2000-5

An Electrical Earth Resistivity Survey

in The Wabash River Bottoms

Eastern Crawford County, Illinois

Timothy H. Larson and Steven L. Sargent Groundwater Geology Section

Illinois State Geological Survey Open File Series 2000 - 5 March 2000

THERAPY JUN 1 2 2000 IL GEOL SUNVEY

An Electrical Earth Resistivity Survey in The Wabash River Bottoms Eastern Crawford County, Illinois

Timothy H. Larson and Steven L. Sargent Groundwater Geology Section

> Illinois State Geological Survey Open File Series 2000 - 5 March 2000

a contraction of the second second

.....

Open File Series 2000-5 March 2000

ILLINOIS STATE GEOLOGICAL SURVEY William W. Shilts, Chief

Natural Resources Building 615 E. Peabody Drive Champaign, Illinois 61820-6964 (217 344-4747

This document is available in electronic format with color graphics. Appendices to this document are available in electronic format.

1200 A. 1200

to the second se

An Electrical Earth Resistivity Survey in The Wabash River Bottoms Eastern Crawford County, Illinois

Timothy H. Larson and Steven L. Sargent Groundwater Geology Section

> Illinois State Geological Survey Open File Series 2000 - 5 March 2000

INTRODUCTION

An electrical earth resistivity survey was conducted as part of a groundwater resource investigation in the Wabash River bottoms of eastern Crawford County south of Palestine (parts of Sections 16, 17, 20-22, and 28, T. 6N, R. 10 W., figure 1). This site is a potential location for a 1,000 gallon per minute (gpm) well field to supply water to the Hardinville Water Company. Because the area has limited geological data from well logs or other sources, the resistivity survey was used to help determine the most favorable locations to drill the proposed high capacity well.

a lar and the second second

may 1 at 1 at 1

n an an an All An An An An An An An

2011 A 2011

Figure 1. Location of study area and resistivity station.

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

http://archive.org/details/electricalearthr20005lars

GEOLOGICAL AND HYDROLOGICAL FRAMEWORK

The study site is located in eastern Crawford County in the flood plains of the Wabash River. The surface elevation ranges from about 480 to 500 feet above sea level on the bedrock bluffs at the west side of the area, to 420 feet at the Wabash River. Bedrock of Pennsylvanian age is exposed in some locations in the bluffs at the west side of the area. Although primarily shale, some coal, limestone and sandstone beds have been encountered in wells in or near the study area. To the east, the bedrock surface has been eroded so that it is now between 50 and 100 feet below the ground surface at the edge of the Wabash River (Piskin and Bergstrom, 1975).

Valley-fill deposits consist of sand and gravel of the Wisconsin Episode, Henry Formation (Hansel and Johnson, 1996), possibly intertongued with silt and clay of the Equality Formation (Hansel and Johnson, 1996), beneath recent alluvium of the Cahokia Formation (Willman and Frye 1970 and Hansel and Johnson, 1996). The Wabash River served as an outlet for large volumes of sediment during the retreat of the Wisconsin glaciers. Coarse-grained outwash that filled the main valley blocked many of the tributaries (Horberg, 1950) forming many slack water lakes. High-standing terrace remnants are still present in the study area, but are generally confined to the extreme western edge of the valley (Awalt, 1996). Subsequent downcutting has stripped out some of the younger surficial outwash deposits and replaced them with about 10 feet of fine- to coarse-grained alluvium assigned to the post-glacial Cahokia Formation.

Two large-capacity irrigation wells have been completed in the eastern part of the area on the meander belt of the modern river flood plain (figure 1). Both wells encountered 40 feet of Henry Formation sand and gravel beneath 9 feet of Cahokia Formation silt or clay. Much of the Cahokia Formation sediment may have been reworked from the underlying Henry (and possibly Equality) Formation. The records from these wells indicate that bedrock was not encountered.

Only one other well record was available at the ISGS for this study area. Located in the southwest quarter of Section 17 this well encountered 17 feet of soil and sand above 2 feet of coal and 7 feet of shale. Although the shallow sand may be alluvium of the Cahokia Formation, it is more likely part of the Wisconsin episode terrace system (Awalt, 1996). Similarly, a small gravel pit near the center of Section 28 is probably associated with outwash terrace deposits (Awalt, 1996).

and the second of the first of the former of the first of the

The groundwater geology of the study area is very similar to that described by Pryor (1956) for White County which is 60 miles downstream. Bedrock units, in particular the shallow sandstones, supply small to moderate quantities of groundwater for domestic use, but these shallow wells are often inadequate during dry conditions. Water obtained from deeper aquifers is commonly too highly mineralized for general use. Sand and gravel aquifers are thin and discontinuous in the uplands of the area, but are thick and continuous within the Wabash River valley. A significant difference between White County and this study area in Crawford County is the relative position of the modern and ancient Wabash River Valleys. In White County, the modern valley generally overlies the ancient valley and most of the valley is within Illinois. In Crawford County, most of the ancient channel lies in Indiana, east of the modern channel (Horberg, 1950). However, there are a few places in Crawford County (such as at Palestine and Hutsonville) where the Wabash River flood plain is at least a mile wide and can support large capacity well fields. The study area is one of these areas having a wide flood plain, and it therefore has the potential for supporting successful large-capacity wells.

METHODS

Electrical earth resistivity is sensitive to the proportion of sand and clay in earth materials (Buhle and Brueckmann, 1964). Sand-rich deposits have larger resistivity values than clay or shale. This generalization is only an approximation; other factors also affect the earth resistivity values. Two of these

Figure 2. Schematic drawing of Wenner electrode configuration.

other factors are the fluid content and the presence of other lithologies especially limestone and sandstone. For example, unsaturated materials generally have much larger resistivity than saturated deposits. Salinity or other chemical variations in the apparent resistivity = $2 \pi a V/l$ fluid can be important, but in this study we ner electrode assumed that the aquifers are filled with fresh water. Both limestone and sandstone

the state of the state state state

11 11 11

have large resistivity values similar to, or greater than, unlithified sand. Also, interferences from metal and electrical sources installed by humans artificially reduce the apparent resistivity.

For each resistivity measurement (figure 2), a known electrical current is passed into the ground through two outside electrodes (C1 and C2) and the resulting electrical potential measured with two inside electrodes (P1 and P2). All four electrodes are kept in a line with equal spacing (**a**) between them. This system, known as a Wenner-type array, can be used to obtain a one-dimensional profile of the variation in apparent earth resistivity with increasing depth by increasing the spacing between the electrodes (Reynolds, 1997).

Mathematical inversion of the apparent resistivity profile results in a set of resistivity layers at the site (Zohdy, 1974; Zohdy and Bisdorf, 1975). Each layer is characterized by a thickness and resistivity value (figure 3). In general, the inversion process results in a non-unique solution of layer parameters. That is, the values of the layer parameters (resistivity and thickness) are not uniquely determined, but are only one set of many equivalent solutions. A more unique solution, the transverse resistance, is obtained by calculating the product of the thickness and resistivity for each layer (Maillet, 1947).

Transverse Resistance T= $h x \rho$.

Figure 3. Schematic drawing of resistivity layers and parameters used to calculate transverse resistance.

The flow of water through porous media has many similarities, both theoretical and physical, with the flow of electricity through the same porous media (Freeze and Cherry, 1979).

One of the many analogs between the two systems is aquifer transmissivity and transverse resistance. In other studies, the geophysically derived parameter, transverse resistance, has been used with varying degrees of success to estimate the hydraulic parameter, aquifer transmissivity, (Kupfersberger and Bloschl, 1995). In this study, the transverse resistance will be used to estimate the aquifer (sand and gravel) thickness, which is comparable to estimating the transmissivity of the aquifer while assuming a

1 to a section of

constant hydraulic conductivity. This estimate approximates the relative yield of the aquifer (Larson et al., 2000).

Thirty resistivity stations were distributed throughout the area at ¼ to ½ mile intervals where accessible (figure 1). Resistivity tests used the Wenner electrode configuration with a maximum spacing of 180 feet between adjacent electrodes. This spacing was chosen to provide sufficient electrical penetration to investigate the entire thickness of the drift, which was estimated to be between 50 and 100 feet thick. Apparent resistivity profiles were inverted to resistivity layers (Appendix I). The transverse resistance was calculated for each layer.

RESULTS

Aquifer material in Illinois is characterized as resistivity layers with resistivity values of 200 ohm-ft or greater (Heigold et al., 1985). At least one, and in some cases, two resistivity layers at every station met this criterion, suggesting that aquifer material is present throughout the study area. However, most of the stations with two layers having large resistivity values were located in the western part of the study area. The deeper of these two layers may be influenced by shallow sandstone and may not reflect sand and gravel. In a conservative, though possibly subjective process, only one of the large resistivity layers at each station was chosen for further analysis (see Appendix II for details). The transverse resistance of this primary layer is shown in figure 4. Using the three water well records as constraints, the transverse resistance was scaled to approximate aquifer thickness (Appendix II, figure 5). Data were interpolated using SURFER (Golden Software, 1995) to a 650 foot square grid using a kriging algorithm with a 3 to 1 northwest anisotropy, and an octant search radius of 4500 feet. These gridding parameters were chosen to produce a relatively fine grid while taking into account both the sampling anisotropy created by use of the road network and the natural anisotropy of the field site.

and all the second s

T DEPEND

Figure 4. Transverse resistance of the primary layer.

Figure 5. Estimated aquifer thickness.

Based on this map of estimated sand thickness, the study area can be divided into zones with EXCELLENT, GOOD, or POOR probabilities for completing high capacity (1,000 gpm) wells (figure 6). The largest area with EXCELLENT probabilities for completing high capacity wells is in the eastern part of the study area, very near the Wabash River. Resistivity readings in this area were consistently higher than in other areas. Sand and gravel deposits up to 70 feet thick may be expected in this area. A small area that rates as EXCELLENT is in the southern part of the study area. Shallow gravel deposits sufficient to support a small gravel pit are located in this area. The shallow gravel is probably of alluvial origin, but deeper alluvial or glacial sands and possibly gravel may also be present.

Sand and gravel deposits 30 to 50 feet thick are likely to be present beneath the area shown as GOOD in figure 6. The two irrigation wells located within this area encountered 40 feet of sand and gravel. Resistivity values in the rest of the area shown as GOOD were similar to the values near the two irrigation wells, suggesting that subsurface conditions can be expected to be similar throughout most of the area shown as GOOD. However, no records of wells or borings from the southern part of the study area are available to confirm this expectation. In the northern part of the study area, the area shown as GOOD markes the transition zone between the EXCELLENT area near the river and the POOR area to the west.

Resistivity values were much lower in the northwestern and southern-most parts of the study area, shown as POOR in figure 6. Although some sand and gravel may be present in these areas, it is likely to be less than 15 feet thick. This sand is probably underlain either by clay or shale bedrock. The boundary between the areas with POOR probability and GOOD probability for completing high capacity wells should not be considered a sharp divide, but rather a smooth transition between the two areas. More geologic information from drill holes would be needed to refine these boundaries.

A large oil pipeline crosses the extreme southern part of the study area. This structure influenced one, and possibly two, of the resistivity readings in the area. Data from the resistivity station that was definitely affected by the pipeline were not included in this analysis, however the data from the other station (shown as station 19) were included. This station was located sufficiently far from the pipeline to suggest that the low values may have natural causes.

- to a standard on the standard of the

Figure 6. Relative probability for successfully installing a large capacity well, based on thickness of aquifer materials, showing areas recommnded for test drilling.

RECOMMENDATIONS

Three areas are shown in figure 6 as FAVORABLE for further testing. These areas lie completely within the study area, have GOOD to EXCELLENT probabilities for completing high capacity wells, are

at least 2000 feet from existing high capacity wells, are accessible by existing roads, and have one dimension exceeding a half mile. Each of these areas could, theoretically, support two or more production wells spaced a half mile apart. A recommended test location is shown for each area (figure 6). This location is at the resistivity station having the greatest estimated sand thickness in the favorable area. The field location of these recommended stations may be more clearly identified on figure 1.

WELL FIELD INTERFERENCE

Because of the potential for interference from the existing irrigation wells, it would be advisable to attempt to locate new highcapacity wells far from the existing wells. The exact separation that would be required can only be determined following a test of the aquifer materials, but a separation of 1000 feet is the minimum wellhead protection setback in any location within Illinois (Illinois EPA) and in river bottoms a separation of 2000 feet or ½ mile is common. For instance, the Hutsonville municipal wells, located in similar deposits about 15 miles upstream from this site, are separated ½ mile from each other.

The largest and southern-most area, defined by resistivity stations 16, 17, 20, 21, and 22 includes a small area rated as EXCELLENT based on very high resistivity readings at station 20 and the known presence of a gravel deposit. However, this gravel may be very shallow and depending on the water table conditions, may not be saturated. If not, it will not add significant thickness to the aquifer in the area. Otherwise, the resistivity values are very similar to those near the irrigation wells, suggesting that similar materials may be present in this area. However, no records of drill holes are available from this area to confirm the aquifer conditions.

WATER WELLS ON FLOOD PLAINS

Because of the health risks associated with frequent flooding, special regulations apply to the construction of water wells within the 100-year flood plain of any river in Illinois. Although locating the precise boundaries of this area is beyond the scope of this report, much of the study area almost certainly lies within the 100-year flood plain of the Wabash River. The Illinois State Water Survey and the Illinois EPA can provide more information on how to safely construct water wells in this environment. The other favorable area located in the southern half of the study area is very similar to the first. They might have been considered as one area, except that they are physically separated by No Business Creek. Resistivity values at stations 24 and 25 are greater than at nearby stations 22 and 23, suggesting the presence of thick sand and gravel deposits in this favorable area. However, the area is not rated EXCELLENT because

P 13 2 1 1 1 2

the state of the s

there are no drill holes available to confirm the presence of sand and gravel. The large resistivity values could also be caused by a spur of shallow sandstone or limestone that extends from the bluffs to the west. Also the resistivity values from station 26, at the north end of this farm field are much smaller than those at surrounding stations. Although this reading may represent a small, isolated area of fine-grained material, it may also be a southern extension of the large northwest area rated as POOR. There is not enough information to confidently determine the southern extent of this POOR area.

Another favorable area is located in the extreme northeast part of the study area. Technically, this area is the most favorable of the three because it is most likely to be underlain by the thickest sand and gravel deposits. However, this area is also very near existing irrigation wells that may cause hydraulic interference, and it is the most remote of the favorable areas.

A fourth area, defined by stations 23, 29 and 30 was contemplated, but ultimately not recommended. The probability of encountering thick sand and gravel deposits in this area ranges from GOOD to EXCELLENT, but the area is near existing irrigation wells and most of the area is presently wooded and not easily accessible.

SUMMARY

Sand and gravel deposits, 30 to 50 feet thick are probably present beneath most of this study area. Deposits may thicken to 70 feet or more near the Wabash River. Three areas that are favorable for further testing have been defined. Testing should commence in any one of these three areas with a test hole at or near the indicated resistivity station. If adequate sand and gravel deposits are encountered in this test hole then one or two other test holes should be drilled in the same area to confirm the extent of the deposit. If adequate sand and gravel deposits are not encountered, then testing should proceed to one of the other favorable areas. The test holes should be drilled to bedrock, samples collected for grain-size analysis, and geophysical logs run in each. If appropriate, a full-scale production test should be conducted at one of these sites.

The geology of the northwestern part of the study area is different from the rest of the area. Only thin sand and gravel deposits are likely in this part of the study area and test drilling is not recommended there.

and an and a second a second and a second a se

7

the second second

ACKNOWLEDGMENTS

This study was funded in part by the Hardinville Water Company. We greatly appreciate the assistance of Mr. Michael Birch, Manager, Hardinville Water Company and the cooperation of the landowners in the study area.

REFERENCES

- Awalt, F. L., 1996, Soil survey of Crawford County, Illinois: US Department of Agriculture, Natural Resources Conservation Service, 206 p.
- Buhle, M. B., and J. E. Brueckmann, 1964, Electrical earth resistivity surveying in Illinois: Illinois State Geological Survey Circular 376, 51 p.

Freeze, R. A., and J. A. Cherry, 1979, Groundwater: Prentice-Hall, Inc., Englewood Cliffs, N. J., 604 p. Golden Software Inc, 1995, Surfer for Windows Version 6.

- Hansel, A. K., and W. H. Johnson, 1996, Wedron and Mason Groups: Lithostratigraphic reclassification of deposits of the Wisconsin Episode, Lake Michigan Lobe area: Illinois State Geological Survey Bulletin 104, 116 p.
- Heigold, P. C., V. L. Poole, K. Cartwright, and R. H. Gilkeson, 1985, An electrical earth resistivity survey of the Macon-Taylorville ridged-drift aquifer: Illinois State Geological Survey Circular 533, 23 p.
- Horberg, L., 1950, Bedrock topography of Illinois: Illinois State Geological Survey Bulletin 73,111 p.
- Kupfersberger, H., and G. Bloschl, 1995, Estimating aquifer transmissivities on the value of auxiliary data, Journal of Hydrology: 165, 85-99.
- Larson, Timothy H., Donald A. Keefer, David R. Larson, and Steven L. Sargent, 2000, Merging electrical earth resistivity and lithologic data to improve estimates of groundwater resource availability in southern Piatt County, Illinois, pages 961-968 *in* Powers, Michael H., Abou-Bakr Ibrahim, and Lynn Cramer, (compilers and editors), Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems February 20-24, 2000, Arlington, VA, Environmental and Engineering Geophysical Society, Englewood, Colorado, 1254 p.

A 1 1 1 791

A set of the set of th

and the second sec

the second se

On at a next a

Maillet, R., 1947, The fundamental equations of electrical prospecting, Geophysics 12: 529-556.

- Piskin, K., and R. E. Bergstrom, 1975, Glacial drift in Illinois: thickness and character: Illinois State Geological Survey Circular 490, 35 p.
- Pryor W. A., 1956, Groundwater geology of White County, Illinois: Illinois State Geological Survey Report of Investigations 196, 50 p.
- Reynolds, J. M., 1997, An introduction to applied and environmental geophysics, John Wiley and Sons, Chichester, 796 p.
- Willman, H. B., and J. C. Frye, 1970, Pleistocene stratigraphy of Illinois: Illinois State Geological Survey Bulletin 94, 204 p.
- Zohdy, A. A. R., 1974, Electrical methods, In: Applications of Surface Geophysics to Groundwater Investigations, Book 2, Chapter D1. US Department of the Interior, 5-66.
- Zohdy, A. A. R., and R. J. Bisdorf, 1975, Computer programs for the forward calculation and automatic inversion of Wenner sounding curves: US Department of Commerce, PB-247 265, 47 p.

- All and a second s
- and the second second
 - 101 04 1
- and the second of the second o
 - i scalbol
- the second second
 - and the second second second second
- the state of the s
 - the second se

Resistivity data are tabulated for each station in the following manner:

Line 1: Station identifier with prefix "hard" followed by the two-digit station number.

Line 2: Header

Column 1: AB/2:	a-spacing (ft)
Column 2: OBS:	observed apparent resistivity (ohm-ft)
Column 3: REDUCED THICKNESS:	calculated layer thickness (ft)
Column 4: REDUCED DEPTH:	running sum of layer thicknesses (ft)
Column 5: REDUCED RESISTIVITY:	calculated layer resistivity (ohm-ft)

Lines 3-15: Data

The program requires that the deepest layer extend to infinity. This requirement is met by assigning the maximum value possible to the last layer thickness. For more information, see Zohdy and Bisdorf, 1975.

na	rd01			
	AB/2	OBS		
	5.000	142.314		
	10.000	142.000		
	20.000	173.542		
	30.000	202.256		
	40.000	231.975		
	60.000	272.565		
	80.000	278.973		
	100.000	268.920		
	120.000	260.878		
	140.000	251.579		
	160.000	243.285		
	180.000	236.373		
	200.000	236.248		
	RE	DUCED THICKNESS	REDUCED DEPTH	REDUCED RESISITIVITY
		3.76793	3.76793	150.31470
		7.05897	10.82690	121.39120
		13.76142	24.58832	228.52670
		32.75473	57.34305	472.10970
		107.93970	165.28280	171.72050
	9	9999810.00000	99999980.00000	301.94580

-

ha	rd	02

AB/2 5.000 10.000 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 180.000 REI	OBS 104.301 145.770 205.523 245.421 240.520 267.475 277.968 291.226 293.299 277.088 266.407 254.469 DUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY	
	4.57950 2.79703 13.16241 20.14260 93.42349 99999820.00000	4.57950 7.37652 20.53893 40.68153 134.10500 99999950.00000		83.25996 227.73620 314.93960 280.27450 333.84890 139.45360	
AB/2 5.000 10.000 20.000 30.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 180.000	OBS 99.903 163.363 246.929 291.037 316.924 327.794 300.839 273.947 252.584 244.542 223.179 210.927				
REI	DUCED THICKNESS 3.15603 1.65778 37.91399 82.38205 99999840.00000	REDUCED DEPTH 3.15603 4.81381 42.72780 125.10980 99999970.00000	REDUCED	RESISITIVITY 64.72976 147.08590 468.43050 187.44810 147.63620	

AB/2	OBS
5.000	198.549
10.000	149.540
20.000	180.579
30.000	206.968
40.000	225.818
60.000	254.469
80.000	275.706
100.000	287.142
120.000	297.069

140.000 160.000 180.000	294.242 294.556 290.660			
REDU	CED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	3.28565	3.28565		255.33270
	1.61974	4.90539		152.30600
	6.19948	11.10487		86.42448
	134.67480	145.77960		329.60860
9	9999840.00000	99999980.00000		219.38550

AB/2	OBS	
5.000	220.854	
10.000	129.434	
20.000	145.519	
30.000	182.652	
40.000	202.067	
60.000	238.258	
80.000	262.386	
100.000	272.376	
120.000	283.497	
140.000	281.487	
160.000	281.989	
180.000	274.261	
REDUC	CED THICKNESS	REDU
	3.22284	
	1.58298	
	5.21449	
	118.24180	
99	9999840.00000	999

hard0	6
-------	---

AB/2	OBS
5.000	78.540
10.000	90.823
20.000	145.644
30.000	193.679
40.000	221.545
60.000	237.127
80.000	248.563
100.000	256.668
120.000	261.255
140.000	267.412
160.000	276.963
180.000	284.440
RED	UCED THICKNESS
	2.45457
	7.41187
	10.54500
	116.41470
	99999820.00000

REDUCED DEPTH	REDUCED	RESISITIVITY
3.22284		335.72430
4.80582		158.03330
10.02031		53.04994
128.26210		336.28470
99999970.00000		176.28750

REDUCED DEPTH	REDUCED	RESISTATIVITY
2.45457	11000000	86.41461
9.86644		64.93507
20.41145		621.33110
136.82620		248.50170
99999960.00000		434.38700

hard07	
AB/2	OBS
5.000	89.221
10.000	106.626
20.000	161.541
30.000	202.633
40.000	227.954
60.000	253.150
80.000	251.076
100.000	237.819
120.000	217.901
140.000	208.916
160.000	198.549
180.000	183.218
REDUCI	ED THICKNESS
	4.65485

REDUCED	DEPTH	REDUCED	RESISITIVITY
	4.65485		90.61955
1	0.04086		82.60400
4.	3.33609		436.74800
13	3.22510		174.57920
9999993	0.00000		88.08936

234.45470 516.26150 234.86960 199.48660

hard08

AB/2	OBS			
5.000	264.208			
10.000	333.637			
20.000	423.487			
30.000	450.504			
40.000	441.582			
60.000	401.873			
80.000	363.671			
100.000	325.155			
120.000	306.494			
140.000	285.445			
160.000	262.386			
180.000	251.076			
REDU	CED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	4.79483	4.79483		234.45470
	41.17371	45.96854		516.26150
	84.35263	130.32120		234.86960
C	9999850 00000	99999980 00000		199 48660

5.38601 33.29523 89.88898

99999790.00000

AB/2	OBS
5.000	64.717
10.000	82.153
20.000	128.742
30.000	163.520
40.000	187.742
60.000	222.048
80.000	232.478
100.000	218.969
120.000	203.575
140.000	190.004
160.000	181.257
180.000	170.212

REDUCED DEPTH	REDUCED RESISITIVITY
2.64333	63.28650
4.97989	51.50614
10.13049	81.27669
56.59926	362.92690
131.09260	147.45520
99999930.00000	86.92308
	REDUCED DEPTH 2.64333 4.97989 10.13049 56.59926 131.09260 99999930.00000

AB/2	OBS			
5.000	91.735			
10.000	145.142			
20.000	221.168			
30.000	256.354			
40.000	275.958			
60.000	283.497			
80.000	269.926			
100.000	248.186			
120.000	229.211			
140.000	203.198			
160.000	184.977			
180.000	171.908			
REI	DUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	3.35036	3.3503	5	67.48989
	1.72969	5.0800	5	113.55950
	42.97799	48.0580	1	386.92950
	84.83880	132.89680)	163.58220
	99999800.00000	99999940.0000)	94.24081

hard11

AB/2	OBS			
5.000	71.314			
10.000	103.484			
20.000	151.927			
30.000	180.202			
40.000	197.543			
60.000	209.984			
80.000	205.083			
100.000	196.664			
120.000	186.234			
140.000	179.448			
160.000	172.913			
180.000	165.122			
REI	DUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	5.30752	5.3075	2	61.05959
	58.12372	63.4312	5	252.21000
	76.42007	139.8513	0	147.29220
	99999830.00000	99999970.0000	0	109.79040

AB/2	OBS
5.000	50.077
10.000	65.219

	20.000 30.000 40.000 80.000 100.000 120.000 140.000 160.000 180.000 REE	103.421 138.733 162.609 188.119 195.030 189.752 179.448 165.373 157.834 148.158 DUCED THICKNESS 2.87036 2.10499 4.91001 26.75912 87.98816 99999800.00000	REDUCED DEPTH 2.87036 4.97536 9.88537 36.64449 124.63270 99999930.00000	REDUCED RESISITIVITY 47.68829 37.60497 59.54344 426.28970 142.63420 73.59093	
a	rd 13	OBS			
	AB/2 5.000 10.000 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 180.000 REE	79.168 95.002 140.492 172.285 192.265 202.821 196.035 177.186 159.844 147.781 135.717 123.276 DUCED THICKNESS 9.12709 49.50890 72.51022	REDUCED DEPTH 9.12709 58.63599 131.14620	REDUCED RESISITIVITY 76.06504 297.79460 97.46462	
		99999780.00000	99999900.00000	57.92695	
	nd11				
	AB/2 5.000 10.000 20.000 30.000 40.000 60.000 100.000 120.000 140.000 180.000	OBS 67.858 71.000 97.641 129.308 153.058 182.464 195.533 198.549 196.035 188.244 181.961 169.985			
	REI	DUCED THICKNESS 3.54082 6.75612 10.33122	REDUCED DEPTH 3.54082 10.29694 20.62816	REDUCED RESISITIVITY 68.21127 57.52685 177.24610	

53.65296	74.28112	307.34640
64.12056	138.40170	152.64230
99999780.00000	99999920.00000	76.89369

ha	r	d	1	Δ
IICA	1	a	+	-1

AB/2	OBS
5.000	67.858
10.000	71.000
20.000	97.641
30.000	129.308
40.000	153.058
60.000	182.464
80.000	195.533
100.000	198.549
120.000	196.035
140.000	188.244
160.000	181.961
180.000	169.985
REDU	JCED THICKNESS
	3.54082
	6.75612
	10.33122
	53.65296
	64.12056
(99999780.00000

REDUCED DEPTH	REDUCED	RESISITIVITY
3.54082		68.21127
10.29694		57.52685
20.62816		177.24610
74.28112		307.34640
138.40170		152.64230
99999920,00000		76.89369

1.			-1	1	6
n	a	r	α		n
	· ·		~ ~		0

AB/2	OBS
5.000	76.341
10.000	114.103
20.000	183.595
30.000	230.342
40.000	264.396
60.000	301.970
80.000	311.143
100.000	289.027
120.000	251.830
140.000	231.347
160.000	213.126
180.000	196.789
REDU	JCED THICKNESS
	3.67588
	4.61304
	48.86865
	72.49925
	99999780.00000

REDUCED DEPTH	REDUCED	RESISITIVITY
3.67588		55.99842
8.28892		145.30910
57.15756		467.42340
129.65680		165.57450
99999900.00000		89.81998
	REDUCED DEPTH 3.67588 8.28892 57.15756 129.65680 99999900.00000	REDUCED DEPTH REDUCED 3.67588 8.28892 57.15756 129.65680 99999900.00000

AB/2		OBS
	5.000	316.044
	10.000	417.204
	20.000	508.938
	30.000	484.434
	40.000	472.747
	60.000	419.968

	80.000 100.000 120.000 140.000 160.000 180.000 RED	354.874 309.133 276.711 259.496 248.311 234.111 DUCED THICKNESS 2.67143 42.24446 87.41556	REDUCED DEPTH 2.67143 44.91590 132.33150	REDUCED	RESISITIVITY 238.58180 534.69930 220.40170
		99999840.00000	99999980.00000		180.77170
ıa	rd 18				
	AB/2	OBS			
	5.000	109.013			
	10.000	123.150			
	20.000	150.294			
	30.000	178.694			
	40.000	197.041			
	60.000	202.007			
	100.000	207.094			
	120.000	224 687			
	140 000	239.264			
	160.000	246.301			
	180.000	243.159			
	REI	UCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
		7.56158	7.56158		103.48520
		99999990.00000	10000000.00000		230.87990
	1 10				
па	ra 19 NP/2	ORS			
	AD/2	73 199			
	10.000	112,909			
	20.000	168.012			
	30.000	201.690			
	40.000	226.446			
	60.000	251.453			
	80.000	270.428			
	100.000	282.743			
	120.000	286.513			
	140.000	288.524			
	160.000	280.481			
	180.000	264.648	DEDUCED DEDUU	DEDUCED	οροτοτητιντην
	REI	DUCED THICKNESS	REDUCED DEFIN	REDUCED	52.84774
		2 49504	5 90760		87.22686
		51 05086	56.95846		320.29750
		53 41949	110.37790		419.33440
		35.23751	145.61550		230.16650
		99999750.00000	99999900.00000		108.10350

hard 20				
AB/2	OBS			
5.000	613.867			
10.000	772.832			
20.000	697.434			
30.000	620.150			
40.000	555.434			
60.000	453.143			
80.000	380.007			
100.000	351.230			
120.000	329.490			
140.000	307.876			
160.000	288.524			
180.000	266.910			
REI	DUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	3.13485	3.13485		466.33190
	11.31010	14.44494		1072.06100
	106.78180	121.22670		364.73350
	99999800.00000	99999920.00000		147.44220

AB/2	OBS			
5.000	89.850			
10.000	126.292			
20.000	186.988			
30.000	217.147			
40.000	234.740			
60.000	249.945			
80.000	255.851			
100.000	254.469			
120.000	244.290			
140.000	235.745			
160.000	224.184			
180.000	208.099			
RED	UCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	5.21928	5.21928		74.54649
	79.55136	84.77065		297.06220
	62.18330	146.95390		194.61620
	99999780.00000	99999930.00000		100.15030

AB/2	OBS
5.000	51.585
10.000	71.754
20.000	116.490
30.000	147.969
40.000	170.400
60.000	197.543
80.000	213.628
100.000	221.796
120.000	223.933
140.000	224.310
160.000	219.158
180.000	211.492

RI	EDUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	4.87535	4.87535		43.48301
	4.44515	9.32050		93.26787
	92.45288	101.77340		282.74800
	99999870.00000	99999980.00000		137.44940

hard 23				
AB/2	OBS			
5.000	92.363			
10.000	118.689			
20.000	181.584			
30.000	222.990			
40.000	243.285			
60.000	274.073			
. 80.000	281.989			
100.000	275.832			
120.000	263.894			
140.000	256.857			
160.000	245.296			
180.000	228.457			
REDU	CED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	5.07474	5.07474		82.13284
	4.31434	9.38908		137.01590
	69.33190	78.72099		358.27830
	64.63535	143.35630		198.86930
9	9999790.00000	99999940.00000		111.80110

|--|

AB/2	OBS			
5.000	127.549	\$		
10.000	133.204			
20.000	180.704			
30.000	214.508			
40.000	237.756			
60.000	262.386			
80.000	264.899			
100.000	251.956			
120.000	242.028			
140.000	228.708			
160.000	224.184			
180.000	211.492			
REDU	JCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	10.10633	10.10633		127.11560
	91.65569	101.76200		303.41200
C	99999860.00000	99999960.00000		121.33670

			- 1	0	-
h	a	r	CI.	- 2	5
	4	_	\sim	_	

AB/2	OBS
5.000	109.013
10.000	100.594
20.000	119.381
30.000	143.634
40.000	164.619
60.000	204.329

80.000	219.158 227.451			
120.000	227.703			
140.000	220.791			
160.000	216.142			
180.000	ZUS.5/5		DEDNICED	DECTOTATIVE
KED	A 36509	A 36509	REDUCED	117 24480
	6 25402	10 61910		76.95514
	12 25495	22.87406		157.48850
	91.64449	114.51860		307.50420
	99999820.00000	99999930.00000		97.07697
hard 26				
AB/2	OBS			
5.000	117.810			
10.000	130.690			
20.000	1/8.694			
30.000	216 644			
60,000	222.048			
80.000	222.173			
100.000	215.513			
120.000	210.361			
140.000	205.837			
160.000	200.157			
180.000	197.920			
RED	UCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	8.55667	8.55667		114.44590 260 54120
	45.00003	10000000 00000		184.61080
	999999940.00000	100000000.00000		101.01000
hard 27	ORS			
AB/2	59 156			
10 000	71.188			
20.000	110.835			
30.000	145.707			
40.000	174.673			
60.000	217.147	4		
80.000	243.285			
100.000	258.867			
120.000	262.386			
140.000	272.690			
160.000	272.439			
180.000 DTI	203.779	REDUCED DEPTH	REDUCED	RESISITIVITY
KEI	9 78829	9.78829	11200010	56.92612
	8.45844	18.24674		253.77710
	77.64113	95.88786		388.60780
	99999870.00000	99999970.00000		178.03520
hard 28				

AB/2	OBS
5.000	60.915
10.000	78.477

20.000	118.124			
30.000	149.665			
40.000	185.731			
60.000	243.913			
80.000	264.396			
100.000	259.496			
120.000	242.782			
140.000	227.828			
160.000	212.120			
180.000	208.099			
RED	UCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	4.85444	4.85444		53.05605
	5.21426	10.06870		83.50748
	7.46640	17.53510		251.25900
	61.52967	79.06477		374.67770
	99999880.00000	99999960.00000		139.07870

AB/2	OBS	
5.000	60.915	
10.000	78.477	
20.000	118.124	
30.000	149.665	
40.000	185.731	
60.000	243.913	
80.000	264.396	
100.000	259.496	
120.000	242.782	
140.000	227.828	
160.000	212.120	
180.000	208.099	
RED	UCED THICKNESS	REDUCED DE
	4.85444	4.8
	5.21426	10.0
	7.46640	17.5
	61.52967	79.(
	99999880.00000	99999960.0

SS REDUCED DEPTH REDUCED RESISITIVITY 44 4.85444 53.05605 26 10.06870 83.50748 40 17.53510 251.25900 67 79.06477 374.67770 00 99999960.00000 139.07870

AB/2	OBS
5.000	76.655
10.000	100.908
20.000	153.435
30.000	200.182
40.000	236.499
60.000	289.529
80.000	315.667
100.000	328.611
120.000	331.752
140.000	335.145
160.000	335.773
180.000	325.720

REDUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
4.93129	4.93129		67.75944
5.96540	10.89669		110.28100
87.48372	98.38041		451.78160
99999870.00000	99999970.00000		215.60620

nard 31				
AB/2	OBS			
5.000	145.456			
10.000	240.646			
20.000	363.168			
30.000	393.956			
40.000	385.034			
60.000	351.356			
80.000	339.795			
100.000	319.186			
120.000	317.427			
140.000	303.478			
160.000	280.481			
180.000	272.565			
REI	DUCED THICKNESS	REDUCED DEPTH	REDUCED	RESISITIVITY
	3.30093	3.30093		90.54473
	1.18720	4.48812		230.63250
	11.41874	15.90686		812.86530
	133.73870	149.64560		292.48950
	99999830.00000	99999980.00000		209.63950

Appendix II: Transverse resistance data set

- The following table was used to construct maps of estimated thickness (pseudothickness) of sand in the study area. The columns of data are:
- 1. Station: these are the station numbers used in the field. Station 17 was situated over a buried pipeline and not used. Irrig1, Irrig2, and house1 refer to records of water wells. The actual sand thickness from these wells is used in the pseudothickness columns.
- 2.and 3. Easting and Northing: These are locations in feet from the SW corner of SE quarter Section 29 T6N R10W Crawford County Illinois.
- 4. T-1: Transverse resistance of aquifer layer 1. Where the transverse resistance is the product of the layer thickness (ft) and layer resistivity (ohm-ft). Aquifer layer 1 was selected from the output of the inversion model and is the upper-most layer having a thickness greater than 5 feet and resistivity greater than 180 ohm-ft. Transverse resistance is reported in units of (ft*ft*ohm/100).
- 5. T layer2: Transverse resistance of aquifer layer2. Transverse resistance is as defined above. Aquifer layer two is the second layer (if present) having a thickness greater than 5 feet and resistivity greater than 180 ohm-ft. In cases where the second layer is also the base layer of the model, the thickness is taken to be 180 less the depth to top of that layer.
- 6. Sum T1 + T2: A simple summation of columns 4 and 5.
- 7. Pseudothickness using T_{sum}: This column is a scaling of the preceding column to approximate the thickness (in feet) of the sand reported in Irrig1, Irrig2, and House1. The scaling formula is 80*(T1+T2)/Max(T1+T2). The offset value of 80 is arbitrarily assigned to produce a reasonable fit.
- T "primary" layer: Transverse resistance of the "primary" aquifer layer. This column uses values from T-1 unless T-2 is significantly greater. Some subjectivity was used to choose these values.
- 9. Pseudothickness using T_{primary}: This column is similar to column 7, but is a scaling of Transverse resistance of the "primary" aquifer layer. The scaling formula is (70*T_{prim}/35) 13. This formula is somewhat arbitrary and is designed to make the gridded data match as closely as possible to Irrig1, Irrig2 and House1.

station	easting (ft)	northing (ft)	T1 (transverse resistance layer 1)	T layer 2	sum T1 + T2	pseudo- thickness Tsum	T "primary" layer	pseudo- thickness T _{primary}
 1	4818	12738	14.1	18.7	32.8	46.0	14.1	15.2
2	5148	12342	5.6	31.8	37.4	52.5	31.8	50.6
3	5214	10824	16.5	15.2	31.7	44.5	16.5	20
4	7854	9834	44.5		44.5	62.5	44.6	76.2
5	7260	10164	40.2		40.2	56.4	40.2	67.4
6	6006	10164	6.2	28.8	35	49.1	28.8	44.6
7	3828	10230	14.4	15.8	30.2	42.4	14.4	15.8
8	2442	10230	20.6	18.6	39.2	55.0	20.6	28.2
9	3168	12804	16.7		16.7	23.4	16.7	20.4
10	2640	11550	16.6		16.6	23.3	16.6	20.2
11	1320	12210	14.6		14.6	20.5	14.6	16.2
12	2640	13332	11.5		11.5	16.1	11.5	10
13	594	14388	14.9		14.9	20.9	14.9	16.8
14	2376	14388	16.6		16.6	23.3	16.6	20.2
15	726	10296	16.3	22	38.3	53.8	16.3	19.6
16	6072	3432	22.9		22.9	32.1	22.9	32.8
18	6072	2310	22.5	19.2	41.7	58.5	22.5	32
19	6006	462	16.3	22.2	38.5	54.0	16.3	19.6

20	5346	1716	11.8	39	50.8	71.3	39	65
21	5412	3168	23.5	12	35.5	49.8	23.5	34
22	5214	4554	26		26	36.5	26	39
23	6534	5148	24.7	12.9	37.6	52.8	24.7	36.4
24	3756	5082	27.9		27.9	39.2	27.9	42.8
25	2640	5082	28.3		28.3	39.7	28.3	43.6
26	3956	7326	12	23.3	35.3	49.5	12	11
27	4092	9042	30.3		30.3	42.5	30.3	47.6
28	5874	8910	23.3		23.3	32.7	23.3	33.6
29	6534	6930	28.5		28.5	40.0	28.5	44
30	8052	8118	39.3	17.7	57	80.0	39.3	65.6
31	3762	14190	8	39.1	47.1	66.1	39.1	65.2
irria1	5082	11220				50.0		50
irria?	6534	8910				50.0		50
house1	1980	10296				17.0		17
min	597	462			11.5	16.1	11.5	10
max	8052	14388			57	80.0	44.6	76.2

