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ABSTRACT

In this paper we present SmartRoad, a crowd-sourced sens-
ing system that detects and identifies traffic regulators, traf-
fic lights and stop signs in particular. As an alternative
to expensive road surveys, SmartRoad works on partici-
patory sensing data collected from GPS sensors from in-
vehicle smartphones. The resulting traffic regulator infor-
mation can be used for many assisted-driving or navigation
systems. In order to achieve accurate detection and identifi-
cation, SmartRoad addresses various challenges in participa-
tory sensing scenarios, including data unreliability/sparsity,
energy constraints, and the general lack of ground truth
information. SmartRoad automatically adapts to differ-
ent application requirements by intelligently choosing the
most appropriate information representation and transmis-
sion schemes; it also dynamically evolves its core detection
and identification engines to effectively take advantage of
any external ground truth information or opportunity. With
these two characteristics, SmartRoad consistently delivers
outstanding performance for its road sensing tasks. We
implement SmartRoad on a vehicular smartphone testbed,
and deploy on 35 external volunteer users’ vehicles for two
months. Experiment results show that SmartRoad can ro-
bustly, effectively and efficiently carry out its detection and
identification tasks without consuming excessive communi-
cation energy/bandwidth or requiring too much ground truth
information.

1. INTRODUCTION

Traffic regulators, such as stop signs and traffic lights, are
designed to regulate competing flows of traffic at intersec-
tions. They are among the most commonly used traffic con-
trol signals, and play significant roles in people’s daily driv-
ing behaviors. Despite the safety and convenience benefits
they bring, the stop signs and traffic lights do charge their
toll. The stop-and-go movement pattern of vehicles caused
have resulted in substantial increase of gas consumption and
CO5 emissions [2]]. Driven by this problem, some recent
efforts are taken to reduce the negative effects, such as Eco-
Route [13]] and GreenGPS [12]. Navigation services like this
need to take into account the actual locations of traffic lights
and stop signs. Yet, unlike the case with road-maps, no na-
tionwide database exists today that documents traffic light

and stop sign locations. Instead, this information is quite
fragmented, buried in physical archives of different counties
and municipalities.

To address the above challenge, in this paper, we develop
a novel crowd-sourced traffic regulator detection and iden-
tification system, called SmartRoad, that can automatically
detect and identify stop signs and traffic lights from partici-
patory sensing data shared by individuals from their vehicles.
We investigate an approach that does not require explicit user
action beyond downloading and running a new application
to their smartphones. This goal eliminates techniques that
are based, for example, on video recording or explicit hu-
man reporting, such as the types of data collection used for
Google’s street-view.

While an initial thought has been to write a script to crawl
Google street-view itself (and use an appropriate visual anal-
ysis tool to extract stop sign and traffic light locations), it was
quickly discovered that some locations (such as the authors’
own neighborhood) do not have adequate street-view cov-
erage, rendering the approach less valuable. Instead, we fo-
cus on achieving accurate detection and identification perfor-
mance using mobile phones. Towards that end, SmartRoad
addresses the following major challenges.

Unreliable Data: The raw data collected by phone sensors
in individual vehicles are often unreliable. Many factors po-
tentially affect the quality of sensory data. Examples are the
quality of the sensing devices, the noise level of the physical
environment, and sometimes the ways in which the sensing
devices are used. To address this challenge, SmartRoad com-
bines information acquired from multiple vehicles to reach a
more accurate result. Here the underlying philosophy is: dif-
ferent information sources, due to their inaccuracy and het-
erogeneity, usually observe the environment from different
but complementary views. Therefore, aggregating the infor-
mation of individual sources can often cancel out errors and
reach a much more accurate result. This can be regarded as a
major advantage of participatory sensing that advocates vol-
untary data collection and sharing from a large number of
individual users.

Sparse Data: Data sparsity imposes another challenge to the
task of detecting and identifying traffic regulators. Though
the total number of collected traces might be large, the
amount of information corresponding to individual intersec-



tions is limited. To tackle this problem, SmartRoad launches
another dimension of information aggregation, i.e., it com-
bines the data traces at all the intersections to investigate the
common moving patterns of vehicles in the presence or ab-
sence of stop signs or traffic lights.

Expensive Data: Since users pay real money for commu-
nication energy and 3G bandwidth usage, which are propor-
tional to the amount of data that needs to be transmitted, it is
desirable that sensors locally process the raw data they col-
lect as opposed to forwarding them directly to the central
server. To this end, SmartRoad places raw data processing
operations, which are all lightweight, on client phones. In-
formation that are then sent to the server takes much smaller
size compared to raw data.

Unlabeled Data: In the area of data mining and machine
learning [23|16], labeling is a common concept widely used
in the task of classification. In this paper, a label corresponds
to the ground truth information regarding the presence or ab-
sence of stop sign or traffic light at a particular intersection.
Since our sensors work in a passive mode, they do not pro-
vide any label information, nor do we assume to be able to
receive any label information from participating users. We
do, however, design and execute our SmartRoad system in
a way that it can intelligently take advantage of any level
of label information. Furthermore, whenever budget allows,
SmartRoad is able to actively evolve its core detection and
identification engines to substantially improve performance.

The general design of SmartRoad follows a client-server
framework. We place the client component on a vehicular
smartphone testbed, and the server component on a work-
station. Recent years have witnessed the popularity explo-
sion of smartphones. Several features of smartphones make
them an appealing platform for our SmartRoad system. i)
Smartphones are packed with an array of different sensors
on board, such as GPS, accelerometers, and barometers, ii)
Smartphone operating systems [18| |1]] allow users to install
and run third-party applications that can potentially take ad-
vantage of the on board sensors and provide services to the
users, such as GPS-assisted local search and navigation, and
iii) Compared with dedicated sensing, computing, or com-
munication devices, smartphones are more suitable for large
deployment due to their popularity. Users can easily down-
load and install SmartRoad just like any other normal mobile
applications. All of the above features make smartphones an
ideal platform for our SmartRoad system.

We implement SmartRoad on a vehicular smartphone
testbed, and deploy it on 35 external volunteer users’ ve-
hicles. Through an experiment of two months collect-
ing around 4000 miles of driving data containing hun-
dreds of regulator-controlled and uncontrolled locations, we
demonstrate that SmartRoad can deliver outstanding detec-
tion and identification performance without consuming ex-
cessive communication energy/bandwidth or requiring too
much ground truth information.

2. SYSTEM OVERVIEW

In this section, we provide an overview of our SmartRoad
participatory sensing system that carries out the traffic regu-
lator detection and identification tasks. SmartRoad contains
three modules: a data acquisition module, a detection and
identification module, and a feedback module. They are de-
ployed on two different platforms distributed in-vehicle de-
ployed smartphones, and a central server. Figure[I]illustrates
the architecture overview of the SmartRoad system. We next
discuss each of these three modules in more detail.
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Figure 1: Architecture of the SmartRoad system

2.1 Data Acquisition Module

As shown in Fig.|1] the data acquisition module is installed
in smartphones deployed in vehicles. It performs four major
tasks as listed below.

Data Collection: Access the various on board sensors to
sense the physical environment.

Data Processing: Process the raw data collected from the
sensors according to the various data representation and
transmission schemes for the detection and identification al-
gorithms. For any specified application performance require-
ment, the data acquisition module minimizes the amount of
data that needs to be delivered to the central server in order
to save communication energy and bandwidth.

Data Delivery: Upload the processed data to the central
server. Cellular data networks and open public WiFi net-
works are both valid options as the transmission channels.
However, they both have certain limitations such as be-
ing potentially monetarily costly or not generally available.
SmartRoad gives users the choices to use either or both com-
munication channels based on their own personal situations
and preferences.

Energy Management: Besides the tasks mentioned above,
the data acquisition module also needs to monitor and man-
age its energy usage in order not to affect the other phone
functionalities or the general user experience.

Vehicle n
Data
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2.2 Detection and Identification Module

As shown in Fig. [I] the detection and identification mod-
ule resides on the central server, and processes data received



from individual vehicles. Thus its role is twofold:

Data Server: Listen for incoming connections and receive
data from in-vehicle phones. Data can be either directly
piped to the final processing engine, or stored in database
for later batch processing.

Central Processor: Carry out detection and identification
tasks, i.e., make decisions for each intersection regarding the
presence/absence and the type of traffic regulators. The ac-
tual detection and identification algorithms are discussed in
detail in Section[3l

2.3 Feedback Module

The feedback module also resides on the central server.
As illustrated in Fig. [T] the information flow between the
detection module and the feedback module is bidirectional,
corresponding to its two major tasks.

Outputs to User: Take as input the detection results and
present them to next tier applications that take as input the
detection and identification results, for example, assisted
driving or navigation systems such as GreenGPS [12]. We
also visually present detection and identification results via
a web service interface.

Feedback from User: The web service interface can also
be used by system administrators and users to correct detec-
tion errors or provide ground truth information, which is then
sent back to the detection and identification module for dy-
namic and adaptive performance improvement, as discussed
in detail in Section 3l

3. DETECTION AND IDENTIFICATION

To tackle the traffic regulator detection and identification
problem, the most intuitive approach would be to use rule-
based methods, where we specify a set of rules regarding
vehicles” moving patterns, and then use these rules to derive
detection and identification decisions from the driving data.
For example, we can come up with rules like the following:
i) Intersections where more than 90% cars come to full stop
before crossing have stop signs, or ii) Intersections where
users’ average crossing speed is less than 5 mph have stop
signs. Both rules sound quite reasonable and intuitive; They,
however, lead us to think about the following two questions
that we need to answer if we want to be able to effectively
and systematically build such rules:

e What decision points should be selected for the rules?
In our example above, we use 90% and 5 mph as the
decision points, but why not 80% and 3 mph?

o What set of rules should be used? Between Rule i and
rule ii in our example above, which one is better? Also,
can we somehow use both of them?

A naive solution to these questions would be to exhaustively
check all combinations of all the rules and all the possible
values for the decision points. This would, however, result in
enormous computational complexity, rendering it infeasible

in practice. Moreover, it is also possible that a set of rules is
only applicable for a certain sub-region of the problem space
but not others. For example, it is possible that the rules in
our example above work quite well for a rural area, but fail
miserably under an urban setting. Therefore, an effective and
robust detection and identification system needs to have the
capability of automatically selecting appropriate rules and
the corresponding decision points.

Towards this goal, we adopt statistical classification tech-
niques [23[] as the core detection and identification compo-
nents for our SmartRoad system, which, given data collected
from the target problem domain, automatically explore the
problem space and select the most suitable set of rules and
decision points for the detection and identification tasks.

For the rest of this section, [3.1] and [3.2] describe the client-
side raw data preprocessing and preparation; and
present the details for the server-side detection/identification
components and techniques; In [3.5] we discuss strategies
that we employ to enable SmartRoad to be able to meet
different application transmission/performance requirements
when executing its sensing tasks.

3.1 Data Preprocessing

Trace Extraction: The raw GPS trace data are broken into
separate traces by dividing between consecutive GPS frames
where the timestamp difference exceeds a threshold (corre-
sponding to users parking or powering off cars for the night).
Each trace then represents a separate continuous driving ac-
tivity. Whenever the client phone-side data acquisition mod-
ule detects the end of a trace, all preprocessing and subse-
quent feature extraction (as will be discussed shortly) opera-
tions are carried out for that trace.

Trace Segmentation: Each trace is scanned through and
broken into segments by using intersection location infor-
mation. Each segment represents the GPS trace portion that
leaves some immediate previous intersection and approaches
and arrives at a current intersection. Therefore, each inter-
section visited by a GPS trace will have one or more associ-
ated segments. The intersection location information needed
can be easily extracted from the Open Street Map [|15] data,
and it is the only map information that we use in our entire
system.

Turning Removal: Trace segments involving cars mak-
ing turns can potentially confuse a detection and identifica-
tion system, since the resulting approach— stop—turn move-
ment pattern observed at uncontrolled intersections are es-
sentially indistinguishable from that of stop sign controlled
ones. Thus, for each intersection, we need to identify and
remove the crossing segments that involve cars making turn-
ings. To achieve this, we simply measure, for each inter-
section, the car bearing (driving direction) on the approach-
ing segment and that of the leaving segment. Turnings are
therefore indicated by considerable bearing differences, say
greater than 45 degrees, between the two. Straight crossing



segments are therefore preserved.

Intersection Decomposition: Intersections generally have
three or more incident approaching directions, which might
or might not have different traffic regulator situations. For
example, a 4-way intersection might only have stop signs in-
stalled for the north-south direction, leaving the east-west di-
rection uncontrolled. We therefore decompose every single
intersection into multiple ones, each represented as a <lat-
itude, longitude, direction> tuple. Hence, the 4-way inter-
section in our previous example would be decomposed to 4
different ones, the traffic regulator situations of which are to
be considered separately.

3.2 Feature Extraction

Given the preprocessed data, the next step is to derive rules
that can characterize the different driving patterns generally
displayed and observed for the differently regulator-typed in-
tersections. In the context of statistical classification, this is
equivalent to extracting features from the GPS data. We ex-
tract 5 features, all of which are inspired by everyday com-
mon sense (some are also partially used by prior work [5]).
Next we give detailed descriptions of the intuition and ex-
traction for all 5 features.

Final Stop Duration: This feature captures the time dura-
tion of the last stop that a car makes in front of an inter-
section before crossing. The intuition is: At stop signs, cars
generally all stop, but perhaps only a few seconds; At uncon-
trolled intersections, however, cars probably do not stop and
thus the stop duration will be O or at least quite small; For
red lights, all cars would stop, and the duration are possibly
longer than that of stop signs. The actual extraction involves
simply scanning through the segment data and checking the
time duration of the last continuous 0-speed block, if any.
Minimum Crossing Speed: This feature represents the low-
est speed at which a car crosses an intersection. It should be
quite low for stop signs, and relatively high for uncontrolled
intersections; For traffic lights, a mixture of low and high
values might be observed, depending on the actual light con-
ditions. To extract this feature, we scan the second half of
each segment and pick the lowest speed reading.

Number of Decelerations: This feature captures the num-
ber of times that a car decelerates as it approaches an inter-
section. For uncontrolled intersections and green lights, cars
generally do not decelerate; For stop signs and red lights, one
or more decelerations might be observed. To extract this fea-
ture, we use speed difference and time duration thresholds to
define a continuous deceleration block in segment data, and
then just count the number of such blocks.

Number of Stops: This feature captures the number of stop-
ping actions in a segment. For uncontrolled intersection and
green lights, no stopping is expected; For red lights, one is
expected, regardless of whether the car is right in front of the
intersection or queued behind several cars; For stop signs,
one is expected if the car approaches the intersection with

no other cars in front of it, and multiple if the car is queued
behind several cars in front of a stop sign, as each of the mul-
tiple cars needs to come to a full stop at the stop sign before
proceeding, causing following cars to likely make multiple
rounds of stop-and-go actions. To extract, we simply count
the number of continuous 0-speed blocks in the segment.
Distance from Intersection: This feature measures the dis-
tance between the intersection coordinate location and the
point where a car makes its last stop, if any, before crossing
the intersection. If a car does not stop before crossing an in-
tersection, we mark this distance as -1. The intuition here is
as follows. For uncontrolled intersections and green lights,
this value should be -1; For stop signs, this distance should
be quite small as all cars are expected to stop right under the
stop signs in front of the intersections; For red lights, this
distance could be relatively larger as a car might get queued
behind multiple cars. To extract this feature, we identify the
last O-speed block, if any, in the segment and compute its
distance from the intersection point.

Note that all preprocessings and feature extractions are
done locally on phones. As they are all extremely
lightweight operations, the computation energy consumption
is negligible.

Our system extracts the 5 aforementioned physical fea-
tures for all GPS segments corresponding to crossings
through intersections. All the per-segment physical feature
vectors corresponding to the same intersection are then gath-
ered together, from which certain statistics (e.g., mean and
variance) are computed for each of the 5 physical dimen-
sions. In this paper, we refer to these statistics as statistical
features, and feed them as the immediate input to our detec-
tion and identification engine, which in turn classifies each
intersection as having traffic light, stop sign, or simply being
uncontrolled.

In SmartRoad, we design and implement two different
classification components, namely supervised classification
and unsupervised classification, that carry out the actual de-
tection and identification tasks under various settings. As
suggested by the names, their applicabilities depend on the
availability of training data set, in which each data point is
associated with a ground truth class label. Given a set of
training data, supervised classification methods are appeal-
ing because label information can help capture the inherent
structure of the target data automatically. Without label in-
formation, unsupervised models can partition the data only
based on the intrinsic similarities among data points corre-
sponding to the same ground truth label. In this paper, we
want to design our system in a way that it is able to handle
any availability level of label information, and does so in a
dynamic and intelligent manner. In the next two subsections,
we provide detailed explanation and discussion of these two
classification components.

3.3 Supervised Classification



In the data set collected and preprocessed as previously
discussed, each data point is a vector composed of the sta-
tistical features of a particular intersection. A training set in
this context corresponds to a group of intersections with their
corresponding ground truth traffic regulator information. In
practice, ground truth label information is limited and expen-
sive to acquire, thus we consider a realistic scenario where
initially only a tiny amount of training data is available, with
further label information being acquired incrementally either
on demand or opportunistically.

Regarding the actual classification technique, we use ran-
dom forest [4] as our base supervised classifier. Random
forest is a decision tree based classification algorithm that
trains multiple decision trees simultaneously and has them
vote for the final classification decision. The training of
decision trees are much like the derivation of rules, but in
an automatic and systematic fashion. Provided with labeled
training data, each decision tree iteratively figures out which
feature and what decision boundary value to use according
to the labeled training data.

As the core component of our SmartRoad participatory
sensing system, the supervised classification engine needs to
be able to dynamically adapt to various application require-
ments and evolve to fit different sensing application condi-
tions. In particular, we design and implement two adaptive
mechanisms in our supervised classification engine, as we
discuss in detail below.

Active Learning Adapter: In realistic participatory sens-
ing application scenarios, it is feasible that budget allows to
manually acquire ground truth information, but only up to
some small amount compared to the size of the entire sens-
ing task. Thus, an important question to ask here would be,
for which intersections should we pay to get their ground
truth information in order to maximize our final system de-
tection and identification performance? The most natural ap-
proach here would be to just randomly select intersections
up to the amount permitted by the budget. This scheme is
easy to carry out, but does not necessarily result in satisfac-
tory performance. A more intelligent approach here would
be to look at the past classification results, identify the inter-
sections for which the classification algorithms are the least
confident about, and then hire people to manually acquire the
ground truth information for these particular intersections.
Here we borrow the active learning philosophy [ 20]. We
call this mechanism the Active Learning Adapter for our su-
pervised classification engine, the detailed steps of which are
shown in Algorithm[T} In particular, our system loosely com-
putes the confidence score as the ratio of the winning vote
among all votes from the random forest’s bag of decision
trees. For example when classifying an intersection, if the
trees of a 10-tree random forest cast 7 votes for traffic lights
and 3 for uncontrolled, then the final classification result la-
bel will be traffic lights, with a confidence score of 0.7.

Self Training Adapter: Unlike the active learning adapter,

Algorithm 1 Active Learning Adapter

Input: The set containing all data that need to be classified Diarget;
Supervised classifier Ceassity; Labeled training data set Digin; high
confidence threshold hconf; low confidence threshold lcons
Output: High confidence label set Lo that holds all final classifi-
cation results
1: Initialize empty set Lcont
2: while |Diygec| > 0 do
train Cc]assify on Dlrain
apply Celassity 0N Drarger to get result labels £ and the corre-
sponding confidence scores S
for i <— 0 to | Dirget| do
if S[i] > hconr then
Acconf — Lcnnf U {ﬁ[l]}
Drarget < Drarget \ {Dlargel [l]}
else if S[i] < lcont then
10: manually label Diarge 1]
11: Dtrain <~ Dtrain U {Dtarget [1}}
12: Dtargel — Dtarget \ {Dtarget [Z]}
13: return Lcont

W

SRS e

which focuses on strategically acquiring new ground truth
labels, the Self Training Adapter, which adopts the idea of
self training [31]], looks at its own past classification results
and try to take advantage of them to improve system per-
formance. More specifically, the classified intersections that
have the highest confidence scores from the classifiers are
progressively collected and added to the training set. The
intuition behind is that classification results with high clas-
sification confidences are most likely to be correct, and thus
including these data points into the training set will likely
help expedite the overall classification tasks. Algorithm [2]
demonstrates how our self training adapter works.

Algorithm 2 Self Training Adapter

Input: The set containing all data that need to be classified Diarget;
Supervised classifier Ceiassity; Labeled training data set Digin; high
confidence threshold Acons

Qutput: High confidence label set Lo that holds all final classifi-
cation results

1: Initialize empty data set Lcont

2: while |Dyget| > 0 do

train Cclassify on Dlrain @] ['conf

apply Celassity 0N Drarger to get result labels £ and the corre-
sponding confidence scores S

5 for i <— 1 to | Diurget| do

6 if Locore[?] > heont then

7 Econf — Ecnnf U {l:[l]},
8.
9

W

: Drarget <+ Drarget \ {Dlargel [Z]},
: return Leons

3.4 Unsupervised Classification

Towards designing a robust system that functions even un-
der extreme conditions where no ground truth information is
available, we also develop an unsupervised classification en-
gine for SmartRoad. Unsupervised classification (or cluster-
ing) algorithms generally group data based on their internal
similarity instead of using label information. Compared with
its supervised counterpart, unsupervised classification meth-
ods are more application independent and easily deployable,
due to their lack of requirements for training data.

For our SmartRoad system, we select spectral cluster-



ing [26] as the base unsupervised clustering algorithm. As
opposed to traditional clustering algorithms like k-means or
generative EM framework that always result in convex sets,
spectral clustering can solve problems in much more com-
plex scenarios because it does not make assumptions on the
form of the cluster or the distribution of the data. We care-
fully study the data used as the input to the classification
component, and find that they neither display convexity nor
follow mixture models. Our experiments also show clear ad-
vantages of spectral clustering over traditional clustering al-
gorithms on our data.

To incorporate clustering methods, there is one question
that needs to be answered: how to infer the class labels for
data clusters? Our system achieves through investigating the
feature statistics of the data within different clusters. In Sec-
tion 3] we demonstrate the label derivation for the clusters
discovered by our unsupervised classification engine.

3.5 Implementation Strategies

Different from traditional classification tasks that assume
a central database, classification for participatory sensing ap-
plications is faced with a major challenge, namely, the sen-
sory data are distributed over a large amount of participat-
ing users. Generally, there is a natural trade-off between the
amount of information delivered by each user and the clas-
sification performance. More accurate results can usually be
achieved when larger amount of information is transmitted,
which, however, might lead to higher bandwidth consump-
tions. For the traffic regulator detection and identification
tasks, we substantiate this trade-off into two dimensions of
system design choices: i) For each vehicle, what features
should be extracted from the data and submitted to the cen-
tral server, and ii) What level of information aggregation
needs to be done in the server. The combination of these two
choices determines the amount of information delivered by
each vehicle, and has immediate impact on the detection and
identification performance. We now discuss each of these
two dimensions in more detail.

3.5.1 Information Aggregation

As previously discussed, we extract from raw data 5 dif-
ferent physical features, and derive statistical features from
each of them. The resultant statistical features associated
with each intersection are used as the input for the classifi-
cation engines to infer the regulator type. In SmartRoad sys-
tem, the extraction of physical features always takes place
locally on each phone. No raw GPS data ever needs to be
transmitted. Depending on where and how the derivation of
statistical features takes place, we design three different in-
formation aggregation schemes, each of which corresponds
to a different level of data abstraction.

Data Aggregation (DA): The original physical feature vec-
tor extracted for every crossing through an intersection is
transmitted to the server. The server collects all physical

feature vectors corresponding to the same intersection and
computes a statistical feature vector for that intersection.
Feature Aggregation (FA): The per intersection statistical
features are computed by each individual users, and are then
opportunistically sent to the server, along with the associ-
ated crossing segment count information. All these informa-
tion from different users are then used to estimate the final
statistical features by computing the weighted average using
users’ segment counts for each intersection. Therefore, FA
shrinks DA’s per crossing segment transmission level down,
by one order of magnitude, to per intersection.

Label Aggregation (LA): Each individual user carries out
classification locally on phone and only sends the classifica-
tion result labels to the server, who then derives the final la-
bels by carrying out where weighted voting, using the same
count information mentioned in FA. Compared to FA, this
scheme further shrinks the amount of data that needs to be
transmitted for each intersection down from a feature vector
to essentially a single local decision label.

3.5.2 Feature Selection

To thoroughly explore the transmission-performance
trade-off space, we design 3 sets of statistical feature selec-
tion schemes. As discussed below.

Default: The default statistical feature extraction scheme
consists of computing the minimum, maximum, mean, and
variance (min-max-mean-var) on sets of physical features.
This scheme captures a straightforward statistical signature
associated with every intersection as users drive around and
the number of crossings at individual intersections accumu-
lates. Under this scheme, each intersection is associated with
a4 x 5 = 20 dimensional statistical feature vector.

All Spectrum (a-): For the sole purpose of capturing a
richer statistical signature than the default min-max-mean-
var, we also design the all-spectrum statistical feature ex-
traction scheme, which replaces the default min and max
components with percentile values ranging from 0 to 100
with 5 as the stepping length. Therefore, under the all
spectrum scheme, every intersection is associated with a
{[(100 — 0)/5 + 1] + 2} x 5 = 115 dimensional statisti-
cal feature vector. We expect this scheme to yield relatively
higher classification performance even though it is quite ap-
parent that it would incur a heavier burden for the transmis-
sion channel than the default scheme.

Economic (e-): For this scheme we simply drop the variance
value from the default scheme. At first glance, it might seem
like a minor modification, the transmission requirement im-
plication for the DA information aggregation scheme, how-
ever, is rather significant. The DA scheme, as just intro-
duced, needs to send per crossing segment information to the
server; Under the modified scheme, eDA, however, a user
needs only send the per intersection min-sum-max values,
along with the per intersection crossing counts, to the server,
where the global per intersection min-mean-max statistics



can be recovered. Therefore, eDA has a transmission profile
one order of magnitude smaller than the original DA scheme.

Combining the information aggregation and feature selec-
tion schemes, we have 3 x 3 = 9 classification scenarios in
total, the performance analysis of all of which is presented
in Section 5] Note that for the 3 label aggregation schemes,
namely LA, eLA, and alLA, classifications are carried out on
phones locally, whereas for all other schemes classifiers run
on the central server.

4. SYSTEM IMPLEMENTATION

In this section we talk about the implementation details of
the various component modules of our system. An in vehicle
deployed system is illustrated in Figure[2]
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Figure 2: The data acquisition module running on a Galaxy
Nexus smart phone, deployed in car.

4.1 Data Acquisition Module

Data Collection: The data acquisition module is im-
plemented on Google’s Galaxy Nexus Android phones,
equipped with 1.2GHz dual core CPU, 1GB memory, and
16GB flash storage, running on Android 4.0 operating sys-
tem [14]]. We collect readings from the following phone sen-
sors: i) GPS Sensor, the main source of the data to be used
for our detection and identification tasks. Every single GPS
reading includes the instantaneous latitude-longitude loca-
tion, speed, and bearing of the vehicle; and ii) Power Sensor,
which is used to determine the phone charging status, which
reflects the car’s engine on/off status, which is then used by
the phone side code to start or stop data collection and com-
munication.

Data Processing: The data processing component is respon-
sible for carrying out physical and statistical feature extrac-
tions according to the appropriate representation and trans-
mission schemes. Note that even though phones are becom-
ing more and more computationally capable, they are still far
less powerful compared to traditional workstations; Attempt-
ing to carry out data processing tasks that are too computa-
tionally intensive can potentially affect the running of other
applications and affect the general user experience. How-
ever, as discussed in Section[3] the computation requirements
for the feature extractions involved in our detection and iden-

tification tasks are all quite lightweight and thus are all done
easily on phones.

Data Delivery: A traditional client-to-server uploading
module resides on each phone and opportunistically trans-
mits data back to the central server upon the availability of
some appropriate communication channel. It is, however,
also possible that some users never drive within public WiFi
areas, nor do they choose cellular data network as a usable
channel. We therefore also implement, on phones, a peer
sharing module that lets any two phones to potentially share
their data with each other, thus increasing the possibility of
the data reaching the central server sooner. The peer shar-
ing module amends the traditional client-to-server uploading
module and form a DTN network for pushing nodes’ data to
the server.

Energy Management: Pulling GPS or carrying out var-
ious network communication tasks are all energy hungry
operations. Due to the nature of the deployment environ-
ment, users can choose to plug their phones into the car
chargers. The SmartRoad energy management component
checks the phone’s battery level and charging status and sus-
pends/revives the power hungry operations accordingly. This
also helps achieving completely autonomous phone opera-
tions during our experiments.

4.2 Detection and Classification Module

Data Server: The multithreaded data server is written in
Java, capable of handling multiple TCP connections from
clients. The server assigns one worker thread per incom-
ing TCP connection. Each worker thread reads data from
the input stream and converts them into a usable format on
the fly. Before the conversion, parameter text labels are en-
coded in a static numeric representation to shrink data trans-
fer size. After the conversion, the server performs a lookup
on the numeric values before generating SQL insert state-
ments. The table in the database uses an auto increment field
as the primary key for simplicity, and are indexed by the tu-
ple (PhoneID, SamplelID) to reduce data insertion overhead.
The indexing enables MySQL to organize the stored data
into B-tree data structures to speed up duplication detection
when inserting new data.

Central Processor: The core component for carrying out
the actual traffic regulator detection and identification tasks
is implemented in Python, which enables straightforward in-
tegration with the data server and the feedback module.

4.3 Feedback Module

The feedback web interface is implemented in Django
[10]. It provides a graphical user interface for easy inter-
actions. It uses the python plugin Celery [6]] to periodically
update the traffic regulator detection and identification re-
sults as well as data plots and driving statistics so that the
user can retrieve timely data. Additionally, users and sys-
tem administrators can interact with the interface to correct



mistakes and/or insert ground truth information.

S. EXPERIMENTS AND EVALUATIONS

We deploy SmartRoad system for 35 external volunteer
users. The in-vehicle client phones work in completely au-
tonomous manners. All users are asked to drive just as how
they normally do. The entire experiments last for about two
months with individual users averaging about 3 weeks each.
Roughly 4000 miles of driving data are collected in total,
covering 158 traffic lights, 77 stop signs, and 228 uncon-
trolled unique intersections without considering turning seg-
ments. For each of the 3 regulator situations, The 25th, 50th,
and 75th percentiles for the number of crossing segments are
{6,14,34}, {1,4,11}, and {2, 10, 26} for traffic lights, stops
signs, and uncontrolled intersections, respectively. In order
to have accurate ground truth information for evaluation pur-
poses, we make several attempts to acquire such informa-
tion from our municipalities but receive no useful response;
Thus a great amount of time and effort are spent on manu-
ally physically collecting and verifying the ground truth for
all the intersections.

Our various experiment results show that SmartRoad can
effectively and efficiently execute its participatory sensing
and classification tasks under various application require-
ments and conditions with high accuracies and small trans-
mission requirements. About 80% true positive rate (TP)
can be achieved without any ground truth information; 90%
TP is reached with only 20% ground truth data at about 8%
false positive rate (FP). Under realistic sensing application
scenarios, SmartRoad claims and maintains a 5% to 10%
advantage margin for both TP and FP measures over the
baseline approaches at all levels of ground truth availabili-
ties. SmartRoad completes the detection and identification
tasks, confidently claiming labels for all intersections, with
no more than 28% ground truth information, achieving out-
standing classification performance of around 93% TP and
5% FP rates, which the baseline approach barely reaches
with even twice the amount of ground truth information.

Detailed experiment results are presented as follows.

5.1 Supervised Classification

Evaluating Information Aggregation Schemes: First, we
evaluate the classification performance for the 3 information
aggregation schemes, namely DA, FA, and LA, as defined in
Section[3.5.11

Note that for the sake of presentation clarity, here we only
show the average results for all 3 classes. The actual under-
lying per class results are indeed balanced, without any par-
ticular class being favored or sacrificed in the classification,
as demonstrated in a later evaluation segment.

Generally, as the amount of data, or labeled training data,
or both, increases, classification performance also improves,
as clearly shown in Fig.[3] It can be observed from these
figures that for all data amounts or training data availability
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Figure 3: Supervised classification performance

situations, the classification performance generally follows
the DA > FA > LA trend, which agrees with the network
transmission requirement for each of them. At system start
up, with extreme data limitation in general, all three schemes
perform quite poorly, with LA being the worst of all. As
the amount of data and/or labeled training data availability
increases, the differences among all three schemes dimin-
ish. This suggests that as the deployment of a participatory
sensing system elapses and data flows in and accumulates,
feature selection and information aggregation schemes can
potentially be adaptively modified to reduce the communi-
cation requirements without incurring much damage to the
application performance.
Evaluating Feature Selection Schemes: We next take a
look at how different feature selection schemes compare with
each other under various data and training set availability set-
tings. We experiment with different physical feature selec-
tion schemes, and discover that using all 5 always yields the
best performance. Thus, here we only evaluate the different
statistical feature schemes, which also have far more impact
on the resulting transmission requirements. Notice from the
previous set of experiment results shown in Fig. [3] that the
amount of data has a smaller effect on classification perfor-
mance than training data availability does. Therefore, for the
next set of experiments, we fix the total data set at its full
size and examine the classification performance at varying
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training data availabilities and feature selection/information
aggregation schemes, as Fig. {]illustrates.

Note that the included AVG is not an information aggre-
gation scheme per se. Instead, it refers to the classifica-
tion scheme where each user uses his/her own local data to
classify the intersections he/she ever passes through. This
helps demonstrate both qualitatively and quantitatively how
crowd-sourced participatory sensing can help achieve appli-
cation performance that are otherwise hard to imagine for
single users.

As shown, the trend that more training data means higher
performance holds true for all scheme combinations, as well
as for individual users. However, it can be observed that in-
dividual users, when acting alone, don’t quite catch up with
the various aggregation schemes even when the amount of
training data becomes abundant, illustrated by the lagging
behind of the leftmost 3 bars at all training data availability
levels. We also take a closer look at the performance mea-
sures at 10% training data availability, which is a quite harsh
condition for supervised classification methods. We see that
individual users have their true positive marks averaged at
around 60% and false positives almost 30%. However, sim-
ple voting among the users would immediately improve the
true positive rate to over 70% and reduce false positive rate
to less than 20%; and any slightly more sophisticated scheme
would further bump the true positive rate to around 80% and
cut false positive rate down to 15% or less. This is a clear
demonstration of the power of crowd-sourced participatory
sensing, under considerable label constraints.

Individual Class Classification Performance: So far we
have been looking at classification results by means of
weighted average among all three target classes, namely traf-
fic light controlled, stop sign controlled, and uncontrolled in-
tersections. Next we take a closer look at the individual class
classification results. We present two sets of experiment re-
sults with different levels of training data availabilities, as
shown in Fig.[5] We have the following two observations. i)
The average classification performance for both training data
availability levels agrees to the results shown in Fig. 4] and

ii) Even though certain per class performance differences can
be observed, it still is evident that SmartRoad classification
engines treat all 3 target classes fairly, without favoring or
sacrificing any particular classes. Therefore, for the sake of
presentation clarity, we do not show any more per class clas-
sification results.
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Figure 5: The per class classification performance (using the

same legend as Fig.[d)

Individual User Classification Performance: We now turn
our attention to individual users’ classification performance.
Fig. [6(a)] shows the distribution of classification true posi-
tive rates for all the participating users, where only 10% data
is used for training. As clearly shown, huge individual dif-
ferences are observed among users; with 2 of them experi-
encing accuracies lower even than chance 33%, while 1 of
them showing around 90% accuracy. This big variance and
generally poor classification performance demonstrate how
unreliable individual users can be. As also demonstrated in
Fig. @] even with much higher training data availability, the
average individual user performance still lags behind that of
our various information aggregation schemes.

We also take one step further to investigate the correla-
tion between users local classification performance and the
amount of data they individually collect. The result is shown
in Fig. [6(b)] from which it can be seen that even though the
relationships scatter around quite a lot, a general trend of
more-data-means-higher-performance is still observed, as il-



lustrated by the linearly fit straight line.
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Figure 6: Individual user local classifications

Evaluating Active Learning Adapter: All previous re-
sults are from experiments where our active learning and
self training adapters are both deactivated. We next evaluate
and discuss how the active learning and self training adapters
boost our classification engine’s performance.

The experiment scenario is as follows. The system is de-
ployed with the absolutely minimum training data availabil-
ity, namely 3 randomly selected labeled data, 1 for each
class. As time elapses, data from participating users begin to
show up and accumulate at the server. The server then peri-
odically goes through training, classification, and adaptation
phases, and dynamically adjusts itself based on the active
learning and/or self training adapter. The system continu-
ously iterates like this, until all labels for all intersections are
claimed by the server to have been classified with high confi-
dence, which we consider the convergence of our system, or,
from a real-life participatory sensing application deployment
point of view, the completion of the application tasks.

Having clearly specified the experiment scenario, we now
look at the experiment results in detail. Fig.[7]shows the clas-
sification performance for DA and FA schemes with the ac-
tive learning adapter (see Alg.[I)) activated. The two schemes
yield very similar results, thus we only focus on one of them.
We look at the DA scheme result as shown in the Fig. [7(a)]
As seen, the x-axis represents the growth of the training data
set as a result of the active learning adapter taking effect
and actively requesting for manual labels be acquired for the
intersection data points with low classification confidence
scores from the previous iteration. The two blue traces show
the evolution of the true positive and false positive rates of
the resultant classification model at all iterations, where the
two red traces correspond to the baseline classification model
trained from the same amount of training data, which are se-
lected at random instead of by the active learning adapter.
It is easily seen that, starting with only 3 randomly selected
labeled data points which correspond to less than 1% of our
already small data set, our system quickly reaches true pos-
itive rate of 80% with only 5% of data used for training
under the guidance of active learning adapter. The advan-
tage of our system over the baseline classification scheme is
maintained throughout the entire experiment iteration dura-
tion. Upon application sensing task completion, our system

claims a more than 10% true positive advantage margin than
the baseline, reaching 96%; and a 6% false positive advan-
tage margin, reaching 3%. Note that with only 20% data for
training, our system already achieves about 90% true posi-
tive rate and below 10% false positive rate, which should be
more than satisfiable for most crowd-sourced participatory
sensing application requirements. Note also that this perfor-
mance is not achieved by the baseline classification scheme
even at its convergence point with much higher amount of
training data.
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Figure 7: Classification performance with active learning adapter

Evaluating Self Training Adapter: We then look at how
the self training adapter (see Alg.[2) helps our detection and
identification system. Fig. [§] shows the experiment results
that are under the same settings as Fig. [/| with the only dif-
ference being the activation of both active learning and self
training adapters for the classification tasks. Let us again just
focus on the DA performance, shown in Fig. Compar-
ing it to the one just discussed, we can see that the same
set of characteristics are still present in our system, be it
the clear advantage margins over the baseline method or the
fast reaching of outstanding performance with small amount
of training data. However, the most important difference
brought about by the self training adapter is the fast con-
vergence compared to the previous experiment. As clearly
shown, when the active learning adapter is activated alone,
the system requires a more than 40% training data ratio to
converge, that is almost half of the entire data; however,
when self training adapter is also activated, convergence is
reached at about a 28% training data ratio, which is just
slightly over one quarter of the data, indicating a speed up
of application completing its tasks by nearly 100%. The per-
formance penalties on both true positive and false positive
rates are quite minimum, as can be seen from the figures.
Please note that, due to the limited amount of our collected
data, we would not consider the absolute “one half” and “one
quarter” marks here as generally indicative for other partici-
patory sensing applications and deployments; but the relative
speed up and save on label requirement are surely promising.

5.2 Unsupervised Classification

Evaluating Unsupervised Classification Performance:
The detection and identification performance of the unsu-
pervised clustering component is shown in Fig. 0] For the
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Figure 8: Classification performance with both active learning and
self training adapters
simplicity of presentation, we only show the clustering re-
sults on 6 different schemes, together with the measures of
AVG and eAVG. As can be seen, the presented curves form
two groups based on their performance levels, namely aDA,
aFA, FA, and eFA as one group and LA, eLA, AVG, and
aAVG as the other. The curves in the first group illustrate ac-
companying classification performance that grows with the
increase of data amount, until reaching a true positive rate
of around 80%. On the other hand, the curves in the second
group do not show much changes during the accumulation of
data. Obviously, the experimental results favor the schemes
that place the clustering component at the central server.
Determining the final labels for the different clusters pro-
duced by the clustering algorithm is straightforward; Taking
a quick look at the average of the clustering result data, one
can easily infer the corresponding label information by using
common sense. For example, the clustering result of the aDA
scheme produces the mean statistics as shown in Table[I]

Clusters A B C
Final Stop Duration (s) 11.28 | 250 | 0.12
Min Crossing Speed (m/s) | 5.27 | 2.03 | 11.82
Table 1: Mean statistics of the FinalStopDuration and Min-
CrossingSpeed physical features for different clusters

It is easily seen that Cluster A, B, and C correspond to
traffic light, stop sign, and uncontrolled intersections, re-
spectively, as common sense tells us, for example, if a car
does stop at a traffic regulator, then red light would be the
regulator that causes the longest wait; and when considering
the lowest passing speeds a car demonstrates when cross-
ing different intersections, at the uncontrolled ones we would
observe the highest speed compared to traffic lights or stop
signs.

6. RELATED WORK

The increasing availability of sensors integrated in smart
phones, such as GPS, accelerometer, gyroscope, and micro-
phones, provides many new opportunities for mobile sensing
applications. Compared with many traditional mobile sens-
ing systems which rely on specialized sensing, computing, or
communicating devices, smartphones are more suitable for
large deployment due their popularity. Thus far, a large spec-
trum of smartphone-based sensing systems has been proto-
typed, covering various mobile sensing applications [24] 22|
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Figure 9: The detection and identification performance of the
unsupervised spectral clustering component

28l 7, 27, 25]]. Among these applications, road sensing is
an important one and this paper belongs to that category.
Road sensing systems are normally dedicated to analyzing
data collected by all kinds of sensing devices carried in ve-
hicles. An early and representative road sensing testbed is
CarTel [17], which is composed of a Soekris embedded com-
puter running Linux, a WiFi card, a Sprint network card, an
external GPS, and a 3-axis accelerometer.

More recently, smartphones become the major player in
road sensing, and have been used in various scenarios. For
instance, BikeNet [11]] provides a cyclist with data archival,
retrieval, and visualization services through exploring inter-
bicycle networking. In-vehicle smartphones were used to
analyze traffic patterns in order to provide better navigation
services. For example, VTrack [29] and CTrack [30] are two
related systems that process error-prone position streams to
accurately estimate trajectories and delays. They argue that
GPS has several limitations such as unavailability for some
phones, deficiencies in “urban canyons‘ (tall buildings and
tunnels), and power-hungry nature. Instead, they rely on an
alternative, less energy-hungry but noisier sensory data like
WiFi and cellular fingerprints. They both match a sequence
of observations rather than a single one using constraints on
the transitions a moving vehicle can make between locations.
Their difference is that VTrack first converts fingerprints to
coordinates, while CTrack matches fingerprints directly us-
ing a two-pass Hidden Markov Model (HMM).

With the popularization of GPS equipped smartphones,
GPS sensors are becoming more preferred for road sensing
applications such as vehicle tracking [3]], due to their accu-
racy. One closely related work to our SmartRoad is Carisi
et al. [5]. They also work with GPS driving data, but heav-
ily use map information. In contrast, SmartRoad only uses
map intersection location information. Also they focus on
a binary classification problem, namely traffic light v.s. stop
signs, on a small set of manually selected candidate locations
that are already either traffic light or stop sign controlled,
whereas our SmartRoad system considers all intersections
ever visited by all users, detects and identifies the traffic reg-
ulator type. In addition, for their data analysis, they use a
rule based approach where rule decision points are selected
by exhaustive testing on the complete data set with ground
truth information, whereas SmartRoad uses statistical clas-



sification approach for automatic model generation, yielding
satisfiable performance by using none or only a tiny amount
of labeled data.

There exists other road sensing work, studying the prob-
lem of recognizing road traffic signs [19, 21, 9]. This
work solves a similar problem to ours. Different from
SmartRoad, however, these schemes all rely on windshield-
mounted cameras to opportunistically capture road signs that
the vehicle has passed by, and use vision techniques to de-
tect and classify the signs from the video recorded by the
cameras. For example, SignalGuru [19] is a software service
running on mobile smartphones. It is designed for predict-
ing the traffic signal schedule through analyzing the video
recorded by the phone camera. Another work [21]] proposes
an SVM (Support Vector Machine) based road-sign detec-
tion and recognition system which can detect and recognize
signs with different color and shape. Compared with these
systems, SmartRoad provides a much more lightweight sys-
tem that does not require users to explicitly participate in
sensing (e.g., by taking photos) and does not entail modifica-
tions to their vehicles (such as mounting a camera). Vision-
based sensing suffers from two further limitations: i) Video
shooting and processing are more computationally expen-
sive, and thus would result in more energy consumption; (ii)
Due to the dynamics of road sign placement, in-vehicle cam-
eras may not be able to capture all the signs passed by the
vehicles, resulting in some miss-detections.

7. CONCLUSION

In this paper, we present the design, implementation, and
evaluation of SmartRoad, a crowd-sourced traffic regulator
detection and identification system that uses simple GPS
trace data to determine the presence or absence of stop
signs or traffic lights at all road intersections. We deploy
the system in 35 volunteer users’ vehicles for two months,
collecting 4000 miles of driving data covering hundreds of
unique intersection locations. Experiment results show that,
in addition to taking advantage of the participatory sensing
paradigm, SmartRoad is able to adapt to various applica-
tion requirements and evolve to fit under different sensing
conditions. It carries out and completes the detection and
identification tasks in a robust, effective, and efficient man-
ner, achieving outstanding detection and identification per-
formance on task completion.
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