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GARDEN OF THE GODS AREA
The Garden of the Gods Area, located in the part of southern Illinois never reached by continental

glaciers, is one of the state's most scenic and geologically complex areas. This geological science

field trip will acquaint you with the geology, 1 landscape, and mineral resources of parts of Gallatin,

Hardin, Pope, and Saline Counties, Illinois. Harrisburg, the largest city within the field trip area, is

approximately 332 miles south ofChicago, 1 87 miles southeast of Springfield, 1 29 miles southeast

of East St. Louis, and 81 miles northeast of Cairo.

GEOLOGIC FRAMEWORK
Precambrian Era

Through several billion years of geologic time, the area surrounding the Garden of the Gods Rec-

reation Area has undergone many changes (see the rock succession column, facing page). The

oldest rocks beneath the field trip area belong to the ancient Precambrian basement complex. We
know relatively little about these rocks from direct observations because they are not exposed at

the surface anywhere in Illinois. Only about 35 drill holes have reached deeply enough for geolo-

gists to collect samples from Precambrian rocks of Illinois. From these samples, however, we
know that these ancient rocks consist mostly of granitic and rhyolitic igneous, and possibly meta-

morphie, crystalline rocks formed about 1 .5 to 1 .0 billion years ago. From about 1 billion to about

0.6 billion years ago, these Precambrian rocks were exposed at the surface. During this long pe-

riod, the rocks were deeply weathered and eroded and formed a barren landscape that was prob-

ably quite similar to the topography of the present Missouri Ozarks. We have no rock record in

Illinois for the long interval of weathering and erosion that lasted from the formation of the Pre-

cambrian rocks until the first Cambrian age sediments accumulated, but that interval is almost as

long as the time from the beginning of the Cambrian Period to the present.

Because geologists cannot see the Precambrian basement rocks in Illinois except as cuttings and

cores from boreholes, various other techniques must be used, such as measurements of Earth's

gravitational and magnetic fields, and seismic exploration, to map out the regional characteristics

of the basement complex. The evidence collected with these techniques indicates that in southern-

most Illinois, near what is now the historic Kentucky-Illinois fluorspar mining district, rift valleys

similar to those in east Africa formed as movement of crustal plates (plate tectonics) began to rip

apart the Precambrian continent that became North America. These rift valleys in the midcontinent re-

gion are referred to as the Rough Creek Graben and the Reelfoot Rift (fig. 1).

Paleozoic Era

After the beginning of the Paleozoic Era, about 520 million years ago in the late Cambrian Period,

the rifting stopped, and the hilly Precambrian landscape began to sink slowly on a broad regional

scale, allowing the invasion of a shallow sea from the south and southwest. During the 280 million

years of the Paleozoic Era, the area that is now called the Illinois Basin continued to accumulate

sediments that were deposited in the shallow seas that repeatedly covered this subsiding basin.

The region continued to sink until at least 20,000 feet of sedimentary strata were deposited in the

deepest part of the basin, located in the Rough Creek Graben area of southeastern Illinois and

western Kentucky. At various times during this era, the seas withdrew and deposits were weath-

ered and eroded. As a result, there are gaps in the sedimentary record in Illinois.

i Words in italics are defined in the glossary at the back of the guidebook. Also please note that, although

all present localities have only recently appeared within the geologic time frame, we use the present

names of places and geologic features because they provide clear reference points for describing the

ancient landscape.

1



In the field trip area, bedrock strata range in age from more than 520 million years old (the Cam-

brian Period) to less than 320 million years old (the Pennsylvanian Period). Figure 2 shows the

succession of rock strata a drill bit would penetrate in this area if the rock record were complete

and all the formations were present. The oldest Paleozoic rocks exposed in the area are Devo-

nian in age. They formed from sediments that accumulated from about 385 million years ago up to

360 million years ago.

Within the field trip area, the depth to the Precambrian basement rocks is significantly offset by

the Shawneetown Fault. North of the Shawneetown Fault Zone, where the fault crosses between

Gallatin and Saline Counties, the elevation of the top of the Precambrian basement rocks is a little

more than 14,000 feet below sea level, and the Paleozoic sedimentary strata deposited on top of

the Precambrian total at least 15,000 feet in thickness. Nearby, on the south side of the

Shawneetown Fault Zone, the elevation of the top of the Precambrian basement rocks is more

than 18,000 feet below sea level, and the Paleozoic sedimentary strata deposited on top of the

Precambrian basement are at least 19,000 feet thick.

DEPOSITIONAL HISTORY
As noted previously, the Rough Creek Graben

and the Reelfoot Rift (figs. 1 and 3) were

formed by tectonic activity that began in the

latter part of the Precambrian Era and contin-

ued until the Late Cambrian. Toward the end

of the Cambrian, rifting ended, and the whole

region began to subside, allowing shallow seas

to cover the land.

Paleozoic Era

From the Late Cambrian to the end of the Pa-

leozoic Era, sediments continued to accumu-

late in the shallow seas that repeatedly cov-

ered Illinois and adjacent states. These inland

seas connected with the open ocean to the

south during much of the Paleozoic, and the

area that is now southern Illinois was similar

to an embayment. The southern part of Illinois

and adjacent parts of Indiana and Kentucky

sank more rapidly than the areas to the north,

allowing thicker sediment accumulations. Dur-

ing the Paleozoic and Mesozoic, the Earth's

thin crust was periodically flexed and warped

in places as stresses built up in response to

the tectonic forces associated with the colli-

sion of continental and oceanic plates and

mountain building. These movements caused

repeated invasions and withdrawals of the

seas across the region. The former sea floors

were thus periodically exposed to erosion,

which removed some sediments from the rock

record.

Figure 1 Location of some of the major structures in

the Illinois region. ( 1 ) La Salle Anticlinorium, (2) Illi-

nois Basin, (3) Ozark Dome, (4) Pascola Arch, (5)

Nashville Dome, (6) Cincinnati Arch, (7) Rough Creek

Graben Reelfoot Rift, and (8) Wisconsin Arch.
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Figure 2 Generalized stratigraphic column of the field trip area. Black dots indicate oil and gas pay zones (variable vertical

scale). Arrows indicate major units seen on the field trip (modified from Leighton et al. 1 99 1 ).

Many of the sedimentary units, called formations, have conformable contacts—that is, no signifi-

cant interruption in deposition occurred as one formation was succeeded by another (figs. 2 and

4). In some instances, even though the composition and appearance of the rocks change signifi-

cantly at the contact between two formations, the fossils in the rocks and the relationships be-

tween the rocks at the contact indicate that deposition was virtually continuous. In contrast, how-

ever, in some places, the top of the lower formation was at least partially eroded before deposition

of the next formation began. In these instances, fossils and/or other evidence within or at the

boundary between the two formations indicate a significant age difference between the lower unit

and the overlying unit. This type of contact is called an unconformity (fig. 4). If the beds above

and below an unconformity are parallel, the unconformity is called a disconformity. However, if

the lower beds were tilted and eroded prior to deposition of overlying beds, the contact is called an

angular unconformity.
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clined plane, and when the hanging wall (the block above the plane) has moved up relative to the footwall (the

block below the fracture), the fault is a reverse fault. When the hanging wall has moved down relative to the

footwall, the fault is a normal fault.



Figure 4 Schematic drawings of (A) a disconformity and (B) an angular unconformity (x represents the con-

formable rock sequence, and z is the plane of unconformity).

Unconformities occur throughout the Paleozoic rock record and are shown as wavy lines in the

generalized stratigraphic column in figure 2. Each unconformity represents an extended interval of

time for which there is no rock record.

Near the close of the Mississippian Period, gentle arching of the rocks in eastern Illinois initiated

the development of the La Salle Anticlinorium (figs. 1 and 5). An anticlinorium is a complex

structure having smaller structures such as domes, anticlines, and synclines superimposed on the

broad upwarp of the anticlinorium. Further gradual arching continued through the Pennsylvanian

Period. Because the youngest Pennsylvanian strata are absent from the area of the anticlinorium

(either because they were not deposited or because they were later eroded), we cannot determine

just when folding ceased—perhaps by the end of the Pennsylvanian or a little later during the Per-

mian Period, near the close of the Paleozoic Era.

Mesozoic Era

During the Mesozoic Era, the rise of the Pascola Arch (figs. 1 and 5) in southeastern Missouri and

western Tennessee produced a structural barrier that helped form the current shape of the Illinois

Basin by closing off the embayment and separating it from the open sea to the south. The Illinois

Basin is a broad, subsided region covering much of Illinois, southwestern Indiana, and western

Kentucky (fig. 1 ). Development of the Pascola Arch, in conjunction with the earlier sinking of the

deeper portion of the basin north of the Pascola Arch in southern Illinois, gave the basin its present

asymmetrical, spoon-shaped configuration (fig. 6). The geologic map (fig. 7) shows the distribution

of the rock systems of the various geologic time periods as they would appear if all the glacial,

windblown, and other surface materials were removed.

Younger rocks of the latest Pennsylvanian and perhaps the Permian (the youngest rock systems of

the Paleozoic) may have at one time covered the southern portion of Illinois. Mesozoic and Ceno-

zoic rocks (see the generalized geologic column) possibly could have been present here also. Indi-

rect evidence, based on the stage of development (rank) of coal deposits and the generation and

maturation of petroleum from source rocks (Damberger 1971 ), indicates that perhaps as much as

1.5 miles of rocks of the latest Pennsylvanian and younger once covered southern Illinois. During

the more than 240 million years since the end of the Paleozoic Era (and before the onset ofgla-

ciation 1 to 2 million years ago), however, several thousands of feet of strata may have been

eroded. Nearly all traces of any post-Pennsylvanian bedrock that may have been present in Illinois

were removed. During this extended period of erosion, deep valleys were carved into the gently

tilted bedrock formations (fig. 8). Later, the topographic relief'was reduced by the repeated ad-

vances and melting back of continental glaciers that scoured and scraped the bedrock surface.
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Figure 6 Stylized north-south cross section shows the structure of the Illinois Basin. To show detail, the

thickness of the sedimentary rocks has been greatly exaggerated and younger, unconsolidated surface de-

posits have been eliminated. The oldest rocks are Precambrian (Pre€) granites. They form a depression

filled with layers of sedimentary rocks of various ages: Cambrian (C), Ordovician (O), Silurian (S), Devonian

(D), Mississippian(M), Pennsylvanian(P), Cretaceous (K), and Tertiary (T). Scale is approximate.

This glacial erosion and deposition affected all the formations exposed at the bedrock surface in Il-

linois. The final melting of the glaciers left behind the non-lithified deposits in which our modern

soil has developed.

STRUCTURAL SETTING
The Garden of the Gods field trip area is located in the southeast corner of the Illinois Basin, in

southeast Saline, southwest Gallatin, northeast Pope, and northwest Hardin Counties. The Illinois

Basin is the major structural depression between the Ozark Dome and the Cincinnati Arch (fig. 1).

Shawneetown Fault Zone
The Rough Creek-Shawneetown Fault System is located in northeastern Pope, southeastern Sa-

line, and southern Gallatin Counties (see fig. 5). The name Shawneetown Fault Zone is applied to

the portion of the Rough Creek-Shawneetown Fault System that is in Illinois (fig. 9). The follow-

ing description of the Shawneetown Fault Zone is modified from that ofNelson (1995).

The Shawneetown Fault Zone enters Illinois just south of Old Shawneetown in Gallatin County

and trends westward for about 15 miles. In southeastern Saline County, the fault zone curves

sharply to the south-southwest and continues about 12 more miles to Section 25, Tl IS, R6E, in

Pope County, where it intersects the Lusk Creek Fault Zone (fig. 9). Along most of its length, the

Shawneetown Fault Zone is well expressed topographically by a range of hills of resistant lower
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Figure 7 Bedrock geology beneath surficial deposits in Illinois.



Figure 8 Major bedrock valleys of Illinois.
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Pennsylvanian Caseyville Formation south and southeast of the fault zone. These include several

ofthe highest points in southern Illinois: Williams Hill (elevation 1 ,064 feet), Horton Hill (elevation,

1,000 feet), Wamble Mountain (elevation, 940 feet), Cave Hill (elevation, 923 feet), and Bald Knob

(820 feet). The fault zone itself tends to form a strike valley and is concealed by alluvium or

glacio-lacustrine deposits in many places.

The fault zone ranges in width from a few yards to as much as 8,000 feet. The largest fault in the

zone is near the north edge of the east-west-trending part of the zone and exhibits as much as

3,500 feet of vertical separation. This large fault is referred to as the Front Fault, and seismic data

indicate that it continues the full length of the Rough Creek-Shawneetown Fault System in Ken-

tucky (fig. 6). Data from wells drilled in this area show this to be a high-angle reverse fault dipping

about 70°, to the south (see fig. 3).

Other faults in the Shawneetown Fault Zone strike subparallel to the Front Fault and have throws

measured in hundreds of feet. Some of these join the Front Fault at one or both ends and probably

connect with it at depth, but other faults appear to be isolated. In places, the fault zone assumes a

braided pattern with interconnected faults outlining a series of polygonal or lens-shaped slices.

Most of the smaller faults in the Shawneetown Fault Zone probably are normal faults.

Horseshoe Upheaval

Large displacements in the Shawneetown Fault Zone are the result of sharp tilting and upthrow of

slices adjacent to the Front Fault. The most extreme case is at the Horseshoe Upheaval in Section

36, T9S, R7E (Stop 5), just west of the Saline-Gallatin county line (fig. 9). At this point, a slice of

nearly vertical Mississippian Fort Payne Formation and Upper Devonian New Albany Group south

of the Front Fault is juxtaposed with middle Pennsylvanian strata north of the fault (fig. 10). An oil

test hole 0.75 mile west of the Horseshoe Upheaval penetrated the Front Fault and passed from

Lower Devonian chert in the upper block into younger Pennsylvanian strata in the lower block

(see figs. 2 and 3). The vertical separation is approximately 3,500 feet, which is the largest known

offset on any near-surface fault in Illinois. At numerous other places, tilted blocks of Mississippian

strata are upthrown between Pennsylvanian rocks along the fault zone.

Rocks north and northwest of the Shawneetown Fault Zone are mostly horizontal or dip gently to

the north or northwest. In the fault slices and immediately south or southeast of the fault zone, the

rocks generally dip steeply south or southeast and strike parallel with the faults. These dips rapidly

diminish away from the fault zone.

The presence of the upthrown slices and the steep tilting of strata along the fault zone imply that

two periods of movement took place after Pennsylvanian sedimentation. The first movement was

reverse with the south or southeast side upthrown; the second movement involved normal faulting

with the south or southeast side downdropped (figs. 3 and 10).

No oil production has been achieved in or south of the Shawneetown Fault Zone, although numer-

ous fields have been developed in and south of the Rough Creek Shawneetown Fault System in

adjacent parts of Kentucky. Small-scale mining and prospecting for fluorite and associated miner-

als have taken place along the southwest-trending portion of the Shawneetown Fault Zone.

Eagle Valley Syncline

The Eagle Valley Syncline is the narrow western extension of the Moorman Syncline in Illinois

(fig. 5). The Eagle Valley Syncline is located south of the Shawneetown Fault Zone in southeast-

ern Saline and southern Gallatin Counties (fig. 9). The following description of the Eagle Valley

Syncline is modified from Nelson (1995).

11
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Figure 10 Shawneetown Fault Zone and its effect on the bedrock strata in the Horseshoe Upheaval (modi-

fied from Nelson and Lumm 1 986).
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The Eagle Valley Syncline lies immediately south ofand trends approximately parallel with the

east-west part of the Shawneetown Fault Zone. As defined, the Eagle Valley Syncline is about 15

miles in length, and its width increases from about 6 miles near the west end to about 9 miles at

the Ohio River. It is abruptly closed off at the west end, where the Shawneetown Fault Zone turns

to the southwest. The flanks are marked by rugged hills of resistant lower Pennsylvanian sand-

stone, whereas the central area is a lowland underlain by easily eroded and younger Pennsylva-

nian strata of the Carbondale Formation (fig. 1 1 ).

Although displacements on individual faults are large, the net offset across the Shawneetown Fault

Zone is small. Pennsylvanian coal beds in the Eagle Valley Syncline south of the fault zone lie at

the same or slightly lower elevation as the same beds north of the fault zone. However, detailed

structural mapping, as measured on the Springfield (No. 5) Coal Member, reveals more than 2,000

feet of relief within the syncline. The axis is sinuous and contains several enclosed depressions.

The south limb dips rather uniformly at 5° to 10°; dips on the north limb are much more variable,

from less than 10° to 60° (locally steeper).

The north limb of the Eagle Valley Syncline was produced by displacement along the Rough

Creek-Shawneetown Fault System. The south flank of the syncline merges with the north flank of

Hicks Dome and the northeast flank of the Tolu Arch (fig. 9).

GLACIAL HISTORY OF ILLINOIS

Cenozoic Era

A brief general history of glaciation in North America and a description of the deposits commonly

left by glaciers are given in Quaternary Glaciations in Illinois at the back of the guidebook.

As already stated, the erosion that took place long before the glaciers advanced across the state

left a network of deep valleys carved into the bedrock surface (fig. 8). The present topography of

Illinois is significantly different from the topography of the preglacial bedrock surface. The topog-

raphy of the bedrock surface throughout much of Illinois is largely hidden from view by glacial de-

posits except along the major streams and in the driftless areas of northwestern, western, and

southern Illinois (fig. 12). In many areas, the glacial drift is thick enough to completely mask the

underlying bedrock surface. Studies of mine shafts, water-well logs, and other drill-hole informa-

tion, in addition to scattered bedrock exposures in some stream valleys and roadcuts, show that the

present land surface of the glaciated areas of Illinois does not reflect the underlying bedrock sur-

face. The topography of the preglacial bedrock surface has been significantly modified by glacial

erosion and is subdued by glacial deposits.

In the past 1 .6 million to 2 million years—during the Pleistocene Epoch of the Quaternary Pe-

riod—much of northern North America was repeatedly covered by huge glaciers (see Quater-

nary Glaciations in the back of the guidebook). These continent-size masses of ice formed in

eastern and central Canada as a result of climate cooling. Glacial advances into the central low-

land of the United States altered the landscape across much of the Midwest.

During an early part of the Pleistocene Epoch, glaciers advanced out of centers of ice accumula-

tion both east and west of the Hudson Bay area in Canada. These centers are referred to in this

guidebook as northeastern and northwestern source areas because Illinois lies to the south of and

between these centers of accumulation. Glaciers flowing out of these centers into Illinois carried

along rock debris incorporated into the ice as they advanced; this material was dropped out as the

ice melted. The number and timing of these early episodes of glaciation are uncertain at present

and are therefore unnamed, but, because they precede the first named episode of glaciation (the

13
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Hudson and Wisconsin! Episodes

Mason Group; andi Cahokia Fm

Cahokia and Henry Fms; sort'

sediment including waterlain

river sediment and windblown
and beach sand

Equality Fm; fine grained

sediment deposited in lakes

—-5 Thickness of Peoria and
Roxana SiS; silt deposited

as loess (5-<£ontour interval)

Wedron Group (§kilwa, Lemont, and
Wadsworth Fms) ariflrafalgar Fm;
diamicton deposited as till and
ice margin sediment

End moraine

Ground moraine

Illinois Episode

WinnebagoDFm;DdiamictonGdepositedDasDtill
andDicenmargin 71 sediment

Glasford- Fm; Jdiamicton deposited as till _ and
ice D margin D sediment

TeneriffeGSiltDandGPearlDFm.njncludingCHagerstow
Mbr;nsortednsedimesffi including nrivernandnlake
deposits and iwindi iblowm sand

Pre-lllinois' Episodes

Wolfr Creek Fm; predominantly diamicton
deposited as till and ice margin sediment

Paloezoic, Mesozoic, and! Cenozoic

Mostly Paleozoic shale, limestone, dolomite,

or sandstone; exposed or covered by loess

and/or residuum

Figure 12 Generalized map of glacial deposits in Illinois (modified from Willman and Frye 1970).
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Illinois Episode; Hansel and Johnson 1996), they are called simply pre-Illinois glacial episodes (see

number 1 on fig. 13). The pre-Illinois glacial episodes ended about 425,000 years ago.

A long interglacial episode, called the Yarmouth (see number 2 on fig. 13), followed the last of the

pre-Illinois glacial advances. The Yarmouth interglacial episode is estimated to have lasted ap-

proximately 1 25,000 years, and deep soil formation took place during that long interval (Yarmouth

Geosol). On the parts of the landscape that were generally poorly drained, fine silts and clays

slowly accumulated (accreted) in shallow, wet depressions and formed what are called accretion

gleys, which are characterized by dark gray to black, massive, and dense clay deposits.

The Illinois Episode of glaciation began approximately 300,000 years ago and lasted for about

175,000 years (see number 3 on fig. 13). During this interval, ice advanced three times out of the

northeastern center of accumulation. During the Illinois Episode, the continental glaciers in North

America reached their southernmost position, approximately 25 miles southwest of Harrisburg in

the northern part of Johnson County (fig. 12). Locally, the glacier stopped 5 miles north of Harris-

burg. During the first of these advances, ice of this episode reached westward across Illinois and

into Iowa.

Another long interglacial episode, called the Sangamon (number 4 on fig. 13), followed the Illinois

Episode and lasted about 50,000 years. Although shorter than the Yarmouth interglacial episode,

this interval's length was sufficient for another major soil, the Sangamon Geosol, to develop. The

Sangamon Geosol exhibits both well-drained and poorly drained soil profiles. Although accretion

gleys in the Sangamon are not as widespread as they are in the Yarmouth Geosol, they are fairly

common and are easily identified by the same characteristics as the Yarmouth accretion gleys.

About 75,000 years ago, the Wisconsin Episode of glaciation began. Ice from the early and middle

parts of this episode (number 5 on fig. 1 3) did not reach into Illinois. Although late Wisconsin Epi-

sode ice (number 6 on fig. 13) did advance across northeastern Illinois beginning about 25,000

years ago, it did not reach southern or western Illinois (fig. 12). The effects of the late Wisconsin

glaciation in the field trip area are represented by backwater glacial lake sediments of the Equality

Formation (see fig. 12) and the windblown silts (loess—pronouced "luss") that blanket the land-

scape and compose the parent materials for modern soils. The maximum thickness of the ice in

the late Wisconsin Episode glaciers was about 2,000 feet in the Lake Michigan Basin, but only

about 700 feet over most of the Illinois land surface (Clark et al. 1988). The last of these glaciers

melted from northeastern Illinois about 13,500 years B.P. (before the present).

Wisconsin Episode moraines were deposited in Illinois from approximately 25,000 to 1 3,500 years

ago. Although Illinois Episode glaciers probably built morainic ridges similar to those of the later

Wisconsin Episode glaciers, the Illinois Episode moraines apparently were not as numerous and

have been exposed to weathering and erosion for approximately 280,000 years longer than their

younger Wisconsin Episode counterparts. For these reasons, Illinois Episode glacial features gen-

erally are not as conspicuous as the younger Wisconsin Episode features.

In general, glacial deposits consist primarily of ( 1 ) till—pebbly clay, silt, and sand, deposited di-

rectly from melting glaciers; (2) outwash—mostly sand and gravel, deposited by the rapidly flow-

ing meltwater rivers; (3) lacustrine deposits—silt and clay that settled out in quiet-water lakes

and ponds; and (4) loess—windblown sand and silt.

Within the vicinity of the field trip area, north of Harrisburg, glacial drift generally ranges from a

few feet to somewhat more than 25 feet thick. Glacial deposits slightly more than 50 feet thick

can be found along the preglacial bedrock valley of the Saline River and its tributaries. However,
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Glacial deposition, erosion, and
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of end moraines, outwash plains, valley
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Cool; stable.
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Soil and minor soils); wind and running

water processes.
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Warm; stable.

Weathering, soil formation (Sangamon
Geosol); running water, lake, wind, and
slope processes.
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slope deposits.

Warm; stable.
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river, lake, wind, and
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Glacial deposition, erosion, and land-

forming processes, plus proglacial

and interglacial running water, lake,

wind, and slope processes; interglacial

weathering and soil formation.

Figure 13 Timetable illustrating the glacial and interglacial events, sediment record, and dominant climate

conditions of the Ice Age in Illinois (modified from Killey 1998).
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in several localities, bedrock is exposed, and the glacial deposits have been completely removed by

erosion.

The sediments that formed the flat topography immediately north of the Shawnee Hills, from Har-

risburg east to the Ohio River, are lacustrine deposits of the Equality Formation (fig. 12). These

flatlands of the Saline River Valley represent the bottom of an old glacial lake (Lake Saline) that

once covered this area. In this vicinity, the sediments that accumulated in the lake consist of more

than 100 feet of clay, silt, sand, and gravel. Some of these lake sediments probably date from the

Illinois glaciation about 200,000 years ago, but most of the sediments were deposited during the

melting of the late Wisconsin glaciers from about 20,000 to 10,000 years ago.

Flooding of the lowland areas in southern Illinois and adjacent parts of Indiana and Kentucky was

especially extensive during the melting of the large ice mass at the end of the Wisconsin glaciation.

Vast amounts of meltwater poured from the ice front and caused extensive flooding in the Missis-

sippi, Illinois, Wabash, and Ohio River valleys. In this area, a great lake was formed as these

floodwaters backed up the Saline River Valley and its tributaries. Low areas in the Eagle Valley

Syncline to the south were also flooded. At its greatest extent, this lake probably reached an el-

evation of about 400 feet above sea level.

The former lake bed in the Saline River valley still floods from time to time when the Ohio River

rises high enough, and the Pleistocene lake sediments are veneered with sediment of Recent Epoch.

The flood of 1937 is thought to have formed a lake approximately the size of the Wisconsin glacial

Lake Saline that existed 13,000 years ago.

The loess that mantles the bedrock and glacial drift throughout the field trip area was laid down by

the wind during all of the glacial episodes, from the earliest pre-Illinois glacial episode (approxi-

mately 1 .6 million years ago) to the last glacial episode, the Wisconsin Episode. This yellowish

brown silt occurs on the uplands and mantles the glacial drift throughout the field trip area. The

loess is generally between 4 and 8 feet thick, but erosion has completely removed it in scattered

areas in the Shawnee Hills area of the field trip. The thickness of the loess generally increases to

the west and east toward the Mississippi and Illinois Rivers. The loess, which covers most of Illi-

nois, is up to 15 feet thick along the Illinois River valley and is more than 50 feet thick along the

east edge of the Mississippi River valley.

GEOMORPHOLOGY
Physiography

Physiography is a general term used for describing landforms; a physiographic province is a region

in which the relief or landforms differ markedly from those in adjacent regions. The field trip area

is located in two distinctly different physiographic provinces. North of the escarpment formed by

the uplifted Pennsylvanian rocks of the Shawnee Hills is the Mt. Vernon Hill Country—a physio-

graphic division within the Till Plains Section of the Central Lowland Physiographic Province (fig. 14).

The Till Plains Section is divided into seven distinct divisions in Illinois. The present gross topo-

graphic features of the Till Plains Section are largely determined by the underlying preglacial to-

pography. The Central Lowland Province is bordered on the south and west by uplands contain-

ing extensive remnants of an older erosional surface. Prior to glaciation, the lowland surface was

incised by a drainage system consisting of many deep bedrock valleys. The area south of the

Pennsylvanian Escarpment is defined as the Shawnee Hills Section of the Interior Low Plateaus

Province (fig. 14).
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Mt. Vernon Hill Country comprises the southern portion of the area covered by the drift sheet

left by the Illinois Glacial Episode and the area covered by the Wisconsin Glacial Episode deposits

of the Equality Formation. The Mt. Vernon Hill Country is characterized by mature topography of

low relief with restricted upland prairies and broad alluviated valleys along the larger streams. The

covering of glacial sediments is thin, and glacial landforms are essentially absent. The present land

surface is primarily a bedrock surface of low relief only slightly modified and subdued by the

mantle of glacially deposited material. According to Leighton et al. (1948), an extensive lowland

called the "central Illinois peneplain" (a low, nearly featureless, gently undulating land surface)

was eroded prior to glaciation into the relatively weak rocks of Pennsylvanian age east and south

of the present-day Illinois River. Apparently, just before the advent of glaciation, an extensive sys-

tem of bedrock valleys was deeply entrenched below the central lowland surface level. As glacia-

tion began, streams probably changed from erosion to aggradation; that is, their channels began to

build up and fill in with sediment because the streams did not have sufficient volumes of water to

carry and move the increased volumes of sediment. To date, no evidence indicates that the early

fills in these preglacial valleys were ever completely flushed out of their channels by succeeding

deglaciation meltwater torrents.

Shawnee Hills Section includes a complex dissected upland underlain by Mississippian and

Pennsylvanian bedrock of varied lithology (see figs. 7, 12, and 14). It is located along the southern

rim of the Illinois Basin, with a cuesta (a ridge with a gentle slope on one side and a steep slope

on the other) of lower Pennsylvanian rocks generally forming its northern margin and its southern

part comprising a dissected plateau underlain largely by Mississippian rocks. In the Shawnee Hills

Section, erosional remnants of a preglacial land surface called the Ozark Plateaus are extensive

along the Pennsylvanian escarpment. Locally higher summits and some lower surfaces on Missis-

sippian rocks indicate a complex erosional history that continued during all of the glacial episodes.

NATURAL DIVISIONS AND GEOLOGY
Glacial history has played an important role in shaping Illinois topography by eroding the preglacial

landscape and depositing glacial sediments. Topography influences the diversity of plants and ani-

mals (biota) of Illinois by strongly influencing the diversity of habitats. Geological processes form,

shape, and create the topography on all of the Earth's surface. Specifically, geological processes

not only determine the composition of the parent material of soils, but also the formation of soils

through the weathering of parent materials. Thus, the geology of a region is the foundation of its

habitats.

Natural Divisions

The state has been divided into 14 different natural divisions. These divisions are distinguished by

differences in topography, glacial history, bedrock geology, soils, aquatic habitats, and distribution

of native plants and animals (flora and fauna). A strong relationship exists between the physio-

graphic divisions of Illinois and the natural divisions of Illinois because the geologic factors used to

determine the physiographic divisions were important elements used to define the boundaries of

the natural divisions. Of the 14 natural divisions in Illinois, the field trip area is located along the

boundary between the Southern Till Plain Division (northern part of the field trip area) and the

Shawnee Hills Division (southern part of the field trip area). The geographic area of the Southern

Till Plain Division is roughly equivalent to the Mt. Vernon Hill Country physiographic division, and

the Shawnee Hills Division is equivalent to the Shawnee Hills Section. The following descriptions

of the natural divisions are modified from Schwegman (1973).
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The Southern Till Plain Division encompasses most of the area of dissected Illinois Glacial

Episode till plain south of the Shelbyville Moraine (Wisconsin Glacial Episode terminal moraine)

and the Sangamon River and Macoupin Creek watersheds. Both forest and prairie were present

at the time of settlement. The soils are relatively poor because of their high clay content and the

occurrence of a claypan subsoil in many places. Post oak flatwood forest is characteristic of the

division. The two sections are distinguished because of topographic differences.

• Bedrock The bedrock of the Southern Till Plain Division consists of sandstone, limestone,

coal, and shale, which commonly crop out in the eastern and southeastern parts of the divi-

sion. Bedrock lies near the surface in the Mt. Vernon Hill Country Section.

• Glacial History The Illinoian stage of Pleistocene glaciation reached the southernmost

limit of continental glaciation in North America just beyond the limits of this division. The

Southern Till Plain Division is entirely covered by Illinoian till. Glacial landforms are common
only in the northwestern part of the division.

• Topography The glacial till of the Southern Till Plain Division becomes thinner from north

to south. The bedrock of the Mt. Vernon Hill Country Section is near the surface, accounting

for the hilly and rolling topography. The Effingham Plain Section is a nearly level to dissected

till plain. There are broad floodplains along the major streams, and there are ravines in the

bluffs along the stream valleys.

• Soils The soils on the uplands are light colored and strongly developed, with poor internal

drainage. They have developed from thin loess and till under both forest and prairie vegeta-

tion. Fragipan and claypan layers are characteristic of the upland soils. Some of the prairie

soils have a high sodium content and are known locally as "alkaline slicks."

The Shawnee Hills Division extends across the southern tip of Illinois from Fountain Bluff on

the Mississippi River to the Shawneetown Hills near the mouth of the Wabash River. This

unglaciated hill country is characterized by a high east-west escarpment of sandstone cliffs form-

ing the Greater Shawnee Hills and a series of lower hills underlain by limestone and sandstone

known as the Lesser Shawnee Hills. Originally this division was mostly forested, and considerable

forest remains to the present time. A number of distinctive plant species are restricted to this divi-

sion of Illinois.

• Bedrock The Greater Shawnee Hills form a band along the northern edge of the division

and consist of massive Pennsylvanian sandstone strata that dip northward toward the Illinois

Basin. The Greater Shawnee Hills are 10 miles wide on average and border the Lesser

Shawnee Hills to the south. The Lesser Shawnee Hills are underlain by Mississippian lime-

stone and sandstone, and sinkholes and caves are locally common features. Mineralized

faults containing fluorspar and zinc, silver, and other metals exist in the eastern part of the

Shawnee Hills Division. Iron deposits are found in Hardin County. There is a dome contain-

ing an igneous rock core in western Hardin County, and outcrops of igneous rock occur in the

Lesser Shawnee Hills Section.

• Topography The topography of the Shawnee Hills Division is very rugged, with many

bluffs and ravines. The north slopes of the Greater Shawnee Hills Section are relatively

gentle, but the south slopes consist of many escarpments, cliffs, and overhanging bluffs.

Streams have eroded canyons in the sandstone. The Lesser Shawnee Hills are about 200

feet lower, on average, than the Greater Shawnee Hills. The Lesser Shawnee Hills have lo-

cal areas of sinkhole topography.
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• Soils The soils are derived mainly from loess. Narrow bands of moderately developed deep

loess soils occur along the Mississippi River in Jackson County and along the Ohio River in

eastern Hardin County; however, most of the soils are derived from thinner loess and are

strongly developed. Claypan and fragipan layers are frequent.

NATURAL RESOURCES
Mineral Production

The total value of all minerals extracted, processed, and manufactured in Illinois during 1995 was

$2,202,300,000. Minerals extracted accounted for 87.6% of this total. Coal continued to be the

leading commodity, followed by industrial and construction materials, oil, metals, peat, and gem-

stones. Illinois ranked 5th among coal-producing states, 1 3th among the 3 1 oil-producing states,

and 16th among the 50 states in total production of nonfuel minerals. Illinois continues to lead all

other states in production of industrial sand and tripoli.

Fluorspar

Fluorspar is the state mineral of Illinois, and Illinois was long the principal fluorspar producer in the

country. The first recorded fluorspar mining in Illinois was in 1842 when a small operation was

started in Hardin County in southern Illinois. Production continued to be centered there. Produc-

tion rose from 104.7 thousand tons in 1940 to 198.7 thousand tons in 1943. In 1940, about 48% of

the nation's fluorspar demand was met by the shipments from Illinois. The state's share increased

to 51% in 1943, but declined to zero thereafter. In the early days, fluorspar output came from nu-

merous mines ranging from those producing only a few hundred tons per year to those producing

tens of thousands of tons annually. The extremely competitive conditions and high production costs

forced most of the producers out of business over time.

By 1995, Ozark-Mahoning Co., a subsidiary of the Pennsylvania-based Elf Atochem North

America Inc., was the nation's only fluorspar producer. In 1995, total fluorspar shipments from

this company were 48,000 tons, which accounted for 8.5% of the nation's fluorspar requirements.

On January 31,1 996, Elf Atochem North America closed its two mines and a flotation plant in

Hardin County, because of depletion of reserves at active mines and competition from China.

Ozark-Mahoning, which had been in operation since 1938, was the last active fluorspar mining

company in the country. With the closure of Ozark-Mahoning's operations, the United States

ended 158 years of fluorspar mining. Hastie Mining and Trucking Co., a local quarry company,

leased Ozark-Mahoning's mineral drying and bagging facilities to process fluorspar purchased

from the national defense stockpile. The company will probably service some of the former cus-

tomers of Ozark-Mahoning by making a calcined product.

Barite, copper, lead, silver, and zinc (sphalerite) concentrates were recovered as co-products of

fluorspar processing in Illinois. Fluosilicic acid, a by-product, was also recovered from fluorspar

processing. It was used primarily in the aluminum industry for making aluminum fluoride and in

water fluoridation, either directly or after processing to sodium silicofluoride.

Acid-grade fluorspar, containing greater than 97% calcium fluoride, is used primarily as a feed-

stock in the manufacture of hydrogen fluoride and to produce aluminum fluoride. Ceramic-grade

fluorspar (85% to 95% CaFj is used for the production of glass and enamel, to make welding rod

coatings, and as a flux (a substance used to remove impurities from steel) in the steel industry.

Metallurgical-grade fluorspar (65% to 85% CaFJ is used primarily as a fluxing agent in the steel

industry.
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The reported domestic consumption by the hydrogen fluoride industry increased by nearly 4% in

1996. The reported consumption by the non-hydrogen fluoride industries decreased by 19% from

its level in 1995 (USGS, Mineral Industry Surx'eys, Fluorspar 1997 Annual Review). In the ce-

ramic industry, fluorspar was used as a flux and as an opacifier in the production of flint glass,

white or opal glass, and enamels.

Groundwater
Groundwater is a resource frequently overlooked in assessments of an area's natural resource po-

tential. The availability of this resource is essential for orderly economic and community develop-

ment. More than 35% of the state's 1 1.5 million citizens and 97% of those who live in rural areas

depend on groundwater for their water supply. Groundwater is derived from underground forma-

tions called aquifers. The water-yielding capacity of an aquifer can only be evaluated by con-

structing wells into it. After construction, the wells are pumped to determine the quality and quan-

tity of groundwater available for use.
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GUIDE TO THE ROUTE
We will start the trip at the Shawnee National Forest Headquarters in Harrisburg, Illinois (SE, SW,

NW, Sec. 22, T9S, R6E, 3 rd P.M., Harrisburg 7.5-minute Quadrangle, Saline County). Mileage will

start at the exit of the parking lot.

You must travel in the caravan. Please drive with headlights on while in the caravan. Drive

safely but stay as close as you can to the car in front of you. Please obey all traffic signs. If the

road crossing is protected by an Illinois State Geological Survey (ISGS) vehicle with flashing lights

and flags, please obey the signals of the ISGS staff directing traffic. When we stop, park as close

as possible to the car in front of you and turn off your lights.

Respect private property. Some stops on the field trip are on private property. The owners

have graciously given us permission to visit on the day of the field trip only. Please conduct your-

selves as guests and obey all instructions from the trip leaders. So that we may be welcome to re-

turn on future field trips, follow these simple rules of courtesy:

• Do not litter the area.

• Do not climb on fences.

• Leave all gates as you found them.

• Treat public property as if you were the owner—which you are!

• Stay off of all mining equipment.

• Parents must closely supervise their children at all times.

When using this booklet for another field trip with your students, a youth group, or family, remem-

ber that you must get permission from property owners or their agents before entering pri-

vate property. No trespassing, please.

Five U.S. Geological Survey (USGS) 7.5-minute quadrangle maps (Equality, Harrisburg, Herod,

Karbers Ridge, and Rudement) provide coverage for this field trip area.

Miles Miles

to next from

point start

0.0 0.0 Set your odometers to 0.0 at the exit of the parking lot. Exit parking lot and

TURN RIGHT onto Illinois.Route 145/34.

0.4 0.4 Road begins slight ascent as you enter the community of Pankeyville.

This rise in elevation coincides with one of the several small bedrock hills that

occur south of Harrisburg. These bedrock hills are part of the Carbondale

Formation of the Pennsylvanian age sediments. A number of abandoned sur-

face coal mines are located along the southern flanks of most of these bed-
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rock highs. From 1947 to 1949, the Bankston Creek Colliery Company oper-

ated a strip mine immediately south of Pankeyville. The company was mining

the Springfield (No. 5) Coal, which is locally known as the Harrisburg coal

seam. In addition to the surface mines, the Springfield/Harrisburg seam has

been extensively underground-mined in a large area that completely surrounds

Harrisburg.

0.8 1 .2 Road begins descent off of the bedrock high on south edge of the community

of Pankeyville. The view of the hills to the southeast and straight ahead is the

Pennsylvanian Escarpment, which forms the northern limit of the Shawnee

Hills.

0.7 1.9 Note the flat topography in this area.

The flatlands of the Saline River valley represent the bottom of an old glacial

slack-water lake (Lake Saline) that once covered this area during the Wis-

consin Glacial Episode. In this vicinity, the sediments that accumulated in the

lake consist of clay, silt, sand, and some gravel. These deposits are part of the

Carmi Member of the Equality Formation.

2.5 4.4 Cross the Saline River. Notice the straight channelized section of the Saline

River to your left.

0.2 4.6 Cross the old abandoned course of the Saline River. Notice the meanders to

your left.

0.2 4.8 Entering the community of Mitchellsville.

0.7 5.5 Prepare to turn left and follow Illinois Route 34. Pass the sign indicating Gar-

den of the Gods 16 miles to the left and Lake Glendale 20 miles straight

ahead.

0.

1

5.6 T-intersection from the left (Illinois Route 34/285N and Illinois Route 145/

950E). TURN LEFT. We are following Shawnee Hills and the Ohio motor

route along this part of the field trip route.

0.8 6.4 Notice the nice view of the Shawnee Hills directly ahead of us.

0.1 6.5 Cross Blackman Creek

1 .2 7.7 Cross Spring Valley Creek and enter the community of Rudement.

0.7 8.4 Cross unnamed creek. T-intersection from the left, just past the bridge

(DeNeal Road/1210E and Illinois Route 34/250N). CONTINUE AHEAD.
The road to your left leads to Old Stoneface. Notice that the road begins to

rise in elevation. You are leaving the flat topography of the Equality Formation

and entering into the northern boundary of the Pennsylvanian Escarpment.

1 .8 10.2 Road follows valley cut by Gibbons Creek.
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1.0 11.2 Enter Pope County.

1 .4 1 2.6 Enter the community of Herod.

0.1 12.7 Outcrop of cross-bedded sandstone, Pennsylvanian, Battery Rock Member of

the Caseyville Formation on the right with a small cave "rock shelter" at the

base of the sandstone bluff.

0.2 1 2.9 T-intersection from the right. CONTINUE AHEAD. The road to the right

leads to Williams Hill with an elevation of 1,064 feet above sea level.

0.

1

1 3.0 Cross Gibbons Creek and a T-intersection from the left, just past the bridge.

CONTINUE AHEAD. NOTE: The River to River Trail crosses the road at

this location.

1.6 14.6 Enter Hardin County.

0.1 14.7 Cross Rose Creek and prepare to turn left onto Karbers Ridge Road.

0.2 14.9 T-intersection from the left (Illinois Route 34/025E and Karbers Ridge Road/

1065N). TURN LEFT onto Karbers Ridge Road. CAUTION: Large coal-

hauling trucks use this road.

0.9 15.8 Great view of the Shawnee Hills to your left. Notice the large sandstone out-

crops, along the top of the hills, which form the bluffs at the Garden of the

Gods Recreation Area.

1.8 17.6 Prepare to turn left.

1.9 17.7 Crossroad intersection (Garden of the Gods Road/250E and Karbers Ridge

Road/1 180N). TURN LEFT.

0.6 18.3 Cross Rose Creek.

0.5 18.8 Outcrop on the right side of the road. Pennsylvanian age Lower Caseyville

Formation, Lusk Creek Member shales and siltstones that grade upward into

the Battery Rock Sandstone can be seen.

0.1 18.9 Outcrop of Battery Rock Sandstone on the right side of the road. Prepare to

turn left.

0.

1

19.0 T-intersection from the left (Garden of the Gods Road). TURN LEFT. En-

trance to Garden of the Gods Recreation Area.

0.8 19.8 Battery Rock Sandstone outcrop on the right side.

0.05 19.85 Small pull-over parking lot on the left. A rock shelter cave is in the Pounds

Sandstone bluff on the right.
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0.0 20.3

0.2 20.5

0.3 20.8

1.0 21.8

0.05 19.9 Backpackers' parking lot on the left. CONTINUE AHEAD. Pass the sign in-

dicating observation trail; picnic and camping straight ahead.

0.2 20.1 River to River Trail crosses the road.

0.2 20.3 Y-intersection (Picnic Road/050N and Garden of the Gods Road/1750E).

BEAR LEFT. Sign indicating observation trail is to the left, and picnic ground

and campground are to the right. Enter the lower portion of the parking lot

and park your vehicles.

STOP 1: Garden of the Gods Recreation Area, Shawnee National Forest (SW, NW,
SE, Sec. 36, T10S, R7E, 3rd P.M., Herod 7.5-minute Quadrangle, Saline County). On the day of

the field trip, assemble near the trail head sign, which is near the middle of the upper parking lot.

Leave Stop 1 and retrace your route back to the Y-intersection.

YIELD: Y-intersection (Picnic Road/050N and Garden of the Gods Road/

1 750E). TURN RIGHT onto the Garden of the Gods Road.

Pass backpackers' parking area on the right. CONTINUE AHEAD.

STOP at T-intersection (Garden of the Gods Road and County Highways 17

and 10). RESET ODOMETER.

0.0 0.0 TURN RIGHT. Heading toward Karbers Ridge Road. CAUTION: Fast-

moving traffic from the left. Road is used by large coal haulage trucks.

NOTE: County Hwy. 17 is in Gallatin County to the left, and County Hwy. 10

is in Hardin County to the right.

1.2 1.2 Prepare to stop.

0.1 1.3 STOP. Crossroad intersection (Karbers Ridge Road/1 180N and Garden of the

Gods Road/250E). TURN LEFT.

0.5 1 .8 T-intersection from the right. CONTINUE AHEAD. The road to the right

leads to Hicks Dome.

1 .0 2.8 T-intersection from the right (400E and Karbers Ridge Road/1 1 75N). CON-
TINUE AHEAD. The road to the right leads to Iron Furnace (seven miles).

0.2 3.0 T-intersection from the left (425E). CONTINUE AHEAD. The road to the

left leads to High Knob, 929 feet above sea level (two miles).

0.5 3.5 T-intersection from the right (475E). CONTINUE AHEAD.

0.3 3.8 Karbers Ridge School on the left. CONTINUE AHEAD.
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0.45 5.4

0.2 5.6

0.2 5.8

0.5 4.3 Prepare to make a right turn.

0.

1

4.4 T-intersection from the right (Cadiz Road/550E and Karbers Ridge Road/

1150N). TURN RIGHT.

0.4 4.8 Cross Big Creek.

0.15 4.95 Unimproved forest road on the right (Forest Road 1793). Pull over to the far

right side of the road and park.

STOP 2: Lee Mine, an abandoned fluorspar mine, Shawnee National Forest (NW. NW. NW,
Sec. 14, Tl IS, R8E, 3rd P.M., Karbers Ridge 7.5-minute Quadrangle, Hardin County). On the day

of the field trip, we will hike along the forest road, approximately 3.000 feet, to the Lee Mine.

0.0 4.95 Leave STOP 2. CONTINUE AHEAD.

Pass Waters Cemetery on the right.

Pass Philadelphia Church of Christ on the right.

T-intersection from the left (Sparks Hill Road/690E and Cadiz Road/1 125N).

TURN LEFT. After making the turn, Matthews Cemetery is on the left.

CAUTION: This is a narrow gravel road.

0.5 6.3 CAUTION: Ford crossing of Big Creek.

0.3 6.6 Enter the abandoned community of Sparks Hill.

0.3 6.9 T-intersection from the right. CONTINUE AHEAD. Road leads to

McPherson-Love Cemetery.

0.1 7.0 STOP (one-way). T-intersection (Sparks Hill Road and Karbers Ridge Road).

TURN RIGHT. CAUTION: Blind spot in the road to the left.

0.1 7.1 To the left is a water tower operated by the Hardin County Water Company.

0.7 7.8 Prepare to turn left. Leave Hardin County and enter Gallatin County. NOTE:
Karbers Ridge Road is called Pounds Hollow Road in Gallatin County.

0.

1

7.9 T-intersection from the left (Forest Road 121). TURN LEFT. Entrance to

Rim Rock Recreation Area and the Pounds Escarpment. Hill Cemetery is

opposite the entrance.

0.

1

8.0 Enter the parking loop of Rim Rock Recreation Area and park your vehicles.

This is Stop 3 and lunch. We will eat lunch in the Indian Wall picnic ground.
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STOP 3: LUNCH Rim Rock Recreation Area and the Pounds Escarpment, Shawnee

National Forest (NE, SW, SW, Sec. 36, T10S, R8E, 3rd P.M., Karbers Ridge 7.5-minute Quad-

rangle, Gallatin County)

0.0 8.0 Leave Stop 3 and retrace your route back to Pounds Hollow/Karbers Ridge

Road.

0.3 8.3 STOP. T-intersection (Pounds Hollow Road). TURN RIGHT. NOTE: Pounds

Hollow is two miles to your left.

0.6 8.9 Pass Hardin County Water Company tower on the right.

0.8 9.7 Pass Russell Cemetery on the right.

0.9 10.6 T-intersection from the left (Cadiz Road/550 E and Karbers Ridge Road/

1150N). CONTINUE AHEAD.

0.6 11.2 Pass Karbers Ridge School on the right.

0.2 1 1 .4 T-intersection from the left (475E). CONTINUE AHEAD. NOTE: This road

will take you to Elizabethtown, where the Shawnee National Forest

Elizabethtown Ranger Station is located.

0.5 1 1 .9 T-intersection from the right (425E). CONTINUE AHEAD. Road leads to

High Knob.

0.3 12.2 T-intersection from the left (400E). CONTINUE AHEAD. Road leads to the

Iron Furnace (seven miles).

0.5 12.7 CAUTION: large trucks possibly entering the road from the right.

0.5 13.2 T-intersection from the left (300E). CONTINUE AHEAD.

0.4 13.6 Prepare to turn right.

0.

1

13.7 Crossroad intersection (Garden of the Gods Road/250E and Karbers Ridge

Road/1 180N). TURN RIGHT.

1 .4 15. 1 Entrance to the Garden of the Gods Recreation Area. CONTINUE AHEAD.

0.

1

15.2 CAUTION: Just past the Garden of the Gods entrance the road winds like a

snake slithering through the Shawnee Hills.

0.7 15.9 CAUTION: Steep grade ahead.

0.9 16.8 River to River Trail crosses the road.
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0.4 17.2 Entering very steep grade in the road. You are traversing down the southern

flank of the Eagle Valley Syncline. NOTE: The road is now called Forest

Road, also locally know as the County Line Road. Saline County is to the left,

and Gallatin County is to the right.

0.7 17.9 Cross Little Eagle Creek at the base of the bluffs.

0.4 18.3 STOP (four-way). Crossroad intersection (Eagle Creek Road/275N and For-

est Road/1800E). CONTINUE AHEAD. The right half of this intersection is

marked as Barnett Cemetery Road/4750N and Forest Road/ IE. The numer-

ous names for this intersection are because Gallatin County is to the right and

Saline County is to the left.

STOP 4A (Optional): Jader Coal Company is to the left. Depending upon the current mining

conditions and the location of the active surface mine pits, we will make a decision on the day of

the field trip to visit either Jader Coal Company or Black Beauty Coal Company.

0.

1

1 8.4 Just north of the intersection is an outcrop of Pennsylvanian age sandstones

of the Carbondale Formation on the right side of the road. These rocks dip

1 1 E to the north and form the southern edge of the Eagle Valley Syncline.

0.4 18.8 Pass a reclamation project of the Department of Natural Resources on the

left side of the road. This area has been extensively surface- and under-

ground-mined for coal.

0.6 19.4 Cross Eagle Creek. Notice the outcrop of the Herrin (No.6) Coal Member of

the Carbondale Formation on the right side of the road just past the bridge.

0.4 19.8 Outcrop of Pennsylvanian age Gimlett Sandstone Member of the Shelburn

Formation on the left side of the road.

0.8 20.6 T-intersection from the right (Kedron Road/700N). CONTINUE AHEAD.

STOP 4B (Optional): Black Beauty Coal Company Wildcat Mine operations, is to the

right. Depending upon the current mining conditions and the location of the active surface mine

pits, we will make a decision on the day of the field trip to visit either Jader Coal Company or

Black Beauty Coal Company.

1.0 21.6 Cross Sandy Branch Creek.

0.3 21.9 Cross Horseshoe Creek. T-intersection to the left, immediately past the bridge

(Eagle Creek Road/630N and Forest Road/1 785E). CONTINUE AHEAD.
The road to the left leads to the Saline County State Fish and Wildlife Area

and Glen O. Jones Lake.
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0.1 22.0 Outcrop of Pennsylvanian age sandstones of the Tradewater Formation on

the left side of the road. These rocks dip to the south and mark the northern

edge of the Eagle Valley Syncline.

0.4 22.4 T-intersection from the left (Horseshoe Road/670N and Forest Road/1790E).

TURN LEFT

0.

1

22.5 Trout Pond parking lot to the right. CONTINUE AHEAD.

0.

1

22.6 To the left is the ghost town of Horseshoe. The following is from a historic

marker at this site:

Now a ghost town, this early Saline County community was located on

the Old Golconda Road, which connected Pope County communities to

the Salines in the early 1 800s. A U.S. Post Office operated here between

1906 and 1914.

Saline County, established in 1 847 from Gallatin County, derived its name

from the salt springs that abound in the area. The "Salines" is in refer-

ence to the Saline River. Several natural salt springs occur near the river

in this area. One of the most famous is Negro Spring, located southeast

of Equality where Illinois Route 1 crosses the Saline River. The spring is

on the west side of Illinois Route 1. Follow the gravel road immediately

south of the bridge over the Saline River

The United States Salines

The following is from the Illinois State Historical Society:

Two salt springs in Gallatin County produced brine for one of the earli-

est salt works west of the Alleghenies. One spring is just southeast of

Equality and the other is a short distance west of this site. The Indians

made salt here long before the first settlers appeared. In 1 803 the Indi-

ans ceded their "great salt spring" to the United States by treaty. Con-

gress refused to sell the salt lands in the public domain but it did autho-

rize the Secretary of the Treasury to lease the lands to individuals at a

royalty. The leases required the holder to produce a certain quantity of

salt each year or pay a penalty.

Although the Northwest Ordinance prohibited slavery in this area, spe-

cial territorial laws and constitutional provisions permitted exceptions at

these salines. The lessees brought in Negroes as slaves or indentured

servants and used them extensively in manufacturing salt. The census

of 1 820 for Gallatin County listed 239 slaves and servants.

In 1 8 1 8, as part of the process of making a new state, Congress gave the

salines to Illinois but forbade the sale of the land. The state continued

to lease the springs and used the revenue to finance part of its operat-

ing expenses. Eventually Congress allowed the outright sale of the land.

The commercial production of salt continued here until about 1837 when

the low price for salt made the expense of extracting it from the brine

prohibitive.
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0.

1

22.7 Pull over to the right side of the road and park your vehicles.

STOP 5: Horseshoe Upheaval (SW, NW, NE, Sec. 36, T9S, R7E, 3rd P.M., Rudement 7.5-

minute Quadrangle, Saline County).

On the day of the field trip we will hike along the gravel access road, approximately 500 feet, to

the north side of the Horseshoe Upheaval, which contains the best exposure. On future visits with

smaller groups, you can turn right into the small parking lot.

0.0 22.7 Leave Stop 5. CONTINUE AHEAD.

NOTE: The road that we are traveling on parallels the Shawneetown Fault

Zone, which forms the northern boundary of the Shawnee Hills immediately

to the left (south). The tree line to the right marks the position of the Saline

River, and the small hills in the distance on the right (north) are bedrock highs.

These bedrock highs are the result of a slight upward structural flexure of the

rocks between the Shawneetown Fault Zone and the Cottage Grove Fault

Zone.

1 .2 23.9 Outcrop of Mississippian age Cypress Sandstone on the right and left sides of

the road.

0.3 24.2 Cross unnamed creek. Immediately to your right, through the dense vegeta-

tion, is the Saline River.

0.7 24.9 Road curves 90E to the left.

0.

1

25.0 Road curves 90E to the right.

0.

1

25.1 T-intersection from the left. CONTINUE AHEAD. The road to the left leads

to Sulphur Springs Church, which is now abandoned. A cave in the Mississip-

pian age Kinkaid Limestone is located in the bluff about one-half mile behind

the church.

0.

1

25.2 T-intersection from the right (Rocky Branch Road/1 540E and Horseshoe

Road/635N. CONTINUE AHEAD. NOTE: Rocky Branch Road crosses the

Saline River and leads to Illinois Route 1 3.

0.5 25.7 Y-intersection (Horseshoe Road/600N and Stoneface Road/1 5 15E). BEAR
LEFT onto Stoneface Road/15 15E. Stoneface is two miles. The road to the

right leads to Illinois 34/145 ahead six miles.

0.3 26.0 Angled intersection from the left (Eagle Mountain Road/15 10E and Stoneface

Road/065N). CONTINUE AHEAD.

1.3 27.3 Road curves to the right.
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0.

1

27.4 T-intersection from the left (Stoneface Lane/1450E and Stoneface Road/

450N). TURN LEFT.

0.3 27.7 Enter the loop road and parking lot. Pull over to the right side of the road and

park your vehicles.

STOP 6: Old Stone Face (NW, SW, SE, Sec. 9, T10S, R7E, 3rd P.M., Rudement 7.5-minute

Quadrangle, Saline County).

0.0 27.7 Leave Stop 6 and retrace your route back to the intersection of Stoneface

Lane/1450E and Stoneface Road/450N.

0.5 28.2 STOP. T-intersection (Stoneface Lane/1450E and Stoneface Road/450N).

RESET ODOMETER.

0.0 0.0 The following road log will take you from Stoneface back to Illinois Route 34.

TURN LEFT at the intersection, now heading west on Stoneface Road.

0.4 0.4 T-intersection from the left (Shawnee Road/1400E and Stoneface Road/

450N). CONTINUE AHEAD.

0.5 0.9 T-intersection from the left (Stoneface Road/450N and De Neal Road/

1350E). TURN LEFT onto De Neal Road. Big Saline United Baptist Church,

organized in 1 854, is located on the southeast corner of the T-intersection.

0.1 1.0 Coffee Cemetery on the left.

0.3 1.3 Note the view of the large sandstone bluffs to your left with an apparent dip

to the south.

0.1 1.4 T-intersection from the left (Agin Grove Lane and De Neal Road/1350E).

CONTINUE AHEAD.

0.2 1.6 Angled intersection from the left (De Neal Road/1350E and Somerset Road/

375N). CONTINUE AHEAD. Road curves to the right just past the intersec-

tion.

The following is from a historical sign at this intersection:

Somerset was probably the first community established in Saline

County. Settlers first appeared here about 1814 though the post office

was not established until 1852. A stock powered grist mill operated by

the Aydelott family during this era was located about a quarter mile to

the northeast. The only silver mine ever in the county was located

about half a mile to the east and operated prior to 1 870.

0.3 1.9 Road curves 90° to the left.
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0.1 2.0 Road curves 90° to the right.

0.2 2.2 Cross unnamed creek.

0.6 2.8 Crossroad intersection (one-way stop) from the right (De Neal Road/350N

and Stoneface Road/1 250E). TURN LEFT.

0.7 3.5 Road curves 90° to the right.

0.2 3.7 Cross De Neal Branch, CAUTION: narrow bridge.

0.5 4.2 STOP: T-intersection (Illinois Route 34/250 N and De Neal Road/1 2 10E).

TURN RIGHT onto Illinois Route 34 to return to Harrisburg. This will take

you to the intersection of Illinois Routes 34 and 145.
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STOP DESCRIPTIONS

STOP 1: Garden of the Gods Recreation Area, Shawnee National Forest (SW, NW, SE,

Sec. 36, T10S, R7E, 3rd P.M., Herod 7.5-minute Quadrangle, Saline County). (See cover photo.)

On the day of the field trip, assemble near south (left) entrance to the Observation Trail located

near the middle of the upper parking lot.

We will examine the Pennsylvanian age Pounds Sandstone Member of the Caseyville Formation

and discuss the structural history of the region and development of the Eagle Valley Syncline.

The Garden of the Gods Recreation Area is located in the Shawnee National Forest in southern Il-

linois. This area is bounded on three sides by the Garden of the Gods Wilderness Area, which was

established by an act of Congress in 1990. No motorized vehicles or mechanized equipment is

permitted in the 3,300-acre Garden of the Gods Wilderness Area, a relatively undisturbed wilder-

ness area. Visitors are encouraged to "leave no trace" of their visit.

The Garden of the Gods Observation Trail is a one-fourth mile long interpretive trail. It is made of

natural flagstone and leads to areas near the bluffs where there are outstanding views of the

Shawnee Hills and the Garden of the Gods Wilderness Area. Starting at the south (left) entrance

to the Observation Trail you will pass by many interesting rock formations, given names such as

Table Rock, Camel Rock, Devil's Smokestack, and Honeycomb Rock. The Observation Trail has

some short, steep grades and a few steps, but as a whole, is not tiring. Caution should be used be-

cause there are high cliffs in the area.

GEOLOGY TIP: Glaciation stopped about 15 miles north of the Shawnee Hills. As a result, you

can notice a distinct change in topography between the area near Harrisburg to the north and this

area. The landscapes in the southern tip of the state are very hilly; hence, their name.

From the Garden of the Gods Recreation Area you can access the River to River and the Garden

of the Gods Wilderness trail systems. Users are encouraged to obtain more detailed maps before

entering the back country. Overnight parking is available at the backpackers' parking lot.

Geological History

The Shawnee Hills took millions of years to form. The rock formations and cliffs at Garden of the

Gods are made of Pennsylvanian age Pounds Sandstone and are about 320 million years old. Long

ago, most of Illinois, western Indiana, and western Kentucky were covered by a giant inland sea.

For millions of years, great rivers carried sand and mud to the sea where it settled along the shore-

line. Over time, the weight of the accumulating sediments, and chemical reactions between the

sediments and fluids in them, turned them into layers of rock, thousands of feet thick

At Garden of the Gods, the sediment layers now exposed were originally buried about one mile

deep (fig. 15). Beneath the Garden of the Gods there is still some 20,000 feet of sediments piled

on top of the crystalline basement. Eventually an uplift occurred, raising the land well above sea

level. The uplift also fractured the bedrock, exposing it to nature's erosive forces. Since that time,

windblown sand, rain, and freezing and thawing actions have worn down the layers of sediment,

creating the beautiful rock formations at Garden of the Gods. To find out more, read the signs

along the observation trail.

46



Garden of the Gods, located on the south

limb of the Eagle Valley Syncline, is one of

the most scenic areas of Illinois. The rock

layers exposed at the Garden of the Gods

are part of the Pounds Sandstone Member
of the Caseyville Formation. Long-contin-

ued erosion of the uplifted southern limb of

the syncline has resulted in deeply disected

northward facing dip slopes (dip is about

10° to the north) and high knobs and ridges

that consist of strongly weather-resistant

sandstone.

The Pounds Sandstone is a fairly pure,

slightly micaceous, quartz sandstone with

numerous white rounded quartz pebbles.

About 100 feet of sandstone is present in

this member throughout much of the area.

The sandstones of the Caseyville are very

resistent to erosion, and where exposed,

they are cliff-formers. The sandstones are

river channel sands laid down by an ancient

Pennsylvanian river system that crossed

this part of Illinois from northeast to south-

west. A number of sedimentary structures,

typically formed by river currents within a

delta system building out into and along a

shallow continental sea, are well developed

in the Pounds Sandstone. These sedimentary structures include wedge-shaped crossbedding and

ripple marks. The purity and coarseness of the sandstone indicate that the currents along the shal-

low seashore (both river and nearshore currents) were swift and that much of the fine material

and softer non-quartz materials were sorted out before deposition. Other noteworthy sedimentary

features of the sandstone at this stop include graded bedding, bimodal sorting of the medium to

coarse-grained sandstone containing white quartz pebbles, and Liesegang banding.

The unusual concentric and parallel Liesegang banding of iron oxide-rich layers in sandstone,

which is so common in outcrops of the Caseyville, is well-displayed along the observation trail (fig.

16). Geologists generally attribute this banding to the so-called "Liesegang Phenomenon." For this

phenomenon to occur, a fluid containing a salt must be introduced into a colloidal suspension within

a porous medium (such as this coarse sandstone). During mixing of the fluid and the colloid, when

the dissolved salt reaches a supersaturated level, precipitation occurs at regular intervals, resulting

in the banding just described.
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Figure 16 Stop 1 : Liesengang banding in Pounds Sandstone, Garden of the Gods Recreation Area (photo

by W.T. Frankie).

Liesegang Banding in Sandstones

The highly convoluted, dark-colored bands that stick out of the surface of some outcrops of sandstone in the

Caseyville and Tradewater Formations are apparently a near-surface weathering phenomenon. The rings and

banding are not observed in fresh samples of these rocks brought up in drill cores.

When these sandstones are exposed on the face of a cliff, groundwater can seep through the rock to the outer

surface, carrying dissolved minerals in it. At the surface, as the water evaporates, the concentration of the

minerals in the water increases, ultimately causing the minerals to precipitate out of the solution, like salt

from seawater. The convoluted banding that we observe results from the interaction of this groundwater with

a colloidal suspension that is already present in the pores of the rock. The bands are zones where the grains in

the rock are more strongly cemented together, and weathering removes the more weakly cemented parts of the

rock, leaving the strongly cemented bands standing out from the rock surface.

A colloid is a form of matter in which very fine particles are held suspended in a liquid. (Ordinary gelatin is

probably the colloid that is most familiar to us.) Ferric iron (iron in its +2 or more reduced oxidation state) in

solution readily forms a colloidal gel as iron hydroxide when the solution is subjected to the right chemical

conditions. If the conditions that formed the colloid are then changed by the addition of a new chemical to the

solution that surrounds the colloid, the tiny particles suspended in the colloid will start to clump together and

form a solid. For reasons that chemists do not yet fully understand, the clumping together of the colloidal

particles (called "flocculation") occurs in bands or rings in the gel. rather than uniformly. The banding

apparently forms because slow and non-uniform diffusion of the added chemical into the gelatinous colloidal

suspension causes a series of gradients to develop in the concentrations of the flocculating particles. The

bands of color commonly observed in agate probably result from similar interactions between colloidal silica

and ions dissolved in solutions that interact with the coloid. These phenomena in colloids were first studied

and described by a German chemist named Liesegang.

-Jonathan H. Goodwin

Senior Geologist

Based on Krauskopf. Konrad B., 1967. Introduction to Geochemistry, McGraw-Hill. Inc., New York. p. 151-166.
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From the high sandstone pinnacles here at Garden of the Gods, the western part of the Eagle Val-

ley Syncline can be seen. Toward the northwest, areas of disturbed land can be seen where the

Springfield, Herrin, Davis, and Dekoven Coals (Carbondale Formation, Pennsylvanian) were sur-

face-mined (fig. 17). The distinct high ridge that is visible to the north and northwest is the north-

ern limb of the Eagle Valley Syncline.

A syncline is a fold in which the bedrock layers have been bent downward by compressive forces

acting within the earth's crust. The strata on both sides or limbs of a syncline dip (tilt) inward to-

ward the axis or lowest part of the fold. Along the axis or central part of an eroded syncline, the

youngest folded rocks are exposed. The opposite of a syncline is an anticline, in which the strata

are bent upward into an arch.

The Eagle Valley Syncline (fig. 1 1) is an asymmetrical fold, so called because the strata in the

north limb dip more steeply (10° to 25°) than the strata on the south limb (from less than 5° to

10°). The ridges that outline the syncline are formed by the eroded, upturned edges of resistant

lower Pennsylvanian sandstones. These consist principally of massive sandstones of the

Caseyville and Lower Tradewater Formations, which form steep, outward-facing cliffs along their

outcrop belt. The top of this erosional escarpment is capped by the Grindstaff Sandstone of the

Tradewater Formation. Eagle Valley itself is eroded in the softer shales and shaley sandstones of

the upper Tradewater to Carbondale Formations, which overlie the more resistant sandstones. The

still younger Anvil Rock Sandstone Member of the Carbondale Formation (which occurs above

the Herrin Coal) is also resistant to erosion and forms the low hills in the central part of the valley

along the axis of the syncline.

The axis of the syncline plunges (tilts downward) to the east, and thus the syncline is deepest and

widest near the Ohio River. The syncline gradually dies out eastward into Kentucky. Near the

western end of Eagle Valley, the axis bends sharply to the southwest, and the fold dies out in the

vicinity of Herod. As the syncline becomes shallower and narrower westward, the sandstone

ridges along its north and south limbs converge toward the axis at the nose of the syncline.

The Shawneetown Fault, a major fracture in the crust, bounds the syncline on the north and west,

and faults also border the syncline to the east in Kentucky (figs. 5 and 9). These faults have large

vertical displacements ranging from 500 to more than 3,500 feet. The Eagle Valley Syncline and

the faults in the field trip area are part of a region of intensely disturbed Paleozoic strata that cross

southern Illinois and western Kentucky (fig. 5). This region includes the Illinois fluorspar district, cut by

many high-angle faults, such as the one we will observe at the abandoned Lee Mine at Stop 2.

These features were formed during a major episode of folding and faulting that began at the end

of the Pennsylvanian Period about 270 million years ago. This was the time when the Appalachian

Mountains were forming along the eastern margin of North America. Another episode of faulting

occurred later, during the Cretaceous Period, about 100 million years ago. Recurrent movements

along faults in this region have occurred since then, and earthquakes within historic time indicate

that movements are still taking place.
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RIPE

Figure 18 Principal fluorspar mining districts in southeastern Illinois

STOP 2: Lee Mine, an abandoned fluorspar mine, Shawnee National Forest (NW, NW, NW,
Sec. 14, T11S, R8E, 3rd P.M., Karbers Ridge 7.5-minute Quadrangle, Hardin County).

On the day of the field trip we will hike along the forest road, approximately 3,000 feet, to Lee Mine.

We will visit the abandoned Lee Mine located along the northern edge of the Illinois fluorspar dis-

trict (fig. 18 ). Small samples of fluorite can be found in the old mine refuse piles.

Lee Mine was operated by Hillside Fluor Spar Mines. The company extracted ore from a vein

along the Lee Fault. A generalized diagram of a fluorspar vein along a fault is shown in Figure 19.

Geological mapping in this area has traced the fault 3 miles to the southwest and 5 miles to the

northeast of the mine. The fault can be traced on the surface for about 1 ,000 feet at the mine. Al-

though mapped as a simple fault, Lee Fault consists of several more or less parallel, closely spaced

faults. At the mine this fault has a displacement of 450 feet, downthrown on the southeast side.

The Cypress Sandstone forms the northwest wall, and the Menard Limestone forms the southeast

wall (fig. 2). Fluorspar mineralization occurred for more than 1.5 miles along the course of the

fault or fault zone.

The mine was closed in 1938 and has not been worked since then. The U.S. Bureau of Mines did

exploratory drilling in the mid- 1940s, but that was the extent of activites until the early 1990s when

the Illinois Department of Mines and Minerals sealed the three shafts for this mine. The depths of

the three shafts, depending upon their distance from the fault, ranged from 35 to 150 feet.

The ore along the fault zone occurred generally at depths of around 100 feet in the Menard Lime-

stone, which apparently is much higher stratigraphically than is common in the fluorspar district.
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Most of the fluorspar ore zones in the dis-

trict are associated with the thick lime-

stones of the St. Louis and Ste. Genevieve

Formations (fig. 2). According to mine

notes at the ISGS, the Lee vein was up to 6

feet wide but averaged under 4 feet, with

about one-third of the vein made up of fluo-

rite. The fault along the vein/ore body had a

strike of N47 ° to 58 °E and a dip of about

75° to 85° to the southeast. The fluorite

was of high quality, and no other minerals

were present in abundance, except perhaps

calcite, and only minor amounts of galena

and sphalerite.

Lee Mine is located in the northern edge of

the Illinois-Kentucky fluorspar district. This

region is a complexly faulted area lying be-

tween the Illinois Basin on the north and the

Mississippi Embayment to the south. The Il-

linois portion of the district, with a history of

fluorspar mining that dates from 1 842, still

has important deposits of minable fluorspar

and related minerals.

.•'•.'•.•.''sandstone

••••••• ' iii limestone~7T
/ : j

' i _i i i ^ i

'.-. ::
i _ZF — shale =r~ -=r~

.

'•.'•:• sandstone;!;"/;'///.

fluorspar vein
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Figure 19 Diagramatic cross section of fluorspar vein

along a fault. The strata on the left side of the fault

have moved downward with reference to those on the

right.

Fluorspar from Illinois was in demand be-

cause of its high purity and the absence of

the toxic trace elements often found in im-

ported ore. Fluorite (calcium fluoride, or

CaFj. was designated as the Illinois state mineral by the 74th General Assembly in July 1965 (see

Geobit 4. Fluorite—Illinois ' State Mineral, in the back of the guidebook).

Illinois fluorspar occurs almost exclusively in Pope and Hardin Counties (fig. 18). The main pro-

duction has come from the Rosiclare vein system in the Rosiclare District and from bedded re-

placement deposits north of the Cave-in-Rock area. Less significant amounts of fluorspar have

been mined from several areas outside these main areas.

Ore Deposits

Ore bodies in the Illinois-Kentucky fluorspar mining district are of three general types: ( 1 ) bedded

deposits formed by selective replacement of limestone strata, (2) fissure-filling or vein deposits

along faults and fractures, and (3) residual deposits derived from one of the other types.

Vein Deposits

The mineralization at the Lee Mine is a vein-type deposit. The primary controlling factor determin-

ing the location and extent of mineralization of vein deposits is faulting. Vein deposits occur in

steeply inclined, sheet-like deposits as fissure fillings along faults (fig. 1 9). The width and continu-

ity of the vein deposits depend on the size of openings between the fault surfaces in which they

were formed. Fault planes (surfaces) are rarely perfectly parallel. The rock surfaces on either

side of a fault are generally wavy and irregular, preventing a good fit where one side of the fault
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plane rests against the other. These irregularities caused the opposite walls of the fault planes to

be pushed apart, producing the openings in which the fluorspar veins were deposited by mineraliz-

ing solutions. As a result, the veins pinch and swell both vertically and laterally. The veins range in

width from a feather edge to as much as 30 feet. Major deposits have been found in northeast-

trending faults of moderate displacement (25 to 500 feet). These faults evidently provided avenues

for the movement of mineralizing solutions and open fissures for mineral deposition. Faults of

lesser displacement apparently failed to develop sufficient open space along fault planes, and those

of greater displacement had excessive development of gouge and other heavily fractured rock that

decreased the amount of available open space. Vein deposits in the Rosiclare area have been

mined at depths greater than 800 feet.

Vein deposits are best developed in the stronger, more competent limestones and well-cemented

sandstones in which adequate open spaces could be maintained along the faults. Weaker rocks,

such as shales, sandstones, or shaley limestones, became crushed during faulting and generally

filled rather than created openings. The best vein deposits are found in the relatively pure, compe-

tent Ste. Genevieve and St. Louis Limestones. Mineable vein deposits also occur in competent

younger rocks of the overlying Chesterian Series, but these ore bodies are limited in size and oc-

currence because shale beds associated with these strata generally plugged the faults.

Mineralogy

Fluorspar (CaFJ and calcite (CaCO\) are the two chief minerals present in the vein deposits. Mi-

nor amounts of galena (PbS) sphalerite (ZnS), and barite (BaS0
4
) also occur in some vein depos-

its. In the bedded deposits, fluorite is the principal ore mineral, but galena and sphalerite occur lo-

cally. Bedded ores commonly consist of alternating bands of coarse- and fine-grained fluorspar.

Some banded ores also consist of alternating dark, fine-grained layers of fluorite and whole layers

of calcite, forming the "coontail spar." Rare or small amounts of strontianite, witherite, dolomite,

pyrite, ankerite, chalcopyrite, malachite, marcasite, smithsonite, limonite, gypsum, aragonite,

melanterite, stibnite, and sulfur have also been identified in the fluorspar deposits.

Origin of the Faults

The exact cause of the complex faulting is not known. At the end of Pennsylvanian time or during

early Permian time (about 260 million years ago), the Paleozoic strata of the present Illinois-Ken-

tucky fluorspar district may have been arched into a northwest-trending, elongate dome by an

enormous rising body of magma (molten rock) generated at great depth. Tensional fractures were

formed parallel to the long axis of the dome because of the stretching of the sedimentary strata.

Some magma was squeezed into these fractures to form the dikes of dark igneous rock now ex-

posed at the surface and in some coal mines in southeastern Illinois and western Kentucky.

After the magma had begun to cool ("crystallize") and ceased to push upward, the area was bro-

ken by a second set of fractures oriented northeast-southwest, probably by forces related to those

that were forming the Appalachian Mountains along the eastern margin of the continent. Relax-

ation of these forces, plus shrinkage of the body of magma as it continued to cool, caused the

domed area to collapse into a series of blocks bounded by the northeast-trending fractures. The

resulting normal faults trended northeast-southwest and became the channelways for the fluo-

rine-bearing solutions that were probably derived from the underlying magma body. These same

faults also served as deposition sites for the fluorite vein deposits. Most of the faults are normal,

with fault planes inclined at high angles (70° to 80°), but some are reverse faults (fig. 3). Move-

ment along the faults was largely vertical, but, in some places, there was also horizontal (side-

ways) movement. The Shawneetown Fault Zone, a large faulted structure in Gallatin and Saline
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Counties just north of the fluorspar district, shows evidence of reverse movement of as much as

3,500 feet. The compressive forces that caused this thrusting were probably also responsible for

the northeast-southwest-trending fractures along which the block faulting took place.

Faulting has occurred repeatedly throughout the region since Permian time, although these later

movements may be unrelated to the earlier period of faulting. Cretaceous and Tertiary strata in

extreme southern Illinois and in Kentucky are also cut by faults, and earthquakes within recorded

history suggest that movements are still taking place. The most recent major earthquakes occurred

in southeastern Missouri along the New Madrid Fault in the winter of 181 1-1812. Smaller earth-

quakes have occurred up to the present in several places.

STOP 3: LUNCH, Rim Rock Recreation Area and the Pounds Escarpment, Shawnee

National Forest (NW, SW, Sec. 36, T10S, R8E, 3rd P.M., Karbers Ridge 7.5-minute Quadrangle,

Gallatin County).

Following lunch, we will hike a portion of the trail to examine the flora and geology and to discuss

their unique interconnection at the Pounds Escarpment.

The Rim Rock Recreation Area and the Pounds Hollow Recreation Area complex contains the

Rim Rock National Recreation Trail and a Shawnee National Forest Ecological Area. The Rim

Rock National Recreation Trail was constructed in 1962 and 1963, using funds contributed by the

Illinois Federation of Women's Clubs. In the early 1980s, the Young Adult Conservation Corps

crews replaced the original gravel path with a flagstone walkway. In 1980, the trail was desig-

nated as a National Recreation Trail. Rim Rock Trail is within a Shawnee National Forest Ecologi-

cal Area, an ecosystem relatively unchanged by man. Evident along the trail are sandstone glades,

relict plant associations, and interesting geological formations. Interpretive signs highlight the natu-

ral features. Rim Rock is the upper extension of Pounds Hollow, which includes about 230 acres

of a designated natural area. This area is managed to protect and preserve archeological features

and rare plant communities. Help us protect the plant life and other fragile resources by

staying on the trail.

The 0.8-mile upper Rim Rock Trail meanders among native hardwoods and a cedar plantation,

past the remains of the Old Indian Wall, and along the edge of the Rim Rock Escarpment made up

of the Pounds Sandstone Member of the Casey ville Formation (fig. 15) that we also saw at Stop

1 . The upper trail takes about one hour to walk and contains steps and some incline slopes.

Wheelchair access to the observation deck is possible on the upper trail, with assistance, by going

to the left on the upper trail. Steps and slopes of ±8% are encountered along the right portion of

the upper trail and along the lower trail. The trail winds around the bluff top and in some places

lies close to the edge. Take extreme caution in rainy weather—the trail and deck surfaces

may be slippery.

The trail will take you across the Old Indian Wall, past a scenic view of Pounds Hollow Lake, and

to an observation platform with a breathtaking view of the valley some 70 feet below. A stairway

to the valley leads to the "Ox-Lot Cave," which is a large rock shelter in the bluff formed of

Pounds Sandstone (fig. 20). Near this stairwell is "Fat Man's Misery." a narrow passage that goes

through the massive sandstone bluffs and boulders.
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Stepping Stones Through Time
To early settlers this formation was known as

"the Pounds," an old English term meaning

"some sort of enclosure." Throughout time,

this natural escarpment and the lush valley be-

low attracted human settlement. For prehis-

toric Indians, these rock formations provided

protection from their neighbors, and the lush

valley offered plentiful sources of food and

water. After the removal of Native Americans

in the 1 830s, settlers spread into the interior

wilderness. The forest provided an abundant

source of wild game, nuts, and acorns for food

and large trees to build log cabins and provide

firewood for warmth on cold nights. By the

late 1890s, the Pounds Hollow area was pur-

chased by eastern land companies as part of a

thriving logging enterprise, after which the

land was sold to farmers. By the late 1920s,

logging and farming had created an unproduc-

tive landscape. In 1936, the Shawnee National

Forest acquired this land in an effort to restore

the soil and forest. Today's recreationists en-

joy the natural beauty of the area, and scien-

tists study its unique features.

Figure 20 Stop 3: Ox-Lot Cave at Rim Rock Recre-

ation Area (photo by W.T. Frankie).
Trails

Beaver Trail is on the east side of the Pounds

Escarpment (to the right), and Lower Pounds

Trail is on the west side of the Pounds Escarpment. The upper trail is a loop trail with a branch

veering off to the left, which follows along the edge of the bluffs, and a branch that is straight

ahead, which leads up through the Old Indian Wall. Crumbled blocks of sandstone are evident on

either side of the path. The following is from a sign near the stone wall:

Why a defense? Look in front of you. . . . Can you find the remains of the ancient stone wall built

by prehistoric Indians about 1,500 years ago? Archeologists believe the inhabitants, members of

the Late Woodland culture, used these escarpments as a defense location. They built the wall to

block the only accessible route to the top of the bluff. The wall extends almost 150 feet across the

bluff top. The height of the wall is unknown, since through time, this wall has crumbled. However,

early travelers reported that the walls were 6 feet in height. The stones were gathered from below

the bluff, which required considerable effort. Will we be able to reconstruct the story behind the an-

cient wall? Archeological work has just begun on this significant site. The research will attempt to

demonstrate why late woodland people were defending themselves.

The Geology of Pounds Hollow—From the Observation Platform

The Pounds Sandstone forms these spectacular bluffs. The younger Tradewater Formation under-

lies the gentler slopes above the sheer cliffs across the valley. These majestic sandstone bluffs be-

gan to form as sand and mud were deposited at the shoreline of the shallow sea that covered this

area about 320 million years ago. Rivers originating from the north and northwest Appalachians

carried the sediments down to the sea. The land was slowly sinking, and more sand and mud were
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deposited on top. With time and continued burial, the sand became sandstone, mud became shale,

and the peat in the swamps turned to coal.

About 280 million years ago, the land began to rise slowly, and the sea gradually retreated to its

present location in the Gulf of Mexico. As this uplift began, geological forces fractured the rocks,

creating channels for rainwater runoff. Since then, hundreds of feet of rocks have eroded away,

and nature has gradually uncovered these geologic units, carved out Pounds Hollow (the valley be-

low) and its tributary creeks, and sculpted the scenery now exposed at the observation platform.

A stairway at the observation platform leads to the valley floor and "Ox-Lot Cave," which is a

large rock shelter in the Pounds Sandstone (fig. 20). Near this stairwell is "Fat Man's Misery," a

narrow passageway between the massive sandstone bluffs. The observation platform is located on

top of a large block of Pounds Sandstone that has moved westward toward the valley. Fat Man's

Misery follows a curvilinear joint/fracture in sandstone trending N35°E.

Ox-Lot Cave provided shelter to many hunters and explorers who passed this way. It was not until

loggers entered the hollow that the natural overhang received extensive use. A fence was built

around the area to form a corral to keep the oxen, mules, and horses; hence, the name Ox-Lot

Cave. The boxed-in spring, along with the shelter wall, provided a watering hole for the animals.

A narrow-gauge railroad was built within the hollow to haul cut timber in the area. Oxen dragged

the heavy logs to the flat bed cars. The logs were moved to the Saline River and spiked together

before being floated down on the Ohio River. Logging companies operating in the valley were

profitable for a short period from 1902 to 1906. Soon thereafter, the railroad was removed.

Why is there a spring at the base of the Ox-Lot Cave? The Pounds Sandstone acts as an aquifer;

rainwater percolates down through the sandstone and along fractures to the base of the bluffs.

The Drury Shale Memer underlies the Pounds Sandstone, and, when water encounters this unit, it

begins to flow horizontally along the contact between the underlying shale and overlying sand-

stone. Joints/fractures concentrate the flow of groundwater. A joint trending S70°E is located near

the spring. Can you find other joints in the bluff?

STOP 4A (Optional): Jader Coal Company Surface Mine, Davis and Dekoven Coal (W 1/2,

NE. NW Sec. 14, T10S, R7E, 3rd P.M., Rudement 7.5-minute Quadrangle, Saline County) (fig. 21 ).

We will examine the mining operations of the Jader Coal Company and discuss the geology of the

coals within the Eagle Valley Syncline.

The pit we will examine was opened by Jader Coal Company early this year. The company began

its operations in an area that was surface-mined from 1959 to 1965 by J.W. Coal Company in the

Davis and Dekoven Coal Members near the base of the Middle Pennsylvanian Carbondale For-

mation (fig. 17). These operations are recovering the same seams, which are separated by an in-

terval of 20 to 30 feet. The Davis and Dekoven Coals lie roughly 200 feet below the Springfield

Coal (fig. 17 ) that is also being mined at the Sugar Camp Mine by Black Beauty Coal. The Davis

Coal is the thicker of the two seams, averaging 4 feet in thickness in most of the area, but locally

up to 5 feet thick. The Dekoven Coal averages 3 feet in thickness across much of the area.
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Figure 21 Stop 4: Surface mining pit at Jader Coal Company (photo by R.J. Jacobson). A view looking west

in one of the pits of Jader Coal Company. At the base of the highwall to the right of trucks is the Dekoven

Coal, which has been removed in this cut. The drill rig is making holes for placement of explosive that will

loosen the exposed strata below the Dekoven so that the Davis Coal (about 20-30 feet below the Dekoven

Coal) may be mined.

The Davis and Dekoven Coals, which have been surface-mined across much of southeastern Illi-

nois, are economically the next most important coals after the thicker Springfield and Herrin Coals

(fig. 17). Because they are primarily high-sulfur coals, they have not enjoyed as much demand as

western coals have in regional and national markets, since the coal market places a high premium

on the cleaner, low-sulfur coals. Nevertheless, both Black Beauty and Jader Coal have reopened

mining of these two coals since our last visit to the area in 1993, so they are able to successfully

market these coals to utilities equipped with scrubbers to remove the sulfur dioxide from their

stack gases.

In the upper part of the high wall, the Colchester Coal may also be seen. Although it is quite thin

in this area, together with its overlying black shale, the Colchester Coal is one of the most wide-

spread stratigraphic units in the middle Pennsylvanian of the Midwest (not just Illinois). Although

economically important in northern Illinois, the Colchester is typically too thin to be mined in south-

ern Illinois.

This stop also illustrates some of the important features of the Eagle Valley Syncline and the re-

gional structure of rock strata that we have been observing as we traversed the area of the field

trip. We are surrounded on the north, west, and south by massive sandstone ridges that outline the

large bedrock trough or syncline of the Eagle Valley Syncline, which we discussed earlier.
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The strata in the highwall (depending on the view available at time of trip) can be seen to dip sig-

nificantly (as much as 14°) to the east-northeast toward the center of the syncline. We are on the

western end (nose) of this eastward-plunging syncline. The mine pit is operating along the east-

ward-dipping cuesta of Carbondale Formation bedrock that contains the Dekoven and Davis

Coals. This spot is especially interesting because Jader Coal Company has opened this pit at a

spot where an older company (J.W. Coal Company) stopped operation because the depths of the

Davis and Dekoven Coals put the company beyond limits that were economical to mine at the

time. Jader Coal Company (formerly Jader Fuel) has been operating along the east-west cropline

of the Davis and Dekoven Coals in Eagle Valley for a number of years. Just before this trip, it was

operating a pit further to the east in Gallatin County. This current pit has been in operation only

since the early part of this year and replaced the one in Gallatin County.

North and south of this pit, a number of companies (including Jader) have been mining the Davis

and Dekoven over the years, and several mines have operated along the east-west crop south and

east of here as well. Black Beauty Coal Company is the only other company currently mining either of

these coals. Black Beauty is operating the Sugar Camp mine that is underground in both the Davis

and Springfield Coals (the Dekoven is too thin to mine underground). Black Beauty acquired this

mine from its previous owners (Coal Miners, Inc.) during the past year and are also operating a

surface mine just north of the underground mine in the Herrin Coal. The company blends these

coals at the Sugar Camp Mine preparation plant for sale to their buyers.

STOP 4B (Optional): Black Beauty Coal Company Wildcat Mine (Kedron Road/7000N

between Sections 4 and 9, T10S, R8E, 3rd P.M., Equality 7.5-minute Quadrangle, Gallatin)

STOP 5: Horseshoe Upheaval (SW, NW, NE, Sec. 36, T9S, R7E. 3rd P.M.. Rudement 7.5-

minute Quadrangle, Saline County) (fig. 22).

On the day of the field trip we will hike along the gravel access road, approximately 500 feet, to

the north side of the Horseshoe Upheaval.

Stop 5 is in the Horseshoe Geological Land and Water Reserve, a part of the Saline County State

Fish and Wildlife Area. A sign at this stop provides a great introduction to this geologic exposure:

"The Powerful Earth." The rocks in front of you are about 350 million years old. The tremendous

forces of the earth forced this rock up from 3,500 feet below. These upturned rocks, known as the

Horseshoe Upheaval, are silica-rich limestone and chert of the Fort Payne Formation (fig. 2).

These rocks represent marine sediments deposited during the Mississippian period 350 million

years ago. Several feet of the Upper New Albany Shale is also exposed at the northwest end of

the upheaval. These rocks were brought to the surface along the Shawneetown Fault Zone, a

great fracture zone that extends more than 100 miles across southern Illinois and western Ken-

tucky (fig. 9).

Cave Hill to the south is composed of sandstone, shale, conglomerate, and coal of early and middle

Pennsylvanian age, about 3 10 to 330 million years old. Coal-bearing middle Pennsylvanian rocks

also underlie the low hills to the north. The Fort Payne rocks here are confined in a narrow wedge

of older rocks, sandwiched by younger rocks (fig. 10). This is unusual—most faults simply have
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Figure 22 Stop 5: Upturned rocks of the Fort Payne Formation at Horseshoe Upheaval (photo by W.T.

Frankie).

older rocks on one side and younger rocks on the other. The Horseshoe Upheaval suggests that

the Shawneetown Fault Zone underwent two episodes of movement in opposite directions. First,

the rocks south of the fault zone were uplifted, bringing Fort Payne rocks to the surface, and then

the southern block dropped back down. The wedge of Fort Payne rocks was sheared off and

jammed in place within the fault zone. The tremendous forces involved are evident in the shattered

and contorted rock layers before you.

The average strike of the strata is about N80°W, and dip is toward the south at about 60°. The

rock strata seen here are part of the north limb of the Eagle Valley Syncline near a point where

the syncline turns southwestward and terminates. This area is part of a large fault slice that is

bounded on the north by a high-angle reverse fault with vertical displacement of at least 3,500

feet.

In an abandoned quarry, located on the northeast corner of the Horseshoe Upheaval, the Fort

Payne was extracted for use as roadstone. The area covered by the abandoned quarry is about

250 feet wide and 850 feet long, a total area of about five acres. More than 200 feet of the Fort

Payne Formation of the Valmeyeran Series (middle Mississippian) is exposed at the quarry site.

The Fort Payne consists of highly shattered, partly silicious and calcareous shale and siltstones,

and limestone. At depth, the Fort Payne consists of calcareous siltstone and limestone, but weath-

ering has resulted in silicification (replacement by silica) of these rocks at the surface. The New
Albany Shale, which consists of thin-bedded, black to dark gray carbonaceous shale that contains

numerous partly phosphatic siltstone and claystone nodules, has also been intensely fractured and

silicified. Calcite-filled fractures occur in the calcareous shale and siltstone of the Fort Payne For-

mation.
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The Fort Payne Formation was deposited as

an irregular tongue-shaped body in southern

Illinois that partially filled a deep-water basin.

The rocks of the Fort Payne Formation are

intertongued with the rocks of the Borden Silt-

stone delta to the north and west. The Ullin

Limestone, which overlies the Fort Payne

Formation, is not exposed here. Uppermost

units of the New Albany Group (Mississippian,

Devonian) are exposed in the extreme north-

western part of the quarry site. The New Al-

bany Shale occurs at a depth of about 3,500

feet below the surface on the north side of the

fault.

Intense fracturing is present in all units ex-

posed at the quarry site. The most intensely

deformed units are present near the eastern

end of the quarry and about 100 feet south of

the access road located on the north side of

the upheaval. These crumpled and complexly

deformed units consist of soft, somewhat

brittle shale, which failed under shearing

stresses. These soft shale units lie between

siliceous siltstone and shale of the upper part

of the Fort Payne Formation and thick units of

the New Albany Group, which deformed com-

petently.

Figure 23 Stop 6: Old Stone Face. Pounds Sandstone

(photo by W.T. Frankie).

STOP 6: Old Stone Face (NW. SW. SE. Sec. 9, T10S. R7E. 3rd P.M., Rudement 7.5-Minute

Quadrangle, Saline County) (fig. 23).

We will partake in the breathtaking view of the landscape to the west and northwest of the Eagle

Valley Syncline from the top of Old Stone Face.

DO NOT GET TOO CLOSE TO THE CLIFF EDGE WHEN ON TOP.

Do not throw anything (especially the field trip leaders) over the edge.

Old Stone Face, one of the best known natural wonders of southern Illinois, is located on the

southwestern edge of Cave Hill Ridge at an elevation of about 730 feet above sea level. The cliff

affords a magnificent view to the north and west overlooking the low-lying Saline River Valley

about 350 feet below.

The sheer cliff into which Old Stone Face has been carved by weathering and natural erosion

consists of the massive, cross-bedded Pounds Sandstone Member of the Pennsylvanian age

Caseyville Formation (fig. 17), which we first examined at Stops 1 and 3. The Pounds Sandstone
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consists of fairly pure, slightly micaceous, quartz sandstone containing numerous white rounded

quartz pebbles. The sandstone is about 100 feet thick in the field trip area.

The Caseyville sandstones are very resistant to erosion, and wherever they are exposed, they are

cliff-formers. The sandstones are river-channel sands laid down by an ancient Pennsylvanian river

system that crossed this part of Illinois from northeast to southwest. Current structures, including

wedge-shaped cross-bedding and ripple marks, are well developed in the sandstones. The purity

and coarseness of the sandstones indicate that the currents were swift.

Cave Hill Ridge forms an erosional fault scarp at the west end of Eagle Valley Syncline. In this lo-

cality, the stratigraphic displacement on the Shawneetown Fault is about 1,000 feet. The Pounds

Sandstone lies 500 feet below the Saline River Valley west of Cave Hill and north of the

Shawneetown Fault Zone.

End of field trip.

Drive carefully on your way home.



Figure 24 The Devil's Smokestack, Garden of the Gods Recreation Area, Shawnee National Forest (photo
by R.J. Jacobson).
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Glossary

The following definitions are adapted in total or in part from several sources. The principal source

is R.L. Bates and J.A Jackson, eds., 1987, Glossary of Geology, 3rd ed.: Alexandria, Virginia,

American Geological Institute, 788 p.

ablation Separation and removal of rock material and formation of deposits, especially by wind

action or the washing away of loose and soluble materials.

age An interval of geologic time; a division of an epoch.

aggrading stream A stream that is actively depositing sediment in its channel or floodplain

because it is being supplied with more load than it can transport.

alluviated valley One that has been at least partially filled with sand, silt, and mud by flowing

water.

alluvium A general term for clay, silt, sand, gravel, or similar unconsolidated sorted or semisorted

sediment deposited during comparatively recent time by a stream or other body of running

water.

anticline A convex-upward rock fold in which strata have been bent into an arch; the strata on

either side of the core of the arch are inclined in opposite directions away from the axis or

crest; the core contains older rocks than does the perimeter of the structure.

anticlinorium A complex structure having smaller structures, such as domes, anticlines, and

synclines superimposed on its broad upwarp.

aquifer A geologic formation that is water-bearing and that transmits water from one point to

another.

argillaceous Said of rock or sediment that contains, or is composed of. clay-sized particles or clay

minerals.

arenite A relatively clean quartz sandstone that is well sorted and contains less than 10% argilla-

ceous material.

base level Lower limit of erosion of the land's surface by running water. Controlled locally and

temporarily by the water level of stream mouths emptying into lakes, or more generally and

semipermanently by the level of the ocean (mean sea level).

basement complex The suite of mostly crystalline igneous and/or metamorphic rocks that

generally underlies the sedimentary rock sequence.

basin A topographic or structural low area that generally receives thicker deposits of sediments

than adjacent areas; the low areas tend to sink more readily, partly because of the weight of

the thicker sediments; the term also denotes an area of relatively deep water adjacent to

shallow-water shelf areas.

bed A naturally occurring layer of earth material of relatively greater horizontal than vertical

extent that is characterized by physical properties different from those of overlying and

underlying materials. It also is the ground upon which any body of water rests or has rested,

or the land covered by the waters of a stream, lake, or ocean; the bottom of a stream channel.

bedrock The solid rock (sedimentary, igneous, or metamorphic) that underlies the unconsolidated

(non-indurated) surface materials (for example, soil, sand, gravel, glacial till, etc.).

bedrock valley A drainageway eroded into the solid bedrock beneath the surface materials. It

may be completely filled with unconsolidated (non-indurated) materials and hidden from view.
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braided stream A low-gradient, low-volume stream flowing through an intricate network of

interlacing shallow channels that repeatedly merge and divide and are separated from each

other by branch islands or channel bars. Such a stream may be incapable of carrying all of its

load. Most streams that receive more sediment load than they can carry become braided.

calcarenite Describes a limestone composed of more or less worn fragments of shells or pieces

of older limestone. The particles are generally sand-sized.

calcareous Said of a rock containing some calcium carbonate (CaC03), but composed mostly of

something else (synonym: limey).

calcining The heating of calcite or limestone to its temperature of dissociation so that it loses its

carbon dioxide; also applied to the heating of gypsum to drive off its water of crystallization to

make plaster of Paris.

calcite A common rock-forming mineral consisting of CaC03; it may be white, colorless, or pale

shades of gray, yellow, and blue; it has perfect rhombohedral cleavage, appears vitreous, and

has a hardness of 3 on the Mohs scale; it effervesces (fizzes) readily in cold dilute hydrochlo-

ric acid. It is the principal constituent of limestone.

chert Silicon dioxide (Si02); a compact, massive rock composed of minute particles of quartz

and/or chalcedony; it is similar to flint, but lighter in color.

clastic Said of rocks composed of particles of other rocks or minerals, including broken organic

hard parts as well as rock substances of any sort, transported and deposited by wind, water,

ice, or gravity.

claypan (soil) A heavy, dense subsurface soil layer that owes its hardness and relative impervi-

ousness to higher clay content than that of the overlying material.

closure The difference in altitude between the crest of a dome or anticline and the lowest

structural or elevation contour that completely surrounds it.

columnar section A graphic representation, in the form of one or more vertical column(s), of the

vertical succession and stratigraphic relations of rock units in a region.

conformable Said of strata deposited one upon another without interruption in accumulation of

sediment; beds parallel.

cuesta A ridge with a gentle slope on one side and a steep slope on the other.

delta A low, nearly flat, alluvial land form deposited at or near the mouth of a river where it enters

a body of standing water; commonly a triangular or fan-shaped plain extending beyond the

general trend of a coastline.

detritus Loose rock and mineral material produced by mechanical disintegration and removed

from its place of origin by wind, water, gravity, or ice; also, fine particles of organic matter,

such as plant debris.

disconformity An unconformity marked by a distinct erosion-produced irregular, uneven surface

of appreciable relief between parallel strata below and above the break; sometimes represents

a considerable time interval of nondeposition.

dolomite A mineral, calcium-magnesium carbonate (Ca,Mg[C03]2); also the name applied to

sedimentary rocks composed largely of the mineral. It is white, colorless, or tinged yellow,

brown, pink, or gray; has perfect rhombohedral cleavage; appears pearly to vitreous; and

effervesces feebly in cold dilute hydrochloric acid.

drift All rock material transported by a glacier and deposited either directly by the ice or reworked

and deposited by meltwater streams and/or the wind.
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driftless area A 10,000-square mile area in northeastern Iowa, southwestern Wisconsin, and

northwestern Illinois where the absence of glacial drift suggests that the area may not have

been glaciated.

earthquake Ground displacement associated with the sudden release of slowly accumulated

stress in the lithosphere.

end moraine A ridge or series of ridges formed by accumulations of drift built up along the outer

margin of an actively flowing glacier at any given time; a moraine that has been deposited at

the lower or outer end of a glacier.

epoch An interval of geologic time; a division of a period (for example, Pleistocene Epoch).

era The unit of geologic time that is next in magnitude beneath an eon; it consists of two or more

periods (for example. Paleozoic Era).

escarpment A long, more or less continuous cliff or steep slope facing in one general direction; it

generally marks the outcrop of a resistant layer of rocks or the exposed plane of a fault that

has moved recently.

fault A fracture surface or zone of fractures in Earth materials along which there has been

vertical and/or horizontal displacement or movement of the strata on opposite sides relative to

one another.

flaggy Said of rock that tends to split into layers of suitable thickness for use as flagstone.

floodplain The surface or strip of relatively smooth land adjacent to a stream channel produced

by the stream's erosion and deposition actions: the area covered with water when the stream

overflows its banks at times of high water; it is built of alluvium carried by the stream during

floods and deposited in the sluggish water beyond the influence of the swiftest current.

fluvial Of or pertaining to a river or rivers.

flux A substance used to remove impurities from steel. Flux combines with the impurities in the

steel to form a compound that has a lower melting point and density than steel. This compound

tends to float to the top and can be easily poured off and separated from the molten steel.

formation The basic rock unit, one distinctive enough to be readily recognizable in the field and

widespread and thick enough to be plotted on a map. It describes the strata, such as limestone,

sandstone, shale, or combinations of these and other rock types. Formations have formal

names, such as Joliet Formation or St. Louis Limestone (Formation), generally derived from

the geographic localities where the unit was first recognized and described.

fossil Any remains or traces of a once-living plant or animal preserved in rocks (arbitrarily

excludes recent remains); any evidence of ancient life. Also used to refer to any object that

existed in the geologic past and for which evidence remains (for example, a fossil waterfall)

fragipan A dense subsurface layer of soil whose hardness and relatively slow permeability to

water are chiefly due to extreme compactness rather than to high clay content (as in

claypan)or cementation (as in hardpan).

friable Said of a rock or mineral that crumbles naturally or is easily broken, pulverized, or reduced

to powder, such as a soft and poorly cemented sandstone.

geology The study of the planet Earth that is concerned with its origin, composition, and form, its

evolution and history, and the processes that acted (and act) upon the Earth to control its

historic and present forms.

geophysics Study of the Earth with quantitative physical methods. Application of the principles of

physics to the study of the earth, especially its interior.

glaciation A collective term for the geologic processes of glacial activity, including erosion and

deposition, and the resulting effects of such action on the Earth's surface.
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glacier A large, slow-moving mass of ice formed on land by the compaction and recrystallization

of snow.

graben An elongate, relatively depressed crustal unit or block that is bounded by faults on its long

sides.

gradient A part of a surface feature of the Earth that slopes upward or downward; the angle of

slope, as of a stream channel or of a land surface, generally expressed by a ratio of height

versus distance, a percentage or an angular measure from the horizontal.

gypsum A widely distributed mineral consisting of hydrous calcium sulfate (CaS0
4
-2H,0).

Gypsum is soft (hardness of 2 on the Mohs scale); white or colorless when pure but com-

monly has tints of gray, red, yellow, blue or brown. Gypsum is used as a retarder in portland

cement and in making plaster of Paris.

horst An elongate, relatively uplifted crustal unit or block that is bounded by faults on its long

sides.

igneous Said of a rock or mineral that solidified from molten or partly molten material (that is,

from magma).

indurated Said of compact rock or soil hardened by the action of pressure, cementation, and,

especially, heat.

joint A fracture or crack in rocks along which there has been no movement of the opposing sides

(see also fault).

karst Collective term for the land forms and subterranean features found in areas with relatively

thin soils underlain by limestone or other soluble rocks; characterized by many sinkholes

separated by steep ridges or irregular hills. Tunnels and caves formed by dissolution of the

bedrock by groundwater honeycomb the subsurface. Named for the region around Karst in

the Dinaric Alps of Croatia where such features were first recognized and described.

lacustrine Produced by or belonging to a lake.

Laurasia A protocontinent of the northern hemisphere, corresponding to Gondwana in the south-

ern hemisphere, from which the present continents of the Northern Hemisphere have been

derived by separation and continental displacement. The supercontinent from which both were

derived is Pangea. Laurasia included most of North America, Greenland, and most of Eurasia,

excluding India. The main zone of separation was in the North Atlantic, with a branch in

Hudson Bay; geologic features on opposite sides of these zones are very similar.

lava Molten, fluid rock that is extruded onto the surface of the Earth through a volcano or fissure.

Also the solid rock formed when the lava has cooled.

limestone A sedimentary rock consisting primarily of calcium carbonate (the mineral, calcite).

Limestone is generally formed by accumulation, mostly in place or with only short transport, of

the shells of marine animals, but it may also form by direct chemical precipitation from solution

in hot springs or caves and, in some instances, in the ocean.

lithify To change to stone, or to petrify; especially to consolidate from a loose sediment to a solid

rock.

lithology The description of rocks on the basis of their color, structure, mineral composition, and

grain size; the physical character of a rock.

local relief The vertical difference in elevation between the highest and lowest points of a land

surface within a specified horizontal distance or in a limited area.

loess A homogeneous, unstratified accumulation of silt-sized material deposited by the wind.
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magma Naturally occurring molten rock material generated within Earth and capable of intrusion

into surrounding rocks or extrusion onto the Earth's surface. When extruded on the surface it

is called lava. The material from which igneous rocks form through cooling, crystallization, and

related processes.

meander One of a series of somewhat regular, sharp, sinuous curves, bends, loops, or turns

produced by a stream, particularly in its lower course where it swings from side to side across

its valley bottom.

meander scars Crescent-shaped swales and gentle ridges along a river's flood plain that mark

the positions of abandoned parts of a meandering river's channel. They are generally filled in

with sediments and vegetation and are most easily seen in aerial photographs.

metamorphic rock Any rock derived from pre-existing rocks by mineralogical, chemical, and

structural changes, essentially in the solid state, in response to marked changes in temperature,

pressure, shearing stress, and chemical environment at depth in Earth's crust (examples:

gneisses, schists, marbles, and quartzites)

mineral A naturally formed chemical element or compound having a definite chemical composi-

tion, an ordered internal arrangement of its atoms, and characteristic crystal form and physical

properties.

monolith (a) A piece of unfractured bedrock, generally more than a few meters across, (b) A
large upstanding mass of rock.

moraine A mound, ridge, or other distinct accumulation of glacial drift, predominantly till, depos-

ited in a variety of topographic land forms that are independent of control by the surface on

which the drift lies (see also end moraine).

morphology The scientific study of form and of the structures and development that influence

form; term used in most sciences.

natural gamma log One of several kinds of measurements of rock characteristics taken by

lowering instruments into cased or uncased, air- or water-filled boreholes. Elevated natural

gamma radiation levels in a rock generally indicate the presence of clay minerals.

nickpoint A place with an abrupt inflection in a stream profile, generally formed by the presence

of a rock layer resistant to erosion; also, a sharp angle cut by currents at base of a cliff.

nonconformity An unconformity resulting from deposition of sedimentary strata on massive

crystalline rock.

non lit hitled Said of unconsolidated materials.

normal fault A fault in which the hanging wall appears to have moved downward relative to the

footwall.

outwash Stratified glacially derived sediment (clay, silt, sand, and gravel) deposited by meltwater

streams in channels, deltas, outwash plains, glacial lakes, and on flood plains.

outwash plain The surface of a broad body of outwash formed in front of a glacier.

oxbow lake A crescent-shaped lake in an abandoned bend of a river channel. A precursor of a

meander scar.

Pangea The supercontinent that existed from 300 to 200 million years ago. It combined most of

the continental crust of the Earth, from which the present continents were derived by frag-

mentation and movement away from each other by means of plate tectonics. During an

intermediate stage of the fragmentation, between the existence of Pangea and that of the

present widely separated continents, Pangea was split into two large fragments, Laurasia on

the north and Gondwana in the southern hemisphere.
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ped Any naturally formed unit of soil structure (examples: granule, block, crumb, or aggregate).

peneplain A land surface of regional scope worn down by erosion to a nearly flat or broadly

undulating plain.

period An interval of geologic time; a division of an era (examples: Cambrian, Jurassic, and

Tertiary).

physiography The study and classification of the surface features of Earth on the basis of

similarities in geologic structure and the history of geologic changes.

physiographic province (or division) (a) A region, all parts of which are similar in geologic

structure and climate and which has consequently had a unified geologic history, (b) A region

whose pattern of relief features or landforms differs significantly from that of adjacent

regions.

point bar A low arcuate ridge of sand and gravel developed on the inside of a stream meander by

accumulation of sediment as the stream channel migrates toward the outer bank.

radioactivity logs Any of several types of geophysical measurements taken in bore holes using

either the natural radioactivity in the rocks, or the effects of radiation on the rocks to deter-

mine the lithology or other characteristics of the rocks in the walls of the borehole (examples:

natural gamma radiation log; neutron density log).

relief (a) A term used loosely for the actual physical shape, configuration, or general uneveness of

a part of Earth's surface, considered with reference to variations of height and slope or to

irregularities of the land surface; the elevations or differences in elevation, considered collec-

tively, of a land surface (frequently confused with topography), (b) The vertical difference in

elevation between the hilltops or mountain summits and the lowlands or valleys of a given

regional extent. Formed in places where the forces of plate tectonics are beginning to split a

continent (for example, East African Rift Valley).

rift (a) A narrow cleft, fissure, or other opening in rock made by cracking or splitting; (b) a long,

narrow continental trough that is bounded by normal faults—a graben of regional extent.

sediment Solid fragmental matter, either inorganic or organic, that originates from weathering of

rocks and is transported and deposited by air, water, or ice or that is accumulated by other

natural agents, such as chemical precipitation from solution or secretion from organisms.

When deposited, sediment generally forms layers of loose, unconsolidated material (examples:

sand, gravel, silt, mud, till, loess, and alluvium).

sedimentary rock A rock resulting from the consolidation of loose sediment that has accumu-

lated in layers (examples: sandstone, siltstone, mudstone, and limestone).

shoaling Said of an ocean or lake bottom that becomes progressively shallower as a shoreline is

approached. The shoaling of the ocean bottom causes waves to rise in height and break as

they approach the shore.

silt A rock fragment or detrital particle smaller than a very fine sand grain and larger than coarse

clay, having a diameter in the range of 4 to 62 microns; the upper size limit is approximately

the smallest size that can be distinguished with the unaided eye.

sinkhole Any closed depression in the land surface formed as a result of the collapse of the

underlying soil or bedrock into a cavity. Sinkholes are common in areas where bedrock is near

the surface and susceptible to dissolution by infiltrating surface water. Sinkhole is synonymous

with "doline," a term used extensively in Europe. The essential component of a hydrologically

active sinkhole is a drain that allows any water that flows into the sinkhole to flow out the

bottom into an underground conduit.

slip-off slope Long, low, gentle slope on the inside of a stream meander. The slope on which the

sand that forms point bars is deposited.
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stage, substage Geologic time-rock units; the strata formed during an age or subage, respec-

tively. Generally applied to glacial episodes (for example, Woodfordian Substage of the

Wisconsinan Stage.

stratigraphic unit A stratum or body of strata recognized as a unit in the classification of the

rocks of Earth's crust with respect to any specific rock character, property, or attribute or for

any purpose such as description, mapping, and correlation.

stratigraphy The study, definition, and description of major and minor natural divisions of rocks,

particularly the study of their form, arrangement, geographic distribution, chronologic succes-

sion, naming or classification, correlation, and mutual relationships of rock strata.

stratum A tabular or sheet-like mass, or a single, distinct layer of material of any thickness,

separable from other layers above and below by a discrete change in character of the mate-

rial, a sharp physical break, or both. The term is generally applied to sedimentary rocks but

could be applied to any tabular body of rock (see also bed).

subage A small interval of geologic time; a division of an age.

syncline A convex-downward fold in which the strata have been bent to form a trough; the strata

on either side of the core of the trough are inclined in opposite directions toward the axis of

the fold; the core area of the fold contains the youngest rocks (see also anticline).

system A fundamental geologic time-rock unit of worldwide significance; the strata of a system

are those deposited during a period of geologic time (for example, rocks formed during the

Pennsylvanian Period are included in the Pennsylvanian System).

tectonic Pertaining to the global forces that cause folding and faulting of the Earth's crust;also

used to classify or describe features or structures formed by the action of those forces.

tectonics The branch of geology dealing with the broad architecture of the upper (outer) part of

Earth; that is, the major structural or deformational features, their origins, historical evolution,

and relations to each other. It is similar to structural geology, but generally deals with larger

features such as whole mountain ranges or continents.

temperature-resistance log A borehole log, run only in water-filled boreholes, that measures the

water temperature and the quality of groundwater in the well.

terrace An abandoned floodplain formed when a stream flowed at a level above the level of its

present channel and floodplain.

till Nonlithified, nonsorted, unstratified drift deposited by and underneath a glacier and consisting

of a heterogenous mixture of different sizes and kinds of rock fragments.

till plain The undulating surface of low relief in an area underlain by ground moraine.

topography The natural or physical surface features of a region, considered collectively as to

form; the features revealed by the contour lines of a map.

unconformable Said of strata that do not succeed the underlying rocks in immediate order of age

or in parallel position. A general term applied to any strata deposited directly upon older rocks

after an interruption in sedimentation, with or without any deformation and/or erosion of the

older rocks.

valley trains The accumulations of outwash deposited by rivers in their valleys downstream from

a glacier.

water table The point in a well or opening in the Earth where groundwater begins. It generally

marks the top of the zone where the pores in the surrounding rocks are fully saturated with

water.

weathering The group of processes, both chemical and physical, whereby rocks on exposure to

the weather change in character, decay, and finally crumble into soil.
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THE NATURAL AND HUMAN HISTORY OF
THE SHAWNEE NATIONAL FOREST

Presettlement Forests

One popular myth is that, prior to European contact, America was dominated by impenetrable,

relatively uniform, ancient forests that cloaked the landscape in a static, long-term ecological bal-

ance with the environment. The reality was quite the contrary. Presettlement forests were dy-

namically shaped by a myriad of natural and human influences, disturbances, and catastrophic

events. These events profoundly affected the age, plant species, and wildlife of the forest environ-

ment. Presettlement forests in both the East and West were a diverse mosaic of forest stands,

widely varying in age, tree species, and wildlife and reflecting historical disturbances.

The area that is now the Shawnee National Forest has a rich history. Before European settlement,

the Shawnee was positioned at the western edge of the great forest that blanketed eastern North

America. The Shawnee was on the eastern and southern fringe of the vast American tall grass

prairie that stretched for hundreds of miles beyond the Mississippi. Thus, the area was in a dy-

namic transition zone between forest and prairie.

Presettlement forests in Illinois included oak savannahs and grasslands and open, park-like stands

of upland oak woodland carpeted with grass and wildflowers. The oak woodland itself was inter-

spersed with prairie openings and glades.

These presettlement forests were not pristine in the sense of being uninfluenced by humans. The

forests were strongly influenced by the Native Americans who lived in fixed villages within them.

Domesticated crops accounted for two-thirds or more of these Native Americans' diet, which de-

pended on maize-based agriculture. A relatively recent development in eastern North America,

having come into widespread use only about 800-1,000 A.D., maize-based agriculture resulted in

Native American population densities that were at least five times that of the nomadic, hunter/

gatherer societies to the north and west.

In the forests of the present-day Midwest, thousands of acres were cleared for fields while thou-

sands more were burned frequently to improve game habitat, facilitate travel, reduce insect pests,

remove cover for potential enemies, enhance conditions for berries, and drive game. Agricultural

areas shifted frequently: fields and villages were abandoned when their natural fertility ran out,

new forests were cleared, and abandoned lands quickly reverted back to forest.

The abundant wildlife that was reported to have existed in the area also gives an indication of the

frequency of disturbance! Deer, wild turkeys, and a variety of game birds abounded; all of those

species are associated with forest edge habitats.

Yet, perhaps the most important influence shaping the forest landscape was wildfires. Frequent

wildfires, started both naturally by lightning or set intentionally or inadvertently by Native Ameri-

cans, was a dominant force in shaping the open, park-like, woodland and prairie landscapes as

well as the plant and animal communities that were associated with them. Fire-created prairies ex-

tended well into Ohio. Evidence of the dominant role fire played in these forests is demonstrated

by the fact that, when farms finally began to move out on to the prairies, cutting off prairie fires,

millions of acres of open oak savannahs and even treeless prairies to the east of these farms be-

came dense forests within two decades.
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As we in the present day see rising concern over the need to protect some of our forests in their

"natural" condition, the complex natural and presettlement human history of these forests raises

equally complex technical and policy questions over whether and how to allow wildfire to assume

its natural role in these areas as well as whether to seek to replicate presettlement human influ-

ences. We know that it is virtually impossible to separate natural from human influences in

presettlement forests. North American forests have been both occupied and influenced by humans

from the time these forests advanced north before the retreating continental glaciers 8,000 years

ago.

Forests After European Settlement

There is no doubt that the era of European settlement vastly increased the impact of humans on

the forests in the area that is now the Shawnee National Forest. After 1800, settlers by the thou-

sands poured into the Ohio and Mississippi River valleys. Between 1810 and 1 820, the population

of Ohio doubled, that of Indiana increased six times, from less than 25.000 to almost 150,000.

Hardwood forests, which at the time were thought to occupy the best farm land, were particularly

sought after. The wave of settlers first sought the rich land next to rivers and major streams, but

soon moved up the slopes into the hills between the river valleys. The forests fell rapidly under this

onslaught.

Forests were cleared not only because they occupied productive farm land, but also because they

provided fuel for domestic heating and cooking as well as providing fencing and building materials

for barns, homes, outbuildings, and myriad other products needed in the development of the area.

Forests also provided the fuel for steamboats and railroads that linked midwestern farms to the

growing cities of the East. Until 1850, most U.S. iron was produced using wood charcoal. There

were a number of iron furnaces in the area of the Shawnee.

Sawmills were introduced into the area, accompanying the rapid increase in towns and villages.

The common practice, known as "high grading," was to cut only the desired high-value species.

This practice resulted in residual stands of trees that were defective, misshapen, and generally of

low value. Unfortunately, this logging practice has been continued to modern times—under the

guise of "selection management"—by some logging operations, which take commercially useful

trees only, leaving behind inferior trees.

The Nature of Present-Day Forests of Illinois

Present-day forests in Illinois reflect their natural and human history. Stands that were logged in

the late 1 800s for fuel wood and other uses regenerated to a mixture of tree species that are es-

sentially even-age. Because the slower growing, understory-tolerant species may take 40 years

longer—or more—to mature than do the intolerant species, these early cuttings produced stands

that were not only a mixture of species but also a mixture of sizes. Such stands are often mistaken

for all-aged, even though they are even-aged.

Harvest in Illinois forest lands increased until the turn of the century, but then declined steadily be-

cause of the earlier harvesting. Commercial forest lands in Illinois have continued to undergo

changes. Between 1962 and 1985, more than half of the state's bottom land hardwood types had

been eliminated, either through disease or conversion to other land uses. During this same period,

due primarily to the exclusion of fire from the forest, the upland oak-hickory type decreased by

12%, and the maple-beech increased by over 1,100%. Using the 1985 forest inventory of Illinois,

the forest cover types of the Shawnee can be placed into four major type groups: upland oak-

hickory (69.6%). pine (18.0%), bottom land hardwoods (7.6%). and maple-beech (4.8%).
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The Shawnee National Forest

In the late 1800s, there began a growing tide of land abandonment and reversion to forest, particu-

larly of marginal farm land east of the Mississippi. Marginal agricultural land in the area of the

present-day Shawnee began to be abandoned as its productivity was depleted and more produc-

tive farm lands opened up elsewhere. This process was accelerated by the Great Depression.

Under the Resettlement Act, a New Deal program, thousands of farmers on marginal farm lands

in the East and South were relocated to more productive land. Between 1925 and 1945, almost 20

million acres of their abandoned farms were incorporated into the eastern national forests under

the Weeks Act. Millions of additional acres became state parks and forests.

In 1939, the Shawnee National Forest was established as part of this program. Soon after acquisi-

tion, feral cattle, dogs, and goats were eliminated, and the land was rehabilitated. Rehabilitation

was accelerated by CCC (Civilian Conservation Corps) crews who planted fast-growing southern

pine trees on worn-out and eroding croplands and pastures.

Today, these rehabilitated lands support productive forests that provide superb habitat for rich

populations of many wildlife species, some of which had not existed on these lands for a century

or more. Because of its settlement history, the forests of the Shawnee are relatively young. Only

13% of the forest has stands that are over 100 years old. There are no old growth or "ancient"

forests of the kind that exist on the Pacific Coast. In fact, even the presettlement forests that ex-

isted in the area of the Shawnee were open-grown, one-storied, park-like stands, interspersed with

prairies. These forests were far different—both visually and ecologically—from the closed-cano-

pied, multi-storied, old-growth forests of the coastal temperate rainforests.
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Depositional History of the

Pennsylvanian Rocks in Illinois

At the close of the Mississippian Period, about 320 million years ago, the sea withdrew from the Midwest.

During this earliest Pennsylvanian time, erosion removed hundreds of feet of the pre-Pennsylvanian strata,

stripping them away and cutting into older rocks. Ancient river systems scoured deep channels into the

bedrock surface. Later, but also during early Pennsylvanian time, the sea level began to rise, interrupting

the erosion and leading to filling of the valleys in the erosion surface with fluvial, brackish, and marine

sands and muds.

During most of Pennsylvanian time, the Illinois Basin gradually subsided, leading to the accumulation and

preservation of about 3,000 feet of Pennsylvanian sediments in the basin. Depositional conditions in the

Illinois Basin during the Pennsylvanian

were similar to those during the pre-

ceding late Mississippian. A river sys-

tem flowed southwestward across a

swampy lowland, carrying mud and

sand from the highlands located to

the northeast. This river system formed

thin but widespread deltas that coa-

lesced into a vast coastal plain or

lowland that prograded (built out) into

the shallow sea that covered much of

present-day Illinois (see paleogeo-

graphic map, to the right). Because
the lowland stood only a few feet

above sea level, slight changes in

relative sea level caused great shifts

in the position of the shoreline.

The locations of the delta systems and

the shorelines of the resulting coastal

plain shifted, partly because of world-

wide sea level changes, but also

because of variations in the amount
of sediment provided by the river

systems and local changes in basin

subsidence rates. These frequent

shifts in the coastline position caused
the depositional conditions at any one
locality in the basin to alternate fre-

quently between marine and nonmarine,

producing a variety of lithologies in the

Pennsylvanian rocks (see lithology

distribution chart, on page 2).
Paleogeography of the Illinois-Indiana region during Pennsylvanian

time. The diagram shows a Pennsylvanian river delta and the posi-

tion of the shoreline and the sea at an instant of time during the

Pennsylvanian Period.
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Conditions at various places on the shallow sea floor favored the deposition of sand, mud, or lime mud.

Sand was deposited near the mouths of distributary channels, where it was reworked by waves and spread

out as thin sheets near the shore. Mud was deposited in quiet-water areas—in delta bays between dis-

tributaries, in lagoons behind barrier bars, and in deeper water beyond the nearshore zone of sand

deposition. Limestone was formed from the accumulation of the limy parts of animals and marine plants

that were laid down in areas where only minor amounts of sand and mud were being deposited. The areas

of sand, mud, and limy mud deposition continually shifted as the position of the shoreline changed and as

the delta distributaries extended seaward or shifted their positions laterally along the shore.

Nonmarine sand, mud, and lime mud were deposited on the coastal plain bordering the sea. The non-

marine sand was deposited in delta distributary channels, in river channels, and on the broad floodplains

of the rivers. Some sand bodies 100 or more feet thick were deposited in channels that cut through the

underlying rock units by rivers. Mud was deposited mainly on floodplains. Some mud and freshwater lime

mud were deposited locally in freshwater lakes and swamps.

Because of plate tectonics, Illinois was located close to the equator at this time. Beneath the quiet water,

in the extensive swamps that prevailed for long intervals on the emergent coastal lowland, peat was
formed, by accumulation of plant material. Lush forest vegetation covered the region; it thrived in the warm,

moist Pennsylvanian-age tropical climate. The origin of the underclays beneath the coal is not precisely

known, but most evidence indicates that they were deposited in the swamps as slackwater mud before the

accumulation of significant plant debris. The underclays represent the soils upon which the lush vegetation

grew in the swamps. Underclay commonly contains plant roots and rootlets that appear to be in their

original growth position. The vast swamps were the culmination of nonmarine deposition. Resubmergence

of the borderlands by the sea commonly interrupted nonmarine deposition, and, when this happened,

marine sediments were laid down over the past.

PENNSYLVANIAN CYCLOTHEMS
The Pennsylvanian strata exhibit extraordinary variations in thickness and composition both laterally and

vertically because of the extremely varied environmental conditions under which they formed. In many
places, individual sedimentary units are only a few inches thick, and only a few units exceed 30 feet thick.

Sandstones and shales commonly grade laterally into each other, and shales may interfinger with and grade

laterally and vertically into limestones and coals. The underclays, coals, black shales, and some limestones,

however, display remarkable lateral continuity for such thin units. Some coal seams have been laterally

traced (correlated) in mines, outcrops, and subsurface drill records over areas comprising several states.

The rapid and frequent changes in depositional environments during Pennsylvanian time produced regular

or cyclical successions of sandstone, shale, limestone, and coal in response to the shifting shoreline. Each

succession of these lithologies, called a cyclothem, consists of a series of marine and nonmarine rock

units that record a complete cycle of marine invasion and retreat. Geologists have determined, after

extensive studies of the Pennsylvanian strata in the Midwest, that an "ideally" complete cyclothem consists

of ten sedimentary units (see illustration on following page contrasting the model of an "ideal" cyclothem

with a model showing the dynamic relationships between the various members of a typical cyclothem).

Approximately 50 cyclothems have been described in the Illinois Basin, but only a few contain all ten units

at any given location. Generally, one or more of the expected units are missing because conditions of

deposition were more varied than indicated by the "ideal" cyclothem. However, the order of units in each

cyclothem is almost always the same: a typical cyclothem includes a basal sandstone overlain by an under-

clay, coal, gray shale, black sheety shale, marine limestone, and gray marine shale. In general, the sandstone-

underclay-coal-gray shale portion (the lower units) of each cyclothem is nonmarine: it was deposited as

part of the coastal lowlands from which the sea had withdrawn. However, some of the sandstones are entirely

or partly marine. The units above the coal and gray shale are marine sediments deposited when the

sea advanced over the coastal plain.
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Shale, gray, sandy at top; contains marine
fossils and ironstone concretions, especially

in lower part.

Limestone contains marine fossils.

Shale, black hard, fissile, "slaty"; contains
large black spheroidal concretions and
marine fossils.

Limestone contains marine fossils.

Shale, gray; pyritic nodules and ironstone

concretions common at base; plant fossils

locally common at base; marine fossils rare.

Coal; locally contains clay or shale partings.

Underclay, mostly medium to light gray except
dark gray at top; upper part noncalcareous,
lower part calcareous.

Limestone, argillaceous; occurs in nodules or

discontinuous beds; usually nonfossiliferous.

10

Shale, gray, sandy.

Sandstone, fine-grained, micaceous, and silt-

stone, argillaceous; variable from massive to

thin-bedded; usually with an uneven lower
surface. - 3 "

'

••?.-

10

The idealized cyclothem at left (after Willman and Payne, 1942) implies continuous, widespread distribution of indi-

vidual cyclothem units. At right, the model of a typical cyclothem (after Baird and Shabica, 1980) shows the laterally

discontinuous nature of many units in a cyclothem.

ORIGIN OF COAL AND ASSOCIATED SEDIMENTS

It is generally accepted that the Pennsylvanian coals originated by the accumulation of vegetable matter,

normally in place, in extensive, fresh- to brackish-water swamps. They represent the last deposits of the

nonmarine portion of a cyclothem. The swamps occupied vast areas of the coastal lowland, which bor-

dered the shallow Pennsylvanian sea. A luxuriant growth of forest plants, many quite different from those

of today, flourished in the warm, humid Pennsylvanian climate. The deciduous trees and flowering plants

that are common today had not yet evolved. Instead, the jungle-like forests were dominated by giant ances-

tors of present-day club mosses, horsetails, ferns, conifers, and cycads. The undergrowth also was well

developed, consisting of many ferns, fernlike plants, and small club mosses. Most of the plant fossils

found in the coals and associated sedimentary rocks show no annual growth rings, pointing to the rapid

growth rates and lack of seasonal climatic variations typical of tropical lowland areas. Many of the Penn-

sylvanian plants, such as the seed ferns, eventually became extinct.

Plant debris from the rapidly growing swamp forests—leaves, twigs, branches, and logs—accumulated as

thick mats of peat on the floors of the swamps. Normally, vegetable matter rapidly decays by oxidation,

forming water, nitrogen, and carbon dioxide. However, conditions within these ancient swamps, which

were probably low in oxygen, prevented oxidation, and any decay of the peat deposits was due primarily

to bacterial action.
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Periodic invasions of the Pennsylvanian sea across the coastal swamps killed the forests, and the coals

were commonly buried by marine sediments. During and after the marine transgressions, the peat gener-

ally became saturated with sea water containing sulfates and other dissolved minerals. The marine sediments

deposited on top of the drowned peat also were saturated with sea water, which further infiltrated the peat.

As a result, wherever the peat was buried by marine sediments, the coal that eventually formed from it is

high in sulfur. However, in a number of areas, nonmarine muds, silts, and sands from the river system on

the coastal plain were deposited on the peat where flooding broke through natural levees or the river changed

its course. Where these sediments (unit 6 of the cyclothem) directly overlie the coal and are more than

20 feet thick, we find that the coal is low in sulfur. Although the seas eventually covered the areas where
these nonmarine, fluvial sediments overlay the peat, the peat was protected from most sulfur infiltration by

these thick fluvial sediments.

As the basin continued to subside and more and more layers of sediment accumulated, the peat deposits

were gradually transformed into coal by slow physical and chemical changes in which pressure (compac-

tion by the enormous weight of overlying sedimentary layers), heat (also due to deep burial), and time were

the most important factors. Water and volatile substances (nitrogen, hydrogen, and oxygen) were slowly

driven off during the coal-forming ("coalification") process, and the peat deposits were changed into coal.

Coals have been classified by ranks that are based on the degree of coalification. The commonly recog-

nized coals, in order of increasing rank, are (1) brown coal or lignite, (2) subbituminous, (3) bituminous,

and (4) anthracite. Each increase in rank is characterized by larger amounts of fixed carbon and smaller

amounts of oxygen and other volatiles in the coal. The hardness of coal also increases with increasing

rank. All Illinois coals are classified as bituminous.

Underclays occur beneath most of the coals in Illinois. Because underclays are generally unstratified

(unlayered), are leached to a bleached appearance, and generally contain plant roots, many geologists

consider that they represent the ancient soils on which the coal-forming plants grew.

The exact origin of the carbonaceous black shale that occurs above many coals is uncertain. Under current

thinking, the black shale is interpreted to represent the deepest part of the marine transgression. Maximum
transgression of the sea was coupled with upwelling of nutrient-rich ocean water near the edge of the conti-

nental shelf and the accumulation of mud and animal remains on an ocean floor that became depleted of oxy-

gen by the decay of the organic matter. This led to the deposition of black organic mud over vast areas

stretching from Texas to Illinois. Deposition occurred in quiet-water areas where very fine-grained, iron-rich

mud and finely disseminated plant debris were washed in from the land. Most of the fossils found in the

black shale represent planktonic (floating) and nektonic (swimming) forms—not benthonic (bottom-dwelling)

forms. The depauperate (dwarf) fossil forms previously reported in black shale in some places were thought

to have been forms that were stunted by toxic conditions in the sulfide-rich, oxygen-deficient water of the

lagoons. However, recent study has shown that this "depauperate" fauna actually consists mostly of normal-

size individuals of species that never grew any larger.
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Illinois State Geological Survey

GeoNote 3
Quaternary Glaciations in Illinois

ORIGIN OF THE GLACIERS

Over the past 1 .6 million years, known as the Quaternary (kwa-TURN-ah-ree) Period of geologic time,

most of the northern hemisphere above the 50th parallel was repeatedly covered by glacial ice. The cool-

ing of the earth's surface began at least 2 million years ago, and with that cooling, ice sheets eventually

formed in sub-arctic regions and spread outward until they covered the northern parts of North America. With

ongoing climatic change during this period, these ice sheets would form and reform many times.

Early studies of the glaciated landscape concluded that four separate glacial episodes had occurred

in North America. The deposits from each episode were separated from each other by buried soils, which

formed on the land during warmer intervals between glaciations. More recent studies have shown that

there were more than four glaciations, but the actual number is not yet known. These studies, based on

buried soils and glacial deposits, estimate 4 to 8 episodes of ice advance and melting over Illinois. We
now know that the older glacial sediments are more complex than originally thought and probably repre-

sent more than one episode. Until we know more, all of the glacial deposits before the Illinois Episode

(from 300,000 to 125,000 years ago) are classified as pre-lllinoian deposits.

The North American ice sheets developed when the mean annual

temperature was perhaps 4° to 7°C (7° to 13°F) cooler than it is

now and winter snows did not completely melt during the summers.

Because this time of cooler conditions lasted tens of thousands of

years, thick masses of snow and ice accumulated to form glaciers.

As the ice thickened, the great weight of the ice and snow caused the

glaciers to flow outward at their margins, in several instances for hun-

dreds of miles. As the ice sheets expanded, the areas in which snow
accumulated probably also increased in extent.

Several times, huge tongues of ice, called lobes, flowed southward

from two different centers, one east and one west of present-day

Hudson Bay, and converged in the central lowland between the

Appalachian and Rocky Mountains. There the glaciers made their

farthest advances to the south. The sketch at right shows the centers

of flow, the general directions of flow from the centers, and the south-

ern extent of glaciation. Because Illinois lies entirely in the central

lowland, it was invaded by lobes from both accumulation centers.

EFFECTS OF GLACIATION

Quaternary glaciers and the waters melting from them changed the landscapes they covered. The glaciers

scraped and smeared the landforms they overrode, leveling and filling many of the minor valleys and

even some of the larger ones. Moving ice carried colossal amounts of rock and earth, commonly for

hundreds of miles; the glaciers scoured the land surface and kneaded much of the rock debris into the

moving ice.

The continual floods of glacial meltwaters entrenched new drainageways and deepened old ones, and

partly refilled them with the great quantities of rock and earth carried by the glaciers. According to some
estimates, the amount of water that was drawn from the sea and changed into ice during a glacial episode

lowered the sea level by 300 to 400 feet below its present level. When these continental ice sheets melted,

tremendous volumes of water eroded and transported sediments.

Illinois 5tate Geological 5urvey (oeoNote 5



In most of Illinois, glacial and meltwater deposits buried the previous rocky, low, hill-and-valley terrain and

created the flatter landforms that became our prairies. The glaciers deposited across roughly 90% of the

state a mantle of ground-up rock debris, gravel, sand, and clay that at points reaches thicknesses of 400 to

500 feet. These deposits are of incalculable value to Illinois residents because they are the parent material of

our rich soils, the source of drinking water for much of the state, and provide large amounts of sand and
gravel for construction.

GLACIAL DEPOSITS

Drift is the term for all the deposits of earth and rock materials moved by glacial activity. Till is the type of

drift deposited directly by glacial ice. Because till was not moved much by water, this sediment is unsorted,

containing particles of many different sizes and compositions. It is also unstratified (unlayered). A till may
contain materials ranging in size from microscopic clay particles to large boulders. Most tills in Illinois are

pebbly clays with only a few boulders. For descriptive purposes, a mixture of clay, silt, sand, and boulders

is called diamicton. This term describes a deposit that could be interpreted as till or as a product of a differ-

ent process called mass wasting, which includes such things as rockslides or other similar gravity-propelled

earth movements.

End moraines are the arc-shaped ridges that formed when till piled up along a glacier's leading edge when
the ice was melting at roughly the same rate as the flowing ice moved forward. Till also formed ground
moraines, or till plains, which have gently undulating surfaces formed as the ice front melted back. Deposits

of till identify areas once covered by glaciers. The many alternating ridges and plains in northeastern

Illinois are the successive end moraines and till plains formed by the retreating Wisconsin Episode glaciers

(about 25,000 to 13,500 years ago).

Outwash is the sorted and stratified sediments deposited by meltwater flowing away from the glacier.

Outwash deposits are layered in beds because the flow of water that moved the material varied in gradient,

volume, velocity, and direction. As a meltwater stream carried the rock materials along, it sorted them by

size. As stream velocity decreased, heavier gravels and cobbles were deposited before fine sands, silts,

and clays, which were deposited farther downstream. Typical Quaternary outwash in Illinois consists of

multilayered beds of sands and gravels and some silts. These beds look much like modern stream deposits

in some places. Outwash tends to be coarser and less weathered than stream sediment (alluvium), which

is generally finer than medium sand and contains variable amounts of weathered rock debris.

Meltwater deposits are found not only in the area once covered by the glaciers but also in areas far beyond

it. Meltwater streams ran off the top of the glacier, in crevices within the ice, and under the ice. In some
places, the cobble-gravel-sand filling of the bed of a stream that flowed within or under the ice is preserved

as a sinuous ridge called an esker. Some eskers in Illinois are made up of sandy, silty, gravelly deposits

and contain mass-wasted diamicton material. Cone-shaped mounds of coarse outwash, called kames,

were formed where meltwater plunged through crevasses in the ice.

The finest outwash sediments, the silts and clays, formed bedded deposits in the ponds and lakes that filled

glacier-dammed stream valleys, the low-lying areas on till plains, and some low till plains where meltwaters

were diked behind end moraines. Meltwater streams that entered a lake rapidly lost velocity and dropped

the sands and gravels they carried, forming deltas at the edge of the lake. Very fine sands and silts were

commonly redistributed on the lake bottom by wind-generated currents, and the clays, which stayed in

suspension longest, slowly settled out and accumulated with them.

Along the ice front, meltwater ran off in innumerable shifting, cross-cutting, and short-lived streams (called

braided streams), which laid down an outwash plain, a broad, flat blanket of outwash. Outwash was also

carried away from the glaciers in valleys cut by floods of meltwater. The Mississippi, Illinois, and Ohio Rivers

occupy valleys that were major channels for meltwaters and that were greatly widened and deepened

during the greatest meltwater floods. When the floods waned, these valleys were partly filled with outwash

far beyond the ice margins. Such outwash deposits, largely sand and gravel, are known as valley trains.

Valley train deposits may be both extensive and thick. For instance, the long valley train of the Mississippi

River Valley is up to 200 feet thick in places.
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LOESS, EOLIAN SAND, AND SOILS

One of the most widespread types of sediment resulting from glaciation was carried not by ice or water,

but by wind. Loess (rhymes with "bus") is the name given to windblown deposits dominated by silt-sized

particles. Most of the silt was derived from wind erosion of the valley trains. Wind action also sorted out

sand, which commonly formed sand dunes on the valley trains or on the adjacent uplands. In places, sand

dunes have migrated up to 10 miles away from the principal source of sand. Flat areas between dunes

are generally underlain by eolian (windblown) sand that was usually reworked by water action. On uplands

along the major valley trains, loess and eolian sand are commonly interbedded. With increasing distance

from the valleys, the eolian sand thins and disappears, often within one mile from the valleys.

Eolian deposition occurred when certain climatic conditions, most likely following a seasonal pattern,

were met. Deposition was probably in the fall, winter, or spring when low precipitation volumes and low

temperatures caused meltwater floods to abate, exposing the surfaces of the valley trains and permitting

them to dry out. Throughout the Quaternary Period, prevailing westerly winds deposited loess more thickly

on the east sides of the source valleys. Although the loess thins rapidly away from the valleys, it extends

over almost all of Illinois.

Each glacial episode was followed by an interglacial episode that began when the climate warmed enough

to melt the glaciers and their snowfields. During these warmer intervals, when the climate was similar to

that of today, drift and loess surfaces were exposed to weather and the activities of living things. Con-

sequently, over most of the glaciated terrain, soils developed on the glacial deposits and altered the

composition, color, and texture of the deposits. Such soils were generally destroyed by later glacial advances,

but some were buried. Those that survive serve as "key beds," or stratigraphic markers, and are evidence

of the passage of a long interval of time.

Contributed by Dwain J. Berggren

Revised January 2000 by Myrna M. Killey
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GLACIATION IN A SMALL ILLINOIS REGION

These diagrams show how a continental ice sheet might have looked at various stages as it moved across a

small region in Illinois. The diagrams illustrate how the ice sheet could change the old terrain and create a
landscape like the one we live on. To visualize how these glaciers looked, geologists study the landforms

and materials left in the glaciated regions, as well as present-day mountain glaciers and polar ice caps.

The block of land in the diagrams is several miles wide and about 10 miles long. The vertical scale is

exaggerated; layers of material and landforms are drawn proportionally thicker and higher than they actually

are so that they can be easily seen.

1 The Region before Glaciation — Like most of Illinois, the region illustrated is u nderla in by almost flat-lying beds of

sedimentary rocks—layers of sandstone ('••'•••). limestone (iEcE), and shale
(
==~=^

) Millions of years of erosion

have planed down the bedrock (BR), creating a terrain of low uplands and shallow valleys. A residual soil weathered from
local rock debris covers the area but is too thin to be shown in the drawing. The streams illustrated here flow westward
and the one on the right flows into the other at a point beyond the diagram.

2 The Glacier Advances Southward — As the glacier (G) spreads out from its ice snowfield accumulation center, it

scours (SC) the soil and rock surface and quarries (Q)—pushes and plucks up—chunks of bedrock. The materials are

mixed into the ice and make up the glacier's "load." Where roughness in the terrain slows or stops flow (F), the ice

"current" slides up over the blocked ice on innumerable shear planes (S). Shearing thoroughly mixes the load. As
the glacier spreads, long cracks called "crevasses" (C) open parallel to the direction of ice flow. The glacier melts as it

flows forward, and its meltwater erodes the terrain in front of the ice, deepening (D) some old valleys before ice covers

them. Meltwater washes away some of the load freed by melting and deposits it on the outwash plane (OP). The
advancing glacier overrides its outwash and in places scours much of it up again. The glacier may be 5,000 or so feet

thick in Canada and tapers to the margin, which was probably in the range of several hundred feet above the old terrain.

The ice front advances perhaps as much as a third of a mile per year.
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3 The Glacier Forms an End Moraine — A warming climate halts the glacier advance across the area, and the ice

begins to melt as fast as it advances. The ice front (IF) is now stationary, or fluctuating in a narrow area, and the glacier

is forming an end moraine.

As the top of the glacier melts, some of the sediment that is mixed in the ice accumulates on top of the glacier. Some
is carried by meltwater onto the sloping ice front (IF) and out onto the plain beyond. Some of the debris slips down the ice

front in a mudflow (FL). Meltwater runs through the ice in a crevasse (C). A supraglacial stream (SS) drains the top of the

ice, forming an outwash fan (OF). Moving ice has overridden an immobile part of the front on a shear plane (S). All but

the top of a block of ice (B) is buried by outwash (O).

Sediment from the melted ice of the previous advance (figure 2) remains as a fill layer (T), part of which forms the till

plain (TP). A shallow, marshy lake (L) fills a low place in the plain. Although largely filled with drift, the valley (V) remains

a low spot in the terrain. As soon as the ice cover melts, meltwater drains down the valley, cutting it deeper. Later, out-

wash partly refills the valley: the outwash deposit is called a valley train (VT). Wind blows dust (DT) off the dry floodplain.

The dust will form a loess deposit when it settles. Sand dunes (D) form on the south and east sides of streams.

4 The Region after Glaciation — As the climate warms further, the whole ice sheet melts, and glaciation ends. The
end moraine (EM) is a low, broad ridge between the outwash plain (OP) and till plains (TP). Run-off from rains cuts stream

valleys into its slopes. A stream flows through the end moraine along the channel cut by the meltwater that ran out of the

crevasse in the glacier.

Slopewash and vegetation are filling the shallow lake. The collapse of outwash into the cavity left when the ice block

melted has formed a kettle (K). The outwash that filled a tunnel draining under the glacier is preserved in an esker (E). The
hill of outwash left where meltwater dumped sand and gravel into a crevasse or other depression in the glacier or at its

edge is a kame (KM). A few feet of loess covers the entire area but cannot be shown at this scale.
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TIMETABLE OF EVENTS IN THE ICE AGE IN ILLINOIS

Years

before

present

Time-distance diagram

Interglacial and
glacial episodes Sediment record

Dominant climate conditions

Dominant land forming and soil

forming events

interglacial

episode

10,000-

75,000 -

125,000-

WISCONSIN
(late)

glacial

episode'

WISCONSIN
(early and middle)

glacial margin

north of Illinois

SANGAMON
interglacial

episode

300,000 -

425,000 -

ILLINOIS

glacial

episode

YARMOUTH
interglacial

episode

PRE-ILLINOIS
glacial

1,600,000-

and older

interglacial

episodes

River, lake, wind, and
slope deposits.

Warm; stable landscape conditions.

Formation of modern soil; running wa-
ter, lake, wind, and slope processes.

Till and ice-marginal

deposits; outwash and
glacial lake deposits;

loess.

Cold; unstable landscape conditions.

Glacial deposition, erosion, and
landforming processes (e.g., formation

of end moraines, outwash plains, valley

trains, proglacial lakes, kettles), plus

running water, lake, wind, and slope

processes.

Loess; river, lake, and
slope deposits.

Cool; stable.

Weathering, soil formation (Farmdale
Soil and minor soils); wind and running

water processes.

River, lake, wind, and
slope deposits.

Warm; stable.

Weathering, soil formation (Sangamon
(Soil); running water, lake, wind, and
slope processes.

Till and ice-marginal

deposits; outwash and
glacial lake deposits;

loess.

Cold; unstable.

Glacial deposition, erosion, and land-

forming processes, plus proglacial

running water, lake, wind, and slope

processes; possible minor soil

formation.

River, lake, wind, and
slope deposits.

Warm; stable.

Long weathering interval with deep soil

formation (Yarmouth Soil); running

water, lake, wind, and slope processes.

Till and ice-marginal

deposits; outwash and
glacial lake deposits;

loess plus nonglacial

river, lake, wind, and
slope deposits.

Alternating stable and unstable inter-

vals of uncertain duration.

Glacial deposition, erosion, and land-

forming processes, plus proglacial

and interglacial running water, lake,

wind, and slope processes; interglacial

weathering and soil formation.
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SEQUENCE OF GLACIATIONS AND INTERGLACIAL
DRAINAGE IN ILLINOIS

Ancient
Iowa R.

Ancient
Ohio R.

Ancient
Tennessee R.

PRE-PLEISTOCENE PRE-ILLINOIS
major drainage inferred glacial limits

YARMOUTH
major drainage

ILLINOIS

extent of three glacial advances

Ancient

Ohio R.

Ancient
Tennessee R.

SANGAMON
major drainage

WISCONSIN
(early and middle)

glacial margin

north of Illinois

maximum
glacial advance

WISCONSIN (late)

ice and
Kankakee Flood

drainage

glacial lakes
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Quaternary Deposits of Illinois

Hudson and Wisconsin Episodes

Mason Group and Cahokia Fm

Cahokia and Henry Fms; sorted

sediment including waterlain

river sediment and windblown
and beach sand

Equality Fm; fine grained
sediment deposited in lakes

Wedron Group (Tiskilwa, Lemont, and
Wadsworth Fms) and Trafalgar Fm;
diamicton deposited as till and
ice-marginal sediment

End moraine

Ground moraine

linois Episode

Winnebago Fm; diamicton deposited as till

and ice-marginal sediment

Glasford Fm; diamicton deposited as till and
ice-marginal sediment

Teneriffe Silt and Pearl Fm, including Hagerstown
Mbr; sorted sediments including river and lake

deposits and wind blown sand

Pre-lllinois Episodes

Wolf Creek Fm; predominantly diamicton
deposited as till and ice-marginal sediment

Paleozoic, Mesozoic, and Cenozoic

Mostly Paleozoic shale, limestone, dolomite,

or sandstone; exposed or covered by loess

and/or residuum

50 km
I I I
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c VALPARAISO

END MORAINES
of the

WISCONSIN GLACIAL EPISODE

Wisconsin Episode moraines arc across northeastern Illinois

and indicate position of temporary stationary ice fronts as
the ice retreated.
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Illinois State Geological Survey

Geobit 4
Fluorite—Illinois' State Mineral

Deep purple, amethyst, sky blue,

sea green, sunny yellow, and crystal

clear—the mineral fluorite comes
in all colors. Many types of fluo-

rite even glow under ultraviolet

light. Theyre "fluorescent."

Pure fluorite (CaF2 ), made
of the elements calcium (Ca)

and fluorine (F), is colorless.

The various colors result

from tiny amounts of other ele-

ments substituting for the cal-

cium in the crystalline structure.

Transparent to translucent, this

glass-like mineral may be found as

irregular masses filling veins that cut

through rocks, or in flat-lying bands or

layers parallel with the bedding planes

of sedimentary rocks. As the photos show,

fluorite also forms as clusters of beautiful

cubic crystals.

Light reflects strongly from fluorite's crystal

faces and cleavage surfaces, which can be polished to a high luster. As lovely as a gemstone, fluorite is brittle

and relatively soft (4 on Moh's hardness scale), so it's unsuitable for ring settings. Brooches and pendants must
be handled carefully to avoid scratching or fracturing the mineral specimens in these settings.

Just for display, miners chipped octahedrons out of coarse crystals of the mineral known to the mining

industry as fluorspar. They called the eight-sided crystals "diamonds."

How did Illinois' fluorite deposits form?
Hot water containing fluorine and other dissolved chemicals rose from deep in the earth during the Jurassic

Period, about 150 to 200 million years ago. The water flowed through northeast-trending faults and fractures in

limestones laid down earlier in the Mississippian Period, about 330 million years ago.

When the hot brines reached the calcium-rich Mississippian rocks, the temperature and other conditions

were just right for crystallizing fluorite along the walls of the faults and in flat-lying layers parallel to the beds
of limestone. These host rocks dissolved and were replaced with the fluorite.

Country's leading producer offluorspar
Since the early 1800s, fluorite has been mined in southeastern Illinois. The fluorspar-rich region, which reaches

from southeastern Illinois into parts of Kentucky, was called the Illinois-Kentucky Fluorspar Mining District.

In Illinois, fluorite was mined almost exclusively in Hardin and Pope Counties. The main production came
from fissure-vein deposits in the Rosiclare district, and stratiform (bedding plane) deposits in the Cave in Rock
district (map, p. 2). Other areas in the two counties yielded smaller amounts of the mineral.

Most mining was underground, as much as 1,300 feet deep. But open-pit mines operated where fluorite

deposits intersected land surface.

Illinois displaced Kentucky as the country's leading producer of fluorite in 1942. For many years, Illinois

accounted for more than 50% of total U.S. fluorspar production. But by 1990, more than 90% of the fluorite

used in the U.S. was imported. Illinois was the only remaining domestic producer.

Competition from foreign producers coupled with high costs of underground operations made Illinois'

fluorspar mining unprofitable. The last fluorspar mine in Illinois closed in December 1995. Fluorspar is no
longer mined anywhere in the United States.



Illinois' State Mineral The General

Assembly made fluorite the State

Mineral in 1965, when fluorspar min-

ing was a multimillion-dollar-per-year

industry in Illinois. Over the years,

much more fluorite has been mined
in Illinois than in any other state.

The many uses for fluorite
Native Americans carved fluorspar to make
artifacts, but the first recorded use of Illinois'

fluorite was in 1823, when fluorspar mined
near Shawneetown in Gallatin County was
used to manufacture hydrofluoric acid.

The mineral, fluorite, is vital to the nation's

economy. Its uses:

R6E

Principal mining areas in the southeastern Illinois part of the

Illinois-Kentucky Fluorspar Mining District.

Mineral «._____^^^^^^^^^^^^^_^^^^^^_^^^^^^_^__
• smelting iron, aluminum, and other metal alloys,

• manufacturing glass, enamel glazes, ceramics, portland cement,
and many chemical compounds.

Hydrofluoric acid ^^^^^^^^___^^_^^_
• refining aluminum,

• refining uranium fuel for nuclear reactors,

• making rocket fuel and metal plating.

Inorganic fluoride chemicals

toothpastes, special fluxes for welding rods, optical lenses, and
concrete hardeners.

Organic fluoride chemicals ^^^^^_^^^^_^^^^_^^^^^^^^^
• Plastics, refrigerants, nonstick coatings, lubricants, stain repellents,

dyes, herbicides, medicines and anesthetics, cleaning solvents,

degreasing agents and foaming agents.

One of the most widely used organic fluoride compounds, the refrigerant Freon 12®, is no longer produced in

the United States. The chlorine in the compound is thought to damage the protective ozone layer that

shields the earth from ultraviolet radiation.
Contributed by D.L. Reinertsen and J.M. Masters
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