of

order of the original recurrence through the introduction of new variables.

However the theory of linearization of general nonlinear recurrences of

the type described in this section is still very much an open field. It

remains to be established whether the strategies presented here are useful

or whether there can be any useful general strategies, and also if there
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exists a methodology for linearization. Beyond this, the numerical quality

of the linearized recurrences must be studied - for example, although the

different family solution (13) for the fractional linear transformation

iteration can be solved quickly in parallel, it will produce questionable

as Sameh and Kuck pointed out for the continued-fraction special case

[SK 77, p. 152], there is a good possibility of overflow or underflow in

computation of the y's. Although speed may be won by linearization, the

price in accuracy may be too great to make the linear algorithm viable.
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IV. Linearization Methods

In this section we discuss briefly how nonlinear recurrences can

be linearized in a semi-automated way, permitting both algorithm designers

and intelligent compilers to transform their problems into forms more

efficiently solved on a parallel machine. The caveat must be made that

a practical application of these methods has not yet been found: the

convergent first-order recurrences known to the author do not require

sufficiently many iterations to make the parallel approach championed

here truly worthwhile, particularly if the recurrence is superlinearly

convergent. However some almost-practical applications are described,

and it is hoped that useful problems may someday be solved using the

following methods.

Consider the linearization of the general first-order, constant-

coefficient iteration x
k+1

= F^) discussed above. A procedure for

accomplishing this can be broken down into six steps:

(1) Determination of the fixed points E, of F

(2) Expansion of the functions

G(x) = F(x-OH (or l/F(l/x) if K = + °°)

in a power series for each £

(3) Determination of attractive domains A (0) of attractive fixed points

(A) Derivation of the appropriate change of variables function (<}> or 3)

for each power series expansion

(5) Computation of the inverses of the change of variables functions

(6) Construction of the main procedure which detects when iterates

enter attractive domains and finishes the recurrence accordingly.
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It is clear that each of the above steps can be partially automated.
Moreover, all of the steps can be entirely automated if the programs doing
the work are made Intelligent enough. There are, of course, many consid-
erations Involved in the design of an automated linearis, but total
automation seems an unlikely alternative: First of all, one generally

knows in advance which attractive domain an Iteration will take place
in, so It makes little sense for the linearis t0 evaluate all possl„ le
attractive domains and prepare changes of variables for each one. Second,
the class of Iteration functions F(x) is likely to be limited (say, to

rational functions) and it seems unreasonable for the linearis to get
ready to expand all real analytic functions in power series, as well as
find their fixed points. Nevertheless each of the five steps can be

automated, and we outline how.

SteP Li
—Determination of fixed points

Fixed points of F may be rapidly determined by applying root-finding

techniques to the function F(x)-x. Obviously knowledge of the form of
F can lead to more efficient search for these roots. For example, if

F is a polynomial then the roots may be found very rapidly.

-
SteP2: Fower Series expansion of F

Recall we are assuming F is analytic, so a power series exists. Thus

the symbolic expression for F can be symbolically differentiated to any

desired order using techniques like those in standard algebraic manip-
ulation packages. The resulting derivative expressions can then be

evaluated at the fixed points computed in Step 1, and the power series
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for G(x) = F(x-0 + £ generated (using equation (8)). Again, knowledge

of the form of F can produce savings in the complexity of the algebraic

differentiator.

Sttr. 3: Determination of attractive domains

The first derivative of G may be used to discern the attractive fixed

points from the nonattractive ones. A root finder can then be used to

hunt for zeroes of g' near these points: if found, a zero delimits the

extent of the attractive domain on which G is invertible, and if not then

the domain extends to the adjacent repulsive fixed point. Indifferent

fixed points require some special treatment to ensure the existence of

an attractive domain, but are otherwise treated identically.

Step 4: Derivation of the change of variables functions

There are a number of approaches to be used here depending on the accuracy

required in the computation and the rate of convergence of F at the

fixed point £. If |g'(0)| < 1 then the formulas of Levy and Lessman

given in Cases 1 and 2 of the theorem in section II above can be used

to produce a short power series for the change of variables (the formulas

could possibly be extended to something like tenth order reasonably)

.

This attack is straightforward but restricts the neighborhood of £ in

the attractive domain where the change of variables can be computed

accurately.

Another approach in Case 1 or Case 2 is to compute as many terms

of the change of variables as are necessary. That this can be done

rapidly, given an equal number of terms in G's power series, has been
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shown by Brent, Traub, and Kung ( [BK 76], [KI 78], and especially [TB 78]).
These researchers' papers give a number of useful, fast algorithms for

the manipulation of power series - and [TB 78] actually concerns itself
with the solution of the Schroder and (pseudo-)Bottcher equations. We
give an independently-developed method for solving the inverse Bottcher

equation below, i„ the solution of one of the examples, which is similar
to the Traub-Brent algorithm in its operation.

In the case where |«(0)| = 1 there is no known general method for

deriving a change of variables, as mentioned in Case 3 of the theorem
above. However Traub and Brent show that in this case the power series

for G
n

(X) can be derived rapidly from the power series for G for any

fixed value of n (cf. [Kuc 68 ch TXSfill tv,.-l^uc oo, en. 1X26]). This may not be useful, depending on
the requirements of the user, but if the number N of iterates required
by the user is small, then it may be feasible to simply derive series

for each function F^; and if „ is large> lt ls conceivable ^^
series could be derived at mn *--} m« -te derived at run time in execution on a parallel processor.

Step 5: Derivation of the inverse chants of variables

Once the power series for the change of variables functions are known,

finding the series for the inverse functions is easily accomplished

through the process of series reversion (discussed in Case 1 of the

theorem above). Exact reversion formulas exist for low-order series;

an algorithm based on Newton's method is given in [BK 76] which works

for series of any order; and a quadratic "divide and conquer" algorithm

Ls produced as a corollary of the methods in [TB 78].
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Step 6: Construction of main procedure

This step will probably be trivial for all practical applications since

iterations usually take place in a single attractive domain, with a

starting point within that domain. However it should be pointed out

that a general main procedure could be implemented precisely as a

Hu-Tucker search tree having "keys" equal to the sorted lower and upper

bounds of attractive domains. If the probabilities that the iteration

would take place in each domain are known or can be estimated, then the

search tree can be optimized using the Hu-Tucker adaptation of the

Huffman algorithm cited in Chapter 2 above.

We give an example of how the entire process above might proceed

for an algorithm designer seeking to produce a parallel algorithm for

the Arithmetic-Geometric Mean (AGM) procedure. The AGM has been shown

by Brent [Bre 76] to have numerous useful computational properties besides

its original value as a rapid method for computing the elliptic integral

K(m) =

IT

2 d9

/l - m sin^e

and other special functions. An excellent survey giving the background

of the AGM and related iterations can be found in [Car 71] .
The AGM

iteration consists of compounding the named means in tandem:

a
Q

- 1 b
Q

= /l " »

with quadratic convergence to the fixed point a^ = b^ = TT/(2K(m)).

We fit the AGM into a first-order nonlinear recurrence in the following
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way. Let

F(x) - 2^x/(l+x) « sech In v£

and define x
Q

- ST^ and ^ „ F(^ for k > Q> Wg^ ^
ir

n

2K« " H (U+x^/2)

with the quadratic convergence of the AGM, proof lying i„ the facts
that ^ - b

k
/a
k

and ((l+x^/2) = a
k+1/ak

.

It is easy to verify that F(l) - 1 is the fixed polnt we are lnCer.

ested in, where the starting point x
Q

» JT^ is always containfid ^
the interval (0,1). So, following Step 2 ahove we derive the power series

G(x) = 1 - F(l - X ) = 1 - ^ / (1_x/2 j

- 1/8 x
2

+ 1/8 x
3

+ 13/128 x
4

+...

easily since the series for^ and l/(l-x/2) are well known. Note
that GOO - 0(x

2
), reflecting that the AGM is a quadratic method, and

since O .

(0 ) . F .(i) . o we know that 1 is indeed an attractive fixed point.
(We have used (l-x ) instead of (x-1) in G n,»^=i„ r • , . .vx i; in G merely for simplicity, since
(l-x) is always positive on the domain of interest.)

Following Step 3, we note that G- has no zeroes on (0,1) so the

attractive domain on which it is invertible extends all the way from
the attractive fixed point to the repulsive fixed point 1. Hence,

our change of variables will be good for all iterates, providing we

can derive a convergent form for it.

We now turn to the problem of deriving the change of variables

function for G. Slnce .

(0) , , sectlon „ lndlcates that we^ ^
* BSttcher solution BOO to B(F(x)) = B (x)

2
, which can then be used to
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1 2*
evaluate the iterates ^ as ^ = 6

X
( B(x

Q
) ). A power series for

B
_1

(x) can be derived to any desired order using the following algorithm:

2

Solution procedure for inverse Bottcher equation FQMx)) " fejS >

The idea here is to take a power series which solves the inverse

Bottcher equation up to some order n, and improve this series to be a

solution up to order n+1. More precisely, suppose

2 n
\\t (x) = a-jX + a

2
x + . . . + a

n
x

is a polynomial satisfying

F( i^
n
(x) ) = ^n

(x
2
) + 0(x

n+2
).

We contend we can find such a polynomial for all n, and we prove this

inductively (and constructively). As a basis note that our contention

is true for n = 1,2,3 using the Levy and Lessman formulas [LL 59]

a
l

" 1/b

2
" ~7 b

i
/b

o

3

*3 " ! ^ ' V " I b
2 '

b -\\> b
3

'

? 2
where F(x) = x (b + b x + b

2
x + ... ). Assuming the statement is

true for n, we extend it to n+1 as follows. By Taylor's theorem we have

F( ^ (x) + cx
n+1

) = FW
n
(x)) + F'(T|>

n
(x)) cx

n+1
+ 0(x

2n+2
).

Now if we take the induction hypothesis

F(ip
n
(x)) = ^n

(x
2
) + x

n+2
R(x)

2
where R(x) = r

Q
+ r x + r

2
x + . . . , then we find
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F( *n
(x) + cx

n+1
) - [^(,2) + cx

2(n+l)
}

- F(^(X)) - ^(x2
) + F»(^(X) ) cx

n+1
+0(x2n+2 )

- x
n+2

R(x) + F» «>(*)) cx
n+l

+ (x
2n+2

)

= xn+2(r +2b
o
a
i
c) + °(xn+3 )

n+2, ... n+3i= x"^(r0+2c) + (x
n+3

).

Therefore selecting c = -r
Q
,2 and setting ^fr) = ^ (x) + cx

n+l

establishes the statement inductively.

Concisely then, an algorithm for constructing *(x) to order N may

x -

be written as follows:

a
i

= 1/b

a
2 "

-b
l/(

2b
3
)

^2 U) = a
x
x + a

2
x
2

for n=3 to N do begin

r
o

= CW^to) ~ ^(x2
)) / x

n+2
)

c = -r
Q

/ 2

Vx) = ^n-l
(x) + cxI1

end

This algorithm may be obviously extended to solve the general inverse

Bottcher equation F(Kx)) . ffcft for any integer y > 2 ag^ A
faster (quadratic) version of this process may also be implemented by

using more information at each step. Instead of updating ^(x) by cx
n+1

we can update it by x
n+1

P(x) where P(x) is the n^-degree^olynomial
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satisfying x
n+2

R(x) + F'(^(x)) P(x) x
n+1

- 0(x
2n+2

) ,
i.e.,

P(x) = xR(x) / F'OJj (x)) (mod x
n
)

.

n

Doing so annihilates the first n terms of R(x), and if we set

ib ,,(x) = \b (x) + x
n+1

P(x) we discover
Yn+1 rn

F(i|i
n+1

(x)) = ib

n+1
(x) + 0(x

2n+2
).

Therefore if this method of updating is always used we get quadratic

increases in accuracy, as stated. The techniques for manipulating power

series in the way required here is described nicely in [BK 76] and in

[TB 78] . The latter paper in particular gives quadratic algorithms for

solving the Schroder equation when < |F'(0)| < 1, and the pseudo-

Bottcher equation

$(F(x)) = b ($(x)) y

when F(x) = b
Q
xy + 0(x

y+1
).

Employing the above procedure we can derive 3 (x) = ib(x) for the

AGM algorithm to any desired accuracy. A list of the first 25 coefficients

appears in Table 1; the fact that they increase like 2 suggests that

we will get convergence of the series only for x less than 1/2. Convergence

is perhaps the biggest problem confronting the automated use of the

linearization methodology discussed here. If one can find closed form

for these series then the problem disappears, but otherwise it is impossible

to bypass — and the attractive domains on which linearization is being

applied must be cut down to the neighborhoods of the attractive fixed

points where the series converge.
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Regrettably, closed form for B~ (x) here could not be found, so the

changes of variables cannot be applied for all x in (0,1). However we

can show that

3
_1

(x) = 8x / (l+2x)
2

+ 0(x
5
)

= 8x (l+2x-2x
5
+4x

6
) / (l+2x)

3
+ 0(x

9
)

which is remarkable but not good enough to guarantee convergence.

Finally, following Step 5, we derive the reverted series for B(x)

in Table 1, using the Brent-Kung method [BK 76]. Recalling that

G(x) = 1 - F(l-x) = 3"1
( 6(x)

2
),

so F(x) = 1 - B
_1

( $(l-x)
2

), our parallel algorithm for solving the

AGM iteration is therefore:

1. Set x
Q

= A - m

2. Set yn = 6U-xn )

3. Compute x
k

= 1 - B^C yQ

2
) in parallel, for 1 < k < n

4. Compute K(m) =

2 n ((l+x,)/2)
k=l *

2
Taking convergence into account, we must ensure that yQ < 1/2 for step

three of this process to operate correctly, which requires that

3(l-x
n ) < 1//2. Alternatively we can let the iteration run the usual

way x. . = F(x ) until B(l-x
k

) < 1//2, and then finish the iteration

via linearization; since the iterates x, approach 1 very quickly we

would not have to wait long for this change in strategies. This

observation about x^ leads to a point about accuracy that should be made:

The above algorithm is extremely accurate if x_ is very close to 1, unlike
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the ordinary AGM procedure. Thus the above approach aight actually be
useful in some environments.

Frequently the story has a much happier ending. This would certainly
be the case for any of the trigonometric-related iterations of section III,

and in fact the arc-hyperbolic-cotangent change of variables for the

Newton-Raphson square root iteration was derived in precisely the manner
outlined in this section. Consider now the iteration

Vl = x
k

2
+ \~ 1/4

mentioned by Kung as being a maximal efficiency iteration with regard
to the efficiency measure E = (log

2
p)/M where p is the order of

convergence of the iteration and M is the number of multiplications or

divisions required per iterate [Kung 73]. Letting F(x) = x
2 + x - 1/4

we find F has an attractive fixed point at -1/2 and F' (-1/2) = 0,

»"<-l/2) 4 0, so convergence of the iteration at -1/2 is quadratic.

(So E - 1 for this iteration.) Proceeding as for the AGM we find

G(x) = F(x - (-1)) + (.1, = x
2 + 2x>

Surprisingly we have already found the Bottcher function for G in section
IH.l and know that G^

(

x ) = (x+1)
2"

- !, so Kung' s iterates satisfy

X
k

=
( x + ^ 2 ) ~ 1/2

providing, of course, x
Q

is within the attractive domain [-1/2,1/2).

Thus Kung's iteration is essentially just x= x
2

.K k—

1
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Lastly we consider a linearization of the arithmetic-harmonic mean

iteration (14) mentioned in section III. 3. Put

F(x) = 4x/(l+x)
2

and define x
Q

= A, x,
+1

= F(\) for k t °- Then in a manner exactly

like that for the AGM iteration we claim
n

A * n ((l+x,)/2)

k=0 *

This can be proved by establishing ^ = a
fc

/h
k

and (l+x
k
>/2 - n

k+1
/hk

«

For example, in computing v5 we get the table

k x
k

(l+x^/2 n(l+x
k
)/2 Error

5 3 3 +.76393202

1 .55555555 .77777778 2.3333333 +.09726536

2 .91836735 .95918367 2.2380953 +.00202729

3 .99818923 .99909461 2.23606896 +.00000098

Now the observation to make is that

v/f7
:

x
A

) 2x/(l+x )

which is a form listed in section III. 2, involving the hyperbolic tangent. So

explicitly we get ,

2

\ ( tanh(2 arctanh /x_ ) ) ,

which recalls the coth result in III. 2, but is different. As stated in

III. 3, finding a Newton-Raphson linearization that does not use square

roots appears to be a very difficult problem.
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V. Conclusion

We have shown that there is a methodology for the automated

linearization of first-order, constant-coefficient recurrences, and that

many nonlinear recurrences may be linearizable in general. The usefulness

of the first-order result in a parallel processing environment is still

subject to debate. However, if nothing more we have demonstrated how

difficult it is to obtain realistic theoretical bounds on the power of

parallel computation, like the iteration complexity bounds of Kung

[Kung76]; and it is now simple enough to compute linearizing changes of

variables that the parallel algorithm designer faced with an iteration

might profitably consider doing so. In these two respects the results

outlined in this paper are conclusive.

Open problems lie in extending the work of section III. 3 and in

the integration of a nonlinear recurrence resolver into a parallel

compiling system like the PARAFRASE compiler [Kuck76 ] . Interestingly,

in a large selection of FORTRAN programs being analyzed by PARAFRASE,

the only nonlinear iterations to emerge were Gauss-Jordan elimination

and a recurrence of form (10) with
<fr(x ) = log(x). Thus it seems

unlikely that a compiler system would make much use of a general

automated linearizer. Instead, it would seem more cost-effective to

equip the compiler with a program capable of recognizing many simple

nonlinear recurrence forms, like (11) in section III and whatever other

recurrences seem popular for the class of programs being compiled. When

unknown recurrences (like Gauss-Jordan elimination) were detected, the

reasonable action for the compiler to take would be to recommend examination

of the program by an algorithm designer for possible recoding.
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Erstens, vergeBt nicht, kommt das Fressen
Zweitens kommt der Liebesakt.
Drittens das Boxen nicht vergessen
Viertens Saufen, laut Kontrakt.
Vor allem aber achtet scharf
Da3 man hier alles dUrfen darf.

B. Brecht, Mahagonny
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4

Design and Analysis of Permutation Networks
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I. Introduction

This chapter begins by investigating the tradeoffs involved in the
implementation of the three-stage rearrangeable switching networks (RSNs)
studied by Clos, Bene?, and Waksman-taking into special consideration
the time and gate complexity of the network's controller. These networks
have a variety of applications, from connection of telephone terminals
(their original intended use) to connecting parallel processors with memory
-doles in counters. Figure , niustrates the general structure of these
networks; d can be any divisor of N, the number of input or output
terminals, and the small boxes lndlcate .^^^^^ ^^
he decomposed as three-stage RSNs or si^ly as crossbar switches. The
reason for making "conjugated" permuting networks of this type is that they
require fewer hardware elements (crosspoints) than the 0(N

2
) needed by .

full crossbar. However, they clearly require ..ore time for execution of a
permutation than a crossbar-both fot the data to flow through the switch
fro, input to output (the data time), and for the determination of the
proper settings of the switch subnetworks necessary to realise the desired
permutation (the control time).

A survey of the hasic properties of these networks can be found
in Chapter 3 of Benes's book [Ben 65] ; notably, the RSN is capable of
realizing an* permutation of its inputs, and for essentially this reason

*• "lied rearrangeable. Waksman [Wak 68] and Joel [Joe 68] noticed that
any single outer-stage subswitch may be eliminated as redundant-and a
switch that is still rearrangeable may be obtained by setting this subswitch
permanently to the identity permutation, as in Figure 10. Waksman went on
to show that when d = 2 the switch in Figure 10 (with the center switches
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Figure 9. Three-stage RSN of base-d structure

- w-m

Figure 10. Base-d RSN with redundant switch removed
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recursively decomposed as base-2 RSN's) Is asymptotically optimal with
respect to the number of 2x2 elements, since it contains F(N) - N Ig N - N + 1
of them and

As „e shall see in section II this elimination of redundant switches

produces a significant savings when d gets large.

Proofs of the rearrangeabllity of the RSN, including the proof
of Slepian and D.guid based on Philip Hall's theorem on "distinct

representatives," are discuased in [Ben 65], [Ben 75b), [Ben 75c]. All
of the proofs center on the fact that the switch will permute lines correctly
If end only if the center stage subswitches can be set, which is guaranteed
by Hall's theorem. This knowledge suggests the structure of a control

algorithm for the three-stage RSN:

Ste^l. Determine permutation settings needed for each of the d

(
d

} X (
d } ^switches in the center stage (not necessarily

unique settings).

Step_^. Determine the permutation settings for the
(J) dxd

subswitches in each of the outer two stages.

Step_l. Recursively (if necessary) apply this algorithm to the

subswitches whose permutation settings were determined in

Steps 1 and 2.

Ultimately this algorithm stops when permutation settings for all "small"

subswitches (2X2 "crosspoint" elements or small crossbars, out of which

lg(x) - log
2
(x)
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the switch is built) are determined. All existing control algorithms

known to us are of the above form, including those presented in this

paper. It would be interesting if an alternative approach were found.

Waksman [Wak 68] also suggested a practical method of performing

Step 1 in the above algorithm. Given a permutation it on {1, . .., N} ,

he defined a partition matrix M = 0^.) given by

id jd

m. = I Z 5(TT(k),£)
13 k=(i-l)d+l £-(j-l)d+l

where 6(x,y) = {1 if x = y, otherwise} . If one thinks of it as being

a permutation matrix, then one can view M as being a "collapsed" version

of it , where each element in M corresponds to the sum of all the entries

in a d*d partition of it. It is easy to show that since every row and

column in t\ must sum to one, every row and column in M must sum to d. In

addition, M contains all the information needed to perform Step 1 of the

control algorithm; this will be discussed in greater depth in section III.

Using partition matrices Neiman [Nei 69], and later Ramanujam [Ram 73],

Gold and Kuck [GK 74], and Tsao-Wu [TW 74] presented backtracking control

algorithms (Neiman 1

s is based on the Hungarian method for solving matching

systems) which work for any value of d. Because of the backtracking

possibility and the way the algorithms roam over the partition matrix

however, none of these algorithms have time complexity even approaching

the 0(N log N) of Opferman and Tsao-Wu' s "looping algorithm" [OTW 71],

wnich works for the case d = 2 and does not use partition matrices. There

is thus no good existing RSN control algorithm for most computer applica-

tions, either for the case d = 2 or for general d, since 0(N log N) steps

is a long time to wait for switching of data in most circumstances.
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This paper, therefore, attacks the problem of finding new,

general-d RSN control algorithms for the following reasons. First, a
better understanding of the control problem conld hardly be harmful,

especially because there are so many potential applications of RSN's if
the control time could only be reduced. Second, we are interested in

the case d > 2 because increased gate densities on modern chips has made
mass production of small-to-moderate size crossbar packages feasible

[Thu 71]: today RSN's could be constructed of 9x9crossbar chips Instead
of the 2x2 crosspoint elements originally considered by Clos [Clos 53].
For this reason we set up the following terminology which will be used
for the rest of the paper:

Minltlon A (N,d,k*k) - RSN is a 3-stage, base-d RSN whose

subswitches are (recursively) built out of kxk crossbars (and possibly

also 2x2 crossbars depending on divisibility of d,k, and N) . Note that

d is taken to be a function of N; thus d - 2, d - N/2, d = S
a
with

1/log N < a < (lg N - D/log N are all acceptable, and that it makes

sense to say that if Figure 10 comprises an (H.d.kXk) - RSN, then its

center switches are (N/d(N), d, kxk) - RSNs, and the outer switches are

(d(N), d, kxk) - RSNs. Below we will write d for d(N) where no confusion

should arise.

The third reason for attempting new control algorithms for

values of d greater than 2, is that they can work faster. It will be shown

in section II that as d grows the number of crosspoints in the (N,d,2x2) - RSN

grows also, over the 0(N log N) of the (N,2,2x2 ) - RSN demonstrated by

Waksman. Thus there is some slack (over N!) in the number of possible
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states of this RSN; intuitively we should be t»l« to capitalize on this

waste by getting a faster control algorithm for large d than we can get

when d is small. We show this is essentially what happens, though

unfortunately the gain realized by the algorithm here is not substantial.

Finally, one of the more interesting results from examining the

RSN for various values of d is the study of a "hybrid" network recursively

built out of (N,N/2,kxk) and (k,2,2*2) - RSNs which exhibits interesting

timing and gate properties. Analysis of this network leads to a number of

conjectures which, on a prima facie basis, make the RSN seem uniformly

less cost-effective than the competing switching networks of Batcher

[Bat 68], and of Lawrie [Law 75], Lang [LS 76], [Lan 76], and Wen [Wen 76].

These negative results drive us, in sections IX-XI, to analyze possible

alternatives to the RSN which we classify loosely as Shuf fle/Exchange-type

networks. Much less is quantitatively known about the permuting power

of these networks, so we concentrate on this problem and derive some

(surprising) results which reflect favorably on the potential of the

Shuffle/Exchange for use as a computer switching network.
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— Structure o f the (N
T
d. kxk) - RSN

in this section „e sim?ly tabulate che ^^ ^^ ^
oelays through kxk swltches experlenc£d by ^ ^^ ^ fiowtng^^
to output) and the number of gates rehired hy (N>d

, kxk) .^ „e
consider N and k to he powers or two for simplicity ln solvlng ^
recurrences given helow, aithough they need not he in general. Our
motivation u t0 get . feel for thfi ^^ ^ spged ^ ^ rsn^^
vary, so that cases other than the d = k - 9 ^ u , »/an tne d - k - 2 switch (studied by Benes,
Waksman, Opferman and Tsao-Wu and ot-h*^wu, and others) can be evaluated quantitatively,

Three recurrences concern us- for- t -t, jrn us. for T, the data time for the RSN;
for G

» the number of "gates" -in rh*> do*tgates in the RSN measured in 2x2 and/or kxk
crossbars; and for C, , the number of „

gaCes „ ^ ^ ^^^^
suhswitches are removed as suggested in tWak 68,. Note T, G , and G' do
not take controi overhead into account-control will he discussed in later

It is easy to verify using Figures 9 and u^ ^ ^ ^^ _ ^
we have

«« - ^ f o(d) + d ,(2,
, G(k) _ i;

<='(N) = (2 |. 1)G , (d)+dG ,

(f)j ^^^^
These recurrences are not simple to solve in closed for,. Note

that if d is a small constant and d > k then

TOO • (21og
d
N - 1) T(d )

G(N) * | (21og
d
N - 1) G (d)

='00 = (f(2iogdN - 1) .
[

_N^_
])G ,

(d)
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but no general solution for broad classes of functions d(N) and varying

ranges of k is known. However, we can easily obtain solutions for d » 1/2,

d = lflsf, and d = N/2. These results are tabulated below, first for k - 2,

and then for k an arbitrary power of 2. Note lg 3 * 1.585.

Looking at these tables we notice several interesting trends.

First, as d increases for any fixed values of k and N, T(N) and G 1

(N) also

increase. However, for fixed d and N, as k increases T(N) and G' (N) both

decrease. Thus if we increase d (for the sake of a faster control algorithm-

see below) we can compensate for the increase in data time and crossbar

packages by using suitably large kxk crossbars.

To give a concrete feeling for the magnitudes of T, G, and G 1

for various N, we lastly tabulate them for several values of N, where

k = 2 and k 16.
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HI. Theoretical B«rk
R
rn.md for the r.„„ Krol /georithm

in this section we briefly present some theoretical results
that underly the correctness of the control algorithm for base-d RSNs
presented In this paper. The material here Is not really new, but is
included for completeness. We define some notation first, then cite a
result of Birkhoff on doubly stochastic matrices which turns out to be
an incarnation of Hall's matching theorem that is useful in this context.
With Birkhoff's result we easily prove the Slepian-Duguid theorem for
(N.d.kxk) - RSNs (namely, that they can realize any permutation), and show
exactly how the partition matrix mentioned in section 1 can be used to
set the RSN to realize any permutation.

Given a permutation map 7r: {1 „} * {1 „} we
define a corresponding permutation ..friv tt = (^ ) uhere

r 1 if Tr(i) -
j

V» otherwise.

Given any divisor d of N, then it is natural to define the partition matrix
M " (m

±i
) as above in section one by setting

id Jd

k=(i-l)d+l A-(J-l)d+l ki

Thus x is the matrix obtained by partitioning the matrix V into d*d

submatrices and then collapsing each of these submatrices into one element
by sowing all the ones and zeroes they contain. It is important to note
th" " " a d°"°Iy-^ochast1. mtnr, i.e., all of its elements are

nonnegative and each of its rows and colons sum to 1. Likewise, the

matrix <±) M is doubly stochastic since each of M's rows and columns must
sum to d. We say that M is an unnormallzed doubly-stochastic marrlv . we
can now state Hall's Theorem and a resulting theorem (originally proved by
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G. Birkhoff and independently J. von Neumann using different methods)

on doubly-stochastic matrices.

Theorem 1 (P. Hall—"Systems of Distinct Representatives")

Given a set A and any r subsets A~, . .., A^, there exists a

set of "distinct representatives" {a^ ..., a
r
> [i.e., a

±
z A^ a

1
4 a.

if i j4 j] if and only if the union of any k of the sets A^, ..., A
r

contains at least k elements, for each k less than r. [Proofs appear in

[Ben 65], [Ber 62]. In this application we consider the case where

r = N/d and the sets {A
±

i - 1, .... r} represent the rows of M.

]

Theorem 2 (Birkhoff—von Neumann)

Every doubly stochastic matrix is a convex combination of

permutation matrices, i.e., if B is a doubly-stochastic matrix then

B = c,P, + c 9P + ... + c P11 11 mm
m

where P, , . . . , P are permutation matrices and £ c .
- 1

J. m 1 j-

For a proof see Berge [Ber 62, pp. 105-106]. We adapt this

theorem as follows:

Theorem 3 (Decomposition of Partition Matrix)

The partition matrix M of order (N/d) can be expressed as the

sum of d permutation matrices of order (N/d), i.e.,

M = P n + P„ + ... + P, .

1 z a

Proof Define sets A. (i = 1, ..., N/d) as follows:
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A
i
=

{J Kj > 0} •

Since M Is unnormalized doubly stochastic, we know these sets satisfy the
Hall condition (namely, any union of k of them contains at least k
elements) for consider what happens if it does not hold. That would mean
that there were some set of k rows of M (without loss of generality the
first k) which contained nonzero values in at most k - 1 columns altogether
(without loss of generality the first k - 1) . But then we know the sum of
the entries in the first k rows of M is

k N/d k k-1

*-i -

S
i

m
ij

= E Z m
ii - W

whereas the sum of the first (k - 1) columns is

N/d k-1 k k_x

i=l J-l ^ ~ ifl jfl "U
= ^ > (k

- X) d

which we know is false for the partition matrix M. Thus we can apply Hall's
theorem and extract a set of representative columns J from each of the row
sets A±

.
If we let a± be the column selected from set A± , then the matrix

P-L = (P* ) defined by

P
1 J 1 lfj=a

i
*J {° otherwise

Is a permutation matrix. We can apply the theorem inductively to II - P

since M - P
x

is still ^normalised doubly stochastic (n.b., we must replace

a by (d - 1) everywhere above in this process), and after d such applications
find a decomposition

M=P1+ P2+ ... + p
d

.

The next result is a simple derivative of Theorem 3.
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Theorem 4 (Slepian-Duguid, restricted to (N,d,k*k) - RSNs.)

An (N,d,kxk) - RSN can be set to realize anv. permutation tt on N

letters.

Proof (Constructive) Compute the partition matrix M corresponding to tt

and, using Theorem 3, find a decomposition M - ?
1
+ . .

• + P
d •

Set the i

center switch (inductively) to realize P
±

, for 1 < i < d (cf., Figure 9).

It is then straightforward to find permutation settings for each of the

dxd outer switches that map their inputs to the now-determined outputs

correctly, and set each of these switches inductively. It is clear, once

the center switches have been set, that the entire RSN can realize tt as

requested. Consult Algorithm 2 of section VI for the details.

To close this section we give a simple example. Suppose we have

a (9,3,3x3) - RSN which is to be set to realize the permutation

(12345678 9'

11 =
I 5 1 3 6 2 9 7 8 4 *

Then M is the (|)x (|)
=3x3 partition matrix

Note that

M =

Therefore a valid setting of the RSN is as shown in Figure 11.
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Figure 11. Setting of (9,3,3x3 )-RSN for example 7T
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IV. The Special Case d » 2

For d - 2 the RSN has the configuration in Figure 12. For

simplicity here and hereafter, we assume N is a power of 2 unless other-

wise indicated.

In this case it is not really practical to control the switch

using the partition matrix approach outlined in sections I and III, since

this matrix alone would have to comprise
(f)

*
(f)

words of lg N bits

each: thus either we must buy 0(N
2

lg N) gates to hold the partition

matrix—in which case we might as well build a crossbar since it is

faster and cheapter—or else we must buy a large random-access memory and

pay 0(N
2

) clocks to initialize the matrix each time we seek to set the

switch.

Fortunately for d = 2 there is an alternative, the "Looping

algorithm" of Opferman and Tsao-Wu [OTW 71]. The Looping algorithm is

based on the simple observation that, if lines number i and i + 1 are

inputs to a 2x2 switch in the left outer stage of the RSN, then they must

be gated to opposita center switches. Any algorithm which gates all of

the inputs in a consistent manner to these center switches will (recursively)

define an (N,2,2x2) - RSN control algorithm. The Looping algorithm does

just this: it begins with an arbitrary assignment of one of the inputs to

one of the center switches and proceeds to make all the assignments

required by the first one. For any input i, let 1 be the other input

entering into the same 2x2 switch as i (Opferman and Tsao-Wu call £ the

dual of i). To start the looping procedure we gate input i arbitrarily to

center switch 1 and £ to center switch 2. We must then gate output ir(i)
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Figure 12. Base-2 RSN
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to center switch 2 if the RSN is to work. But this gates output ir(i)

-l y\
to center switch 1, so input tt

" (tt(1)) must be gated to center switch 1.

Continuing this process leads to a "loop" of assignments eventually

terminating at i:

Gated to center switch 1: i tt(1)—» tt Cf(l)^) .
.
.-* i

i 1

Gated to center switch 2: i — 7r(i)

inputs outputs inputs

This process may not assign all inputs from one loop, in which

case another initial arbitrary assignment and loop must be made. But if

tt(x) and tt

_1
(x) are available (Opferman and Tsao-Wu point out that either a

content-addressable memory or two memories can be used to store tt) and new

unassigned inputs are immediately available without search (in case the

Looping process terminates "prematurely") , then the Looping algorithm will

take N steps to set all of the outer stage 2x2 switches, of which there

are 2(y) = N. Ignoring the time needed to rearrange the memory contents

to represent the permutation settings for the two center switches, since

the Looping algorithm must be applied recursively lg N times to set the

entire switch, the Looping algorithm takes N lg N steps to control the

(N, 2, 2x2) -RSN, at a cost of 0(N lg N) gates for the memory and control

2
hardware. At a gate level the Looping algorithm takes at least Q(N lg N)

gate delays since among other things the memory address decoding time is

0(lg N) delays.

It has, apparently never been noticed before that the above

timings can be improved by a factor of -r lg N through the use of parallelism

in the control. By using separate memories and separate control hardware

for each of the subswitches set in recursive applications of the Looping

algorithm, the control time can be cut to

t Late note: Clark Thompson has detected this fact in [Tho 77].
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N + N/2 + N/4 + ... + 1 - (2 - 1/N) N - 2N - 1 stens .

The use of parallelism requires a factor of 1/2 Ig N more gates, however,

Thus we have the gate-time tradeoff summarized in Table 4. This speed

improvement is appreciable but is not as good as we would like (namely,

a control algorithm that runs in 0(lg N) , or at the very least o(N),

steps), and unfortunately for the same order of gates one can buy a Batcher

switch which has a control time of only \ lg
2
N steps [Bat 68].

Note that the Looping algorithm and any algorithm like it seems to

inherently require fl(N) steps (i.e., requires at least 0(N) steps) for

two reasons. First, the algorithm requires the availability of iT1 values;

these values must either come from a CAM or an auxiliary memory, each of

which have to be filled at some point-which requires N steps. Second,

the Looping process by itself, even if it could make multiple parallel

memory accesses, cannot be parallelized to a significant degree because of

the cycle structure of permutations. We cannot have multiple processors

working on different loops since there is no way to tell a priori in time

o(N) that the loops are different (i.e., two processors could find that they

were both working on the same loop and that their (arbitrary) assignments

of switch settings conflicted). Moreover, Opferman and Tsao-Wu have

shown [OTW 71, P .1606] that most permutations have only one loop (out of

N! permutations, (N/2)
| (N/2-1) M*' 1

have this property) and derive a

formula for the number of permutations having m loops. In addition

to this, the work of Shepp and Lloyd [SL 66] may be applied to show

that the length of the longest loop generated by the Looping algorithm for

a random input permutation on N letters (equivalent to 2 times the length

of the longest cycle in a random permutation on N/2 letters) has an expected

value asymptotic to E f
maximum loop length] „, ,n 1

I for random tt
J

" 2X % +
2
)

= A(N + X)
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where X .52432965... ls . constant _ ^ ^ ^ ^ ^^^
that two processors will be working on the same loop, it ls uj^.
Clearly, the Looping algorithm or any variant of it is not going to lead
to sublinear control am with a reasonable (i.e., 0(8 lg

2
N) , to be

competitive with Batcher) number of gates.

It is interesting to note that the (N,2,2>2)-RSN can be used as
a rapid one-bit sorter

. This is a new result and will be used below
Muller and Preparata [MP 75] point out that Batcher's network, with time
0(18 N) and gates 0(N 18

*
N) u the best known 1-bit sorter, then construct

a sorter that works in time 0(lg N) using 0(N
2
) gates. We show here that

the (N,2,2x2) -RSN can be used t0 sor£ bUs ±n ^^ ^^ ^^ Q(N ^ ^
gates, thus making an improvement over Batcher's switch in gates. It
would be extremely interesting to find a one-bit sorter working in time
0(lg N) which required much less than 0(N*) gates.

Note that the (N,2,2x2)-RSN in Figure 12 will sort bits if:

1) the left stage of 2x2 switches gates equal numbers of

zeroes and ones to each of the center switches (with a

difference of at most one, should there be an unequal

number of zeroes and ones).

2) the center stage switches recursively sort their N/2 input

bits.

3) the right stage of 2x2 switches "merges" the sorted lists

from the center stage in the obvious way: zeroes are gated

up and ones are gated down (but note that all but at most

one of the switches in this stage will receive identical inputs).
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The only nontrivial step in the control is Step (1), but a small amount

of thought reveals that setting the left stage of 2x2 switches can be

completed in 0(lg y) 8ate delays simply by fanning in, using a binary

tree, lines from these switches which indicate whether the switch

inputs disagree or not (i.e., whether the inputs are and 1, instead

of and or 1 and 1) . When two such lines are fanned together and

both indicate disagreement, the corresponding 2x2 switches are

signalled to send their l's to opposite center switches and no further

disagreement is indicated from them. When a line indicating disagreement

is merged with a line indicating no disagreement, a line indicating

disagreement results (together with the latching of a path back down

the tree so that the 2x2 switch with disagreement may be accessed

later, when it is known where its inputs should be sent. Thus Steps

(1) and (3) together take 0(lg N) steps, and by applying this process

2
recursively to the whole switch the input bits can be sorted in 0(lg N)

gate delays using 0(N lg N) gates for the RSN and control. Notice,

interestingly, that this switch is very similar in spirit to the odd-even

merge network of Batcher [Bat 68] but incorporates a number of simpli-

fications justifiable for the purpose of sorting bits.
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V. The Special Case d - N/2

For d - N/2 the RSN has the configuration in Figure 13 (Waksman

reduced). Using recurrences it is easy to show that the (N,f,2x2)-RSN

contains 0(3
lg N

) - 0(N
lg 3

^ - rwu1 ' 5^ r ,_ „) U(N
) ~ 0(N ) of the 2x2 switches. This is

more switches than required by the (N,2,2x2 )-RSN , which may bfi why ^
much attention has been paid to this configuration. However, here the

control algorithm is extremely simple and fast-we show that the
N

(N,J,kxk)-RSN can be controlled in time 0(lg
2
N lg(N/k)) delays using

N lg3 -1 w lg3
0(N lg H (j) ,. + ((fi) G(k)) gates> wherfi Q(k) u the number ^
gates in the kxk switch . Uafortunately ^ ^ ^ ^ ^ ^ ^
flow through the (N,N/2,2*2)-RSN is N - 1 2x2 switch delays, as shown in

section II, Thus the d = N/2 switch has the opposite problem of the d - 2

switch: whereas the latter is cheap, fast, and hard to control, the

former is expensive, slow, and easy to control. We will exploit this

strange reversal in section VII (as much as we can).

The control for the d = N/2 RSN is simple because in this case

there is effectively no time needed to set the center stage subswitchea.

In this case the partition matrix M is of dimension 2x2, so it is trivial
to decompose it into a sum of permutation matrices. However, we do not
even have to evaluate M here because removal of the redundant upper-

left-hand
f

x | switch forces the settlngs of the center 2x2 subswltcheS)

which can be set in parallel in one step. Thus all we have to do is find

permutation settings for the two outside stages, and then set the 3

resulting j x j subswitches recursively in parallel.
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This is just as easy as It sounds. After we have set- the
center 2x2 switches, the outputs of the lower left switch In Figure 13
are connected with the 2 switches In the right stage. We assign a
"parity" value or 1 to these outputs according to whether they are
connected to the first or second switch In the right stage. Simultaneously,

« assign parity values to the Inputs 1 of the lower left switch according
to which of the two switches .ft) is in. The entire RSN will work if we
can get the lower left switch to connect Its inputs to its outputs in
such a way that these parity values match. Once this has been done the
setting of the right stage switches is trivial.

The method used here to achieve this Hatching is the use of
two one-bit sorters, though there may be some better method. We use the
sorter described in section IV-„hich requires 0(lg

2
N) delays and 0(N Ig H)

gates. These sorters are connected in a chain as shown In Figure 14,

which forms a data path through which the values of i and »(i) can flow to
he used in setting the left and right stages, respectively. Note that the
input permutation values , are assumed to be available in registers and
that no use of ^ has been made, so we have not forced ourselves to the
!2(N) time bound required by the Looping algorithm.

If we analyze carefully the requirements of the above algorithm
we find that, since it requires lg(N/k) recursive steps to complete, the
control time for the whole RSN is 0(lg

2
N lg(N/k)) delays. Also, suppose

that two K-laput 1-bit sorters of the type discussed in section IV require

CM Ig X gates, for some constant c. Then this control algorithm for the

Base-N/2 RSN requires
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° f H f + 3c £ lg f + 3
2
c f lg | + ... + 3

lg(K/k)-l
ck lg k + ^^-1

e(fc)

< c f lg | (1 + 3/2 + (3/2)
2
+ ... + (3/2)

18"*/k)-l
) + 3

lg(N/k)-l
G

^cfl8 f ( (H/k)
3/2

) + l
(
H^3

G(k)

gates, where G(k) is the number of gate8 requlr£d fcy ^ ^ ^ .^ ^^
-t be k

,
i.e., we need not necessarily use crossbars for these subswitches.]

It is interesting to see how the Base-N/2 RSN could be used as a
1'"lt S °rter

'
f°r c°°*aris°" -* the previous section. There are two

.odes of operation we consider: first, when the switch is in the Waksaan-
teduced configuration of Figure 13, and second, when no reduction has been
made.

Note that when the (N,N/2,2*2)-RSN of Figure 13 is used to sort
bits, the center stage switches are trivial to set as usual (if the
immediately incident input bit is zero, the switch is set to gate it to
the upper right stage switch, otherwise to the lower one). However, after
this there is no nice recursive decomposition-it appears that the lower
left stage switch fflust again do 2 chained 1-bit sorts as it did for the
(N,N/2,kxk)-RsN control algorithm above. Thus although the Waksaan
reduction saves us a great deal of gates, it only increases the coaplexity
of controlling the switch for sorting.

If the Waksaan-Joel reduction is not used, though, control of
the switch is very straightforward. It is clear that the switch will
sort if:
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1) The output of the first stage and input to the second

stage forms a bitonic sequence of zeroes and ones (i.e.,

* * * , *A*,*

a string of N bits of the patterns 10 or 1 1 in

Kleene-notation; cf.,[Bat 68] for more about bitonic

sequences)

.

2) The second stage works in the obvious way: it gates

inputs up and 1 inputs down.

3) The third stage switches sort their inputs recursively.

This sorting scheme is most easily executed by making the top left switch

a sorter and the bottom left switch an "upside-down" sorter, so the input

to the second stage is always of the form 0*1*0*
. Unfortunately, although

the switch takes time 0(1 ) to set (all the 2x2 switches must do ultimately

is behave like the Batcher elements described in requirement (2) with the

polarity (whether sorting is being done "upside-down" or not) taken into

account), the data time is 0(N) for flow through the switch and the switch

requires 0(N
2
) gates. Thus the switch is not interesting in its own right

as a sorting device the way the (N,2,2x2)-RSN was.

It is extremely interesting to see how the d = 2 and d - N/2

sorting networks behave like Batcher's even-odd merge and bitonic sorting

networks, respectively. Among other things it brings certain philosophical

points to the foreground (even-odd merging strives for a simple starting

and ending procedure, whereas bitonic sorting simply wants a simple step in

the middle) and highlights the fact that bitonic sorting requires more

hardware than even-odd merging. It would be interesting if some theory

about sorting networks could be developed from this similarity.
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VI. A Non-backtracking Control Algorithm for General d

When we are not given that d is some special value near 1 or

near N (e.g., d = 2 or d = N/2 as just discussed, or for example, d - A
N 3

or (T) so that a decomposition of the partition matrix M hy exhaustively

running through all 31 or 4! permutation matrioes is feasible), then the

only known methods for controlling the (N,d,kxk)-RSN are the backtracking

algorithms of Neiman [Nei 69], [TO 74], Ramanujam (Ram 73], and Gold and

Kuck [GK 74]. This section gives a new algorithm, based on the partition

matrix attack described in sections I and III and outlined below in Figure 15

This algorithm runs in
0((f)

2
) steps or

0((f)
2

lg (|)) delays , ^ requlres

0(p(f) Ig d) gates where p > 1 is a parameter; it relies on various

lookahead indicators to eliminate the need for backtracking. The lookahead

heavily relies on parallelism, and special-purpose hardware is of course

required to set the RSN in the stated time bounds (i.e., unlike the Looping

algorithm this method may not be encoded as a program to run on an external

processor connected to the RSN).

Generally speaking, it seems that the algorithm used to control an

(N,d,kxk)-RSN will always depend on the relative size of d with respect to

N. We saw that special techniques were applicable for very small or very

large values of d in sections IV and V. The same is true here: in all that

f°ll0WS *" this section we assume d is not small camp»™A t-~ m
(say ,

d = £H,¥)) because the partition matrix itself requires
0((f)

2
lg d) bits

of storage, which is exorbitant if d is not very large. Note that the

algorithm of Figure 15, or any algorithm using partition matrices, is

aj>ripri good only for large d. Opferman and Tsao-Wu's "Looping Algorithm"
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Step . Compute Partition Matrix for Permutation to be Realized

Input Permutation it, stored as an N-word vector of registers.

N N
Output Partition Matrix M, dimension (j) * (j) array. [d - d(N)]

Step 1. Get Center Subswitch Permutation Settings

Input Partition Matrix M.

Output A set (P,, ..., P.) of permutations on (l j) (stored

as vectors) , such that when expressed in matrix form

P- + P + . . . + P , - M .12 d

Step 2 . Get Outer Subswitch Permutation Settings

Input Original permutation it and center switch permutations

iP-i » • • • » PjJ •

Output A set {Q 9 , ..., Q 9
N} of permutations on (l, ..., d}

1
d

(stored as vectors) giving settings for all of the outer

subswitches.

Step 3 . Recurse

Invoke Steps 0-2 for all permutations in {P^ ..., P
d
) U {Q

2
»

•••» ^2?

which cannot be directly applied to kxk (or 2 X2) switches.

Figure 15. (N,d,k*k)-RSN control algorithm
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[OTW 71] for d = 2 takes advantage of special properties of the matching

problem M = V± + ^ to eliminate the construction of the partition matrix

M altogether. This is another example of a combinatorial problem that

has an elegant solution for the parameter = 2 case, but gets complicated

for the case parameter > 2.

Below we give several algorithms to solve Steps 0-2 of the

process in Figure 15. Algorithm solves Step 0, algorithm 1 Step 1,

and algorithms 2.1 and 2.2 Step 2. Input and output specifications are as

in Figure 15.

Algorithm Compute Partition Matrix M

liSiBS
0((f + lg P)lg d) gate delays; p is a parameter described below,

with 1 < p < d/2

Gates 0(p(|)
2

lg d )

Method

Each row of M is filled in independently in parallel; p

processors work on each row, with every processor having its

own copy of the current value of entries for that row. Thus

essentially p copies of M are kept. There are d entries in tt

that must be tabulated in each row of M, so each processor

tabulates d/p entries; when this is done the p copies of M

are added up (in time 0(log p log d)).

Note that p should be chosen so that (1) not too many gates

are used by this algorithm, but (2) the algorithm is not too

slow. Thus for d = yfr , p = i mignt be appropriate, but for

d == N/2, p = (vfi/2) is needed to achieve roughly the same bounds.
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(Note that in the case d - N/2 M is only a 2x2 matrix, so

many copies may be kept at little cost.)

Algorithm 1 Simple Serial Extraction of Permutations from M

Tlmlng (d(f) lg(f))
- 0(N lg(f)) gate delays (ignoring fanout—see below)

Gates 0((f)
2

lg d) [adders, etc.] + 0(d(f) lg(f)) [for {P^ .... P
d
>]

Method

The permutations P
±

(i » 1, . . . , d) are peeled off entry by

entry, one by one, using sufficient lookahead to prevent bad

selections as shown in Figure 16. We show the lookahead vector

can be defined to make this algorithm work. Consider the

algorithm beginning the j-loop at some point. We know that

the partition matrix M is now the sum of (d - i + 1) permutation

matrices. After the j-loop has executed several times, we are

effectively working on a submatrix M 1 of M, of dimension

(N _ j + !) x (- - j + 1) . M' is precisely that submatrix with

rows 1 to j-1 and those columns marked AVAILABLE=FALSE being

deleted from M. We know inductively that M» contains a permutation

matrix of dimension (| - j + 1) x (| - j + 1) , and we try to

extend the permutation ?
±
being extracted by absorbing this

permutation. We delete the first row and some column k» in M'

(equivalents , row j and some column k from M, where k corresponds

to k') after choosing P
±
(j) = k as being a good extension. If we

N
define LOOKAHEAD_OK(£) , for £ = 1, .... (j) by
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do i = 1 to d: /* n_ *— — *
.

' 0nce f°r each permutation P */

AVAILABLE (1),..., AVAILABLE (f)=TRUE; /* indicate all *d / indicate all images of p available*/

d£ j = 1 to N/d; /* ~
/* Once for each entry of P */

Compute LOOKAHEAD_0K(1) LOOKAHEAD_OK(N/d) (Boolean vector)
'

using AVAIMBLE and rows j through (N/d) „f H> as^^
In the text. Using parallelism this takes time O(logA).

d

Select k such that LOOKAHEAD_OK(k)»TRUE in time 0(log&).
d

Se * P
± (J) - k. (Actually set a switch if required.)

Set AVAILABLE(k) + FALSE.

Set M(j,k) + M(j,k) - 1.

end ;

end ;

Figure 16. Algorithm 1
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r
FALSE if column i of M is not in M' (i.e.,

AVAILABLE (X.) -FALSE)

or if M(j,£) - (i.e., M» (l.i 1

.)
- where V

corresponds to &)

or if the minimum column or row sum of M' with row

1 and column JL
1 deleted is zero (V corresponds to l\

TRUE otherwise^

then we contend choosing P
±
(j) k is a good extension iff

LOOKAhEAD_OK(k)=TRUE, i.e., the algorithm will not get stuck and

will peel off all the permutations P without backtracking.

The proof is simple: it is clear first of all that this is a

necessary condition for choosing P
±
(j) = k, since we must have

M(j,k) > [P,(j) - k is possible] and AVAILABLE (k) =TRUE [P^j') - k

cannot already have been assigned]. We must show sufficiency.

We have inductively that M 1 contains at least one permutation

matrix. By selecting only columns at each step having true

LOOKAHEAD_Ok's, we guarantee that the submatrix handled by the next

step also contains at least one permutation matrix (since, by the

third condition in Vs definition, each row and column in it has

sum at least 1). Thus the j-loop works inductively, so we can

successfully remove at least one permutation P
1

from M. But then

Birkhoff's theorem applies, and since M - P
1

is (unnormalized)

doubly-stochastic, we can apply the j-loop successfully to it again.

Thus the i-loop must work inductively as well, so we can extract

{p P,} in sequence from M.
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To see how LOOKAHEAuJMC can be computed in time 0Uo«<§»

using oal, 0((H)2 lof^ ) gaCes> conslder ^^^ ^^ ^ ^
dear that the only difficult computation is that of evaluating whether
or not the row sums are zero when various columns are deleted. Some
simple algorithms for computing these row sums include (1) sunning all the
rows and then subtracting the elements in colu»s being deleted, taking
time 0(log(|) log d) and

0((f)'
log d) gates, and (2) 8etting . blt £„ each

entry in M indicating whether that entry is zero/unavailable or not, and
then fanning all these bits in with OR-trees in time 0(log(| - 1)> using

0((f)
3
) gates. A more efficient algorithm might work as follows: suppose

for any given row we compute a bit-vector I of dimension $ such tha£

r i:

ll ol

We can recursively construct S in time
0(f !,<£„ by dlvldlng it ^

subproblems of half the size. In Flgure 17> the outputs ^ of ^ ^ rf
the box represent S(k) for 1 < k < „ : the bottom output is a line indicating
whether any. of the row entries considered are zero, or not. Of course, the
inputs are entered at the lowest level of recursion, in boxes S<

2 > as in
Figure 18. It is easy to verify that t is the output of box S

(N/d >
(assuming

N/d is a power of 2). Moreover, since S<»> runs in time O(log n) and
requires gates

G(n) = 2G(n/2) + n + 1 , G(2) = x

G(n) = n lg n - 1 (for n a power of 2)

We can thus compute S in time 0(lg
f)

and gates of
0(f

lg f) .

'd'

S(k) = {
"

lf the r°W '

S SUm is 2ero when ^lumn k is deleted

otherwise.



s
(n)

Figure 17. Nonzero-row-sum-detector construction

input i

Figure 18. Nonzero-row-sum-detector initialization
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Since there are (|) rows and computation of the other factors

of LOOKAHEADJDK is easier, we can get everything in time 0(lg<f» uslng

0((
d ) X* d } gates

* ^s construction does ignore gate fanout; more

complicated schemes for computing t could avoid this problem, or simply

accept a time bound of OCleA Iop fl^ OQ *. Q j„iu^j.g^
d ; ±og

f ^;; gate delays, where f is the

fan-out limit of the gates used.

To clarify the execution of Algorithm 1, we give a short example.

Consider the problem of setting a (12,4,4x4)-RSN to realize the permutation

tt =
[

X 2
3 4 5 6 7 8 9 10 11 12

)

\
6 2 1 12 10 5 9 11 3 4 7 8

)

I
2 x M
° 1 3

»
and a program trace of Algorithm 1 would

I 2 2 /

look as follows:

1 = 1*
/* Select P

1
from M */

AVAILABLE = (TRUE, TRUE, TRUE ) ; /* Ml 3 columns available */

J - l;

L00KAHEAD_0K = (TRUE, TRUE, FALSE) ; /* note M(l,3) = */

Select k = 1

Set P^l) = 1, AVAILABLE(I) = FALSE, M(l,l) = 1;

J - 2;

L00KAHEAD_0K = (FALSE, FALSE, TRUE )

;

Select k = 3;
f * N° tG avoidance of M(2,2) */

Set P
1 (2) = 3, AVAILABLE(3) = FALSE, M(2,3) = 2;
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j - 3;

LOOKAHEADJOK - (FALSE , TRUE , FALSE)

;

/* Only AVAILABLE (2) - TRUE */

Select k - 2

Set P,(3) = 2, AVAILABLE(2) - FALSE, M(3,2) - 1;

At this point we have

'i-l
1 2 3

1
\ 1 3 2

and

M =

i = 2; AVAILABLE = (TRUE, TRUE, TRUE)

j - 1; LOOKAHEADJOK = (TRUE, TRUE, FALSE)

Select k - 1; Set P
2
(l) = 1, M(l,l) - 0.

j = 2; LOOKAHEADJOK - (FALSE, FALSE,TRUE)

;

Select k - 3; Set P
2
(2) = 3, M(2,3) - 1.

j = 3; LOOKAHEAD_OK = (FALSE, TRUE, FALSE)

Select k = 2; Set P
2
(3) = 2, M(3,2) - -0.

Again we get

1 2 3
1

/
° 1 1

P2"
,1 3 »)

, and now M

\ 2

1 1

i = 3; AVAILABLE = (TRUE, TRUE, TRUE )

;

j - 1; LOOKAHEAD_OK - (FALSE, TRUE, TRUE )

;

Select k = 2; Set P
3
(l) = 2, M(l,2) =» 0;
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This leaves P a

J - 2 S LOOKAHEAD_OK - (FALSE, FALSE, TRUE);

Select k - 3; Set P
3
(2) = 3 ; M(2,3) - 0;

J - 3; L00KAHEAD_0K - (TRUE, FALSE, FALSE);

Select k - 1; set P
3 ( 3 ) = 1; M(3>1) _ 1;

/ 1 2 3 \

^M.[°10| u p m
/ 1 2 3

which the algorith* will extract on the pass through the i = 4 loop .

Notes on Algorithm 1

1) Currently the algorithm produces a set of permutations

{Pl Pd> lD ^^= °rd«- a °ne wanted to use the, on
the center switches of an RSN with the redundant upper-left-
hand subswitch set permanently to the identity (the Waksman-
Joel simplification discussed in section 1, cf

. , FlgUre 10)
then they would have to he reorganized. Fortunately, a minor
modification of the algorithm leads to production of

permutations fp d i *!••, P,} in an order that can be directly

applied to the center switches when this redundant switch has
been removed. Note that in any decomposition the entries taken
from the first row of M require no lookahead (since they must
wind up i„ some permutation matrix, it makes no difference which
one). Thus we simply set P.(l) . k for all ± „here fc . ^^
instead of randomly selecting 1±W . [Notice that the first

input to center switch i ie from input 1 which flows through the

redundant first switch, now set to the identity.]
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2) Note that Algorithm 1 has Inherent time complexity

ft(N) because it repeats a process requiring 0(N/d)

steps d times. Since there is no obvious (correct)

way of using any more parallelism in its implementa-

tion than has already been done, the time bound

ft(N) seems inescapable. It seems the only way (using

partition matrices) to get a sub-linear time

complexity algorithm is to find some fast method of

decomposing a partition matrix M, whose columns and

rows sum to d, into two partition matrices of the

same order M, and M^ , whose columns and rows sum to

d/2, i.e.,

M = M. + M
2

.

This "divide-and-conquer" approach could be applied

repeatedly in parallel until permutation matrices

appeared at the bottom of a computation tree of height

fig dl. Thus if the decomposition M = M
1
+ M

2
took

time T , then the whole process (assuming everything

could be done in parallel) would take time tflg dl.

Unfortunately, we can find no good decomposition

algorithm.
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Algorithms 2.1-2.? Setting the Outer Switch Stages

As indicated above, the input here is the original permutation

* and the center switch settings {pji - lf ..., d} , and ^ desired ^^
is switch settings

ftfe. .... q^} for the outer switches . ^ algorithms

considered here work as follows, in a two-step process:

St£p 2 - a Determine left-side switch settings {Q,,, ..., q },

)te that after the center switch settings {P.} have been set,
No1

then

Right-side-destination-switch # (left-side-switch i, output j)

-Fjd).

i.e., the outputs of the left-side switches are directly

connected with the inputs of the right-side switches in a

precise way. Therefore, for {Q
2

. .... Q^} t0 constitute a

valid setting for the left side we must have

Qi
(k) = £ => L7r((i-l)d + k)/dj = P (i)

since the inputs to switch i are exactly {(i-l)d + k|k « 1, ...,

d}
.

In other words, the destinations forced by the center

switches must be correct. Thus our algorithm for this step

will take the inputs k of the outer switches and match them

(serially) to an output £ satisfying the above requirement.

Step 2>b Determine right-side switch settings {Q , .... }& 1WN/d+l'
"• , W2N/d'

This is trivial once the left side has been set, for all inputs

and outputs have been determined. Since the complexity is
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smaller than that of Step 2. a, we omit discussion of the

implementation of this step altogether.

Algorithm 2.1 Determination of Q«, ..., Q„,,

Timing

Gates

Me

0(d lg d) gate delays

0(j lg d) gates

thod All the d*d settings Q~, ...» QN /j are determined in parallel,

each using the brute force 0(d) matching technique:

AVAILABLE(l), ..., AVAILABLE(d) «- TRUE;

do k = 1 to d;

do % - 1 to d;

if lTT((i-l)d + k)/dj = P
£
(i) & AVAILABLE (£)

then do;

Q
±
(k) <- *

AVAILABLE (£) «• FALSE

end;

end;

end;

Figure 19. Algorithm 2.1
, ..

Note that there are no "access conflicts" for the values P«,(i)

between processors setting Q. and Q. in parallel, since the

processor setting Q references only P. (x) for I = 1, . . . , d.
A. Xs

2' "•• VdAlgorithm 2.2 Determination of Q., . .., Q

Timing 0(lg d lg N/d) gate delays

Gates 0(d lg d lg N/d) gates
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Method The matching is achieved by sorting the values -

(lirCd-Dd i k)/d j| k - i, ..., d} (keeplng thelr or±ginai

order as tag information) and then using binary search to

find matches with P
£ <±). The sorting, to achieve the above

parallel time bounds, would require a small (rig N/dl-bit,

d-input) Batcher network [Bat 68]. Note that if d = 0(N)

then this algorithm is useless to us, since we are trying to

design a switch that competes with Batcher's, not that

subsumes it.
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VII. Hybrid Switches and Conjectures on Bounds

Until now we have restricted our attention to rearrangeable

switching networks whose structure is recursively defined by a single

function d = d(N). In this section we consider what power is gained

when we permit multiple functions d, calling any RSN which uses two or

more d's a Hybrid RSN . An example of a Hybrid RSN is given in Figure 20,

utilizing d = N/2 and d = 2 RSN structure. In fact, the only Hybrid

RSNs we will consider here will use a judicious mixture of the d = 2 and

d = N/2 switches.

We noticed in section V that the (N,2,2><2)-RSN is cheap, fast,

N
and hard to set while the (N,2-,2><2)-RSN is expensive, slow and easy to

set. This suggests the following approach: we use a d = N/2 structure

at first to break the switch setting problem down rapidly into a set of

smaller switch setting problems, then before we use too many gates or make

the switch too slow we change to the d = 2 structure and finish the

problem off. Thus, formally, we initially set an (N,N/2,k*k)-RSN and then

set a number of (k,2,2x2)-RSNs, for some intelligent value of k. With the

formulas derived in sections II, IV, and V, the right value of k is not

difficult to obtain.

Theorem 5 The Hybrid (N,N/2,k*k)/(k,2,2><2)-RSN

with k * N/ /n „N (. *
) * N/,

n
.1.7095113

(lg N)
v lg 3-1' (lg n)

can be set in time 0(N (lg N) ) gate delays using 0(N lg N) gates.

Proof From section II, we have that the time for the data to flow through

the Hybrid switch in 2x2-switch delays is
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T
D
(N,k) - <£> - 1+ [<£>] Ulgk- 1]

= 2(|) lg k - 1

and the total number of 2*2-switches required is

GjjCN.k) = k((|)
18 3

- (£)) + (|)

8
Ikdg k - 1) + 1]

N
lg 3 N

lg 3

-
<f)

k lg k + (£) - N

Write k = N
a

, for some variable a to be specified momentarily. Then

G
D (N>N

a
) - a N

(1-a)1* ^ lg N + N<
1"a)1« 3

- N .

2
We are assuming here that G

D
(N,k) is 0(N lg N) for the switch to be

competitive with Batcher's networks. (Below in Theorem 6 we consider using

more gates.) If this is true, then

a N
(1-a)18 iW

lg H = 0(N lg
2
N)

so

a N
lg 3+a(1"lg 3) = o(N lg N) .

Since lg N = N
lg lg N/lg N

we find the above statement is true if

lg 3 + a(l-lg 3) < 1 + lg lg N/lg N

or equivalently

a > 1 + ^ lg N
(1-lg 3)lg N

2
implying that to use less than 0(N lg N) gates we must have

^"/(igNj'TiVr^^agN) 1 - 7095113

Table 5 gives a feel for this function of N for the switch sizes that

could interest us. Although the function seems asymptotically not that

much smaller than N, it is fairly small for all N of interest. What this

says is that we can use the fast d = N/2 control algorithm without using
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Table 5. Lower bounds for k in Hybrid d = N/2, d - 2 RSN
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too many gates until we reach fairly small subproblems, of size k.

Additionally, the time for the data to flow through a network with

k near N(lg N)"
1 * 7

is

T (N,N(lg N)"
1 * 7

) - 2(lg N)
1 ' 7

lgf ^yj) - 1
D (lg N)

z 2(lg N)
2,7

over our range of interest. We must also check the amount of time and

gates used by the control of our Hybrid RSN. From sections IV and V we

have the formulas

T (N,k) = 0(lg
2
N lg(N/k)) + 0(k lg

2
k) delays

c

lg 3-1 N lg 3

G
c
(N,k) = 0(N lg N(|r) ) + 0((£) [k lg k]) gates

assuming we are using the original Looping algorithm and not the parallelized

-1 7095
one. Again, letting k approach the limit N(lg N) * we discover

T
c
(N,N(lg N)"

1,7095
) = 0(lg

2
N lg lg N) + 0(N (lg N)"

1 * 7095

lg (N(lg N) ))

= o(N(lg N)
0,2905

) delays.

-1 70Q5 2
G (N,N(lg N)

-L • /U* :,

) = o(N lg N) gates,
c

2
Therefore, Theorem 5 follows, since we have o(N lg N) gates and achieved

the stated time bound.

In the above proof, it is shown that the bottleneck of the Hybrid

RSN is still in the time needed to control it, due to the restriction on the

number of gates. We can remove this bottleneck and match the control time

with the data time if we lift the gate restriction. Theorem 6 states the

result.
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Ihe°rem 6 The H"brld C.»/2.Wc)/(k.2,2x2)-RSN with k -^f
can be set In time 0(»¥ lg N) gate delays

using 0( .<1+W« lg
2
N , . 0{ N!.3 lg

2
N , gates _

Proof Since „e are concerned with minimizing time here instead of
gates, we nse the parallel Looping algorithm of section IV. We then find
the formulas for data and control time and gates as in Theorem 5

T
D
(N,k) - 2(N/k) lg k - 1

G
D
(N,k) =

(H/k
)l8 3

fc lg k + (N/fc)lg 3 _ ^

T
c
(H,k) - 0(lg

2
N lg(N/k)) + 0(k lg k)

G
c
(N,k) = 0(N lg NWk) 1*

3"1
) + OUWk) 1* 3

[k lg
2
k])

Note that T
c
(N) ^) and ^ft are „f ^^^ ^^^ ^ ^

so in that sense if we reoursed down to problems of size k - ^ before
changing from a d . N/2 structure to a d = 2 structure^ would be "balancW
the control time against the data time. (Actually a slightly smaller or
slightly larger value of k might get a better balance; to say anything
definite we need to know the constants involved in T

c
and T,, but we have

avoided doing this since there are so many considerations to be taken into
account-for example, we should really be discussing time in clocks and not
gate delays if this switch is really to be built. These problems will be
discussed in the next section.)
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If we choose k - **$T, then we find

T
D
(N,y¥) - vft lg N - 1

l±lg_3

G
D
(N,v^) " 0(N 2 lg N)

T
c
(N,yfi) - 0(lg

3
N) + 0(vfi lg N)

1+1* 3
2

G (N,yfi~) - 0(N 2 lg N)

Thus the theorem follows. We should point out that for N < 1024 it seems

likely that the 0(lg
3
N) term will dominate the control time, so for small

N in this area the balancing value of k will have to be more carefully

determined.

The above two theorems and the experience accumulated in the

development of this paper lead to two conjectures on lower bounds for the

amount of time needed to control the switch:

Conjecture 1 : Three-stage RSNs cannot be set in time o(N) steps using

2
o(N lg N) gates.

Conjecture 2 : Three-stage RSNs cannot be set in time o(v^O steps using

2
o(N ) gates.
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VIII. RSN Conclusions

The evidence above suggests (particularly if the two conjectures

in section VII can be proved) that the three-stage RSN must be rejected as

Unpractical at computer interconnection speeds, since it is uniformly slower
and more expensive than the Shuffle-Exchange Networks of Lawrie [Law 75],

Lang [Lan 76], [LT 76], and Wen [Wen 76], and if not requiring more gates

than Batcher's networks [Bat 68] it certainly requires more time. From a

theoretical standpoing the RSN seems very unappealing as a switching device

where switching speed is important.

From a computer designer's standpoint, it should be emphasized

however, the RSN may not be so unappealing when there is a moderate number

of input lines. To truly measure the effectiveness of the RSN one needs

real constants on the gate counts (with packaging considerations taken into

account) and time estimates in clocks and not gate delays since there are

always factors like wire length and design latching requirements which

affect the total timing of the hardware and are not captured by "gate

delays." A designer should not necessarily be deterred by the asymptotic

pessimism of the above conjectures unless he wishes to build an enormous switch,

The RSN may not be such an unattractive switch also if one

considers programming it to realize the most frequently-encountered

permutations quickly. This is the approach that has been taken in [FS 77a]

and [FS 77b], for example, where k-shifts, shuffles, broadcasts, and other

useful configurations have been preprogrammed so that the entire RSN may be

set in a few clocks for this restricted class. Clearly, the library of

programs can grow to fit any application in an easy way. This approach has

the disadvantage that the processors will idle for an intolerably long time
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if the switch is forced to realize some permutation it has no program

for, but if it can be guaranteed that this eventuality will arise only

very rarely, if at all, then the RSN will be a good alternative.

Thus, one cannot conclude immediately from the results here

that RSNs are useless for computer interconnection. It would be great

if the above conjectures could be disproved by, for example, finding a

good "divide and conquer" algorithm as discussed in section VI; however,

we are skeptical that a good RSN control algorithm exists. It seems more

likely that by studying other switching networks, like the Shuffle/Exchange

or multi-stage RSN, that more cost-effective networks for computers will

be found. We therefore now turn our attention to Shuffle/Exchange networks.
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——Introduction to Shuffle/Exchange Netwnrl,.

For some time it has been known that Shuffle/Exchange networks

provide an effective interconnection scheme for parallel computation

on many problems - see, for example, [Sto 71] and [Law 76]. These

networks are constructed of repeated copies (or a cyclically reused

single copy) of a "perfect shuffle" connection followed by a column

of 2x2 crosspoint elements which can exchange adjacent line values

independently. See Figure 21. Stone points out in [Sto 71] that this

network can be used for sorting a la Batcher [Bat 68], evaluating

polynomials, transposing matrices, and computing fast Fourier transforms

(as Pease showed [Pea 68]); Lawrie, in [Law 76], shows that many useful

routing permutations (in particular those arising in matrix computations)

can be realized using these networks; and others (e.g., [Lang76]
, [LS 76])

have shown that networks based on the simple Shuffle/Exchange have other

interesting properties.

The standard model for a multi-stage (= multi-copy) Shuffle/Exchange

network is the Omega network of Lawrie, which consists of n = lg(N)

Shuffle/Exchanges, where N is the number of input lines (which we will

assume is a power of two). The Omega network for N=16 is illustrated

in Figure 22. The purpose of this paper is to compare properties of

this network with those of two other networks: first, Pease's indirect

binary n-cube array [Pea 77] (Figure 23), and second, a network obtained

by appending a bit-reversal connection -clarified below- to the first

half of the base-2 RSN discussed in section IV, which we will call an
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Fig. 21. One stage of an 8-input Shuffle/Exchange Network
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R"netWOrk (FlgUre 24)
'

We defi- the inverse One.a ne^ . as *uggested
by the N-16 case in Figure 25, to be just lg(N) Exchange/Unshuffles. This

is exactly what we would get if we ran the Omega network "backwards",

i.e., let data flow from right to left in Figure 22, instead of left to

right. Having done this we can make the following statement:

The inverse Omega network, the indirect binary n-cube, and
the R-network are all equivalent.

The word "equivalent" may be interpreted in at least two different ways

(topological equivalence or functional equivalence), and in fact results

about the equivalence of algorithms may be derived from the statement if

one views the networks as operating on the input data, rather than just

permuting it.

This claim is probably not obvious, and will be proved in the next

section after the necessary tools are developed. Once proved, however,

this result is useful since it lets us apply what we know about any one

of the networks to the others. One application of this understanding

is in showing how the standard FFT algorithm, with a "butterfly" algorithm

graph related to the indirect binary n-cube network, can be transformed

Lnto Pease's shuffle-based algorithm [Pea 68], or can be transformed

Into an algorithm based on the R-network with no bit-reversal stape

(the transform outputs are produced in correct order).

Having established this network equivalence, we address the topic

>f the "universality" of these and other networks (their ability to

ealize arbitrary permutations if multiple passes through them are
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permitted). This question has been touched upon in [Sie 77a] and

[Sie 77b]; here it is more fully developed, and the results are shown

to have interesting implications on the problem of controlling

Shuffle/Exchange-type networks to realize arbitrary permutations or

to sort data in parallel.



175

——Fundamental Connections and Formal Switch Definitions

In this section we will be concerned only with networks having N - 2
n

inputs and outputs, where n is an integer. Although the results presented

here generalize for the case where N is not a power of two, we content

ourselves for the time being with this restriction. We now define 4

basic permutations which suffice to generate the Omega, indirect binary

n-cube, and R-networks — the shuffle (a), butterfly (6), bit reversal

(p), and exchange (E) permutations.

4

The Perfect shuffle permutation a is defined by

a(x) = (2x + L2x/NJ) mod N

where x, the index of some input line (i.e., its order from the top of

all N lines), lies between and N-l. See Figure 22. Perhaps a more

cogent way of describing this is to say that if x - [x x . . . x 1n n—1 * * * 1
when x is described in binary notation (so x = (2

n'1
)x +. . .+(2)x +x )

then shuffling corresponds to a circular left shift of the index bits:

(1) a(x) = a([x x .... x,]) - [x x x x 1n n-l V J l n-l
X
n-2 •'" x

l V«
Thus it is clear that a"

1
, the unshuffle, corresponds to a circular

right shift. We also define the k
th

subshuf fle a . for 1 < k < n, by

Q
(k)

(x) = a
(k)

([x
n '-*!» m

txn '•• \+1 Vl - x
l \).

So a
(k)(

x > is a shuffle on the k least significant bits in x's binary

representation, o
(±)

(x) = x , and clearly a - a.

Using this notation we define the bit reversal permutation p by

(2) P( [xnVl "• V»l] > " ["1*2 "• Vl*n ]
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and the v th *„i-i-«rflv permutation P^, for 1 < k < n, by

(3) W [X
n

••* X
l

] } " ^ "* Xfcfl Xl Vl "" *
2 ^

- i.e., the butterfly permutation interchanges the first and k
th

bits

of the index. Also, if we define x for all < x < N-l with

x = [x
n

... x
x

] by

x « [x^ • •
•
x2 x±*

where the bar indicates Boolean complementation, then we can say that

the set E of exchange permutations is

(4) E - {permutations e |
for every < x < N-l we have

either e(x)=x and e(x) - x

or e(x)=x and e(x) - x } .

N/2
Note: E is a set with 2 elements.

The immediate application of these definitions is that they

describe the permutations that can be realized using the networks we are

concerned with. For example, the set ^ of permutations that can be

realized by an Omega network is

(5) ^ - aE0E...aE = (aE)
n <n-lgOO>.

In writing this expression for repeated Shuffle/Exchanges we imply a

left-to-right composition of permutations, so that 1^ tt

2
(x) - 1^0^<x»

This possibly confusing convention is chosen to make our permutations

conform to the traditional left-to-right flow of data through network

drawings; so £2
fi

CE aE aE aE corresponds directly to Figure 22.
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This formalism is useful in that it gives us an algebraic grasp on things.

Notice that we can derive the expression for those permutations realized

by the inverse Omega network:

V1

(v'
1

- (c^v1
- ((aE)-y - (E-vy

and since E E,

<6 > V1
- <

E<rl
>
n

•

Let C
N

be the set of permutations realizable by Pease's indirect

binary n-cube, and P^ be those realizable by the R-network.

Then

00 c
N - EB

(2)
E

6(3) E ... E6
(n)

EcT1

and

(8)
*N - Ea

(nr
lEa

(n-l)'
lE "- E^Ep

•

Formalizing the claims of section IX, we argue that the following statement

is true, establishing the functional equivalence of the networks.

Theorem 7 V1
* °N " h *

Proof The proof is strictly manipulative. To facilitate its execution

we note the following identities, which we state without proof:

(10.1) -1
P P

(10.2) a
(k)"

1
"

k-1
Q
(k)

k =* 1, . . . ,n

(10.3)
S(k)"

1
- 6 (k)

k » 1, . . . ,n

(10.4) ap =
-1

pa

(10.5) 6(D "• 6 (k)
= a

(k)
k 1, . . . ,n
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(10.6) o
(1)

... o
(k)

- P (k)
k - 1 n

where P (k
)(txn

••• xiD " [V ,X
k+l

x
l
x2* * ^k-A 1 *

To prove &. = Cw , we must show expressions (6) and (7) are

equivalent. We start this by noting that

a"
1

E = B
(2)

E B(2) a"
1

,

an easily verified identity. Thus we have

ft^
1 = (EcfV = E (B

(2)
E B

(2)
a'

1
) a'

1
(E a"

1
)
11" 2

—9 —1 n—

2

= E 8
(2)

E 3
(2)

a" (E a )

Now it is also true that

6
(2)

a
"2

E = S
(3)

E 6
(3)

e
(2)

°"2

so, by substituting again,

V1
- E B

(2)
E 6

(3)
E 6

(3) hi)
°'3 (E °"1)n"3

-

-k -"k
Since by induction we can show

e
(k) Vi) '•• B

<2)
°~* E = B

(k+1)
E V+l) B

(k)
••• 8

(2)
a

we obtain

V 1
' E 6

(2)
E 6

(3)
E ••• E B

(n)
E (B

(n)---
e
(2)
^""^ °''

Inverting (10.5) and using (10.3) and (10.2) we get

"(n-1)
a
-l . a

-l
a
"(n-l)

a
-l „ tf

-l
6
(n) •" 3

(2)
a

and by comparison with (7) we conclude Sl^ ' = C .

The proof that ft
" = It. is similar, except that we make use of
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°_"

2

1e ' "Vif
1
* <Vi>

°"x

°(n-l)
°"2

E - "(nV
1

I a
(n.2)

a^y a'
2

"(2) -%-« '• (n_1)
I - a^1 I,

(2)
„.,W) ,-WI

and apply (10.2) with (10.6), using k - n In both cases. Equivalence

of \ and
"n

follows exactly as above.

We have established now that the three networks are functionally

equivalent, i.e., that they all realize the same set of permutations.

Actually one can go further and show that the networks are isomorphic, or

topological^ equivalent, in the sense that all three are only different

drawings of the same network. This can be shown directly by a simple

adaption of the proof of Theorem 7 which is more careful with what goes

on in an Exchange stage - an isomorphism between control settings for

each of the networks may be shown to exist, where the relationship between

control settings for any given exchange stage, say between the inverse

Omega and Cube networks, is given by a permutation involving shuffles and

butterflies. (The permutation can be directly constructed from the proof

of Theorem 7.)

What is important, however, is that we have established a convenient

formalism for working on networks which is useful for analyzing things

besides "permuting power". In the proof of Theorem 7 we were quite vague

about the precise function of "E" - it was simply a set which made identities

true, if We generalize the formalism and think of E as being a class of

data manipulation operations (instead of just permutations), and think of
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strings like (5) , (6) , (7) , (8) as being "programs" (like APL programs, but

read left to right of course) , then we can still find identities like

those in Theorem 7 and prove the equivalence of various programs.

Thus the above analysis can be applied to the study of algorithm structures,

provided we can somehow relate a known structure to one of the three networks

above or something like them. A case in point is the fast Fourier transform

(TFT) algorithm, a widely used algorithm for computing the discrete Fourier

transform of a set of N data points. Introductory material may be found

in [Coc 67]; we concern ourselves here with the radix-2 form of the

algorithm and assume N is a power of 2, but of course the results

generalize for more general conditions. When viewed as a network the

traditional algorithm may be written as

(i2) fft = e^we^" 1 b^wb^-1
... e^d)"

1
p

= P(n)WB (n) Vl)WVl) •" 6
(1)

W6
(D P

where the W operators are columns of N/2 two-input/two-output "multiply-add"

units, very much like the exchange operators discussed above. See Figure 26.

Because we are concerned with the gross structure of the algorithm, we

ignore for the moment the fact that the multiply-add units in each W

involve varying powers of a complex root of unity used in the transform;

as long as we preserve the topological properties of the network which

evaluates the FFT, then these powers still exist and can be determined.
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If we invert (7), apply (10.3) and replace all occurrences of E
with its topological equivalent, W, we obtain

(13)
"a"

1
' CT

(n)
WB

(n)
W -- w<S

(2)
w.

So, if we propagate the easily-verified identity

°(k)
w6

(k) - 8
(k)

w
V)°(k-H

from left to right in expression (13), we find

(W)
ST" " S

(n)
W »W 6

(n-l)
W Vl) ••• B

(2)
M

6(2)

Direct comparison with (12) yields

(15) FFT . ^-1
p ^

Now we can apply Theorem 7. We discover immediately that

(16) FFT - % P » (OW)
n

p ,

which indicates that the FFT algorithm can be implemented on a network

which uses only shuffles and a bit reversal at the end. This is Pease's

result [Pea 68]. We also find

(17) FFT s ^-1
p .

(p w ff^ w a^ w ^ w^ ^ ^
The importance of this result is that it leads to an algorithm that uses

no bit reversal — i.e., it leads to an FFT algorithm which produces its

outputs in the correct order. If we rewrite (17) using (10.4) as

0« FFT = a(pa)a
(1)

wa
(2)

w...wa
(n)

wp

and chen propagate the (pa) in (18) to the right using the relationship

(Pa) a
(k)

w = a"
1
a
(n_k+1)

w (pa)



184

we obtain

(19) FFT = a
(n)

w a~ a
(n-:L)

w a ... a
(2)

w a .

The algorithm structure corresponding to (19) is shown in Figure 27.

That the FFT could be computed without bit reversal has been known

for some time (cf. [Coc 67, p. 1671] where Stockham is credited with

having developed a procedure for doing it), but the butterfly/bit reversal

algorithm has become standard since fast methods for computing bit

reversals are known [Pol 74], and since both the butterfly and bit

reversal operations can be applied to the array in place — i.e., no

auxiliary storage is necessary to hold results from one stage of the

FFT to the next, as would be required by a serial algorithm based on

expression (19). The point is, however, that on some machine archi-

tectures the traditional algorithm may not work out to be the best.

If a machine is equipped to implement G ... for all k but cannot handle

p efficiently, then (19) is a better algorithm for that machine.

A surprising by-product of this analysis is the fact that the

FFT algorithm (19) may be implemented extremely efficiently on a serial

machine if one does not mind using twice as much storage as the traditional

FFT. The Unshuf fle/Shuf f le operations do necessitate the existence of

a work array in this algorithm if it is to be coded reasonably; but

great savings come in the following observation: in the usual FFT

algorithm, at stage k (k - l,...,n) one "butterflies" the values x
±

and

x n-k by forming
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c
i+2

x « on-k

X
i
+ W x

i+2n
"k

X
i " W x

i+2n
~k

where W = exp(-2irj/N)
, a primitive root of unity, and, if i - [i ... i ]

in bit notation, then p is the integer with bit notation

P
"

Ci
n-k l

n-k+l
•'• Vl •" °1

so at the final stage p is the reverse of i (i.e., p - p(i) ). The

computation of WP is a main part of the inner loop of most FFT routines

since it involves evaluating many sines and cosines, as well as bit reversals

in evaluating p if the program logic is not rearranged to avoid this.

The beautiful thing about (19) is that it reverses the data at each stage

just enough that the powers p come out in increasing, non-bit-reversed

order as i increases; in fact one can show that, for (19),

P =
[Vl V2

••' Vk ° ••• 0] - i - (i mod 2
n"k

)

when the algorithm is implemented properly. A simple-minded encoding

is shown in Figure 28. Obvious economies can be made on the way the

way the values WP are computed, and the Shuffles and Unshuffles can be

moved inside the loop by using more complicated subscript expressions.

This section then has indicated not only that the three networks

under consideration are equivalent, but also has shown generally how

such networks may be analyzed for equivalence (topological equivalence,

or equivalence of the algorithm identified with the network flow graph)

Hopefully the reader has obtained some feeling for altering networks
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W = exp(-27Tj/N)

do k - 1 to n /* lg(N) stages */

begin

execute a
fn_v+i)

on data

do i = to (N/2)-l /* (N/2) 2x2 elements/stage */

begin

p = i - (i mod 2
n_k

)

^21

L

2i+1

x
2i

+ W X
2i+1

x
2i " W X

2i+1

-1

end

execute o ' on data

end

Figure 28. Simple FFT Algorithm without bit reversal



187

into equivalent ones by manipulating equations involving the penautation.

p, 6
(k) ,

and a
(k)

. There is still a great deal of room left for

exploration here: among other things we can show that, like equation (19)

above we have the structure

(20) fft - awa
(1)

awa
(2)

.. . a V ff(W) G W a'
1

and there are certainly other formulations. Also/although the

connections p, 3
(k) . and a

(k)
seem very "natural" and, when composed,

are capable of generating any permutation of the index bits, there

may be other connections which perform "better" for a particular

algorithm than these, in the sense that fewer of them or fewer

compositions of them are needed to construct a network which executes

the algorithm. For example, if there were a connection TT such that

FFT » (7TW)
n

ir. then tt would be an extremely good connection to have

in a Shuffle/Exchange-type network on a multiprocessor which was

intended to evaluate FFT's (unfortunately, if tt is to be a permutation

on the bits of the indices (as are the shuffle and bit reversal, for

example) then it is not hard to show that no such tt exists for N > 4.

Any permutation of this type that can handle the FFT must be a cycle of

length n, so tt

11

= 1). Therefore, the architect of a new multiprocessor

with a Shuffle/Exchange-type network should consider which connections

will provide him with the most cost-effective switching capability for

the programs to be run on the machine, and include all of them — so

the Shuffle/Exchange will comprise more connections than just a shuffle.

An FFT processor will probably want to include both a and p; Gajski has
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shown [Gaj 77] that a processor which solves linear recurrences would

work best if O
f

. for k = 2 n were all available. Note that the

bit reversal, butterfly, and shuffle permutations can all be generated

using only a and O
(2

. , but they are not easily generated. The problem

of generating arbitrary index-bit permutations (therefore a fortiori

bit reversal, shuffles, etc.) has been studied in the context of bubble

memories by Wong and Coppersmith [WC 76].
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XI. Universality nf Shuf fle/Exchange-type Networks

In the previous section we concerned ourselves with topological

properties of Shuffle/Exchange networks, and how the same network could
be represented in a number of different ways. We now address the

problem of determining their inherent "permuting power", or "universality"

in the terminology of Siegel [Sie 77b]. That is, we want to know whether
we can realize arbitrary permutations of the inputs with the Shuffle/

Exchange networks if multiple passes through them are allowed. Note

that this characterization of the networks has really nothing to do

with the way the network is drawn - by Theorem 7, we know that the

inverse Omega, indirect binary n-cube, and RSN-derived networks have

Identical permuting capabilities although they look different.

Let S
N

denote the group of all permutations on N lines.

We now ask the question: what is the smallest value of k such that

(21) s
n - «y

k

-i.e., how many passes through the Omega network are necessary to

ensure that any permutation can be generated? Clearly the value of k

that works for ^ will also work for %"\ V and C^ so we can restrict

our attention to % here and answer the question for all these networks.

One might also ask the smallest value of I such that

(22) S
N
o (oE)

*

but clearly (k - £/(lg(N))) < 1 so we have I = k lg(N) approximately,

and since the behavior of the Omega networks is simpler to analyze than

that of bare Shuffle/Exchanges, we will only derive bounds on k here.

It would be interesting if we could show £ - k lg(N) exactly.



190

A word about why we are interested in (21) is in order. We are

concerned with the ability of our interconnection network (in this case,

an Omega network used iteratively) to permute the input values to

output lines, as would be necessitated by processor-memory interaction

in a multiprocessor architecture. It is true, in a multiprocessor

environment like this the network will be typically requested to

implement connections between inputs and outputs that are not perfect

permutations. For example, two processors might reference the same

memory module, or one processor might broadcast data to several memory

modules. Temporarily we restrict our attention to S
N

and (21), and

address the problem of generalized connections immediately afterwards

(the extension is easy).

A simple cardinality argument shows k=l is impossible in (21) for

N > 2, since

II
N

and

( FT\ 9
(N+l/2)lg(N) - Nlg(e)

N! ^ (/2tt) 2

2
(N/2)lg(N)

II \ II
"

However k=2 cannot be immediately rejected, since it is possible that

(Oj
2

contains enough elements. In fact, it is easy to show that

S c (ft,)
2

, and a computer program run on the IBM 360/75 here — requiring

Jl L- 2

15 minutes of CPU time to evaluate all 16 million elements in (ft
g
)

demonstrated that S
g
d (ftg)

2
(moreover, every permutation in Sq could

be realized in at least 288, and at most 776, ways). It is tempting to
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conclude that k-2 makes (21) true in general, but thle seems difficult

to prove. Also, the author has not been able to find a two-pass

solution for realizing the permutation (0 15) - an interchange of line.
and 15 — when N-16.

It is clear that since Batcher's bitonic sorting can be implemented

on a Shuffle/Exchange architecture in (lg(N))
2

stages [Sto 71],[Sie 77b],

we have k - lg(„) as an upper bound for (21). Thus we have established

the limits 2 < k < 1,00. The following theorem improves the upper bound

considerably.

£ieorem_8 Any permutation can be realized with min(6,lg(N)) ^-passes;

i.e., S
n c (

jy«in(6,lg<N)^

Proof This non-intuitive result (which is not the best possible) is

established in a sequence of lemmas. As always we assume N is a power

of two.

^5*LA S
n ^ f^"1 ^

Proof Hall's theorem on systems of distinct representatives can be used

to show that a rearrangeable switching network (RSN) can realize any

permutation of its inputs [Ben 65]. Therefore, S
N cz ^ R^ 1

. Now

apply Theorem 7.
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Lemma 2 % - P ^ P

Proof This follows immediately from the fact that pa E - E a p,

so we can propagate the leftmost p above rightward using equation (5)

and wind up with equation (6) , which gives ^ .

Lemma 3 The bit reversal permutation p can be realized in two J^-passes,

i.e., P E (V
2

*

Proof This is a corollary of the work of Pease [Pea 77]. Notice that

p([x
n

... Xl ]) - P [x
n

... xj'

where P is the matrix

.'\

1

.1 / nxn/

Now P can be decomposed as P = L U L where L and U are the matrices

\ 1 / nxn

Pease has shown that any permutation y - tt(x) such that

y = LU x

where L is a lower triangular and U a unit upper triangular nxn matrix

can be realized with a single ft pass. Therefore since

'

p (x) = P x - LU (L x)

2

p can be realized in two passes, or p e
(fyj)

• In fact we have
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P(x) - o)
2

(o)
1
(x)) where

(23) to ([* ... xj) -
[x x v rv1 n 1" lx
n Vl •'• x

n/2
(x
n/2

#x
n/2+l )

.

" (x
l«*n>J

and

(24) co,([x ... x,l) • fd «i ) fi hi /2 „ xj; llx^) (x^^) ... (x
n/2+1«xn/2 ) x

n/2
... x

n ]

(assuming that „ is even; the case where n is odd is similar), and it

is easy to verify that both ^ and «, are in V For an example with
N*8 see Figure 29.

Theorems now follows immediately. We know

(25) S
N C V1

% (Lemma 1)

(26) = P
"n P % (Lemma 2)

(27) c ay 2

V<V 2

% "n
6

- 0—« 3)

111118 S
N
C (V holds for a11 N, but since we know S C (fU

l8(N)

for all N as well, we obtain the result stated in the theorem. Note

that this result is pretty crude, once the principles behind it have been
grasped. We can refine it a bit :

Theorem 9 s ^ (
n )min(4,lg(N))

Proof We obtain the value 4 by showing that p ^ e (fl/, and use

this result immediately in equation (26) above. We do this as follows.

Pease [Pea 77] has characterized exactly which permutations tt are in

^ , showing that

(28) V1
" t.W - y | y.-x^f^

7ii ,Xi+i Xn)}
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where the f
±

are arbitrary Boolean functions of n-1 variables. From
this it follows immediately from Lemma 2 above that

(29) n - { Tr(x ) - y I y . x m -
,

and

"2

n-i+1 i i VJV ,yn-i+2' 1+1 ,, ""»V '
We show that every permutation « In p ^ can be realized as a sequence of
two permutations in V where in fact the first permutation is Just «.

defined in (24). Every permutation . in p ^ determines a unique set
of Boolean functions { ,

± | w n }> as lndlcated fcy (3()) ^ ^
every such , we can associate a.permutation % in J^ defined as follows:

V 7 - VV • *° l7„ ••• yx ] - Vtzn ••• ^l) . then

Vi+i - z
„-i+i • «i'y, Vw'Vi z

i>

where the g±
are in turn defined by

8
i (yn yn-i+2'Vi z

l>

f
l (yn yn-i+2'Vi z

i> « i > n/2

2± *
'
i^ '««

'

CWk+1> <*n/2**n/2+l> >*n/2 «x>

if 1 £ n/2 and n is even

Zl#fl(yn '«-l«' (Wi+l> (
*rn/2,+l«*rn/21-l>.*rn/21-".*l>

if i < n/2 and n is odd.

With these definitions it is simple to verify .„ . ^^W) u tm
for all x and ir. Thus we have shown o r- fo ^ . «.snown p j^ c= (fy , and Theorem 9 has
been proved.
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In summary, then, we have shown that

(3D S
N
C (V

4

is true for all N, giving the nice bounds 2 < k < 4 on the least value

of k that will satisfy (21). Again, the construction used for k-4 seems

crude when one takes into consideration that two of the four Omega passes

realize only the constant permutation u>
2
— an apparently wasteful

situation. However it is not clear that k=2 or even k=3 will suffice,

and it remains an open question to determine precisely which k is

minimal for any value N > 8.

Theorems 8 and 9 lead to some interesting derivatives. Define the

F-network to be any network which realizes the set of permutations

(32) F
N

- % P '

j

Then we can make three observations: first, (16) tells us that the

F-network can be used to implement FFT's. Second, we have

(33) S
N
C (F

N )

2

since S
N

= p S
N
pc p (p^P^) P - (^P)

2
-

ThUS the analogue ° f (21)

for F-networks is always satisfied by k=2. Third, and most surprisingly,

ting that f/1
- (p V"

1
- V1

P = (P ^ p) P = P V " Hno

F
N

= V1

and the network turns out to be topological^ equivalent to itself when

run Mbackwards M
. It remains to be seen whether these properties have

any useful implications; disappointingly, the F-network is incapable of

realizing the identity permutation.
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The result (31) Is interesting for the following reason. When
the author originally formulated the question of finding the least

value of k satisfying (21) he was confident that the answer would be
k - lg(N), which would have suggested that Batcher's algorithm is

essentially optimal for sorting or realizing arbitrary permutations on
a Shuffle/Exchange network. However, (31) implies that the optimality
of Batcher's method is not so easy to demonstrate, in fact, Le»as 1-3

and Theorem 8 say that if we can find a rapid control algorithm for

the RSN, then we can realize arbitrary permutations in a small constant
number of 0,,-passes, significantly less than the lg(N) passes required
by bitonic sorting. (Unfortunately, the best known RSN control algorithm
at the moment is related to the "Looping algorithm" of Opferman and

Tsao-Wu [OTW 71], and takes 0(N) steps to execute.) This brings the

complexity of controlling the network under focus as the main question
concerning us - notice that the Batcher algorithm uses a strictly local
control process (pairwise comparisons), while the RSN control algorithm
is strictly global. rhe Batcher algorithm thus sacrifices a number of

Vpasses for control simplicity, whereas the RSN algorithm takes the

opposite tack. We ask: is there a semi-global control strategy lying

between the strictly local Batcher and strictly global RSN algorithms

which uses both a modest amount of control time and a limited number of

fosses? wen [Wen 76] has done some prellmlnary WQrk indlcatlng thac

this is probably the case, at least for the average number of passes

required by random permutations. Results here could have great impact
on the design of processor-memory interconnection networks.
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Finally we bring up, as promised, the problem of making arbitrary

connections using Shuffle/Exchange-type networks. Note first of all

that if m inputs all desire to come out on the same output line, then

we have no choice but to delay (m-1) of them, and let these through

one at a time after the first one has reached its destination. Thus

at least m ^-passes are needed to transfer all the data through the

network, and there is little else to say. If, however, one input desires

to be "broadcasted" (in the sense of [Law 76]) to m outputs, then it

is still possible that a small constant number of ^-passes could suffice.

Let T be the set of arbitrary connections between all N inputs and

N

outputs; then clearly S
N

c: T^ and

(35) T
N

= N*.

Unfortunately the RSN is not powerful enough to cover all of T
N>

or even

arbitrary broadcast patterns, so we do not have

and Theorems 8 and 9 do not hold for generalized connections. Fortunately

the problem has been studied and Thompson has derived several useful

results in [Tho 77]. He defines a Generalized Connection Network (GCN)

with the network structure/set of connections

(36) G
N

= B B
(2)

B B
(3)

B ... B B
(n)

B B^ B ... B B
(2)

B ... B

6
(n-l)

B e
(„)

B --- BB
(2)

B

" C
N ° (B Vl) B ••• B B

(2)
B "" B Vl) B) C

"

where C„ denotes (7) with E's replaced by J's, and B Is the set of all

N
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connections realizable with a column of exchange elements when broadcasting
is permitted. Following (4) we can formally define

"

(3?) B " { connections b
|

for every < x < N-l we have
either b(x)-x and b(ac)-£

or b(x)-x and b(x)-x

or b(x)-b(x)-x

or b(x)«b(x>$ x

Thus B is a set with 4
N/2

- 2
N

elements Th«< elements. Thompson has shown that
T
N
C G

N ; now
'
sinc* it is easy to manipulate (36) to show

we can apply the old results above. Using Theorem 7, Lemma 2, and
Theorem 9 (where all E's are replaced by B's) we get

(38)

c c
n ST

1

S V1

- (py) ^ (py) ^
- h/

We have therefore shown that arbitrary broadcast patterns can be

realized in 8 ^-passes, given that the exchange elements are equipped
to make upper or lower broadcasts [Law 76]. Alternately we can use
the same argument to establish this result using 4 F-network passes.

Once again, whether these pass counts can be further refined is an

open question.
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