
Automated Inference of Atomic Sets
for Safe Concurrent Execution

Peter Dinges, Minas Charalambides, and Gul Agha

Department of Computer Science
University of Illinois at Urbana–Champaign, USA

pdinges@acm.org, charala1@illinois.edu, agha@illinois.edu

Abstract. Atomic sets are a synchronization mechanism in which the
programmer specifies the groups of data that must be accessed as a unit.
The compiler can check this specification for consistency, detect dead-
locks, and automatically add the primitives to prevent interleaved access.
Atomic sets relieve the programmer from the burden of recognizing and
pruning execution paths which lead to interleaved access, thereby reduc-
ing the potential for data races. However, manually converting programs
from lock-based synchronization to atomic sets requires reasoning about
the program’s concurrency structure, which can be a challenge even for
small programs. Our analysis eliminates the challenge by automating
the reasoning. Our implementation of the analysis allowed us to derive
the atomic sets for large code bases such as the Java collections frame-
work in a matter of minutes. The analysis is based on execution traces;
assuming all traces reflect intended behavior, our analysis allows safe
concurrency by preventing unobserved interleavings which may harbor
latent Heisenbugs.

1 Introduction

A program that synchronizes every single field access for each concurrently used
object can still exhibit high-level data races [1,2]: fields are often connected
through invariants and must be updated together to maintain the object’s con-
sistency [19,12]. For example, the value of the length field of a list object must
equal the number of elements in the array that stores the list entries. Inter-
leaved access to such fields from concurrent threads can expose or produce an
inconsistent state in the object containing those fields.

High-level data races may be prevented with control-based synchronization
mechanisms such as locks. However, to protect a group of data fields, the pro-
grammer must recognize and use locks to prune all execution paths that result
in problematic interleavings. This requires complicated non-local reasoning over
all execution paths. An alternative is to use data-centric synchronization [19,6,3]
which localizes the reasoning by asking the programmer for annotations specify-
ing which fields of an object are connected by a semantic invariant. A compiler
can use these annotations to add primitives which prevent interleaved access
to fields in the same semantic unit. This reduces the potential for high-level

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/10209564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data races on execution paths that the programmer may not have conceived of.
Furthermore, the annotations can be statically checked for consistency [6] and
deadlock-freedom [15].

Experience with converting a set of concurrent Java programs to data-centric
synchronization shows that the annotations are expressive, and that the ap-
proach may achieve good performance [6]. However, while the end-results are
encouraging, the conversion itself is time-consuming and can take several hours
even for a relatively small and simple program. The difficulty in doing such
conversion is understanding the program’s concurrency structure which can be
complicated even for small code sizes. For large legacy programs, understanding
the concurrency structure is a daunting challenge, likely requiring a much higher
time-investment for conversion, and resulting in higher error rates. There are two
kinds of problems that result: unrelated fields may be connected by annotations
(commission errors), or connections may be missed (omissions). The first type
of error reduces available concurrency and the second type can result in an in-
correct execution. Both problems occur in the six manually converted programs
we examined. In two cases, the annotations accidentally introduce a global lock,
and in two other cases, annotations for the synchronization of shared objects are
omitted.

The contribution of this paper is a method for automated analysis of a
program’s concurrency structure which enables converting the program from
control-centric to data-centric synchronization. This allows developers to transi-
tion to control-centric synchronization without having to pay for the conversion.
Specifically, we provide a novel algorithm for the automatic inference of atomic
sets, units of work, and aliases for data-centric synchronization of shared mem-
ory multi-threaded programs (for purposes of exposition, we use Java). Using
program execution traces as input, our analysis algorithm is path- and flow-
sensitive; existing synchronization mechanisms operate as guiding constraints.
The algorithm fully supports arrays, as well as cyclic data structures. It as-
sumes traces are provided or can be collected, and that such traces reflect pro-
grammer intent (e.g., such traces may be part of a testing phase). The inferred
concurrency structure enables safe execution because it automatically prevents
schedule-dependent Heisenbugs which are (by definition) unlikely to manifest
during tracing [20].

2 Background: Atomic Sets

The algorithm presented in this paper infers annotations for data-centric syn-
chronization using atomic sets [6]. An atomic set is a group of data fields inside
an object indicating that the fields are connected by a consistency invariant.
Objects can contain multiple disjoint atomic sets. Recall the list example from
the introduction: the value of the list’s length field must equal the number of
elements in the entries array used to store the list entries. Hence, the fields length

and entries form an atomic set. Figure 1 shows the respective code and annota-
tions in AJ, a Java dialect that supports atomic sets. The atomicset statement in

1 class List {
2 atomicset L;
3 atomic(L) int length;
4 atomic(L) Object[] entries;
5
6 public void get(int index) {
7 if (0 <= index && index < length) {
8 return entries[i];
9 } else {

10 return null;
11 }
12
13 public void addAll(unitfor(L) List other) {
14 length = length + other.length;
15 /∗...∗/
16 }
17 }
18
19 class DownloadManager {
20 atomicset U;
21 atomic(U) List urls|L=this.U|;
22
23 public void downloadNext() {
24 Object u = urls.get(0);
25 if (u != null) {
26 urls.remove(0);
27 download(u);
28 }
29 }
30 }

Fig. 1. Sample classes in the AJ dialect of Java which adds data-centric synchronization
via the annotations atomicset, atomic, unitfor, and |A=this.B|.

line 2 declares an atomic set L; the atomic(L) annotations of the field declarations
add the fields length and entries to L.

Instead of requiring an explicit expression of the consistency invariant like
length == entries.length, an atomic set is complemented by one or more units of
work. A unit of work is a method that preserves the consistency of its associ-
ated atomic sets when executed sequentially. Thus, atomic sets can ensure the
application’s consistency by inserting synchronization operations that guarantee
the sequential execution of all units of work. By default, all non-private methods
of a class are units of work for all atomic sets declared in the class or any of
its subclasses. Like field declarations, atomic sets use classes as scopes, but are
instance specific at runtime. For example, the method get(int) in Figure 1 is a
unit of work for the atomic set L of its containing List object. The atomic sets of

two List objects are distinct. Other methods can be declared units of work with
the unitfor annotation. In line 13 of Figure 1, the method addAll(List) is not only
a unit of work for the atomic set L of its own List object, but also for the atomic
set L of its argument. The effect of these unit of work declarations is that two
threads, t1 and t2, that concurrently invoke get(int) and addAll(List) on a List l
cannot interleave when accessing l’s field: either t1 executes get(int) first, or t2
executes addAll(List) first. The interleaved case where t2 has updated l.length but
not l.entries, which causes t1 to violate the array bounds cannot occur.

Aliases extend atomic sets beyond object boundaries. An alias merges the
atomic set containing a field with an atomic set in the object that is the field’s
value. For example, consider the DownloadManager class in Figure 1. The alias
annotation |L=this.U| of the urls field declaration combines the atomic set L with
the atomic set U. Hence, the downloadNext() method is a unit of work for this
combined atomic set; its access to the urls list cannot be interleaved. This guar-
antees that no other thread can empty the list between the invocations of get(int)

and remove(int). Coarse-grained atomic structures like trees can be implemented
with aliases. AJ furthermore supports aliasing of array-elements, and even alias-
ing of atomic sets in the elements of arrays.

Additionally, AJ recognizes a number of advanced annotations like partial
unitfor declarations and fastread. These simplify the specification of units of work
and guide the AJ compiler towards generating more efficient concurrency-control
code. Since these annotations are secondary, we do not consider their inference
in this paper.

3 Algorithm Synopsis

This section outlines our algorithm for inferring the atomic set, alias, and unit
of work annotations for data-centric synchronization.

The assumption behind our approach is that the methods of a program per-
form semantically meaningful operations. Thus, the fields accessed by a method
are likely connected by some semantic invariant. The set of fields that a method
accesses atomically is consequently a candidate atomic set; the method itself is a
candidate unit of work for this atomic set. For example, the get(int) method that
retrieves an entry from a list checks whether the requested index is less than
the list’s length before accessing the entries field. If the method always executes
atomically, then this suggests having an atomic set containing the fields length

and entries in the class List. Method get(int) is a unit of work for this atomic set.
A slight complication arises because high-level semantic operations often em-

ploy low-level operations. For example, the get(int) method might not access the
length field directly, but rather check the list’s length by calling getLength(). To
nevertheless discover the semantic relationship between length and entries, we
consider the fields accessed by a method to transitively include the fields ac-
cessed by called methods as well. Thus, the access to length in method getLength()

propagates backwards to its caller get(int). This restores the desired connection
between the fields length and entries.

Our algorithm builds upon these insights. It records the field access events,
as well as method entries and exits during the execution of a program. Replay-
ing these events on an abstract machine, it observes which fields each method
transitively accesses during execution, and furthermore whether the access was
atomic for one thread, or interleaved between multiple threads. The algorithm
aggregates these dynamic observations, translates them to the static class struc-
ture of the program, and merges them into suggested atomic sets. After forming
the atomic sets, it assigns the methods as units of work for the atomic sets that
match the observed field access patterns.

To infer aliases between atomic sets, the algorithm tracks the access paths
of accessed fields. An access path is a sequence of field names that leads from
one of the method’s parameters to the accessed field. For example, consider a
download manager object that stores a list of URLs in its urls field. A method
of the download manager that fetches and downloads a URL from the list (by
invoking get(int)) observes access to the paths this.urls.length and this.urls.entries.
If this always happens atomically, then it suggests an alias from the field urls

in the download manager to the atomic set that contains the fields length and
entries in class List.

Inference Procedure

Making above description more precise, our algorithm infers the annotations for
data-centric synchronization in the following phases:

(1) Recording the field accesses, as well as method entries and exits during
the execution of a program. This yields a field access trace as described in
section 4.

(2) Replaying the field access trace on an abstract machine, observing which
fields each method transitively accesses during execution, and furthermore
detecting whether the access was atomic for one thread, or interleaved be-
tween multiple threads. Aggregating these dynamic observations and trans-
lating them to class scopes and field names yields the suggested atomic sets.
This phase is formalized in section 5.

(3) Inferring atomic sets and aliases by merging the suggestions. Afterwards,
methods are assigned as units of work for the atomic sets that match the
observed field access patterns. See section 6.

4 Field Access Traces

The set of events that are relevant for the inference algorithm are recorded
in field access traces, whose purpose is to record enough information to allow
reproducing the field read and write patterns of methods in the different threads
of a multithreaded program.

While conceived in the context of Java, the events logged in the traces are
generic to object-oriented languages: they only presume the existence of classes

that contain methods and fields. Thus, field access traces can be obtained from
programs written in other languages, which makes our atomic set inference al-
gorithm applicable to any of these languages.

Formally, field access traces are sequences of events generated by the following
grammar, in which names in angle brackets denote syntactic categories:

〈Trace〉 ::= (t, 〈Event〉)?

〈Event〉 ::= 〈Enter〉 | 〈Get〉 | 〈Put〉 | 〈Exit〉
〈Enter〉 ::= enter

(
m(v1, ..., v`)

)
〈Get〉 ::= get

(
o.f, v

)
〈Put〉 ::= put

(
o.f, v

)
〈Exit〉 ::= exit

Each event is marked with its source thread t to preserve the concurrency of
events despite their serialization in the trace. There are four types of events:

(1) The enter event signals the start of the execution of a method. It supplies
the name m of the entered method, along with the values v1 to v` of the
method parameters.

(2) Read access to an object’s field is recorded as a get event. The event con-
tains the identity o of the object, and the name f of the accessed field. It
furthermore stores the value v read from the field.

(3) Writing fields produces put events. These contain the same information as
get events.

(4) An exit event denotes that the current method finished, and control will
return to the calling context. This happens for both regular returns and
uncaught exceptions.

The enter, get, and put events record values. These values are either object
identities or the special symbol ⊥ which denotes all primitive, non-object val-
ues. By tracking globally unique object identities (like memory addresses), the
observation phase of the algorithm can recognize objects across different scopes.
In each scope, the algorithm can then resolve the respective identifiers for the
object (like the variable name x). By treating classes as regular objects with a
unique identity, access to static fields yields regular get or put events in the trace.

5 Access Pattern Observation

This section explains how the algorithm extracts the sets of fields that a method
accesses from a field access trace. The next phase of the algorithm (section 6)
aggregates these sets to infer the atomic sets, units of work, and aliases.

5.1 Abstract Machine

The observation phase extracts the sets of accessed fields by replaying a field
access trace using an abstract machine that monitors the field access in objects.

Hence, the abstract machine executes the events in the trace and applies their
effects to its state. To be able to detect interleaved accesses, the abstract machine
explicitly models the threads present in the trace, as well as the heap shared by
these threads. The model furthermore contains a stack for every thread. The
frames of the stack include a component for storing the accessed fields, and a
component for tracking the static names of objects. Finally, an extra field in the
abstract machine’s state stores the observations made during playback. More
formally, a configuration of the abstract machine

(γ, stacks, last , obs) ∈ Config

consists of the global timestamp γ, the state of the stacks, the last-written times-
tamps of all heap objects, and the collected observations. The initial configura-
tion has timestamp 0, and empty stacks, heap, and observations. The exact
domains of the four components of Config are explained below. The transition
function

δ : Config ×
(
t, 〈Event〉

)
→ Config

defined in Figure 2 computes the successor configuration that includes the effects
of the given input event from a field access trace.

5.2 Scope Management

Observing whether a field access was atomic or interleaved must be recorded
in the syntactic scope—that is, the method—in which the access occurred. The
abstract machine thus maintains a stack for each thread in the stacks component
of the configuration, which is a thread-id indexed dictionary: stacks ∈ Thread→
Stack with

stacks(t) ∈ Stack = (Method× Timestamp×NameEnv × FieldAccsEnv)?.

The stack frames (m, ε,ne, fae) consist of the name of the method m that defines
the scope, the timestamp ε when the scope was created, as well as a name
environment ne, and a field access environment fae.

Similarly to the customary call stack that a thread owns during execution,
entering a method pushes a new frame on the top of the stack; exiting a method
pops the top frame off the stack. The auxiliary methods push : Stack → Stack
and pop : Stack → Stack implement this functionality. To reduce the nesting
level of parentheses, we furthermore define auxiliary methods push and pop that
operate on the stacks dictionary and accept a second index parameter that
specifies which stack should be modified. Thus,

pop(stacks, t) = stacks
[
t 7→ pop

(
stacks(t)

)]
and similarly for push. The bracket denotes a point-wise update: g[x 7→ y] is the
function h with h(z) = y if z = x and h(z) = g(z) otherwise. Further auxiliary
stack management functions are top, which returns the topmost frame on a stack;
and replaceTopWith, which puts a given frame in place of the topmost frame
and returns the resulting stack.

δ
(
(γ, stacks, last , obs), (t, e)

)
= (γ + 1, stacks ′, last ′, obs ′). Unless defined otherwise,

stacks ′ = stacks, last ′ = last , and obs ′ = obs.

If e= enter
(
m(v1, . . . , v`)

)
then

stacks ′ = push
(
stacks, t, frame

(
γ,m(v1, . . . , v`)

))
.

If e = get(o.f, v) then
stacks ′ = recordRead(stacks ′′, t, o, f);

where

stacks ′′=

{
recordName(stacks, t, o, f, v) if v 6= ⊥,
stacks otherwise.

If e = put(o.f, v) then
stacks ′ = recordWrite(stacks ′′, t, o, f, γ);
last ′ = last

[
(o, f) 7→ γ

]
;

where

stacks ′′=

{
recordName(stacks, t, o, f, v) if v 6= ⊥,
stacks otherwise.

If e = exit then
stacks ′ = popAndMerge(stacks, t),
obs ′ = update

(
obs, observedAccess

(
top(stacks, t)

))
.

Fig. 2. Configuration transition function of the abstract machine used for observing
interleaving patterns in field access traces. The recordRead and recordWrite functions
update the configuration parts that allow interleaving detection when the method exits.
The recordName function tracks the information used to resolve the access paths of
fields.

5.3 Interleaving Detection

The last-written timestamps of the heap objects, last in a configuration, rep-
resents the abstract machine’s model of the memory shared by all threads. Its
purpose is to help determine whether the access to an object’s field was atomic
or interleaved. Interleaved access is detected by comparing timestamps.

For each field of every object in memory, the access history records the times-
tamp of the last write access to the field. When a thread reads a field during
replay, it stores the timestamp in the field access environment fae of its local
stack frame. At method exit, comparing the local timestamp (in fae) to the
memory timestamp (from last) reveals whether an intermediate update of the
field occurred. By keeping its local timestamp current when writing a field (see
the put case in Figure 2), a thread can be certain that the intermediate write
originated in another thread, and thus that an interleaved access to the field
occurred. Note that read–read access is not considered to be interleaved access
because it is not a race condition, but an optimization whose semantics ex-
press peaceful co-existence. Formally, timestamps are simply natural numbers,

Timestamp = N; we use Greek letters to denote them. The access history is a
dictionary of timestamps indexed by object-id–field pairs:

last : Object× Field→ Timestamp.

The field access environment fae in a stack frame tracks which fields of which
object the method accesses during its invocation. For each object–field pair,
it stores a tuple with access information that is updated by read and write
events. When the method exits, the algorithm uses this information to determine
whether the field access was atomic in the method’s scope, or interleaved.

Each such tuple consists of two status flags and two timestamps. The first
status flag describes the kind of access that occurred: none, read, or written. The
second status flag signifies whether the access was direct or indirect—occurred
in the current scope, or the scope of a called method. The timestamps record
the version of the field’s value that was first retrieved from memory, and the one
that was last written by the current thread respectively.

AccsStat = {none, read,written} × {direct, indirect}
FieldAccsEnv = Object× Field→ AccsStat× Timestamp× Timestamp.

Interleaving detection for a method’s scope happens when the method exits.
To ensure atomic access to a field that has only been read by the method and
its callees, it suffices to verify that the last write access, last(o, f), happened
before the method was entered. In symbols: last(o, f) < ε. Fields that have been
written require more attention because last(o, f) is updated by the write event.
The field access environment must maintain enough information to distinguish
this update from updates by other threads. Two timestamps are necessary to
achieve this: the initial timestamp α that was overwritten during the first access,
and the latest timestamp ω written by the current access. At the time ρ when
the method exits, the access has been atomic if the overwritten value dated back
before the method entry time ε, and the last write access happened at ω. In
symbols: α < ε and last(o, f) = ω.

Defining the result set of interleaving detection as

IntlStat = {none, atomic, interleaved} × {direct, indirect}

the detection procedure itself is

intl(o, f) =


(none, d) if s = none;

(atomic, d) if s = read and last(o, f) < ε;

(atomic, d) if s = written, α < ε and last(o, f) = ω;

(interleaved, d) otherwise,

where o ∈ Object, f ∈ Field and fae(o, f) = (s, d, α, ω) with fae ∈ FieldAccsEnv.
The direct-access flag d is copied verbatim; it influences the weight of observa-
tions when forming atomic sets.

Accessing a field updates its status flags and timestamps in the field access en-
vironment. The goal is keeping the data consistent to enable correct interleaving
detection. Reading a field for the first time creates a new entry in the environ-
ment that uses the access history timestamp last(o, f) for both local timestamps.
However, subsequent reads do not modify the timestamps. This guarantees that
the timestamps from prior operations are preserved. Since interleaving detection
for read fields ignores the local timestamps, this is unproblematic. The direct
access flag set is set in both cases. The configuration transition function δ uses
the function recordRead to implement this behavior in its handler for get events.

recordRead(stacks, t, o, f) = stacks[t 7→ stack ′]

for t ∈ Thread, o ∈ Object, f ∈ Field, (m, ε,ne, fae) = top(stacks, t) and
(s, d, α, ω) = fae(o, f) with

stack ′ = replaceTopWith
(
(m, ε,ne, fae ′), stacks(t)

)
,

fae ′ =


fae
[
(o, f) 7→

(
read,direct, last(o, f), last(o, f)

)]
if s = none;

fae
[
(o, f) 7→ (read,direct, α, ω)

]
if s = read;

fae
[
(o, f) 7→ (written,direct, α, ω)

]
if s = written.

The function recordWrite handles put events. Like recordRead , it uses the
access history timestamp last(o, f) for the locally stored initial access times-
tamp α during the first access to a field, and leaves α unchanged during sub-
sequent writes. In contrast to recordRead , recordWrite updates the local last
access timestamp ω to the abstract machine’s current timestamp γ. Since the
interleaving detection function intl only checks for concurrent access before α and
after ω, the update must guarantee that no interleaved access occurred between
α and ω. Thus, recordWrite updates ω only if no other thread wrote the field in
the meantime. Ceasing updates on detected interleaved access ensures that the
same information is available to detect the interleaving when the method exits.
Using the same symbols as above, it is

recordWrite(stacks, t, o, f, γ) = stacks[t 7→ stack ′]

with

stack ′ = replaceTopWith
(
(m, ε,ne, fae ′), stacks(t)

)
,

fae ′ =


fae
[
(o, f) 7→

(
written,direct, last(o, f), γ

)]
if s = none,

fae
[
(o, f) 7→ (written,direct, α, γ)

]
if s 6= none

and last(o, f) = ω,

fae otherwise.

Above description covers updates to the current field access environment. To
observe field accesses across scopes—that is, in called methods—the information
collected in the called methods must be merged into the calling method’s field
access environment. As with recordWrite, loss of interleaving information must

be prevented; the merge operator . only updates environment entries if the access
was atomic. The merge operator . for field access environments is the point-wise
extension of the entry merge operator .. For two field access environments fae1,
fae2 and (sk, dk, αk, ωk) = faek(o, f), k = 1, 2, it is

(s1, d1, α1, ω1) .(s2, d2, α2, ω2) =


(s1, indirect, α1, ω1) if s2 = none;

(written, d2, α2, ω1) if s2 6= none, α1 ≤ ω2

and s1 = written;

(s2, d2, α2, ω2) otherwise.

Merging of environments occurs when a method exits. The process is formal-
ized by the function popAndMerge. With (m1, ε1,ne1, fae1) = top

(
stacks(t)

)
and (m2, ε2,ne2, fae2) = top

(
pop
(
stacks(t)

))
, define

popAndMerge(stacks, t) = stacks[t 7→ stack ′],

where

stack ′ = replaceTopWith
(
(m2, ε2,ne2, fae1 . fae2), pop(stacks, t)

)
.

5.4 Syntactic Name Mapping

Atomic sets are defined using the static names of fields in the source code and,
through aliases, can extend across object boundaries. However, field access traces
are recorded during runtime and only contain the immediate field name that is
accessed within an object (see section 4). To be able to correctly infer aliases, as
in the example of section 3, it is necessary to determine the full access path that
was used to access the field. The abstract machine therefore tracks the object
graph generated by the trace and creates a mapping from dynamic to static
names.

An access path for a value v is a sequence of static names that leads to v.

AccsPath = Field (”.” Field)?.

The abstract machine uses the name environment component of stack frames to
generate the access paths of objects. Each name environment is an object graph
whose edges are labeled with the static names in its scope. The nodes of the
graph are the dynamic object identities. To resolve the static names of an object
identity o, the abstract machine aggregates the labels along all paths from a
virtual root object to o.

For each get or put event to a field f of reference type in the trace, the
graph is extended with an edge from the object containing f to f ’s value (the
object to which f refers). The label of this edge is f . Formally, we define name
environments as the set of labeled graph edges (which implies the set of nodes)

NameEnv = P
(
(Object ∪ {root})× Field×Object

)
,

where root 6∈ Object. The function for adding an edge is recordName,

recordName(stacks, t, o, f, v) = stacks[t 7→ stack ′],

with t ∈ Thread, o ∈ Object, f ∈ Field and v a value. Its uses the replacement
stack

stack ′ = replaceTopWith
(
(m, ε,ne ∪ {(o, f, v)}, fae), stack

)
,

for top(stack) = (m, ε,ne, fae), which is computed by exchanging the top frame
in stack using the auxiliary function replaceTopWith.

The root object is defined to contain fields whose names correspond to those
of the method’s parameters—including the implicit this for instance methods. For
consistent handling, static methods are extended with a virtual class parameter
that plays the role of this, but refers to the static class object. The access path
to an object therefore always starts with a method parameter; other reachable
objects, like global static objects, lack an associated name path. This suffices
because units of work cannot be declared for atomic sets of variables other than
method parameters. The initialization of name environments takes place in the
frame function, which also creates an empty field access environment.

frame
(
γ,m(v1, . . . , v`)

)
= (m, γ,ne, fae),

where

ne =
{

(root, param(m, i), vi) | i = 1, . . . , `
}
,

fae =
[
(o, f) 7→ (none, indirect,−,−) | (o, f) ∈ Object× Field

]
.

Because of variable and field name aliasing, the graph may contain parallel
edges. A single object may thus be reachable via several access paths. However,
since access paths are generated from the field access traces, only paths that
were actually used at runtime will appear. Circular data structures create cycles
in the graph. The access path generation must detect these to prevent infinite
loops. Unlike in the field access stack, updates to the name environment affect
only the topmost environment and do not propagate downwards.

5.5 Access Observations

The algorithm collects the observations when the method exits. Using the func-
tion intl defined above, it determines the interleaving status of all (transitively)
accessed fields, and assigns it to the respective access paths.

observedAccess(ε,ne, fae) =
[
p.f 7→ intl(o, f) | p ∈ accsPathsTo(o,ne)

]
where accsPathsTo(o,ne) are the label sequences along all paths in the object
graph ne from root to o.

Units of work are defined statically, independently of the execution context.
All observations made for a method in different contexts are therefore aggregated

into a single set of observations, which is an entry in the obs component of the
abstract machine’s configuration. The function

update(obs,m, ctxobs) = obs
[
m 7→

(
obs(m) t ctxobs

)]
uses the point-wise extension of the join operator t to monotonically update the
observations. For (ik, dk) ∈ IntlStat, k = 1, 2, it is

(i1, d1) t (i2, d2) = (i1 t i2, d1 t d2)

with

i1 t i2 =


none if {i1, i2} = {none};
atomic if interleaved 6∈ {i1, i2} and atomic ∈ {i1, i2};
interleaved if interleaved ∈ {i1, i2};

d1 t d2 = direct if direct ∈ {d1, d2}, else indirect.

6 Atomic Set Formation

This section describes the derivation of atomic sets, aliases, and units of work
from the collected observations. As explained in section 3, the fundamental idea is
that every set of fields in a class that a method accesses atomically is a suggested
atomic set for that class. The method is a unit of work for this atomic set. The
algorithm collects the suggestions for each class by aggregating the observations
of all methods. It forms the atomic sets by removing fields with interleaved access
and merging overlapping suggestions. Finally, it assigns each method as unit of
work for the formed atomic sets compatible with the suggestions.

6.1 Observation Pruning

The observations made during replay can be inconsistent regarding witnessed
interleaved accesses. A witness of an interleaved access to a field f is an access
path p ending in f such that

(
obs(m)

)
(p) = (interleaved,) for some method m,

where the underscore denotes any value. For example, the observations for
method downloadNext() may contain the witness this.urls and at the same time
claim atomic access for this.urls.length. However, without the method having
atomic access to this.urls, the List object containing the field length may be re-
placed by another thread while the method executes. Thus, the method should
not suggest length as a member of an atomic set in the class List.

Consistency of the observations can be restored by dropping the observa-
tions for access paths with an interleaved prefix. With v denoting the prefix
relationship between access paths, we define the set of pruned observations as

pobs(m) = obs(m)
[
p 7→ (none, d) | ∃w : w v p and

(
obs(m)

)
(w) = (interleaved, d)

]
.

6.2 Atomic Set Formation

Aggregating the pruned field access observations by class yields the suggested
atomic sets. Depending on whether an observation concerns a field of the instance
object (this) of a method or not, the observation is given different weight. Ob-
servations concerning the local object indicate a stronger semantic relationship
than other observations. To reflect this distinction, such observations, witnesses,
and atomic set suggestions are called internal for the object’s class c (or its
subclasses). All other observations, witnesses, and atomic set suggestions are
external for c.

The internal and external atomic set suggestions are formed using the fol-
lowing inference rules:

– Fields with internal witnesses are excluded from all atomic sets. For a class c,
these non-atomic fields are

nonAtomic(c) =
⋃

m∈methods(c)

{
f |
(
pobs(m)

)
(this.f) = (interleaved, direct)

}
.

Limiting the witnesses to direct observations—made in the method’s scope,
not one of its callees—prevents over-emphasizing witnesses originating in
scopes potentially far away in the call chain.

– Fields internally observed to be atomic are assumed to comprise a seman-
tic unit. Each internal suggestion must therefore be a subset of one of the
formed atomic sets—minus non-atomic fields. Given a class c, the internal
suggestions for atomic sets are

intAtomic(m) =
{
f |
(
pobs(m)

)
(this.f) = (atomic,direct)

}
,

intSugg(c) =
⋃

m∈methods(c)

(
intAtomic(m) \ nonAtomic(c)

)
.

– Fields externally observed to be atomic have less semantic weight. While still
suggesting the membership of the fields in an atomic set, the requirement of
membership in the same atomic set is dropped. For a class c, the external
suggestions for atomic sets are

extAtomic(m, c) =
{
f | ∃p : p 6= this,

(
pobs(m)

)
(p.f) = (atomic,−),

and scope(f) = c
}

extSugg(c) =
⋃

m∈methods(c)

(
extAtomic(m, c) \ nonAtomic(c)

)
.

Using only the final segment of name paths in the definitions is no limitation
because for every name path observed as atomic or interleaved (that is, not none),
an atomic or interleaved observation exists for all its non-empty prefixes. The

reason for this prefix closure is that a field g cannot be accessed without ac-
cessing its containing object. Thus, some observation exists. After pruning, the
observations of all non-empty prefixes indicate atomic access.

To obtain the final atomic sets, above suggestions are merged in a hierarchy
representing their semantic weight. Non-atomic fields have the highest priority;
they are removed from both internal and external suggestions. Since member-
ship for only one atomic set can be declared per field, overlapping suggestions
(containing the same field) are merged by taking their union. The output of the
auxiliary function merge is a set of pairwise disjoint sets. The final step com-
bines the external suggestions with the internal ones by using them as extensions.
For every external suggestion, the algorithm adds its elements to the internal
suggestion with which it shares most elements. However, the auxiliary function
extend , which implements this process, maintains the disjunction of the internal
suggestions. Elements that would result in overlapping internal suggestions are
not added. The atomic sets atomicSets(c) for a class c inferred by the algorithm
are

extend
(
merge

(
intSugg(c)

)
,merge

(
extSugg(c)

))
.

6.3 Aliases

The rules for inferring atomic sets focus on the observations about the final seg-
ments of name paths. Aliases can be inferred similarly by shifting the focus onto
observations about adjacent segments. Recall the example in section 3: observ-
ing atomic access for the name path this.urls.length not only suggests including
length in an atomic set, but also adding an alias from urls to that atomic set.
More generally, observing atomic access for the name path p.f.g suggests an
alias from f to the atomic set of g, unless a witness against this alias exists.
Thus, for a field f , the set of fields whose atomic sets should be aliased by f is

aliasFields(f) = atomicSucc(f) \ nonAtomicSucc(f)

with

atomicSucc(f) =
⋃

m∈Method

{
g | ∃p :

(
pobs(m)

)
(p.f.g) = (atomic,−)

}
,

nonAtomicSucc(f) =
⋃

m∈Method

{
g | ∃p :

(
pobs(m)

)
(p.f.g) = (interleaved,−)

}
.

Unlike in the inference rules for atomic sets, all observations have the same
semantic weight. Thus, combining atomic sets is avoided whenever concurrency
between them has been observed, even indirectly and externally. The inferred
annotations therefore capture the finest granularity of concurrency available in
the input trace.

If the set of alias fields contains fields from multiple atomic sets in f ’s type,
then the algorithm cannot infer the right semantics because at most one alias
may be defined per field. Thus, it forwards the decision to the programmer,

who has several options: ignore the alias, pick one of the matching atomic sets,
or merge the matching atomic sets. Merging the atomic sets is safe and allows
full automation, but reduces concurrency. Developing better ways to resolve this
choice is future work.

6.4 Units of Work

Inferring the atomic sets for which a method should be a unit of work follows
the same principles as inferring aliases. For each parameter of the method, the
algorithm determines the set of fields in the parameter’s type that the method
accessed atomically. The method is then a unit of work for all atomic sets in
the parameter’s type that contain one of the fields. Exempt from this rule are
atomic sets that contain fields that were witnessed as interleaved in the method’s
scope. To avoid generating a too coarse grained concurrency structure, the al-
gorithm prioritizes the observed interleavings over the more common atomic
observations. Under the assumption that all observed interleavings reflect the
programmer’s intentions, this priority scheme is unproblematic. No choice of a
single atomic set is necessary because, unlike alias annotations of fields, multiple
unitfor annotations can be added to parameters. Consequently, a parameter p of
a method m receives a unitfor annotation for the following atomic sets:

units(m, p, atomic) \ units(m, p, interleaved),

with

units(m, q, s) =
{
A ∈ atomicSets

(
type(q)

)
| A ∩ paramFields(m, q, s) 6= ∅

}
,

paramFields(m, q, s) =
{
f |
(
pobs(m)

)
(q.f) = (s,)

}
.

Computing the units of work for the implicit parameter this of instance meth-
ods is unnecessary because all instance methods are units of work for all atomic
sets in the class.

7 Implementation

We have implemented the presented algorithm in a tool chain for Java programs1.
The tool chain consists of a Java byte code instrumenter and an inference tool.
The instrumenter uses WALA’s [5] Shrike library to insert calls to the field
access tracing library into the input byte code. After instrumentation, the target
program must be executed to generate field access traces. The traces are the
input for the inference tool, which is a Python implementation of the algorithm
described in Sections 5 and 6.

1 Available at http://osl.cs.illinois.edu

http://osl.cs.illinois.edu

Limitations The inference tool currently infers only the basic AJ annotations.
In particular, the tool cannot infer fast-read, partial and generalized unitfor, or
internal class annotations. Supporting the inference of these annotations remains
as future work. Furthermore, the tool ignores the limitations of the current AJ
implementation. Consequently, it does not suggest the required refactorings like
making nested classes into top-level classes, adding getter and setter methods,
and using only one atomic set per class.

A minor limitation is that annotations have to be applied manually to the
source code. More advanced implementations could output patch files that allow
developers to automate this step. Additionally, the tool chain currently does not
export the access flags of fields. It hence cannot remove fields from the output
that are marked as final. Since the access flags are available in the byte code
instrumenter, the solution of this issue is a straight forward programming task.

Finally, the implementation choices result in limited performance of the tool.
First, explicit logging of field access traces incurs a high performance penalty
because a large volume of data must be written to disk. We decided for a split–
phase approach because it simplifies the documentation of the (field access traces
used for the) experiments, makes results reproducible, and simplifies debugging.
Second, implementing the algorithm in Python limits the speed of the inference
process. To achieve higher performance, the algorithm could instead be imple-
mented as an online tool that directly summarizes the observations while the
program runs.

7.1 Extensions

The preceding sections presented the fundamental algorithm for inferring the
atomic sets and units of work in a concurrent program. To enable the algorithm
to handle realistic programs, we have extended it with the ability to handle
arrays, synchronized blocks, and wait–notify synchronization.

Arrays. The algorithm can be extended to handle arrays by treating indices
like field names: accessing index i in an array entries via entries[i] is regarded
as a field access entries.i. Depending on whether the array element is read or
written, the array operation generates a get or put event. Before forming the
atomic sets, all array indices appearing in name paths are renamed to [] and
their access patterns are merged. This automatically yields the desired array
alias specifications supported by AJ [6].

Observing array operations with index precision means that concurrent op-
erations on different parts of the array are not regarded as interleaved access.
Thus, one thread reading and writing entries[0] while another thread reads and
writes entries[1] will still result in an annotation that ensures atomicity for all
operations on the array and its indices (but not necessarily the values at these
indices). As with read–read sharing, we view this as the annotation which re-
flects the programmer’s intentions best; no index of the array was accessed in
an interleaved manner. The alternative, no annotation, would allow concurrent
updates of the same index.

Synchronized Blocks. In AJ, only methods can be units of work for atomic
sets. Consequently, synchronized blocks inside a method’s body have to be ex-
tracted into auxiliary methods to maintain the intended semantics. While the
refactoring is straight-forward and can easily be automated, it modifies the
source code. To avoid such source code pre-processing, the byte code instrumen-
tation tool treats synchronized blocks similar to methods: entering a synchronized

block generates an enter event; exiting generates an exit event. Avoiding a pre-
processing step allows the tool to bundle all necessary source code changes—
adding annotations and extracting auxiliary methods—in its output, making
their application a single step for the programmer.

Wait–Notify Synchronization. Inside a synchronized block, a thread may
call the wait() method of the object monitoring the block. The call suspends the
current thread and releases the monitor; when the thread is woken up, usually
via notify(), it re-acquires the monitor and resumes execution at the next state-
ment. This protocol ensures mutual exclusion between the participating threads.
However, because the execution of the waiting thread never leaves the syntactic
scope of the synchronized block, the inference algorithm falsely identifies access
to objects in the scope as interleaved.

To prevent the false detection of interleaved access, the instrumentation tool
emits a fake exit event for the synchronized block just before the call to wait(), and
a fake enter event just after the call. Since the wait() method is defined in class
Object and cannot be overwritten, the instrumenter can reliably identify these
calls. The solution is similar to the refactoring proposed by Dolby et al. [6],
which splits the bodies synchronized blocks at wait() calls and moves the halves
into separate methods.

7.2 Heuristics

In addition to above extensions, we have included the following heuristics to
improve the quality of the inferred annotations.

Monitor Variables. Objects serving as monitors for synchronized blocks are
accessed concurrently by design. Each thread using the object for synchroniza-
tion probes whether it is available before entering the critical section. Inside the
method scope, this probing generates a witness of interleaved access to the mon-
itor object. However, marking monitor objects as non-atomic likely contradicts
the programmer’s intention of guaranteeing atomicity. For example, access to
the queue field in weblech’s Spider class is guarded by a synchronized block that
uses the queue as monitor. Without the heuristic, queue would be considered
non-atomic, which is clearly not the programmer’s intention.

To better approximate the intended semantics, we modify the inference algo-
rithm such that it discards witnesses of interleaved access to fields in the scope
in which the field is used as monitor. Witnesses obtained in other scopes count
as before.

Shared Objects. The inference algorithm generates an annotation for every
field appearing in the field access trace. This includes fields whose value only a
single thread accesses, that is, fields whose value is thread local. However, such
fields are irrelevant: because they are never shared, they are trivially atomic
and do not require synchronization. Removing the thread local fields from the
output ensures that all annotations are relevant for the concurrent behavior of
the program and thus improves the quality of the annotations.

The identification of shared objects is implemented as part of the abstract
machine’s memory model. Besides recording the write timestamps, the memory
model also identifies the shared (not thread local) objects. The observedAccess
function that collects the observed name paths considers shared objects only.

The memory model identifies shared objects by tracking the threads that
access an object. An object is considered shared if at least one thread accesses
it twice, with at least one other thread accessing it in between. Defining shared
objects as those accessed by multiple threads is insufficient because objects are
often created by one thread, which then passes them to another thread for pro-
cessing. For example, the main thread of a traveling salesperson solver may
create a route description and then ask a worker thread to evaluate it. Likewise,
thread objects are first accessed by the parent thread during creation, and then
by themselves during execution. Requiring alternating access as described above
avoids including these cases.

Constructors. During object creation, the constructor of an object typically
accesses a large portion—often all—fields of the object. Usually, this happens
atomically because few constructors pass the local instance reference (this) to
a concurrent thread. Thus, a typical constructor atomically accesses most of
the fields in an object. Treating constructors as instance methods, the inference
algorithm derives from this access pattern that most of the object’s fields belong
to the same atomic set, which limits the potential for concurrency under the
inferred synchronization annotations.

As a workaround, the inference tool treats observations from constructors
as external. The atomic sets suggested by constructors are therefore external
and do not trigger the merging of internal atomic sets for the class. Instead, the
constructor-suggested atomic sets are used to extend the internal atomic sets as
described in section 6.

8 Evaluation

This section discusses the performance of our algorithm measured by the quality
of the inferred annotations. After detailing the experimental setup, we summarize
the results and gained insights.

8.1 Program Corpus

Table 1 lists the programs used to evaluate the inference algorithm. The list
contains all Java programs for which an AJ version is publicly available, except

cewolf. The cewolf library was excluded because the AJ annotations concern
only a very minor fraction of the code. For every program except collections,
the corpus also includes the compiled AJ version. Both versions are used in
the evaluation. These Java programs were manually converted to AJ by Dolby
et al. [6]; archives containing their source are available on the Data-Centric
Concurrency Control project website2. Sole exception is the AJ variant of the
Java collections framework, which was kindly provided by Frank Tip.

In the table, the kLoC column lists the number of thousand lines of source
code in the Java version of the program, excluding comments and empty lines.
The Classes column shows the number of classes in the program. The number of
classes that contain AJ annotations in the AJ version are given in the Annotated
column.

Table 1. Corpus of programs used to evaluate the inference algorithm. In addition to
the Java version using control-based synchronization, each program except collections
is available as a compiled AJ version using data-centric synchronization. Both versions
are used in the evaluation. The kLoC column lists the number of thousand lines of
source code in the Java version of the program, excluding comments and empty lines.
The Classes column shows the number of classes in the program. The number of classes
that contain AJ annotations in the AJ version are given in the Annotated column.

Program Description kLoC Classes Annotated

collections OpenJDK 1.6 collections framework 11.1 171 43
elevator Elevator simulation 0.3 6 2
jcurzez1 Console window library (low concurrency) 2.7 78 9
jcurzez2 Console window library (high concurrency) 2.8 79 6
tsp2 Solver for the traveling salesman problem 0.5 6 2
weblech Web site mirror tool 1.3 12 2

8.2 Method

Each program in the corpus is first instrumented and then run three times us-
ing the same workload. For elevator and tsp2, the workload consists of example
input files distributed with the programs; weblech is used to aggregate files from
a local web server; and the collections and jcurzez libraries are used for random
operations by a custom fuzzing program. The workloads were set large enough
to trigger the use of multiple operating system threads by the JVM in order
to obtain traces with fine-grained interleavings. Comparing the annotations in-
ferred for three separate runs gives us insight into the effects of (random) thread
scheduling and allows us to verify that the annotations likely reflect consistent
program behavior. We remove spurious observations and consolidate the anno-
tations from all runs into a single set of annotations.

2 http://sss.cs.purdue.edu/projects/aj/

http://sss.cs.purdue.edu/projects/aj/

Next, we compare these inferred annotations against the ones Dolby et al.
manually inserted when converting the program to AJ. For every difference,
we investigate and record whether it results in disparate program behavior by
analyzing the source code of both variants. Furthermore, we discuss the root
cause that led to inferring a differing annotation. See section A for a detailed
discussion of each program.

For each program, we count the number of classes with differing annotations.
Grouped by atomic set, alias, and unit of work declaration, we track whether
annotations are missing from a class, and whether the class contains additional
annotations. Missing annotations (Missed columns in Tables 2, 3, and 4) are
those that were manually added, but not inferred. Added annotations (Added
columns in Tables 2, 3, and 4) are those that were inferred, but not manually
added. A single class can contribute to both counts in each group. To obtain
better insight into the algorithm’s overall behavior, we categorize each counted
class by the root cause. These causes are:

– Algorithm deficiencies—actual problems with our approach.

– Bugs in the manual annotations.

– Structure differences (refactorings) between the original and the AJ version.

– Tool deficiencies like ignorance of final attributes for fields, which can be
fixed in a better implementations.

– Workload insufficiencies that omit relevant behavior, which prevents obser-
vation by the tool.

We follow this subjective qualitative approach for two reasons. First, the goal
of our algorithm is to infer annotations that not only enforce, but also document
the intended concurrency structure of the program. Evaluating how well the
inferred annotations meet this goal requires human inspection of the program.
Simple quantification of the differences between manual and inferred annotations
alone—for example their number or size—does not convey meaningful informa-
tion because most AJ versions have been refactored and structurally differ from
the Java versions; furthermore, some of the manual annotations are incomplete
or even wrong. Second, using other quantitative measures like execution speed
is unfeasible because the prototype AJ compiler is currently defunct.

The refactorings in the AJ variants were executed to meet the requirements
of AJ, to work around limitations of the used implementation, and to simplify
the conversion. Refactorings to meet requirements include introducing getter
and setter methods for fields. Workaround refactorings include removing the
nesting of classes and splitting classes to achieve concurrent execution. Simplifi-
cation refactorings include dropping specialized iterator classes in the collections
framework.

We do not report the processing times because in a source code conversion
workflow, it suffices to execute the tool once. Instrumentation of all programs
finished within seconds; generating the traces and inferring the annotations took
less than 25 minutes for each program on an Intel Core i7 processor with 2 GB
of RAM.

Table 2. Number of classes with differing atomic set annotations. The “-AJ” rows
show the number of differing classes for the annotations inferred for the AJ variant of
the program that was ported by Dolby et al. The Missed columns show for how many
classes the inferred annotations miss a manual annotation; the Added columns count
the classes with additional annotations. The differences are categorized by their cause:
Algorithm deficiency (A); Bug in the manual annotations (B); Structural difference
from refactorings (S); Tool implementation limitation (T); and workload insufficiency
(W). A dot “·” denotes a zero.

Atomic Sets Missed Added

Program A B S T W A B S T W

collections · 1 4 5 6 · · · 6 ·
elevator · · · · · 3 · 1 · ·
elevator-AJ · · · · · 3 · 1 2 ·
jcurzez1 · · 1 · · 8 1 · 1 ·
jcurzez1-AJ · · 1 · · 7 1 · 1 ·
jcurzez2 · · 2 · · 6 1 · 2 1
jcurzez2-AJ · · 2 · · 6 1 · 2 1
tsp2 · · · · · 1 · 1 2 ·
tsp2-AJ · · · · · 1 · 1 2 ·
weblech 1 · · · · 3 1 1 · ·
weblech-AJ 1 · · · · 5 1 1 · ·

Table 3. Number of classes with differing alias annotations. The rows and columns
have the same meaning as in Table 2.

Aliases Missed Added

Program A B S T W A B S T W

collections 1 · · 4 3 · · · · ·
elevator · · · · 1 2 · · · ·
elevator-AJ · · · · 1 · · · · ·
jcurzez1 · 1 · · · 4 · · · ·
jcurzez1-AJ · 1 · 1 · 3 · · · ·
jcurzez2 · 1 · · · 4 · · · ·
jcurzez2-AJ · 2 · · · 4 · · · ·
tsp2 · · · · · 1 1 · · ·
tsp2-AJ · · · · · 1 1 · · ·
weblech · · · · · 3 · · · ·
weblech-AJ · · · · · 4 · · · ·

Table 4. Number of classes with differing unit of work declarations. The rows and
columns have the same meaning as in Table 2.

Units of Work Missed Added

Program A B S T W A B S T W

collections · · 6 5 4 · · 1 · ·
elevator 1 · · · · · · · · ·
elevator-AJ 1 · · · · · · · · ·
jcurzez1 · 3 2 1 2 1 · 4 · ·
jcurzez1-AJ · 1 2 1 1 1 · 4 · ·
jcurzez2 · 3 1 · 1 2 · 4 · ·
jcurzez2-AJ · 2 1 · 2 2 · 4 · ·
tsp2 · · · · 1 · · · · ·
tsp2-AJ · · · · · · · · · ·
weblech · · · · 2 · · · · ·
weblech-AJ · · · · 2 · · · · ·

8.3 Results and Discussion

Table 2 shows the number of classes with differing atomic set annotations. A
missing atomic set is the most critical kind of difference because it entails that
some fields that were intended to be protected from interleaved access remain
unprotected, which may result in race conditions. Except for the Java collec-
tions framework and weblech, all missing atomic sets have secondary causes that
either reflect refactorings, or can be fixed through a better implementation or
workload. In particular, the fuzzer used to drive the collections proves to be
incomplete. For example, it does not perform concurrent operations on iterator
objects. The shared objects heuristic described in section 7 therefore removes
annotations for their fields, which results in a missing atomic set compared to
the manual annotations. In collections, our algorithm infers that the static and
final field PRESENT in the class HashSet should not be a member of an atomic
set. This is correct and cannot lead to race conditions. In contrast, the manual
annotations accidentally introduce global synchronization between all HashSet

instances through the atomic set membership of the field. The missing atomic
set count in weblech concerns the omission of a field for unknown reasons. This
could be a bug in our implementation. However, because we were unable to rule
out an algorithm deficiency, we categorize it as this most severe difference type.

The Added half of Table 2 indicates that our algorithm infers highly detailed
annotations. While additional locking can lead to deadlock, this is not a severe
problem because it can be recognized statically [15]. To the contrary, the higher
degree of detail prevents a number of inadvertent race conditions in jcurzez and
weblech.

The major factor driving the suggestion of additional annotations is the doc-
umentation of obvious behavior; another factor is the algorithm’s ignorance of
the AJ implementation’s limitations. Obvious behavior concerns high-level un-

derstanding of a program’s concurrency structure. Developers use this under-
standing to avoid annotating classes they deem irrelevant for achieving the in-
tended behavior. The inference algorithm lacks this concept of obviousness and
generates annotations for all classes. From the perspective of project-external
developers, these annotations provide a guard against accidentally violating be-
havior invariants, while at the same time documenting these invariants. For ex-
ample, in tsp2, the PrioQElement elements of a priority queue are accessible only
from within the TourCreator singleton. Because TourCreator synchronizes access to
the priority queue, no annotations are necessary for the queue elements. In con-
trast, the algorithm suggests an atomic set containing all fields of PrioQElement,
as well as an alias from the respective field in TourCreator. The suggested anno-
tations document the concurrency structure of the program. They are neutral
to performance because the alias unifies the atomic sets of the two classes and
thus avoids introducing synchronization overhead when the queue is accessed.
Other examples include detailed array aliases in elevator, as well as unit of work
declarations for printing methods in the variants of jcurzez.

Tables 3 and 4 show the number of classes with differing aliases and unit
of work declarations. Missing aliases only result in additional synchronization
overhead and do not affect the program’s correctness. Missing unit of work dec-
larations can lead to race conditions. However, all of these differences have sec-
ondary causes, or highlight bugs in the manual annotations (discussed below).
Additional aliases and unit of work declarations reduce the potential for concur-
rency in the program, but cannot lead to errors like race conditions or deadlocks.
The high number of additional aliases documents the importance of choosing a
workload that exerts as much concurrency in the program as possible.

Behavior. The effects of the annotations inferred for collections, the jcurzez
variants, and tsp2 match the effects of the manual annotations. For elevator and
weblech, the behavior differs: using the suggested annotations with the current
lock-based implementation of atomic sets effectively imposes a global lock which
removes all concurrency from the program. In both cases, the over-restrictive
effects come from our algorithm’s inability to change the class structure of the
program.

In elevator, the different threads synchronize using the elements of a globally
shared array as monitors. No interleaved access occurs for a single array element,
and thus the algorithm includes the array and all its elements in a single atomic
set. Within its limitations, this is the correct behavior because excluding the
elements would allow data races. Regaining concurrent execution would require
to split the array or a similar refactoring. The developers of AJ use a generalized
unitfor annotation to circumvent global locking. However, while achieving the
right effects in the AJ implementation, their annotation is illegal according to the
typing rules because it contains non-final segments in its atomic set designator.

Like elevator, the annotations inferred for weblech impose a global lock: the
download threads in weblech execute a single shared Runnable object; adding
an atomic set to this object effectively prevents any concurrent execution, that

is, downloads. A solution to this problem is to split the Runnable object. The
manually ported AJ variant of weblech follows this approach, but the refactoring
leaves the crucial blocking network access inside a unit of work for the Runnable’s
atomic set, and thereby still prevents concurrent downloading.

The inferred annotations for jcurzez1 reveal race conditions in the classes
Cell, Cursor, and Pen. In jcurzez1-AJ, the racing fields of Cursor and Pen are pro-
tected by an atomic set. Since both the library’s control- and data-centric syn-
chronization was added by the AJ developers, this documents that the race is
unintended, which points at the difficulty of defining control-centric synchroniza-
tion. The malign race in class Cell and the lack of a manual atomic set definition
for this class are proof that understanding the concurrency structure of other
people’s programs is hard, which supports our case for automating the necessary
reasoning. The case of the PRESENT field in the class HashSet of collections yields
additional support.

Inferring annotations for the manually ported AJ variants of the programs
yielded results similar to the those of the original variants. This indicates that
the manual annotations capture the original program’s behavior to a high degree.
It also shows that the manual refactorings influence the inference very little and
cannot be used to guide the derived annotations.

9 Related Work

The automatic inference of a program’s concurrency structure has been treated
in the context of data race detection. There, the structure is used to warn about
violations of the likely intended atomicity semantics of variables.

A dynamic approach that learns the atomicity intentions for shared variables
from execution traces is the AVIO system of Lu et al. [14,13]. AVIO observes
the read and write operations on a shared variable and treats it as atomic if all
operations were serializable. Observing each variable in isolation, AVIO can only
detect low-level data races. In contrast, Artho et al. [1] introduce the notion of
high-level data races and explicitly design their dynamic algorithm to consider
races on sets of semantically related variables. Both methods are similar to our
algorithm in that they work without user annotations. The AssetFuzzer algo-
rithm of Lai et al. [11] likewise works without annotations. It additionally uses
partial order relaxation to detect potential, but unmanifested, violations in the
execution trace. The Atomizer system of Flanagan and Freund [7] also considers
windows of vulnerability, but requires a few source code annotations.

The MUVI tool of Lu et al. [12] follows a static approach to inferring atom-
icity intentions by mining the program source code and computing variable cor-
relations. The static heuristic [9,18] of defining one atomic set per class that
contains all non-static fields has also been proposed in the context of race detec-
tion. Targeting race detection, none of the aforementioned approaches considers
aliasing information, which is essential for our use case.

Huang and Milanova propose a static inference system for AJ types that
significantly reduces the number of annotations that a developer has to write [10].

While simplifying the use of AJ, it needs a set of foundational annotations.
Hence, their and our methods complement each other: the static inference rules
propagate the base annotations inferred by our analysis, yielding a complete set
of AJ annotations.

Atomic sets take a declarative approach to synchronization. Synchroniz-
ers [8,4] provide a similar notion in the context of Actor systems, where they con-
strain the message dispatch in a group of Actors. The available constraints differ
from atomic sets in that atomicity constraints provide temporal atomicity—
messages arrive at the same time—, not the spatial atomicity offerred by atomic
sets. Furthermore, Synchronizers cannot easily express the non-interleaving of
message sequences, which is the Actor equivalent of non-interleaved access to
shared data, and do not support transitive extension similar to aliases in atomic
sets.

The algorithm introduced in this paper follows the approach of accentuating
the positive [20,13]: by assuming atomicity for all operations unless witnessing
interleaved access, it suppresses rarely observed Heisenbugs. While leading to
coarser concurrency structure, the experiments of Weeratunge et al. [20] show
that a low runtime overhead of 15 % can be achieved using this method.

10 Conclusions

This paper introduces an algorithm that infers annotations for data-centric syn-
chronization based on atomic sets (section 2). The algorithm automates the rea-
soning about a program’s concurrency structure that is necessary for converting
the program from control-centric synchronization, for example using locks, to
synchronization using atomic sets. Thus, it marginalizes the effort necessary to
have existing programs benefit from the improved robustness against concur-
rency bugs of data-centric synchronization.

The fundamental idea behind the algorithm is that the methods of a program
perform semantically meaningful actions. The fields a method accesses atomi-
cally therefore suggest an atomic set for which the method should be a unit of
work (section 3). The algorithm records the dynamic behavior of a program (sec-
tion 4), extracts the field access patterns from the trace (section 5), and infers
the annotations by aggregating the patterns (section 6). A version for Java pro-
grams has been implemented (section 7) with support for arrays, synchronized
blocks, and wait–notify synchronization.

Discussion and Future Work

The algorithm we presented infers atomic set annotations from the execution
traces of a program; if these are not available they have to be generated by ex-
ecuting the program. In particular, converting isolated modules of a large code
base requires unit tests which execute these modules. The algorithm further as-
sumes that all observed execution traces are correct, that is, reflect programmer

intent. This assumption can hold even if a program contains bugs: schedule-
dependent Heisenbugs that never (or very rarely) appear during testing will
likely not be observed. In this case, the inferred annotations will prevent the
bugs in future executions.

The degree of concurrency in a program with inferred annotations depends
on the concurrency manifest in the execution traces that are used. It is there-
fore important to collect traces using workloads that trigger as much correct
concurrent behavior as possible. A direction for future work is to automate the
generation of workloads, for example using concolic execution to explore thread
scheduling [17].

Another factor limiting concurrency is the current lock-based implementa-
tion of atomic sets. Our algorithm treats read–read sharing of fields as non-
interleaved access and therefore includes these fields in atomic sets. In the con-
verted program, the fields are therefore protected by locks, preventing the con-
current reading observed in the execution traces. Although unnecessarily restric-
tive, the resulting behavior will be correct. Better implementation of atomic sets,
for example, by using software transactional memory, or by inferring advanced
annotations such as fastread, partial unitfor, and internal, would improve the
degree of concurrency. As demonstrated by Dolby et al. [6], these annotations
may have a dramatic effect on a program’s performance.

Finally, our inference is based on simple set-membership and ignores how
often and how far from the current scope the events in the set occurred. This
makes the inference brittle. A probabilistic reasoning method, for example using
Bayesian networks, would be more robust against noise from Heisenbugs and
could thus allow relaxed synchronization during trace generation. Probabilistic
inference could also help overcome the alias resolution problem described in
section 6.

Acknowledgments

This publication was made possible in part by sponsorships from the Army
Research Office under award number W911NF-09-1-0273, as well as the Air
Force Research Laboratory and the Air Force Office of Scientific Research under
agreement number FA8750-11-2-0084. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

References

1. Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. In Pedro T.
Isáıas, Florence Sedes, Juan Carlos Augusto, and Ulrich Ultes-Nitsche, editors,
NDDL/VVEIS, pages 82–93. ICEIS Press, 2003.

2. Michael Burrows and K. Rustan M. Leino. Finding stale-value errors in concurrent
programs. Concurrency - Practice and Experience, 16(12):1161–1172, 2004.

3. Luis Ceze, Christoph von Praun, Calin Cascaval, Pablo Montesinos, and Josep
Torrellas. Concurrency control with data coloring. In Emery D. Berger and Brad
Chen, editors, MSPC, pages 6–10. ACM, 2008.

4. Peter Dinges and Gul Agha. Scoped synchronization constraints for large scale
actor systems. In Marjan Sirjani, editor, COORDINATION, volume 7274 of Lecture
Notes in Computer Science, pages 89–103. Springer, 2012.

5. Julian Dolby, Stephen J. Fink, and Manu Sridharan. T. J. Watson libraries for
analysis (WALA). http://wala.sf.net.

6. Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and
Jan Vitek. A data-centric approach to synchronization. ACM Trans. Program.
Lang. Syst., 34(1):4, 2012.

7. Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic atomicity checker
for multithreaded programs. Sci. Comput. Program., 71(2):89–109, 2008.

8. Svend Frølund and Gul Agha. A language framework for multi-object coordination.
In Oscar Nierstrasz, editor, ECOOP, volume 707 of Lecture Notes in Computer
Science, pages 346–360. Springer, 1993.

9. Christian Hammer, Julian Dolby, Mandana Vaziri, and Frank Tip. Dynamic de-
tection of atomic-set-serializability violations. In Wilhelm Schäfer, Matthew B.
Dwyer, and Volker Gruhn, editors, ICSE, pages 231–240. ACM, 2008.

10. Wei Huang and Ana Milanova. Inferring AJ types for concurrent libraries. In FOOL
2012: 19th International Workshop on Foundations of Object-Oriented Languages,
pages 82–88, 2012.

11. Zhifeng Lai, Shing-Chi Cheung, and Wing Kwong Chan. Detecting atomic-set seri-
alizability violations in multithreaded programs through active randomized testing.
In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel,
editors, ICSE (1), pages 235–244. ACM, 2010.

12. Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li,
Raluca A. Popa, and Yuanyuan Zhou. MUVI: automatically inferring multi-
variable access correlations and detecting related semantic and concurrency bugs.
In Thomas C. Bressoud and M. Frans Kaashoek, editors, SOSP, pages 103–116.
ACM, 2007.

13. Shan Lu, Soyeon Park, and Yuanyuan Zhou. Detecting concurrency bugs from the
perspectives of synchronization intentions. IEEE Trans. Parallel Distrib. Syst.,
23(6):1060–1072, 2012.

14. Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: Detecting atomicity
violations via access-interleaving invariants. IEEE Micro, 27(1):26–35, 2007.

15. Daniel Marino, Christian Hammer, Julian Dolby, Mandana Vaziri, Frank Tip, and
Jan Vitek. Detecting deadlock in programs with data-centric synchronization.
Research Report RC25300 (WAT1208-051), IBM, 2012.

16. J. Gregory Morrisett and Simon L. Peyton Jones, editors. Proceedings of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006. ACM, 2006.

17. Koushik Sen and Gul Agha. A race-detection and flipping algorithm for automated
testing of multi-threaded programs. In Eyal Bin, Avi Ziv, and Shmuel Ur, editors,
Haifa Verification Conference, volume 4383 of Lecture Notes in Computer Science,
pages 166–182. Springer, 2006.

18. William N. Sumner, Christian Hammer, and Julian Dolby. Marathon: Detecting
atomic-set serializability violations with conflict graphs. In Sarfraz Khurshid and
Koushik Sen, editors, RV, volume 7186 of Lecture Notes in Computer Science,
pages 161–176. Springer, 2011.

http://wala.sf.net

19. Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization con-
straints with data in an object-oriented language. In Morrisett and Jones [16],
pages 334–345.

20. Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan. Accentuating
the positive: atomicity inference and enforcement using correct executions. In
Cristina Videira Lopes and Kathleen Fisher, editors, OOPSLA, pages 19–34. ACM,
2011.

A Annotation Comparisons

This section discusses in detail the differences between the manually added and
the inferred atomic set, alias, and unit of work annotations for each program
used in the evaluation (section 8). The discussion is highly specific to details
of the compared programs. It should be read with the source code available for
reference.

The margin notes next to the discussion of each class describe how the an-
notation differences of this class were counted when compiling Tables 2, 3, and
4. A leading “+” denotes an additional annotation (inferred, but not manually
added); a leading “−” denotes a missing annotation (manually added, but not
inferred). The subsequent letter, A, L, or U , describes the type of annotation:
atomic set, alias, or unit of work declaration. In parentheses follows the category
of the cause:

– Algorithm deficiencies—actual problems with our approach (A).
– Bugs in the manual annotations (B).
– Structural differences (that is, refactorings) between the original and the AJ

version (S).
– Tool deficiencies like ignorance of final attributes for fields, which can be

fixed in a better implementations (T).
– Workload insufficiencies that omit relevant behavior, which prevents obser-

vation by the tool (W).

A.1 Java Collections Framework

Workload. The execution traces used as input for the inference tool were gen-
erated by driving the collections with a custom fuzzing tool. The fuzzing tool
exercises random operation like element insertion and deletion on shared collec-
tion objects. Its source code is included in the tool chain’s source distribution.

Runs. Despite fixing the (pseudo-) random number generator seeds of the
fuzzer, the non-deterministic thread scheduling leads to operations being ex-
ecuted in different interleavings. This causes the random numbers (whose se-
quence is fixed by the seed) to be used in different contexts: fuzzing operations it-
erating over the elements in the collection vary between the runs as the collection
contents depend on the thread schedule. Fixing the random seed therefore does

not lead to identical operation sequences. The differences between the annota-
tions inferred for each of the three runs that originate in schedule-randomization
are as follows:

– The atomic set inferred for class HashMap$KeySet in run 3 additionally aliases
the this$0 field with the atomic set containing field size.

– The array alias of the field table in class LinkedHashMap of runs 1 and 3 not
only covers the array elements (as in run 2), but also includes the atomic set
containing the field after.

– The atomic set inferred from run 1 for the iterator class LinkedList$ListItr

includes the lastReturned field with an alias to the entry’s atomic set, which is
not present in run 2. Furthermore, the alias for the reference to the containing
object, this$0, additionally includes the atomic set containing the header field.

– The field m in the atomic set of TreeMap$KeySet of run 3 is not aliased with
the atomic set containing field modCount.

– In the atomic set of class TreeMap$PrivateEntryIterator, the alias of the field
lastReturned includes the field color in runs 1 and 3. Similarly, the color field
is added in the unit of work declaration for parameter 1 in method access$0.
Likely, no rotation of the tree was necessary in run 2.

– The unit of work declaration of method deleteEntry() in TreeMap contains
more aliases in runs 1 and 3 than in run 2, and the method fixAfterDelection()

is declared a unit of work in run 1. Likely, a complex deletion was executed
in run 1 but not in run 2.

The following witnesses of interleaved access to fields originate in iterator op-
erations. Iterators must be manually synchronized by the user (see the comment
in method iterator() of class Collections$SynchronizedCollection in Collections.java).
The fuzzing tool does not do this, and hence spurious race conditions occur.
We discard these races as having a known origin that could be fixed through
synchronization in the fuzzing tool, and instead use data from a run without the
witness.

– Run 3 contains a witness for the field value in the HashMap$Entry class (via
the setValue() method).

– The field root of class TreeMap is witnessed as being non-atomic in run 1 (in
method getCeilingEntry() via an iterator). Runs 2 and 3 do not contain the
witness.

The following differences between the runs concern classes that have no man-
ually annotated counterparts in collections-AJ. They can be safely ignored.

– Run 2 does not attribute the m field from Collections$SynchronizedMap to
AbstractMap; runs 1 and 3 do this.

– The atomic set inferred for Hashtable$EntrySet additionally aliases the field
this$0 (the reference to the containing instance) with the atomic set contain-
ing count and modCount in run 2. In run 1, the fields are missing because they
were witnessed as being non-atomic in the class’s method iterator().

– The field count in Hashtable was witnessed as being non-atomic in run 1 in
the method getIterator().

– In the atomic set of IdentityHashMap$EntrySet in run 2, modCount is missing
from the aliases of field this$0.

– The atomic set inferred for class Vector of run 3 is missing the capacityIncrement

field compared to the other runs.
– The field size is not included in the atomic set aliased by the field this$0 in

the atomic set of class WeakHashMap$EntrySet.

Furthermore, differences concerning compiler generated methods are ignored.

– The access$1() method in ArrayList is not a unit of work for the atomic set
containing size in run 2. This method is added by the compiler to give nested
classes access to the fields of their containing class. The difference thus does
not matter.

– The compiler-generated method access$2() in LinkedList is only declared an
external unit of work in run 1, not in run 2. Apparently, it was not executed
in run 2.

Annotation Comparison Between collections and collections-AJ. The
AJ-annotated version of the Java collections framework is called JUtil All, but
will be henceforth referred to as collections-AJ.

The tool follows the Java compiler’s decision about the containing class for
fields. Thus, if the bytecode contains a get statement for field f in class c, it
considers f as belonging to c, regardless of the fact that f was declared in a
superclass of c. This sometimes leads to false attribution, in particular with
abstract classes. For example, the fields keySet and values of the abstract class
AbstractMap are missing in the tool’s output for this class. They are, however,
present in the concrete subclass HashMap.

The collections code has been refactored to obtain collections-AJ. For exam-
ple, the list iterator handling has been completely removed from the concrete
subclasses. Instead, the subclasses rely on the generic iterators AbstractList$Itr,
AbstracList$ListItr, and so on that are defined in AbstractList. No inferred annota-
tions are available for these classes because the concrete classes used to generate
the field access traces provide their own optimized versions like ArrayList$Itr. Con-
sequently, the classes are invisible to the inference tool. We instead compare the
inferred annotations of the specialized classes against the generic implementa-
tions.

The same is true for interfaces like Collection. In collections-AJ, some of the
defined methods are declared to be units of work for the atomic sets of their
arguments. Because the methods have no implementation, they are hidden from
the inference tool. However, the tools infers the correct annotations for the inter-
face method implementations. A unification post-processing step in the inference
tool could reconciliate these results and derive the most specific unit of work def-
inition for the interface and abstract class definitions. Similarly, the alias type
annotations of method parameters (for example setFoo(Foo other/∗this.F=F∗/))
can be derived by unification from the inferred field types.

The abstract classes and interfaces that are missing in the inference tool
output, but serve as reference for the annotations of concrete subclasses, are:

– AbstractList

– AbstractSequentialList

– Collection

– List

– Map

– Set

The copy constructors of classes are not explicitly fuzzed. Inferred annota-
tions for evaluation are available only where the constructors have been invoked
by other methods.

AbstractCollection: The atomic sets and the units of work definitions are iden-−U (T)
tical. An atomic set is neither inferred, nor manually added. The unitfor

annotations on the bulk operations (like addAll()) match.
AbstractList: The algorithm does not infer the unit of work annotation for the

argument to the addAll() method because all the concrete subclasses used in
the evaluation re-implement the method. Consequently, the method is never
called in any run and thus invisible to the inference tool. The manual and
inferred atomic sets match; both consist of the modCount field

AbstractMap: The defined units of work are identical. The algorithm fails to−A (T)

−L (W) infer an atomic set for this class because the fields are attributed to the
concrete subclasses HashMap and TreeMap. However, the atomic sets inferred
for these classes include the fields. In the case of TreeMap, the field keySet does
not occur in the inferred annotations because the implementation instead
uses a field navigableKeySet. The inferred aliasing does not match the manual
annotations in AbstractMap because the fuzzing tool performs no operations
on the respective objects.
The class AbstractMap 1 in collections-AJ is the key set belonging to an4×−A (T)

4×−L (T)

4×−U (T)

AbstractMap; class AbstractMap 2 models the respective iterator. The classes
AbstractMap 3 and AbstractMap 4 do the same, but for the map’s values. Be-
cause the all concrete classes used in the evaluation re-implement the respec-
tive methods and classes (for example, HashMap$EntrySet), the tool does not
infer any annotations for these classes in collections. The structure of these
classes, however, is equivalent to the concrete implementations. If the classes
were used during execution, the inferred annotations would therefore likely
match the manual annotations.

AbstractSequentialList: The unit of work annotation for addAll() is missing because−U (T)
the method is never called. (Its only concrete subclass used in the evaluation
is LinkedList, and this class overrides the method.)

AbstractSet: Neither set of annotations defines an atomic set for the class. Both
contain identical unit of work annotations.

ArrayList$Itr: Compared to the atomic set of AbstractList Itr in collections-AJ, the−A (S)
atomic set inferred for the class ArrayList$Itr is missing all fields local to the
iterator object. The reason for this is that the fuzzing tool does not share

iterators between the fuzzing threads. Consequently, the fields are purged
from the inferred atomic set. Fuzzing iterators from both threads would fix
this omission.
The only field present in the inferred atomic set is the implicit reference
field this$0 to the containing ArrayList instance. The alias inferred for this
field matches the alias manually defined for the (explicit) reference field
abstractList to the containing list in AbstractList Itr of collections-AJ.

ArrayList: Modulo the false attribution of the modCount field to the class, the +A (T)

+U (A)manually added and the inferred atomic sets are identical. This includes the
alias adding the elements of the elementData array to the atomic set.
The list of inferred units of work contains both addAll() variants, which have
manual annotations. The other methods were either removed in collections-
AJ (like removeAll()), were generated by the compiler (like access$1()), or
are private (like batchRemove()). Simple filtering of the units of work output
by the inference tool could remove the last two categories and improve the
quality of the inferred annotations.

HashMap$Entry: In collections-AJ, this class has been moved out of HashMap and
is called HashMap Entry. The inferred atomic set is identical to the manually
defined one. The alias annotations to the types of the getNext() and setNext()

methods can be inferred statically from the type of the next field (for which
the right aliases are inferred).

HashMap$EntryIterator: Neither atomic sets nor units of work are manually de-
fined, or inferred for this class (called HashMap EntryIterator in collections-
AJ). The manual alias-type annotations to the constructor argument and
the next() return type can be inferred from the types in the super class
HashMap$HashIterator. (See below.)

HashMap$EntrySet: In collections-AJ, the factored out counterpart—the class −A (S)
HashMap EntrySet—contains an atomic set including the class’s only field
hashMap. This field is the explicit reference to the containing HashMap object,
which aliases the HashMap’s atomic set. The inferred atomic set matches this
definition modulo the reference field this$0 being implicit.

HashMap$HashIterator The inferred atomic set is missing the fields index and −A (W)
expectedModCount, which are included in the manually defined atomic set.
This is due to the non-sharing of iterators. The remaining fields, however,
are included in the inferred atomic set; their aliases match the manually
defined aliases.

HashMap$KeyIterator: Equivalent to HashMap$EntryIterator.
HashMap$KeySet: The only field in this nested class is the implicit reference −A (S)

to the containing object. As in the corresponding class, HashMap KeySet, in
collections-AJ, the reference is included in the atomic set of the class; the
defined aliases match.

HashMap$Values: This class is apparently never used during any of the three −U (W)
runs. It does not appear in the inference tool’s output.

HashMap: The loadFactor field is missing from the inferred atomic set. All other −A (W)
fields, including the alias definitions, are identical. The inference tool omits
the loadFactor field because the only non-constructor method in the class that

accesses the field is putAll(), and this method is used sparingly by the fuzzing
tool. (It is guarded by the allowed flag.) The field is present in the inferred
atomic set for Hashtable.

In the inferred annotations, the fields keySet and values are wrongly at-+A (T)

−L (A) tributed to this class. They instead belong to the AbstractMap class. The
manual annotations put the fields in the same atomic set (potentially be-
cause of the limitation to one atomic set per class). The defined aliases are
not inferred.

The package private method putAllForCreate() is not inferred as a unit of−U (W)
work for the atomic set of its argument because the fuzzer does not invoke
clone() or the copy constructor of HashMap (which are the only callers of
putAllForCreate()).

HashSet: The inferred atomic set omits the inclusion of the PRESENT field and−A (B)
otherwise matches the manual specification. The inferred atomic set is never-
theless correct because the field is declared to be final and static. In contrast,
including the PRESENT field in the atomic set for objects severely limits the
concurrent use of HashSet objects because every thread using such an object
must acquire the (implied global) lock that protects the field. Consequently,
no two threads can execute code within HashSet objects at the same time.

No unit of work annotation is inferred for the copy constructor’s argument−U (W)
because it is never invoked by the fuzzer.

LinkedHashMap$Entry: Modulo the wrongly attributed fields key and value, the+A (T)
inferred atomic set matches the manually defined atomic set, including the
correct alias definitions.

The tool furthermore infers the methods addBefore() and recordAccess() to be+U (A)
external units of work for the atomic sets of their arguments. No such an-
notation was added manually. The definition has no effect on the program
behavior because all calls to the methods of this private class come from con-
texts where the atomicity of the arguments is already ensured. However, the
annotations clarify the invariant holding in the method without introducing
locking overhead.

LinkedHashMap$EntryIterator: No atomic set or unit of work is inferred or defined
manually for this class. The respective alias type annotations can be inferred
from the aliases of the LinkedHashMap$LinkedHashIterator fields.

LinkedHashMap$KeyIterator: See LinkedHashMap$EntryIterator.

LinkedHashMap$LinkedHashIterator: The inferred atomic set contains only the im-−A (W)
plicit reference to the parent object and the lastReturned field. Both have
aliases that match the manual annotations in the corresponding collections-
AJ class LinkedHashMap LinkedHashIterator. The nextEntry and expectedModcount

fields are missing because the fuzzer does not access iterator objects from
different threads. The header field was duplicated from LinkedHashMap in
collections-AJ to avoid direct access (see the comment in the source code in
LinkedHashMap LinkedHashIterator.java).

LinkedHashMap: Ignoring the wrongly attributed fields, the inferred and manu-+A (T)

+U (T) ally added atomic sets match. The only inferred units of work concern com-

piler generated functions and can be safely disregarded. No units of work
were defined manually.

LinkedList$Entry: The manually added and the inferred annotations are identical.
LinkedList$ListItr: The inferred atomic set lacks several of the fields contained in −A (A)

the manually defined atomic set. The differences can be explained as follows:
the header field has been duplicated in LinkedList ListItr; fields in the iterator
that do not reference shared objects (nextIndex and expectedModCount) are
invisible to the inference algorithm. Disregarding the renamed field refer-
ring to the containing LinkedList object, the remaining fields and their alias
definitions are identical.

LinkedList: Both atomic sets are identical modulo the falsely attributed field +A (T)

−U (W)

+U (T)

modCount. The inferred units of work do not include the copy constructor, but
cover the manually annotated variants of the addAll() method. The remaining
inferred units of work concern either compiler generated or private methods
and could be easily removed by an output filter in the inference tool.

TreeMap$AscendingSubMap$AscendingEntrySetView: See TreeMap$AscendingSubMap.
TreeMap$AscendingSubMap: This class belongs to a part of the NavigableSet inter-

face that is not implemented by TreeMap in collections-AJ.
TreeMap$Entry: The manually added and the inferred atomic sets are identical. −U (W)

The equals() method is not inferred to be a unit of work for its argument
because the fuzzer does not invoke the method (only hashCode() is called).

TreeMap$EntryIterator: Equivalent to LinkedHashMap$EntryIterator.
TreeMap$EntrySet: The corresponding class in collections-AJ is TreeMap 3. As −A (S)

−L (W)in the manually defined atomic set, the inferred atomic set consists of the
reference to the containing TreeMap object. The inferred alias for this field
would yield the same results as the manual annotation. However, only two
fields are listed for resolving the aliased atomic set because the fuzzing tool
does not mutate the retrieved enty set, but only its entries (see method
mutateEntrySet in class MapFuzzer). Improving the fuzzer would yield stronger
support for the alias resolution.

TreeMap$KeytIterator: Equivalent to LinkedHashMap$EntryIterator.
TreeMap$KeySet: The inferred annotations for this class reflect the introduc-

tion of, and delegation to, NavigableSet in Java 1.6. Since the corresponding
TreeMap 1 class in collections-AJ belongs to an older version of Java, the
annotations cannot be directly compared.

TreeMap$NavigableSubMap$SubMapEntryIterator: See TreeMap$AscendingSubMap.
TreeMap$NavigableSubMap$SubMapIterator: See TreeMap$AscendingSubMap.
TreeMap$NavigableSubMap: See TreeMap$AscendingSubMap.
TreeMap$PrivateEntryIterator: The inferred atomic set matches the manually de- −A (W)

fined atomic set except that the expectedModCount field is missing due to
non-sharing of iterators in the fuzzing tool. No units of work are declared in
either variant.

TreeMap: The algorithm infers three atomic sets for this class. All fields con- +A (T)

−L (W)tained in the manually added atomic set are present in the largest inferred
atomic set. The only difference between the annotations is the missing alias-
ing of the field entrySet, which can be explained by the fuzzing tool’s limited
use of the entry set. (See the discussion of TreeMap$EntrySet above.)

The two additional atomic sets are each singletons which consist of the
navigableKeySet and values fields respectively. The first one belongs to the
NavigableSet modifications of the collections framework that is not included
in collections-AJ. It is thus safe to ignore in the comparison. The field values

can be disregarded because it belongs to the class AbstractMap and was moved
to TreeMap by the compiler.
The manually added definition of the method putAll() as a unit of work for its−U (W)

+U (A) argument is also automatically inferred. However, the annotations defining
the methods addAllForTreeSet() and buildFromSorted() as units of work are
missing. Both methods are only invoked under special and rare circumstances
(see method addAll() in TreeSet and, for example, method putAll() in TreeMap),
which explains why they are not executed under random fuzzing. They are
hence invisible to the inference tool. The remaining inferred units of work
concern auxiliary private methods for tree operations. These annotations are
correct, but superfluous.
Note that in collections-AJ, TreeMap 1 is the key set implementation of
TreeMap (see method keySet()). TreeMap 2 is the value set implementation,
and TreeMap 3 is the entry set.

The remaining classes are not present in collections-AJ and have no corre-
sponding counterpart. Consequently, the atomic sets obtained for the following
classes cannot be evaluated:

– Hashtable

– IdentityHashMap

– Vector

– WeakHashMap

A.2 Elevator

Workload. The traces were collected while running the program with 8 threads
on the input file data3, which is included in its source distribution.

Runs. All three runs yield the same annotations.

Annotation Comparison Between elevator and elevator-AJ.

Controls: In the manually converted elevator-AJ, the Controls object contains no−U (B)
atomic sets. However, the methods operating on the floors[] array are declared
to be external units of work for the atomic sets floors[onFloor].F of individual
array elements (Floor objects). This declaration is a violation of the AJ type
system because the generalized form of unitfor requires that the segments of
the access path leading to the atomic set are final [6]. While the floors field
itself could be annotated as final, Java lacks such an annotation for array
elements.
The inferred atomic set A consists of the floors array with an alias including+A (A)

its Floor elements, as well as the atomic set F of the elements: this.A[]F=this.A.
This atomic set ensures the correct program behavior of atomic access to the
Floor objects from the Lift threads. However, the coarse granularity effectively
imposes a single global lock guarding all operations on the floors array. Since
performance is not a consideration for the elevator program, this is not a
problem.
Note that the algorithm is precise in its array element access handling. It
infers atomic access for the Floor objects because the Lift threads always op-
erate on different array elements. The inferred atomic set therefore correctly
reflects the programmer intentions. Furthermore note that the Floor class
contains two atomic sets, both of which should be aliased to the atomic
set in Control. AJ currently does not support this, but, just like multiple
unitfor declarations, there are no fundamental reasons for this limitation.
As a workaround, the two atomic sets of Floor could be merged into a sin-
gle atomic set. With all access being serialized by Control’s atomic set, no
concurrency would be lost through the merge.

Elevator: The algorithm infers a single atomic set containing the controls field, +A (A)

+L (A)which holds the reference to the Controls singleton shared by all Lift threads
and the Elevator main object. It furthermore adds an alias to the floors[] array.
This alias to the shared array is the reason for adding the controls field. The
Elevator object itself never uses this field in a concurrent setting.

Floor: The algorithm infers two (disjoint) atomic sets. The first atomic set con-
sists of the list of simulated people who wish to use the elevator to go up,
and the flag signaling that an elevator is coming to take them upwards. The
second atomic set is identical to the first, except for covering the downwards
direction. Evidently, these inferred atomic sets represent semantic units.
Likely due to the AJ compiler limitation of supporting only one atomic +A (S)
set per class, the Floor class in elevator-AJ contains a single atomic set that
consists of the two lists and the two flags. This atomic set furthermore aliases
the contents of the lists of waiting people (using an AJ-converted variant of
java.util.ArrayList).
The alias is unnecessary for ensuring the correct program behavior because −L (W)
Floor structs are modified only by the Controls singleton c, which never passes
them outside its scope, and never sets the Floor fields to shared objects.
The atomic set inferred for the Controls singleton covering the whole floors[]

array, including its Floor elements and their atomic sets, therefore guarantees
atomicity.
The correctness, however, depends on the particular use and ownership of
the Floor objects by the Controls singleton c, as well as the global locking
behavior of c. Race conditions could be accidentally introduced by changing
Controls to use more fine-grained locking and to re-use lists for waiting people.
The aliasing information in the manually added atomic sets prevents this
scenario. The inference algorithm cannot infer a similar aliasing information
because the used Vector containers belong to the Java runtime library, which
is not instrumented.

Lift: Identical to Elevator. The aliasing of the floor array in Controls effectively +A (A)

+L (A)

imposes a single global lock that any Lift object must hold to make progress.
Thus, in an AJ implementation using locks, all Lifts operate sequentially. An
AJ implementation using transactional memory would not suffer from this
restriction.

Runner: The class contains no fields. Consequently, both atomic sets are identi-
cally empty.

A.3 Elevator-AJ

Workload. The AJ variant of elevator uses the same workload as the original
elevator program.

Runs. All three runs yield the same annotations.

Annotation Comparison between elevator-AJ-Translated and elevator-
AJ. The inferred annotations differ from those of the elevator runs just by the2×+A (T)
lock fields inserted by the AJ compiler. In the Floor class, this overlap triggers
the merging of the atomic sets.

Additionally, the addPeople() method and the copy constructor of the List class2×+L (A) removed
are made units of work for the (now instrumented) ArrayList that stores the people
waiting to go either up or down. Since the overall structure of aliasing between
the atomic sets of Control, Floor, Lift, and Elevator is the same as in elevator, this
annotation is, again, unnecessary because all interleaving is prevented by the
imposed global lock in Control (which is required by Lift via the aliasing of its
controls field). However, the annotation is correct and adds documentation to the
intended behavior that the list of people is accessed atomically.

Because the program makes only very limited use of the collection classes, the
inferred atomic sets for these classes are incomplete and are thus not considered
as valid output. See subsection A.1 for a detailed comparison of the inferred
annotations for the collections framework.

A.4 JCurzez1

Workload. A custom fuzzing tool drives the generation of execution traces. The
fuzzer uses multiple threads to randomly execute operations on shared objects
from the library. Its source code is contained in the tool chain distribution.

Runs. To check the access to buffer[], a print statement was inserted into the
method deleteLine() in class AbstractWindow, which apparently triggers an in-
terleaved thread schedule by forcing the fuzzing threads to synchronize on the
standard output stream.

The annotations inferred from runs 1, 2, and 3 differ only in their witnesses.

– Run 1 contains witnesses of interleaved access to the fields attribute and
foreground in class Cell, and fields background and foreground in class Pen.

– Run 3 contains witnesses for the field attribute in class Cell, and the field x in
class Cursor.

Annotation Comparison Between jcurzez1 and jcurzez1-AJ. The basic
version of jcurzez with coarse synchronization is called jcurzez-redo-simple. For
simplicity, it will be henceforth be referred to as jcurzez1. The AJ variant of
jcurzez1 is jcurzez1-AJ. Besides adding annotations that define atomic sets and
units of work, it also introduces the following refactorings:

– Direct field access across object boundaries is replaced by calls to getter and
setter methods. (This is a trivial refactoring to fulfill the requirement that
fields belonging to atomic sets must be accessed through the (implicit) this

reference [6].)
– The Cursor class is annotated as internal (only in jcurzez1-AJ, not in jcurzez2-

AJ), which means that its atomic set must always be aliased by the atomic
set of the creating object, and references to Cursor objects may not leave this
context.
The getCursor() method is therefore removed from the AbstractWindow class.
Indirect getters and setters for cursor properties take over its functionality
(for example method setCursorXY()). For the same reason, the AbstractWindow

constructors now accept a Rectangle argument in place of a Cursor.
– A set of methods is introduced to allow unit of work definitions:
• A method move() with Rectangle arguments is added to class Window.
• A method initPens() is introduced in class Rectangle.
• The shutdown logic in class Screen$JCurzezHook is extracted into the

method shutdownPeer().
– Constructors of the Area and Window classes have been removed to prevent

undeclared sharing. (See the comment at the top of class Area.)
– The field aw, which refers to an AbstractWindow instance used for synchro-

nization, was removed in several classes. The Field completed was introduced
in ansi.PeerScreen.

Trivial differences between the inferred and the manually defined annotations
that originate from these refactorings will be ignored in the discussion. In detail,
the inferred annotations differ from the manual annotations as follows:

AbstractWindow: The manually added atomic set consists of only the buffer field,
which aliases its entries (this.A[]). The inferred atomic set extends this alias
to the entries in the second dimension, as well as their atomic sets. This alias
structure (this.A[][]B=this.A) cannot be expressed in AJ; an output filter in
the inference tool could easily prune the alias to the maximal expressible
variant.
The inferred atomic set furthermore contains the final fields parent and cursor.
These fields have been manually annotated with aliases, which match the
inferred aliases. The other final fields included in the inferred atomic set
are linewrap, scroll, id, isBufferShared, and bufferLock. Except bufferLock, which
has been removed in jcurzez1−AJ, all are of primitive type and therefore
immutable. With an output filter, the inference tool could remove these
entries.
The field stressConcurrency serves for debugging. Its inclusion in the inferred +A (A)
atomic set does no harm.

Area: No atomic set has been manually defined. However, an alias in the con- +A (A)

+L (A)structor merges the parent’s atomic set into the instance’s atomic set. The
inferred atomic set for the super class AbstractWindow includes this alias. A
type inference mechanism could generate this annotation in a post-processing
step from field annotations.
Additionally, the method printCell is inferred to be a unit of work for its−U (T)

+U (A) Cell argument; no such manual annotation exists. The argument is declared
as final, but this does not prevent concurrent modification. The inferred
annotation documents the intended behavior of the cell staying constant
during printing.

Attribute: The class has no manual annotations. The inferred atomic set consists+A (T)

+U (T) of the value field, which is final and of a primitive type. The atomic set could
be removed in a post-processing step. All of the inferred units of work cover
other Attribute arguments and would be eliminated by the same filter.

Cell: Neither an atomic set, nor units of work have been manually defined+A (B)

+L (A) for this class. The inferred atomic set contains all of the class’s fields. For
the attribute, background, and foreground fields, this includes aliases to the
respective atomic sets.
Runs 1 and 3 contain witnesses for interleaved access to some of the fields.
Since thread-safety was added to jcurzez by the AJ authors (and not the
original library developer), this is likely a synchronization error.
The comparison method hasSameDecoration() is inferred to be a unit of work+U (T)
for the atomic set of the other Cell. No such manual annotation can exist
because no atomic set has been manually defined for Cell. The same is true
for the copy constructor.

Color: No manual annotations have been added this this class. The algorithm+A (A)
infers two atomic sets for the class, one for each of the two fields. This
documents that color objects are shared between multiple threads, but not
modified concurrently. The definition of the atomic sets allows, for example,
the Cell class to include the color properties in its atomic set and convey the
intended semantics that no other thread changes the colors.

Cursor: The manual annotations define this class as an internal class. Its atomic
set must therefore always be aliased by the atomic set of the creating object.
References to Cursor objects may not leave this context. This leads to several
refactorings; see the discussion above.
Th first inferred atomic set contains all the manually annotated fields with+A (A)
the respective aliases. A separate atomic set is inferred for the field visibility,
which has no manual annotations.
The class’s constructor is defined to be a unit of work of its Rectangle argu-−U (T)
ment. This definition is missing from the automatically added annotations
because the argument is not shared at the time of construction and is thus
disregarded by the tool.

FillingPen: This class contains no manual annotations. The inference tool sug-+A (A)

+L (A) gests an atomic set consisting of the three (wrongly attributed) fields of the
super class Pen. The tool furthermore suggests an atomic set consisting of
just the blankCell field with an alias to the atomic set of Cell. This alias is

correct and supplies additional information because the color and attribute
fields of the cell can be updated via the set...() methods in FillingPenn.

Pen: The manually added atomic set covers all fields of the class. The inferred +L (A)
atomic set matches the definition and furthermore adds aliases for the atomic
set in Color class that contains the field name. This may lead to locking
overhead if Color instances are shared between Pen instances.

The copy constructor is not invoked by the fuzzing tool, which explains why −U (W)
it is not inferred as a unit of work for its Pen argument.

Rectangle: The manual annotations put all fields of the class into an atomic set.
The fields fillingPen and drawingPen have aliases to the atomic set of Pen.

The inference algorithm derives the atomicity of all fields. It splits the single −L (B)

−U (S)atomic set into three, putting the Pen fields into atomic sets of their own.
While the alias for fillingPen is derived, no such alias exists for drawingPen

because it was witnessed as non-atomic (via the method printChar() in class
AbstractWindow in all three runs). Thus, the original synchronization is in-
complete, allowing this unintended interleaving.

The private method initPens() is not inferred as a unit of work because it has
been freshly introduced into jcurzez1−AJ during the refactoring.

Screen: An atomic set is neither manually defined, nor inferred for this class. −U (S)
The manual annotations define the method shutdownPeer() as a unit of work
for its argument. This annotation is not inferred because the method does
not exist in jcurzez1. It is introduced during the refactoring into jcurzez1−AJ.

The manual annotations do not define the method printCell() as a unit of work +U (A)
for its argument because the class Cell contains no atomic set in jcurzez1−AJ.
However, the method is protected by a lock in jcurzez1, which indicates that
the inferred annotation reflects the programmer’s intention.

Window$Parent: The class contains no manually defined atomic set. The algo- +A (A)
rithm infers one atomic set consisting of the fields cursor and frame. The field
cursor is wrongly attributed to this class.

Defining the field frame as atomic is correct. However, the field is never
written. Since Frame objects seem to never be shared, this annotation is
unnecessary.

The inferred units of work only concern the compiler generated access meth- +U (T)
ods for fields in the containing class Window. They can be safely ignored and
could be removed by an output filter in the inference tool.

Window: No atomic set is defined manually for this class. The inferred atomic +A (A)
set contains the field moved alongside the wrongly attributed fields cursor and
parent, which are already covered in their defining class AbstractWindow.

The method move() is not inferred as a unit of work for its Rectangle argu- −U (S)
ments because this method is not present in jcurzez1.

ansi.PeerScreen: The manually defined atomic set mostly matches the larger −A (S)

+A (A)of the inferred atomic sets. The completed field is missing because it was
introduced in jcurzez1−AJ. The inferred atomic set additionally contains the
fields columns and lines. These private fields are never written and could
be declared final, whereby an output filter could remove them from the

suggested annotations. Because lines is in a separate atomic set, a slight
additional locking overhead is incurred.
The class contains no manually defined units of work. The inferred units+U (T)
of work concern methods whose argument types do not contain manually
defined atomic sets.
The printCell() method accesses the properties of the Cell argument several+U (B)
times. Since the cell could be modified concurrently, the inferred annotation
clarifies the concurrency invariants in the method.

A.5 JCurzez1-AJ

Workload. The same fuzzing tool as with jcurzez1 is used to generate the
execution traces.

Runs. Runs 1 and 2 yield identical annotations. Run 3 contains a witness of
interleaved access to field attribute in the Cell class (in method copyInto()). This
witness is not present in the other runs.

Annotation Comparison Between jcurzez1-AJ-Translated and jcurzez1-
AJ. The inferred annotations for jcurzez1−AJ−Translated are equivalent to those
inferred for jcurzez1 (jcurzes-redo-simple), modulo the refactoring from jcurzez1
to jcurzez1-AJ and the compiler generated methods and fields. For a discus-
sion of the differences between the manual and the inferred annotations, see the
evaluation of the annotations inferred for jcurzez1.

The most salient changes in the inferred annotations are:

AbstractWindow: The atomic set requested as alias for the field parent no longerNow also −L (T)
contains the parent field (that is, parent.parent). However, the Window subclass
still introduces this alias, which suggests that the effect is the result of the
compiler attributing the field to the wrong class.

Area: The inferred atomic set is now empty, matching the manual annotations.+A (A) removed

+L (A) removed The parent alias is inferred in the Window class.
FillingPen: The atomic set consisting of the wrongly attributed fields is gone.

The atomic set containing blankCell (which does not exist in the manual
annotations) is still inferred.

JCurzezHook: The method shutdownPeer() is present in jcurzez1−AJ−Translated−U (S) removed
and is correctly inferred to be a unit of work for its PeerScreen argument.

Parent: No annotations are inferred for this class. It appears that the parent
objects are never shared in jcurzez1−AJ−Translated.

Rectangle: The alias for drawingPen is now present. However, the alias for fillingPen

changed to blankCell only.
Screen: The printCell() units of work disappeared. Since the method is just calling+U (A) removed

method printCell() in ScreenPeer (which still is a unit of work for its argument),
this is irrelevant.

Window: The inferred atomic set now contains the parent alias, but frame and−U (S) removed
cursor vanished. The method move internal() is correctly identified as unit of
work for its Rectangle arguments.

A.6 JCurzez2

Workload. The same fuzzing tool as with jcurzez1 is used to generate the
execution traces.

Runs. Compared to the other runs, run 1 contains a witness for the field x in
class Cursor. Furthermore, the fields background and attribute are missing from the
alias of field drawingPen in class Rectangle. Run 2 contains a witness of interleaved
access to the field background in class Pen, and the field moved in class Window.
Run 3 contains witnesses for the fields background and foreground in class Cell, the
field y in class Cursor, and the fields background and foreground in class Pen.

Annotation Comparison Between jcurzez2 and jcurzez2-AJ. The jcurzez-
redo project (henceforth called jcurzez2) is a variant of the jcurzez library that
intends to offer a higher degree of concurrency than jcurzez1 [6, sec. 7.2]. The
structural differences between jcurzez1 and jcurzez2 are as follows:

– The coupling between AbstractWindow and Cursor objects has been loosened.
It appears that the intended effect is to allow concurrent access to the Cursor

object while operating on the AbstractWindow object. Several fields were in-
troduced in class AbstractWindow to buffer the values from the Cursor object.

– The PeerScreen instance is always protected by an external lock. (See the
comment in PeerScreen.java about the removed synchronized modifier.)

– Class Rectangle now uses the fields width and height instead of the fields right

and bottom. The aw field has been removed from all classes.

The modifications have little effect. Ignoring the addition and removal of
fields, as well as the wrong attribution by the compiler, the following differences
between the annotations inferred for jcurzez1 and jcurzez2 remain:

Cell: Method copyInto() is now a unit of work for its Cell argument. The runs
of jcurzez2 contain more witnesses of interleaved access to the class’s fields.
(The same holds for the classes Cursor and Pen.)

FillingPen: The field hasChanged is now included in the alias of field blankCell.

Rectangle: The field drawingPen gained an alias to foreground; however, the field
fillingPen lost its aliases to the atomic set containing attribute, background, and
foreground.

Window$Parent: The field frame was witnessed as being non-atomic (and is con- Now +A (T)
sequently missing from the inferred atomic sets and aliases).

Considering the high degree ofsimilarity, the discussion of the annotations
inferred for jcurzez1 stays valid. The following list considers only the differences
between the manual AJ annotations of jcurzez-aj1 and jcurzez2-AJ. (Recall that
the changes were made to achieve a higher degree of concurrency).

AbstractWindow: The alias merging the atomic field of parent with the class’s Now +A (W)
atomic set has been removed. This change implies that the constructor is
no longer a unit of work for its parent argument. (The same is true for the
subclasses Area and Window.) Furthermore, the alias to the elements of the
buffer array were removed. Also, the atomic set of the Rectangle object re-
turned by the getRectangle() method is no longer aliased with the atomic set
of AbstractWindow.
None of these changes appear in the inferred annotations. The reason could
be an insufficient degree of concurrency in the fuzzing tool, making all op-
erations appear coarsely atomic.

Area: The constructor is no longer a unit of work for the atomic set of its CursorNow +A (A)

Now +L (A) argument.
Cursor: The class is no longer internal. The alias annotation of its field rectangle

has been removed. None of the changes is reflected by the inferred annota-
tions. As with AbstractWindow, a reason for not dropping the alias annotation
of field rectangle could be a coarse grained schedule of the fuzzing threads.
Another reason could be that the locking structure implicitly prevents con-
current access to the contents of the field rectangle.

Pen: The class no longer has an atomic set. This change implies that theNow also +A (A)
and +L (A)

−U (W) removed

constructor of class Rectangle can no longer be a unit of work for its Pen

arguments. The inference tool still suggests an atomic set for this class con-
sisting of all fields. In contrast to jcurzez1, the tool furthermore infers that
the copy constructor is a unit of work for its argument Pen.

ansi.PeerScreen: The fields columns and lines have been added to the atomic set.Now −A (S) and
+U (B) This makes the manually defined atomic set identical to the inferred atomic

set (which has not changed from jcurzez1).

A.7 JCurzez2-AJ

Workload. The same fuzzing tool as with jcurzez1 is used to generate the
execution traces.

Runs. Run 1 contains a witness of interleaved access to the field background in
class Cell, and the field foreground in class Pen. Run 2 contains a witness for the
field frame in class Parent. Run 3 differs from run 2 in additionally containing a
witness for the field attribute in class Cell.

Annotation Comparison Between jcurzez2-AJ-Translated and jcurzez2.
The inferred annotations for jcurzez2-AJ-Translated are mostly identical to those
inferred for jcurzez-redo (jcurzez2). Ignoring the fields and methods generated
by the compiler, the only differences are as follows:

AbstractWindow: The method updateCursorIfUnchanged() is inferred to be a unitNow also +U (A)
of work for its Cursor argument.

Rectangle: The methods contains internal() and move internal() are inferred as−U (S) removed

−L (B) units of work for their Rectangle arguments, which matches the manual an-
notations.

Window: Method move internal() is inferred as unit of work for its Rectangle ar- −U (S) removed
guments, which is precisely what the manual annotations define.

ansi.PeerScreen: The field lines is merged into the main atomic set.

A.8 TSP2

Workload. The tsp2 program is executed using 8 threads on the file map14 to
generate the traces.

Runs. Runs 1 and 3 yield identical annotations. Run 2 does not suggest the
method less than() in class TourCreator as unit of work for priority queue elements.

Annotation Comparison Between tsp2 and tsp2-AJ

Minimizer: The atomic sets are identical modulo the added lock field MinLock, +A (T)
which is not present in tsp2-AJ.

PrioQElement: This class has no atomic set in tsp2-AJ, whereas the inference +A (A)
algorithm adds both of its fields to a single atomic set. Both variants result
in the same program behavior because PrioQElements are used exclusively by
the TourCreator singleton, which synchronizes all operations on the priority
queue elements.
However, the elements are accessed by multiple threads (via TourCreator).
Adding the atomic set documents this behavior and is furthermore a re-
quirement for the aliasing annotations in the TourCreator class. (See below.)

TourCreator: The inferred atomic set includes all fields of the manually added +A (S)

+U (A)atomic set. It furthermore contains the TourLock, which was removed in tsp2-
AJ, as well as the minimizer field. The minimizer field is final, and thus the
annotation is unnecessary. The inference algorithm currently ignores the
access flags of fields, but an enhanced version could remove unaliased final
fields from the inferred atomic set.
The automatically derived annotations furthermore contain additional alias- +L (A)
ing information for the PrioQ[] and Tours[] arrays. For the Tours[] array,
the atomic set is extended to its elements through the alias this.TC[]. The
alias emphasizes that not only the array itself is used atomically within
TourCreator, but that TourCreator synchronizes updates of the array’s elements.
While the annotation does not change the program’s behavior (the manual
annotation without the alias has the right effect), it clearly documents an
additional concurrency invariant without introducing runtime overhead.
The inferred aliasing information for the PrioQ[] array is even more detailed
and includes the atomic set of PrioQElements. The original tsp2 program
allows unsynchronized access to the PrioQ[] array in the DumpPrioQ() method
of TourCreator. This method is called by the TspSolver threads if the debug

flag is set, thereby creating a race condition. However, if the debugging
information is disabled, the access to PrioQ[] and its elements is atomic:

– The initialize() method is invoked by the main() method before the TspSolver

threads start.
– DumpPrioQ() is only called if the debug flag is set (which was not the case

in our runs). (This method is missing synchronization using TourLock.)
– Every other access to PrioQ is synchronized using TourLock.

The manual annotations in tsp2-AJ reflect the program’s behavior with de-+A (B)
bugging disabled. By adding PrioQ to the atomic set TC of the object, the
annotation fixes the race condition in DumpPrioQ(). The inferred atomic set
additionally includes the alias this.TC[]I=this.TC for PrioQ, which documents
the atomic handling of priority queue elements (without introducing locking
overhead). Both atomic sets have the same effect, but the inferred variant
conveys more information about the intended program behavior.

TourElement and Tsp: The manually added and inferred atomic sets are both
empty.

TspSolver: This class—the program’s worker thread class—received no atomic+A (T)
set during the manual conversion. The inference algorithm introduces an
atomic set for the shared singletons minimizer and tourCreator. Both fields are
final, which means that the atomic set could be omitted. The atomic set
introduces, if at all, minimal runtime overhead because the lock for the set
is permanently held by the TspSolver instance thread itself.

A.9 TSP2-AJ

Workload. The annotations are inferred from traces generated by the same
workload as tsp2.

Runs. Runs 1 and 2 yield identical atomic sets. Run 3 adds an alias for including
the elements of the Tours array in the atomic set of TourCreator. The missing alias
in runs 1 and 2 most likely originates in scheduling that always accesses the array
elements from the same thread. (The array is then treated as not shared by the
inference algorithm and hence removed from the atomic sets.) As the increased
runtime indicates, the program uses a schedule different from tsp2 because of
the changed lock structure.

The alias is not missing due to interleaved access: the compiled program
(tsp2-AJ-Translated) ensures atomic access to the array; the debug log contains
no witness for an interleaved update of the array elements.

Annotation Comparison Between tsp2-AJ-Translated and tsp2-AJ.
The inferred atomic sets for tsp2-AJ-Translated almost match those inferred
for tsp2. The discussion of the differences to the manual annotations in tsp2-AJ
consequently applies to tsp2-AJ-Translated as well. The only differences between
the inferred atomic sets for tsp2-AJ-Translated and tsp2 are as follows:

The Tours field in TourCreator lacks the aliasing to its elements in two of theNow just +L (B)
three runs of tsp2-AJ-Translated. (See above.)

No run of tsp2-AJ-Translated infers TourCreator.lessThan() as an external unit +U (A) removed
of work. As with the Tours[] array, this is likely due to a more monolithic
locking structure that reduces the shared access between the worker threads.

A.10 Weblech

Workload. The program collected files from a host-local webserver for 4 min-
utes.

Runs. In runs 1 and 3, the basicAuthPassword and basicAuthUser fields are in
separate atomic sets of class SpiderConfig, while in run 2 they are in a single
atomic set. Run 1 suggests the field spiderThreads in class SpiderConfig as atomic,
while runs 2 and 3 ignore this field. Likely, the field was not shared in these
runs and therefore filtered by the inference algorithm. There is no witness of
interleaved access to the field spiderThreads.

Annotation Comparison Between weblech and weblech-AJ. weblech-AJ
slightly differs from weblech in that it has been refactored to better fit the AJ
concurrency control. The inferred annotations are therefore only partially com-
parable. weblech-AJ introduces an additional intermediate SpiderRunnable class.
While in weblech, the Spider class itself is a Runnable that is executed by the worker
threads (instantiated in Spider.start()), this behavior is extracted and moved to
the SpiderRunnable class in weblech-AJ. In both variants, all worker threads ex-
ecute a single Runnable instance. This object coordinates the threads with its
download queues etc.

The URLGetter object, which is invoked via the downloadUrl() method, contains
blocking calls to fetch the content located at the URL. In weblech, the thread
(correctly) holds no locks during these blocking calls. Multiple threads can thus
concurrently block for input, as can be verified by printing the thread ids at the
beginning and end of getUrl(). However, the atomic set structure suggested by
the inference algorithm would impose a global lock with the current, lock-based,
implementation of atomic sets. This global lock (for the atomic set of the shared
Spider instance) must be held by any thread operating on the Spider instance.
This includes the call to downloadUrl(). Consequently, only a single thread can
make downloads, eliminating all concurrency from the program.

This behavior is safe, but to allow concurrent downloads, the program must
be refactored (as is the case with weblech-AJ). However, the refactoring in
weblech-AJ does not achieve this goal: the downloadUrl() method is still located
in the shared Spider instance and is consequently an internal unit of work for
the atomic set S. The method should instead be moved to SpiderRunnable, which
does not protect its fields with atomic sets. A temporary workaround to enable
concurrent downloads in the translated version of weblech-AJ is to close the

synchronized(this.$lock S) block in the downloadUrl() method of class Spider just
before the calls to urlGetter.getUrl(url), and to re-open right after the calls.

The manually added and the inferred annotations of the individual classes
differ as follows:

DownloadQueue: This class does not contain a manually added atomic set. The+A (A)
algorithm infers an atomic set containing all of the class’s fields, which are
collections for organizing the queued URLs in different categories. Since the
Spider singleton is the only object that uses DownloadQueue (the queue field),
the synchronization through the atomic set S in weblech-AJ ’s Spider class
suffices to guarantee atomic access as in weblech. The (missing) manual an-
notation is therefore correct. The inferred atomic set documents the exclusive
access to the fields in DownloadQueue. Because of the inferred alias from the
queue field in Spider (see below), no locking overhead is introduced.

HTMLParser: Both the manually added and automatically inferred atomic sets
are empty.

Spider: The inferred atomic set contains all fields in the class and further-+L (A)
more aliases the fields of SpiderConfig and DownloadQueue. Because the worker
threads operate on a single Spider instance, they must synchronize via the
lock associated with the atomic set, and therefore execute in a purely se-
quential order. In particular, threads can no longer wait concurrently for
downloads to finish. As discussed above, this behavior is correct; enabling
concurrent downloads with atomic sets requires a refactoring of the class
structure. Since the run() method invokes all operations in the class, all fields
are always accessed together, resulting in a single inferred atomic set.
The weblech-AJ version defines an atomic set that contains only three fields+A (B)
responsible for managing downloads. The fourth field related tod downloads,
urlsDownloadedOrScheduled, and the methods operating on it have been moved
to the UDorSWrapper class to work around the limitation of one atomic set
per class (see comments in UDorSWrapper.java). The fields related to check-
pointing are omitted from the atomic set. This introduces an, albeit benign,
race condition regarding checkpoints that weblech prevents by synchronizing
on queue (see method checkpointIfNeeded()). The fields related to thread man-
agement (running and quit) have been moved to SpiderRunnable in weblech-AJ
and are not members of an atomic set.

SpiderConfig: No atomic set is defined for this class in weblech-AJ. Because the+A (A)
fields are only read after the configuration has been loaded, no data races
can originate from this lack of synchronization. Nevertheless, the fields are
accessed from multiple threads, and consequently, the inference algorithm
defines an atomic set for each field. The atomic sets document the intended
(read–read sharing) behavior of the fields. With the central Spider class defin-
ing aliases for all the atomic sets, no locking overhead is introduced.

URLGetter: The algorithm infers an alias for the userAgent, basicAuthUser, and+L (A)

−A (A) basicAuthPassword fields in the shared SpiderConfig object. This documents
that the configuration value stays constant, but no more. It does not change
the program’s behavior compared to the empty atomic set in weblech-AJ.

The constructor is furthermore inferred to be a unit of work for the atomic set+U (A)
containing the basicAuthPassword and basicAuthUser fields in the SpiderConfig

class.
URLObject: Similar to URLGetter. +L (A)

+U (A)URLToDownload: The class lacks an atomic set in both program versions.
TextSpider: See URLToDownload.
Log4j: See URLToDownload.

A.11 Weblech-AJ

Workload. Like the non-AJ variant, the program collected files from a host-
local webserver for 4 minutes.

Runs. The schedule of run 3 does not include shared access to the UDorSWrapper

(via SpiderRunnable), which causes the inference algorithm to remove the field
urlsDownloadedOrScheduled from the atomic set of UDorSWrapper. Runs 1 and 2 do
not have this issue.

Annotation Comparison Between weblech-AJ-Translated and weblech-
AJ. The atomic sets inferred from the field access traces of weblech-AJ-Translated
virtually match those of weblech. The differences arise from the refactorings that
were applied to weblech-AJ : the Spider class was split and several of its fields were
moved to the new classes SpiderRunnable and UDorSWrapper. See the evaluation
of weblech for a detailed discussion of these refactorings.

SpiderRunnable: The manual annotations define no atomic set for this class. In +A (A)
contrast, the algorithm infers an atomic set consisting of all fields of the
class and including aliases to the atomic sets of Spider and SpiderConfig. This
atomic set again introduces a global lock that forces all threads to execute in
a sequential order because all threads operate on a SpiderRunnable singleton,
and the run() method forces the executing thread to obtain the lock for the
atomic set. As discussed in the evaluation of weblech, this structure of atomic
sets is safe, but it eliminates all concurrency from the program.
One aspect that leads to inferring this restrictive combination of atomic
sets is the limited number of thread switches in the execution trace, which
partially originates in the accidentally coarse concurrency structure of the
manual AJ annotations (see subsection A.10). Sprinkling Thread.yield() state-
ments over the run() method of class SpiderRunnable has the desired effect of
removing the aliases from the inferred atomic set of SpiderRunnable.
Unfortunately, this does not remove the imposed global lock. The reason
that the algorithm infers an atomic set for the fields of SpiderRunnable is that
the threads executing the SpiderRunnable singleton never write the object’s
fields. The algorithm regards read–read sharing as atomic access because it
best captures the programmer’s intended semantics of the shared object. In

the lock-based implementation of atomic sets, this results in a (correct but)
restrictive locking structure.
Concurrency can be restored by either moving to a different implementation
of atomic sets, or by refactoring the application. In general, the lock-based
atomic set implementation seems problematic for architectures in which mul-
tiple worker threads execute a single shared runnable object.

UDorSWrapper: The inferred atomic set includes the manually specified field+A (A)

+L (A) urlsDownloadedOrScheduled and furthermore adds the lock field introduced by
the AJ compiler, as well as the config field. The config field introduces an
alias to the atomic set in the SpiderConfig class that contains the urlMatch

field. This documents that the configuration option does not change when
accessed by the UDorSWrapper object. Since no other class makes use of this
configuration field, the alias does not introduce locking overhead.

	Automated Inference of Atomic Setsfor Safe Concurrent Execution

