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Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{qluo2, grosu}@illinois.edu

ABSTRACT
Multithreaded programs are hard to develop and test. In or-
der for programs to avoid unexpected concurrent behaviors
at runtime, for example data-races, synchronization mecha-
nisms are typically used to enforce a safe subset of thread
interleavings. Also, to test multithreaded programs, devel-
opers need to enforce the precise thread schedules that they
want to test. These tasks are nontrivial and error prone.

This paper presents EnforceMOP, a framework for spec-
ifying and enforcing complex properties in multithreaded
Java programs. A property is enforced at runtime by block-
ing the threads whose next actions would violate it. This
way the remaining threads, whose execution is safe, can
make global progress until the system eventually reaches a
global state in which the blocked threads can be safely un-
blocked and allowed to execute. Users of EnforceMOP can
specify the properties to be enforced using the expressive
MOP multi-formalism notation, and can provide code to be
executed at deadlock (when no thread is safe to continue).

EnforceMOP was used in two different kinds of applica-
tions. First, to enforce general properties in multithreaded
programs, as a formal, semantic alternative to the exist-
ing rigid and sometimes expensive syntactic synchronization
mechanisms. Second, to enforce testing desirable schedules
in unit testing of multithreaded programs, as an alternative
to the existing limited and often adhoc techniques. Results
show that EnforceMOP is able to effectively express and en-
force complex properties and schedules in both scenarios.
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1. INTRODUCTION
Multithreaded programs utilize multiple threads to ac-

complish jobs faster than sequential programs. However,
multithreaded programs are afflicted with concurrency bugs.
These bugs are caused by the inherent non-determinism in

thread scheduling, so it is hard to detect and fix them. Al-
though there is a large amount of work tackling this problem,
ranging from static/dynamic analysis [10, 20, 21], to test-
ing [15,19,27,32,38–40], and to state space exploration [23,
34], these have their own limitations: testing and analysis
approaches suffer from false positives and negatives, and ex-
ploration does not scale and depends on program inputs.

On the other hand, runtime verification [9,24,41] combines
formal methods and testing to check critical properties of a
program dynamically. The key idea is that software system
properties, often defined using temporal formalisms, can be
used to generate program monitors. Any property violation
is reported or resolved immediately rather than waiting for a
bug to manifest. Runtime verification has been proven to be
a promising technique to increase software reliability, with
a large number of runtime verification techniques and tools
developed, including Tracematch [1], PQL [33], PTQL [22],
MOP [12] and Hawk/Eraser [16], among many others.

While runtime verification can effectively detect property
violations, and sometimes even recover from such violations,
unfortunately it provides no guarantee that properties are
never violated. This is particularly problematic in multi-
threaded systems, where non-deterministic thread schedul-
ing may hide potentially critical errors. For example, con-
sider a concurrent database where one thread is in charge
of authorizing users, and each user is assigned a thread for
fetching data. The underlying property is that any user
should be authorized before getting data, so for any given
user the corresponding thread should wait until the first
thread finishes authorizing. Runtime verification approaches
can monitor the program execution and report violations of
this property for each user, but cannot prove correctness:
a successful run gives no guarantee that other runs, under
different thread schedules, will also be successful.

The conventional approach is to employ language-specific
synchronization mechanisms or adhoc sleep commands to
enforce such properties when developing or testing multi-
threaded programs. For instance, Java provides a syn-

chronized keyword, a Thread.sleep() method, and sev-
eral other classes in the java.util.concurrent package.
However, there are certain limitations when using these con-
structs to enforce arbitrary properties in multithreaded pro-
grams: (1) it is non-trivial and error-prone to use these
constructs when the property to be enforced is complex,
as shown later in this paper; and (2) all these constructs
are mingled with the original program, so it is not modular
and overall hard to identify and reason about the underlying
properties that the developers are attempting to enforce.
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In this paper we present EnforceMOP, a novel framework
for enforcing complex properties in multithreaded programs.
The properties are enforced at runtime and do not require
to modify the source code, so they can be modularly main-
tained. We show that EnforceMOP can be used effectively
both in developing and in testing multithreaded programs.

This paper makes the following specific contributions:
Technique: We propose a technique to enforce arbitrar-

ily complex safety properties in multithreaded programs.
The properties can be expressed using various formalisms.

Implementation: EnforceMOP is implemented in Java
on top of JavaMOP [13], a state-of-the-art runtime verifi-
cation framework. Following the philosophy of JavaMOP,
EnforceMOP is implemented in a logic-independent way.

Evaluation: We evaluated the effectiveness of Enforce-
MOP in two aspects. First, as a framework to enforce gen-
eral properties when developing multithreaded programs,
specifically to enforce correct behavior of such programs.
Second, as a testing framework to enforce thread schedules
when unit testing multithreaded programs, specifically to
enforce schedules in 185 existing multithreaded unit tests,
and compared it with several existing testing frameworks.

Section 2 describes the usage of EnforceMOP on two real
examples. Sections 3 describe the underlying techniques and
implementation of EnforceMOP. Section 4 shows several ap-
plications of EnforceMOP and evaluates its effectiveness as
a tool to specify schedules in unit testing multithreaded pro-
grams. We then discuss limitations and future work in Sec-
tion 5, followed by related work and conclusion.

2. MOTIVATION
EnforceMOP can be used (1) to enforce general properties

and (2) to enforce specific testing schedules in mutithreaded
systems. Here we discuss two real world examples, one in
each category, and show how EnforceMOP is used in each.

2.1 Enforcing General Properties
As stated in JavaDoc, an ArrayList in Java is not allowed

to be iterated by an iterator and structurally modified at the
same time [37].

The iterators returned by this class’s iterator and listItera-
tor methods are fail-fast: if the list is structurally modified
at any time after the iterator is created, ...the iterator will
throw a ConcurrentModificationException.

However, it is very easy for developers to violate this.
Moreover, it can be difficult to find and fix this error in mul-
tithreaded programs, because: (1) when using ArrayList,
programmers are unaware of how it will be used in other
threads; (2) the non-deterministic behavior of multithreaded
programs makes it harder to reproduce and debug the prob-
lem. For example, as shown in a bug report in JFreeChart [35],
one thread is iterating an ArrayList while another thread
is attempting to call add() on the same ArrayList concur-
rently. As a result, an ConcurrentModificationException

is thrown non-deterministically from the program.
We can easisly state the property of safe iteration in Java-

MOP [12, 13], as shown in Figure 1 (ignore the gray ar-
eas for now, which are parts of the EnforceMOP exten-
sion). Monitoring-oriented programming (MOP) is a generic
multi-formalism monitoring framework, which takes an im-
plementation and a set of specifications as input, and checks
whether the implementation violates the specifications at
run time. JavaMOP is the Java instance of MOP, currently

1 enforce SafeList Iteration(Collection c, Iterator i) {

2 creation event create after(Collection c) returning(Iterator i) :
3 call(Iterator Iterable+.iterator()) && target(c) {}
4

5 event modify before(Collection c) :
6 (
7 call(∗ Collection+.add∗(..)) ||
8 call(∗ Collection+.clear(..)) ||
9 call(∗ Collection+.offer∗(..)) ||

10 call(∗ Collection+.pop(..)) ||
11 call(∗ Collection+.push(..)) ||
12 call(∗ Collection+.remove∗(..)) ||
13 call(∗ Collection+.retain∗(..))
14 ) && target(c) {}
15

16 event next before(Iterator i) :
17 call(∗ Iterator.next(..)) && target(i) {}
18

19 event hasnextfalse after(Iterator i) returning(boolean b) :
20 call(∗ Iterator+.hasNext()) && target(i) && condition(!b) {}
21

22 fsm :
23 na [
24 create −> init
25 ]
26 init [
27 next −> unsafe
28 hasnextfalse −> safe
29 ]
30 unsafe [
31 next −> unsafe
32 hasnextfalse −> safe
33 ]
34 safe [
35 modify −> safe
36 hasnextfalse −> safe
37 next −> safe
38 ]
39

40 @nonfail {}

41

42 @deadlock { System.out.println(”Deadlock detected!”); }

43 }

Figure 1: Safe List Iteration Specification

using AspectJ [30] for event specification and instrumenta-
tion. As shown in Figure 1, a JavaMOP specification con-
sists of four parts. The first is the specification header, with
modifiers and parameters. Each parameters instance yields
a monitor instance. Here, the Collection and Iterator pa-
rameters indicate that a different monitor will be generated
for each combination of instances of these two parameters.
Monitors corresponding to different parameter instances will
not interfere with each other. More details can be found in
[12, 13]. The second part describes all the relevant events,
which serve as an abstraction of the running program. Those
events drive the monitor from one state to another state.

Figure 2: Safe List Iteration FSM



The third part is the actual property, starting with the
logic plugin in which it is stated. Here we are using the
finite state machine (FSM) plugin. Figure 2 depicts our
property. A monitor begins with the Init state after an it-
erator is created for a specific ArrayList instance. Now if
next() is called on the iterator then the monitor enters the
Unsafe state. Any transitions not defined in the FSM will
cause the monitor to enter a default fail state, indicating
ArrayList was modified while an iteration is in progress.
Method hasNext() returns false when the iterator has fin-
ished its job (we assume hasNext() is always called before
next(), which is common practice), generating event has-

NextFalse that makes the monitor enter its Safe state, indi-
cating that modifications to the ArrayList are now allowed.

EnforceMOP has been purposely designed to require min-
imal learning effort from existing JavaMOP users. It should
take less than one minute to change an existing JavaMOP
specification into an EnforceMOP specification that enforces
rather than monitors the former in multi-threaded systems.
First, one needs to use the new enforce modifier (grayed
in Figure 1). Second, one has to specify the desired state
or group of states which the monitor should not be allowed
to leave. Third, one may optionally use the new @deadlock

handler to provide code to be executed in case of deadlock.
We discuss the latter two in more detail below.

EnforceMOP enforces monitors to remain in certain states
by controlling thread schedules. JavaMOP already allows
users to associate code to monitor states, to be executed
when the monitor reaches those states. Using the same no-
tation, EnforceMOP enforces the monitor to never leave the
specified states. Each logic plugin provides and documents
its own monitor state names. The FSM plugin allows to
define and name groups of states, and provides a predefined
group of states named nonfail including all the states ex-
cept fail. In our example, we state that we want Enforce-
MOP to never allow the monitors to leave their nonfail

group of states. If a monitor attempts to execute a transition
not shown in Figure 2, for example execute event modify in
state unsafe, the thread scheduling code generated by En-
forceMOP will block the unsafe thread and thus guarantee
safe iteration behaviors. For example, when one thread is
iterating the list so the monitor is in the unsafe state, any
other thread attempting to modify the same list will get
blocked until the end of the iteration is reached; then they
are unblocked and allowed to perform their modifications.

Since threads in the program may get blocked by Enforce-
MOP, it is possible to cause deadlock in program directly or
indirectly. For example, when the specified property is im-
possible to be enforced in a certain program (all possible
thread schedules violate that property), all the threads will
then be blocked by EnforceMOP thus resulting in a dead-
lock. In these cases, the @deadlock handler tells the monitor
what to do when a deadlock occurs. Here we preferred to
output an error message when a deadlock happens, but in
general one can execute any code. For instance, shutdown
the system, restart a certain thread, etc.

2.2 Enforcing Specific Testing Schedules
When writing a unit test for a multithreaded program, it

is vital to have the ability to specify and enforce a desired
thread schedule when running that test. Consider the real-
life multithreaded test in Figure 3, borrowed from the TCK
unit tests of SynchronousQueue in java.util.concurrent.

1 @Test
2 public void testPutWithTake() throws InterruptedException {
3 final SynchronousQueue q = new SynchronousQueue();
4 Thread t = new Thread(new CheckedRunnable() {
5 public void realRun() throws InterruptedException {
6 int added = 0;
7 try {
8 while (true) {
9 q.put(added);

10 ++added;
11 }
12 } catch (InterruptedException success) {
13 assertEquals(”PutWithTake”, 1, added);
14 }
15 }}, ”putThread”);
16 t.start();

17 Thread.sleep(SHORT DELAY MS);

18 assertEquals(”PutWithTake”,0, q.take());

19 Thread.sleep(SHORT DELAY MS);

20 t.interrupt();
21 t.join();
22 }

Figure 3: Original SynchronousQueue Test in TCK

SynchronousQueue is a special kind of queue where the thread
executing put blocks when the queue is full and the thread
executing take blocks when the queue is empty. Thread
putThread is calling put inside a loop to fill the queue. When
the queue is full, putThread blocks. The desired thread
schedule is: the main thread first waits for putThread to
get blocked, then takes one element and checks it (line 18),
then waits for putThread to get blocked again, and then in-
terrupts it. This schedule is achieved in the TCK unit test
using sleep statements, which as discussed in [27] and in
Section 4.2 are non-modular, unreliable and slow.

EnforceMOP is an ideal vehicle to enforce specific testing
schedules for multithreaded unit tests. The idea is to sepa-

rate the functionality of the unit test from the desired sched-
ule, and to implement the former as an unrestricted program
(e.g., by removing the grayed sleep statements in Figure 3)
and to enforce the latter with EnforceMOP. Figure 4 shows
the EnforceMOP specification of the schedule meant in Fig-
ure 3. The event beforeput is generated right before calling
method put, and events beforeinterrupt and beforetake

right before calling methods interrupt and take, respec-
tively. EnforceMOP defines a new pointcut, threadBlocked,
telling the thread that is executing the event to wait until the
specified thread is blocked. In this example, when the main
thread is about to call the method take or interrupt, it
waits until putThread gets blocked. We used the Extended
Regular Expression (ERE) plugin (+ means one or more
repetitions) to specify the actual schedule (line 19). Thus,
the main thread blocks before it calls the method take until
event beforeput occurs at least once and putThread blocks,
then it unblocks and checks the assertion, and then it blocks
again before it calls the interrupt until beforeput occurs
and putThread blocks. The desired schedule is thus specified
modularly, reliably and, as seen in Section 4.2, efficiently.

As discussed later in this paper, it is not easy to use ex-
isting multithreaded testing frameworks to specify this par-
ticular schedule, because it involves a loop. EnforceMOP is
able to support repeating events in a thread schedule using
the bare capabilities of the its logic plugins, e.g., the ERE +.

EnforceMOP has been implemented specification-formalism-
independently and has been designed to support expressing
and enforcing arbitrarily complex safety properties. The
properties can be application-independent (such as the safe



1 enforce SynchronousQueueTest testPutWithTake() {

2

3 String putThread = ””;
4

5 event beforeinterrupt before() :

6 call(∗ Thread+.interrupt()) && threadBlocked(putThread){}

7

8 event beforetake before() :

9 call(∗ SynchronousQueue+.take()) && threadBlocked(putThread){}

10

11 event beforeput before() :
12 call(∗ SynchronousQueue+.put(..)) {
13 if (putThread.equals(””)) {
14 putThread = Thread.currentThread().getName();
15 }
16 }
17

18

19 ere : beforeput+ beforetake beforeput+ beforeinterrupt
20

21 @nonfail {}

22

23 @deadlock {System.out.println(”Deadlock detected!”);}

24 }

Figure 4: EnforceMOP Schedule for Test in Figure 3

list iteration property above) or application-specific (such as
the specific schedule in the multithreaded unit test above).
Different property specification formalisms have different ex-
pressiveness, and the flexibility to use any of them helps
users specify a wide variety of properties precisely and ele-
gantly. For example, as shown later, FSM cannot express
some useful properties expressible with other formalisms.
Additionally, EnforceMOP supports parametric specifica-
tions, so different (enforcing) monitor instances are created
for different parameter instances.

EnforceMOP can be thought of as a semantic-based syn-
chronization approach, complementary to the traditional syn-
tax -based synchronization approach: the semantics is em-
bodied in the formal specification for each property. En-
forceMOP allows developers to declaratively and modularly
state the actual properties they want to enforce in their pro-
grams, and thus by avoiding over-synchronization it has the
potential to be more efficient than traditional synchroniza-
tion mechanisms, as empirically shown later in this paper.

3. APPROACH AND IMPLEMENTATION
Here we give an overview of EnforceMOP, with particular

emphasis on how it smoothly integrates with JavaMOP. The
key challenge of this integration was to design the enforce-
ment mechanisms in a formalism-independent way. Figure 5
recalls the overall architecture of JavaMOP. It consists of a
Java-specific client and language-independent logic plugins.
The logic plugin manager makes available to the client var-
ious logic plugins (discussed shortly), by taking as input a
formula written in a specific logic and outputting language-
independent monitoring pseudocode. This pseudocode is
then used to generate Java and AspectJ code, which is fi-
nally waved with the original program to monitor.

3.1 Logic Plugins and Enforcement Categories
Each EnforceMOP specification requires a property over

the specified events, formalized using one of the available
logic plugins. Some formalisms are more convenient or more
efficient than others in some situations. EnforceMOP cur-
rently supports for enforcement all the logic formalisms sup-

Figure 5: JavaMOP Overall Architecture

ported by JavaMOP for monitoring. We briefly recall them:

Finite State Machine (FSM): A finite state machine con-
sisting of a set of states and a set of state transitions.
Each transition is triggered by an event.

Extended Regular Expression (ERE): A regular expres-
sion extended with complement; each letter is an event.

Linear Temporal Logic (LTL): A future time linear tem-
poral logic formula describing good or bad prefixes.

Past Time Linear Temporal Logic (PTLTL): A linear
temporal logic formula with temporal operators refer-
ring to the past states of the execution trace.

Context Free Grammar (CFG): A context free gram-
mar defined in BNF, where each terminal is an event.

String Rewriting System (SRS): Turing-complete string
rewriting formalism, where each alphabet is an event.

Once a specific logic formalism is chosen, the next step is
to choose in which way the property is enforced. For exam-
ple, one can specify the correct behaviors of the system, and
enforce the monitor to always obey the specification; alter-
natively, one can specify the adverse behaviors of a system,
and enforce the monitor to never satisfy the specification.
To accommodate all the existing logic plugins, EnforceMOP
provides a set of pre-defined categories (a category can be
viewed as a set of monitor states) to be enforced. As shown
in Table 1, different logic formalisms have different corre-
sponding categories. We describe each pre-defined category:

fail : When the monitor encounters an event not accepted
in current state (in FSM), or the current trace doesn’t
match any prefix of the given pattern (in ERE and
CFG). In SRS, fail can be defined by users.

nonfail : The opposite of fail, when the incoming event is
accepted by the current state, or the current trace
matches one prefix of the given pattern.

succeed : In SRS, succeed is defined by users when certain
patterns are matched.



Logic Support Categories
FSM fail/nonfail
ERE fail/nonfail/match/nonmatch

LTL violation

PTLTL violation/validation
CFG fail/nonfail/match/nonmatch

SRS fail/nonfail/succeed

Table 1: Predefined Categories for each Logic Plugin

match: Corresponds to a situation wherein the trace matches
the entire specified pattern.

nonmatch: Corresponds to a situation wherein the trace
doesn’t match the entire specified pattern.

violation : Occurs when the trace is not a prefix of any trace
that satisfies the given formula in LTL and PTLTL.

validation : Corresponds to a situation wherein the trace
satisfies the given formula in PTLTL.

Some plugins allow users to define their own categories,
which can then be enforced using EnforceMOP. For example,
FSM allows to define an alias of a group of states. Enforce-
MOP can then enforce the monitor to stay in one of those.

3.2 The Property Enforcing Algorithm
The key challenge in the design and development of En-

forceMOP was to engineer its enforcement mechanism to
work in a logic-formalism-independent way, to allow its users
to choose any of the specification formalisms above for their
properties and to enforce any of their categories. The prob-
lem is that different logic formalisms have different underly-
ing representations of their monitors; for example, FSM uses
lists of arrays to represent states and transitions, while CFG
uses stacks to represent push down automata. However, all
monitors share a common interface: take any given event
and trigger a corresponding (logic-specific) transition.

The key idea of our monitor-independent enforcing algo-
rithm is quite simple: use the common interface with a clone

of the original monitor to decide whether to allow the current
event to be executed on the original monitor, or to block the
current thread. The algorithm is presented in Figure 6. The
new event is sent to the cloned monitor, to check using its
logic-specific semantics, which is irrelevant to EnforceMOP,
whether the property we want to enforce would be violated
if we let the event go through. If yes, then we block the
current thread. If not, then it is safe for the original mon-
itor to execute this event, so we let the event go through.
We invoke the blocked thread and repeat the process above
whenever a new event is generated in any other thread. Since
a monitor is shared between different threads, its status may
be changed by events executed in other threads. Whenever
we find out that executing the pending event on the cloned
monitor will not violate the property we want to enforce, we
will unblock the thread and resume its execution.

3.3 Deadlock Detection
When enforcing a property, it could be possible that all the

threads are blocked by EnforceMOP, so the program dead-
locks. This happens when the program reaches a state in
which any event to be executed by any thread would violate
the property. Since property violations can mean anything
depending upon the application and the property, our ap-
proach is to provide the mechanism and let the user decide
how to use it, that is, how to proceed at deadlock. Specif-
ically, EnforceMOP provides an on-the-fly deadlock detec-
tion mechanism which works as follows. Every newly started

1 // Inputs
2 Set<Category> violationCategories;
3 Event event;
4 Monitor origMonitor;
5

6 void enforceProperty() {
7 do {
8 clonedMonitor = origMonitor.clone();
9 clonedMonitor.execute(event);

10 if (clonedMonitor.status ∈ violationCategories) {
11 clonedMonitor = null; // for garbage collection
12 wait;
13 }
14 else {
15 clonedMonitor = null; // for garbage collection
16 break;
17 }
18 } while (true);
19 origMonitor.execute(event);
20 notify all waiting monitors;
21 }

Figure 6: Algorithm for Enforcing Properties

thread is recorded in a global map. A separate deadlock de-
tection thread checks this map periodically. When all the
threads in the map are blocked, a deadlock occurred. The
@deadlock handler serves like any other JavaMOP handlers,
so users can take arbitrary actions when a deadlock happens;
for example, restart the system or print error messages.

3.4 Implementattion
We implemented EnforceMOP in Java as an extension of

JavaMOP. JavaMOP takes a property file as input and gen-
erates an AspectJ file that contains monitor, recovery and
instrumentation code, which is then compiled and waved
within the original program using any AspectJ compiler.
We added enforce as a new keyword modifier to JavaMOP
properties, in a way that any existing JavaMOP property
can be turned into an EnforceMOP by only adding the en-

force modifier. To generate code to enforce a property, we
extended the code generator in JavaMOP with a new class,
EnforceMonitor, which is responsible for generating all the
code to enforce a property when the enforce modifier is used.

As already noted in previous work on specifying thread
schedules [27,40], it is crucial to have the ability to trigger an
event when a specific thread gets blocked. For that reason,
we added a new pointcut to EnforceMOP, threadBlocked.
It takes a thread name as argument and triggers an event
in the monitor only when that specific thread is blocked.
We implemented this by using the threadStart pointcut of
JavaMOP to add any thread to a global thread map when
it starts. Then threadBlocked is easily implemented by
polling the state of that specific thread in the map.

4. APPLICATIONS AND EVALUATION
We envision EnforceMOP to be used: (1) as a framework

to enforce general complex safety properties at runtime; and
(2) as a testing framework to enforce specific schedules when
unit testing multithreaded applications. We next evaluate
the effectiveness of EnforceMOP in these two aspects. We
first present a number of applications using EnforceMOP to
enforce general properties, then we use it to enforce specific
testing thread schedules and compare it with several other
multithreaded testing frameworks.

4.1 Enforcing General Properties

4.1.1 Safe Iteration



As shown in Figures 1 and 2, EnforceMOP can be used to
guarantee safe iteration of a collection in multithreaded pro-
grams. Motivated by a real bug in JFreeChart [35], we used
EnforceMOP to specify and enforce correct behaviors of it-
erating a collection in multithreaded programs. In the test
case attached with the bug report, two threads are created
and one of them adds a new element to the collection while
the other iterates through the collection. These two actions
are repeated many times, so in the original program the
ConcurrentModificationException is thrown almost every
time when the test case executes. After we applied the prop-
erty in Figure 1 using EnforceMOP, the exception never gets
thrown after 100 times of execution of the same test case.

4.1.2 Mutual Exclusivity
Another bug in JFreeChart [36] is caused by concurrent

execution between any modification method and hashCode

on the same ArrayList. The root cause of this bug is sim-
ilar to the previous one: JDK’s hashCode method iterates
through all the elements of the list in order to compute the
hash value of the whole list. So a ConcurrentModifica-

tionException will be thrown if hashCode and any other
modification method are called at the same time. However,
since the iteration of the list is encapsulated in hashCode,
what users actually want is the mutual exclusivity only be-
tween the execution of hashCode and of other modification
methods. This cannot be easily done using Java synchro-
nization mechanisms. Suppose users only want the execu-
tion of hashCode and any other modification method to be
mutually exclusive, but any other pairs of methods are al-
lowed to execute concurrently. If we just use the synchro-

nized keyword on all these then all the methods become
mutually exclusive of each other, thus over-synchronizing
the program and harming performance (for example, two
threads could safely execute hashCode concurrently).

One can try to use a ReadWriteLock from j.u.c instead,
for example to use ReadLock in hashCode and WriteLock

in all modification methods. However, concurrent execu-
tion between any two modification methods would still be
prohibited, thus reducing the potential for parallelism1. In
fact, mutual exclusivity is a common property people want
to enforce when writing multithreaded programs, but with-
out careful consideration it is very easy to over-synchronize
the entire program thus hurting the performance.

Figure 7 shows how to enforce mutual exclusivity for this
specific case using EnforceMOP with the CFG plugin. The
property is parametric in the list, so operations on different
list instances will not interfere with each other. Since we
want to enforce mutual exclusivity between method calls,
we use both before and after pointcuts to describe events.
There are four types of events in this property: before-

hashcode and afterhashcode indicate the start and end of
the execution of hashCode, and beforemodify and after-

modify represent the start and end of all the modification
methods on ArrayList. The key part of the property is the
logic formalism part. The property is defined using a CFG,
which allows us to pair the start and the end events of the
execution of hashCode or modification methods. While the
execution of hashCode is in progress (event afterhashcode

1The concurrent use of ArrayList is known to be problem-
atic; one should instead use concurrent data-structures from
j.u.c. We use it here only to show how to enforce mutual
exclusivity between groups of methods with EnforceMOP.

1 enforce SafeListCFG(List l) {

2

3 event beforehashcode before(List l) :
4 call(∗ Object+.hashCode(..)) && target(l) {}
5

6 event afterhashcode after(List l) :
7 call(∗ Object+.hashCode(..)) && target(l) {}
8

9 event beforemodify before(List l) :
10 (
11 call(∗ List+.add∗(..)) ||
12 call(∗ List+.remove(..)) ||
13 call(∗ List+.retain∗(..)) ||
14 call(∗ List+.clear(..)) ||
15 call(∗ List+.set∗(..))
16 ) && target(l) {}
17

18 event aftermodify after(List l) :
19 (
20 call(∗ List+.add∗(..)) ||
21 call(∗ List+.remove(..)) ||
22 call(∗ List+.retain∗(..)) ||
23 call(∗ List+.clear(..)) ||
24 call(∗ List+.set∗(..))
25 ) && target(l) {}
26

27 cfg :
28 S −> A S | B S | epsilon,
29 A −> A beforehashcode A afterhashcode | epsilon,
30 B −> B beforemodify B aftermodify | epsilon
31

32 @nonfail {}

33

34 @deadlock { System.out.println(”Deadlock detected!”); }

35 }

Figure 7: Mutual Exclusivity between HashCode
and List Modification Methods using CFG

has not been encountered), the execution of any modification
methods is not allowed (event beforemodify is not allowed).

Although the SRS plugin is the most expressive formalism
available with EnforceMOP (it is Turing-complete), we often
found it in our experiments that SRS is quite convenient to
specify even simpler properties. For example, we can replace
the CFG in Figure 7 with the following equivalent SRS:

srs :

beforemodify aftermodify -> #epsilon .

beforehashcode afterhashcode -> #epsilon .

beforemodify afterhashcode -> #fail .

beforehashcode aftermodify -> #fail .

beforemodify beforehashcode -> #fail .

beforehashcode beforemodify -> #fail .

The SRS rules apply on the trace as it is being generated
to keep it in a canonical form. In our case, consecutive event
pairs beforehashcode and afterhashcode, and beforemodify

and aftermodify, will dissolve (#epsilon is the empty string),
and the other four event pairs will force the monitor to fail.
In Figure 7 we enforce the monitor to never enter its fail

state (line 32), so whenever a thread wants to call a modifi-
cation method while a hashCode method call is in progress,
EnforceMOP will block that thread. Note that we only make
hashCode and the group of the modification methods mutu-
ally exclusive, but no more than that. For example, the
sequences beforehashcode beforehashcode afterhashcode

afterhashcode and beforemodify beforemodify aftermodify

aftermodify are both accepted. This allows maximum par-
allelism in the program. Note that this property cannot be
expressed with FSM because the numbers of method start



1 enforce SafeAppendSRS(Category c) {

2

3 event beforeappend before(Category c) :
4 call(∗ Category+.append(..)) && target(c) {}
5

6 event afterappend after(Category c) :
7 call(∗ Category+.append(..)) && target(c) {}
8

9 event beforemodify before(Category c) :
10 (
11 call(∗ Category+.addAppender(..)) ||
12 call(∗ Category+.removeAppender(..)) ||
13 call(∗ Category+.removeAllAppenders(..))
14 ) && target(c) {}
15

16 event aftermodify after(Category c) :
17 (
18 call(∗ Category+.addAppender(..)) ||
19 call(∗ Category+.removeAppender(..)) ||
20 call(∗ Category+.removeAllAppenders(..))
21 ) && target(c) {}
22

23 srs :
24 beforemodify aftermodify −> #epsilon .
25 beforeappend afterappend −> #epsilon .
26 beforemodify afterappend −> #fail .
27 beforeappend aftermodify −> #fail .
28 beforemodify beforeappend −> #fail .
29 beforeappend beforemodify −> #fail .
30 beforemodify beforemodify −> #fail .
31

32 @nonfail {}

33

34 @deadlock { System.out.println(”Deadlock detected!”); }

35 }

Figure 8: Mutual Exclusivity Property between
Method Pairs in Log4J using SRS

and end events should match, and FSM does not have the
expressiveness to count the number of occurrences of events.
But it can be elegantly specified with CFG or SRS, showing
the advantage of supporting multiple logic formalisms.

4.1.3 Read Write Lock
Here we address a performance problem in Log4J [7] caused

by over-synchronization. The class Category is supposed to
be thread safe, so the synchronized keyword is used in many
of its methods (append, addAppender and removeAppender).
Each Category object has a list of appenders; the method
append calls methods on all the elements in the list but it
does not modify the list itself. The synchronized keyword
guarantees the mutual exclusivity between any methods,
but it is not needed when two threads are both executing
append. In the bug report one developer mentioned “...ob-

serving plenty of threads waiting on this synchronization...”.
We completely removed the usage of synchronized and

used EnforceMOP instead to specify precisely the desired
synchronization between those method pairs. The property
is written using SRS and is shown in Figure 8. We first
group the methods into two sets: methods that will not mod-
ify the list (append) and methods that will modify the list
(addAppender, removeAppender and removeAllAppenders).
Then we define events to mark the start and end of those
methods. The property is similar to the previous one, except
one more rule: beforemodify beforemodify -> #fail. This
prevents two modification methods (e.g., addAppender and
removeAppender) from happening in parallel, to avoid incon-
sistency. We disallow the parallel execution of any modifica-
tion method and append, but we do allow parallel execution
between methods append. This will increase the maximal

No Sync Original (Over-Sync) EnforceMOP ReadWriteLock

44.4 500.8 49.7 221.3

Table 2: Test execution time (ms) for different syn-
chronization mechanisms

parallelism and it is due to the intention of the developer.
We wrote a test case to reproduce the performance prob-

lem caused by over-synchronization. We created 50 threads
to run in parallel, half of them calling method append and
another half calling methods addAppender and removeAppender.
We collect running times with following configurations: the
original over-synchronized code with synchronized; Enforce-
MOP enforcing proper synchronization as shown in Figure 8;
a ReadWriteLock implementation proposed by the developer
in the bug report; the original code with synchronized key-
word removed completely, as a base line to show the perfor-
mance overhead and it’s incorrect. For each configuration
we run the test case 10 times and get the average running
time. Results are shown in Table 2.

From the results we can see EnforceMOP performs much
better than the original over-synchronized version, since it
increases the maximal parallelism of the application. Sur-
prisingly, EnforceMOP also outperforms ReadWriteLock. The
parallelism allowed by EnforceMOP is the same as with
ReadWriteLock. We think the reason for our better perfor-
mance is due to the fact that ReadWriteLock in Java involves
calling a lot of library code and maintaining the lock status
(since it’s reentrant), while JavaMOP is highly optimized.

4.1.4 Dining Philosophers
Five philosophers sit next to each other around a round

table. There are five forks placed between each pair of ad-
jacent philosophers. Each philosopher needs to pick up the
two forks around him to eat, and all of them are allowed to
eat at the same time. Each fork can only be used by one
philosopher at any time. A deadlock happens when each
philosopher picks up a different fork at the same time, and
all of them are attempting to pick the other to start eating.

To implement the dining philosophers problem, locks are
typically used to enforce the property that one fork can only
be taken by one philosopher at any time. Instead, we first
use EnforceMOP to enforce this property, so no synchroniza-
tion code is needed in the program at all. Then we enforce
the property stating that at most four philosophers can eat
at the same time, which guarantee deadlock freedom.

Synchronization Free Implementation
The sketch of our source is shown in Figure 9. Class Phil

implements Runnable, so it can be run by a thread via the
method run. Each philosopher grabs left fork first and right
fork next, and then starts eating. Then he releases the left
fork first and right fork second. Note that there’s no syn-
chronization or lock used in the source code. When all the
philosophers are eating concurrently, it is possible that one
fork is taken by multiple philosophers at the same time.

We use EnforceMOP to enforce the property of exclusive
use of forks shown in Figure 10. This property is parametrized
by a Fork instance. Event occupy corresponds to the start
of method call occupy on a Fork instance and event release
to the end of method call release. This property guaran-
tees that when a fork is being used, it cannot be used again
until released. Any other thread attempts to call occupy on
a Fork instance at state used will be blocked. These allows
us to implement the correct behavior of dining philosophers



1 public class Phil implements Runnable {
2

3 public Fork leftFork, rightFork;
4

5 public void getLeftFork() { leftFork.occupy(); }
6 public void releaseLeftFork() { leftFork.release(); }
7 ...
8

9 public void run() {
10 getLeftFork();
11 getRightFork();
12 eat();
13 releaseLeftFork();
14 releaseRightFork();
15 }
16 }

Figure 9: Source code of dining philosophers with-
out synchronization

without any synchronization mechanism in the source code.

Figure 10: Exclusive use of Forks Property in FSM

Deadlock Free Property
The above property only guarantees the correct usage of

forks. Deadlock is possible when each philosopher takes his
left fork at the same time so no one is able to start eating.
We use EnforceMOP to enforce a property to avoid dead-
lock in our implementation, as shown in Figure 11. The idea
behind it is that we only allow four philosophers at most to
eat at the same time, so at lease one philosopher would be
able to grab both forks and finish eating. After that, he
will release both forks and other philosophers will be able
to eat. Event useLeftFork marks the start of method call
getLeftFork, and event releaseLeftFork marks the end of
method call releaseRightFork. Since in our implementa-
tion each philosopher will grab left fork first and release right
fork last, these two events mark the beginning and end of
actions of each philosopher. Each state serves as a counter

of how many philosophers are eating now. At state Four

any other philosophers attempt to grab forks will be blocked
until a previous philosopher finishes eating and releases all
his forks. With this property and the previous property in
Figure 10, we are able to enforce the correct behavior of
dining philosophers and avoid deadlocks at the same time,
without using any synchronization in the source code. Com-
pared with the previous property in Figure 10, this deadlock
avoidance property is not parametric. It serves as a central
coordinator to coordinate philosophers.

Figure 11: Deadlock Avoidance Property in FSM

4.1.5 Fair Thread Scheduler
In multithreaded programs fairness is a property of a

thread scheduler which ensures every thread gets its turn

1 enforce FairScheduler(Task t) {

2

3 event workone before(Task t) :
4 call(∗ Task+.doWork(..)) && threadName(”t1”) && target(t) {}
5

6 event worktwo before(Task t) :
7 call(∗ Task+.doWork(..)) && threadName(”t2”) && target(t) {}
8

9 event afterwork after(Task t) :
10 call(∗ Task+.doWork(..)) && target(t) {}
11

12 fsm :
13 Init [
14 workone −> ExecOne
15 worktwo −> ExecTwo
16 ]
17 ExecOne [ afterwork −> OneDone ]
18 ExecTwo [ afterwork −> TwoDone ]
19 OneDone [ worktwo −> Finish ]
20 TwoDone [ workone −> Finish ]
21 Finish [ afterwork −> Init ]
22

23 @nonfail {}

24

25 @deadlock { System.out.println(”Deadlock detected!”); }

26 }

Figure 12: Fair Scheduler Property

to execute eventually. In practice the lack of fairness may
cause thread starvation bugs [8,26].

Figure 13: Fair Scheduler FSM

We use EnforceMOP here to enforce a simple fairness
property in thread scheduling on an artificial example. In
the underlying program there are two threads executing a
loop concurrently. The numbers of loop iterations are same
in both threads. In each loop iteration a method doWork will
be called. Inside the doWork method each thread will sleep
a random interval of time, and we use it to simulate real
scenarios where workload is unknown. If we run the pro-
gram without controlling the schedules, it is possible that
one thread progresses much faster than another one. In an
extreme situation, one thread may not even get scheduled to
start running when another thread finishes. EnforceMOP is
used to specify and enforce such a property that after one
thread finishes one iteration of the loop (finish one time of
execution of doWork method), it will until another thread
finishes the same iteration and then starts its next iteration.
As a result, the numbers of times of execution of doWork

method in each thread won’t differentiate each other more
than one. We used FSM to specify this property, as shown
in Figures 12 and 13. When one thread finishes executing
one iteration of doWork (in state OneDone or TwoDone), it
waits for another thread to finish one time of execution of
doWork. After both threads finish, the monitor starts in Init



state again. After this property is enforced, each thread will
always be in the same number of iterations in the loop.

Though it is an artificial example, we believe it shows the
usefulness of EnforceMOP when specifying and enforcing
complex properties. For instance, in a website where each
user is served by a thread, it is important to guarantee no
user would need to wait for a long time. With EnforceMOP
it is possible to enforce such properties in a modular way
without introducing any synchronization code in the system.

4.2 Enforcing Specific Testing Schedules
Multithreaded programs exhibit different behaviors under

different thread schedules. Thus it is vital to have the ability
to control thread schedules when performing unit testing.
EnforceMOP can also be used as a testing framework to
control thread schedules for each unit test. In that case,
each property file is associated to some unit test, and serves
as a thread schedule specification. In this section we first
present our experience with using EnforceMOP as a testing
framework to specify schedules in multithreaded unit tests.
Then we compare EnforceMOP with several other testing
frameworks for multithreaded programs.

4.2.1 Experience
To evaluate the effectiveness of using EnforceMOP as a

testing framework, we took existing multithreaded unit tests
and translated them to use EnforceMOP. Most of those tests
used sleep or other synchronization mechanisms to control
thread schedules. We first removed all the schedule control
statements in those tests, and then wrote one property file
for each testing schedule. We took the subject programs
used in previous work [27, 40], and in total we translated
185 tests, as shown in Table 3.

When using EnforceMOP to specify thread schedules for
a given unit test, the event sequences are already known and
fixed. So in most cases there’s no need to use complex logic
formalisms; it is sufficient to only simply state the events to
be executed in order. Indeed, we have used ERE in most
of the cases, since the event sequences in a schedule is triv-
ially an ERE expression. In some other cases, we have used
PTLTL to specify schedules. PTLTL can be used to check
whether a condition holds when a new event occurs, so it is
suitable for enforcing the order between events.

Though most unit tests are quite simple, there are still
cases where one event may occur many times. EnforceMOP
is able to deal with repeating events. For example, mak-
ing use of the * and + ERE constructs, properties can be
expressed where an event can occur multiple times. More de-
tails on how EnforceMOP handle repeating events are men-
tioned in the comparison with IMUnit in Section 4.2.2.

4.2.2 Comparison with IMUnit
IMUnit [27] is a framework used to specify and control

thread schedules in multithreaded unit tests. An event in
IMUnit is fired explicitly by inserting a method call in the
test code. A schedule in IMUnit is given as an annotation
within a unit test, and it consists of several orderings be-
tween events. For example, a -> b specifies event b should
only happen when event a has already happened. We com-
pare EnforceMOP with IMUnit in the following aspects.

Expressiveness
IMUnit is also built upon JavaMOP, but its underlying

schedule logic is a fragment of PTLTL which does not sup-

port repeating events. Consider the same example in Fig-
ure 3. With IMUnit we can insert events around the put

method call, but since the method call is made inside a loop
we cannot specify in the test schedule the exactly number
of occurrences of an event. As already shown in Figure 4
with the help of operator + in ERE, EnforceMOP is able to
express such schedules. The paper [27] mentioned that there
were a few more tests where IMUnit was not able to express
the schedules because of repeating events. We have success-
fully used EnforceMOP to specify and enforce the desired
test schedules for all those cases. In fact, in our previous
examples for specifying general properties, many events are
repeating events and can happen anywhere in the program.
Unlike IMUnit, EnforceMOP does not use the exact code
location to specify an event; instead, it uses pointcuts to
match for events. This way, EnforceMOP supports repeat-
ing events as long as the chosen logic plugin supports them.

Performance
The performance of IMUnit was evaluated by comparing

the time to run all tests with the time to rune all the origi-
nal sleep based tests. Since most of the sleep bases tests are
over estimating the time needed for sleep operations, IMUnit
tests were able to provide over 3x speed up over the original
tests. We repeated the same set of experiments here. We
used EnforceMOP to translate all the sleep based tests IMU-
nit used in experiments and calculated the speedup of using
EnforceMOP to enforce schedules versus the original tests.
The results are shown in table 4. We are able to achieve
same or better speed up with EnforceMOP.

4.2.3 Comparison with MultithreadedTC
MultithreadedTC [40] is another unit testing framework,

used to specify schedules in multithreaded tests using ticks.
In multithreadedTC each test has to be written as a class,
and each method in the class contains the code to be exe-
cuted by a thread in a test. The test schedule is specified
in terms of number of ticks with respect to a global logical
clock. The method waitForTick takes a number as an ar-
gument, and it will block the current thread until the global
clock reaches that number. The global clock will advance
when all the threads are blocked.

Although MultithreadedTC is successfully applied on a
number of tests [40], it requires users to change the original
test a lot. EnforceMOP does not require users to change the
original code at all, the schedule specification file (property)
is in a separate file, so it is possible to have multiple sched-
ules applied on a same test. Moreover, the schedule in Mul-
tithreadedTC is implicitly embedded using ticks. It may be
non-trivial to infer a schedule from a MultithreadedTC test
for a complicated test case. In terms of functionality, block-
ing events in MultithreadedTC are also implicit. Threads
blocked by MultithreadedTC will be unblocked when all the
threads are blocked. This makes it very hard to specify the
scenario where one thread waits for another thread to get
blocked using MultithreadedTC, while it is easy to do in
EnforceMOP (and also in IMUnit).

4.2.4 Comparison with ConAn
ConAn [32] is a framework used to generate test driver

code together with test schedules based on user provided
scripts. Similar to MultithreadedTC, ConAn also employs
ticks to specify logical time in thread schedules. A test in
ConAn consists of a set of #tick blocks. Inside each #tick



Subject Tests

Collections [2] 11
Hadoop [4] 1
JBoss-Cache [29] 20
Lucene [5] 2
Mina [6] 1
Pool [3] 2
Sysunit [14] 10
JSR-166 TCK [28] 138
∑

185

Table 3: Subject Programs Statistics

Subject Original EnforceMOP Speedup

Collections 2.22 0.26 8.54
Hadoop 1.39 0.38 3.66
JBoss-Cache 73.07 38.89 1.88
Lucene 10.78 2.87 3.76
Mina 0.24 0.14 1.71
Pool 1.48 0.076 19.47
Sysunit 14.47 0.30 48.23
JSR-166 TCK 16.67 6.48 2.57

GeometricMean 5.56

Table 4: Test execution time (s)

block there is a number of #thread blocks. Each #thread

block contains the code that will be executed by a thread,
and ConAn will generate tests based on that.

Since ConAn is also based on ticks, it also suffers from un-
derstandability when the schedule to be specified becomes
complicated. Moreover ConAn does not support blocking
events. Ticks in ConAn advance automatically after a fixed
amount of time, making it unable to express certain sched-
ules EnforceMOP and other frameworks are able to express.

5. DISCUSSION
EnforceMOP is implemented by cloning the monitor and

executing the incoming event one step ahead using the clone.
Depending upon the chosen logic formalism to express prop-
erties, it may be possible that “one step lookahead” is not
enough and could cause a deadlock, even though the prop-
erty is enforceable. For example, consider the ERE property
get* put. When event put happens in one thread, Enforce-
MOP has no way to know whether event get will happen
in the future or not (because code reachability is an unde-
cidable problem). Executing event put as soon as it occurs
will not violate the property, but if event get happens after-
ward then the monitor will deadlock because event sequence
put get violates the property. In this case, the deadlock
can be avoided if EnforceMOP blocks the thread execut-
ing event put until all the occurrences of event get have
happened. To achieve this, it should be possible to add an
exploration ability to EnforceMOP. Whenever a new event
comes from a thread and both blocking the thread and not
blocking it will not violate any property, record the current
program location as a choice point and make a choice about
whether to block that thread or not. After the current ex-
ecution finishes, re-execute the program from the beginning
until reaching the previous choice point, and make a differ-
ent choice. In this way all the possible event sequences will
be enumerated so it can be checked which event sequences
will obey all the properties without causing deadlocks.

In our experience with using EnforceMOP so far, we have
not seen many cases where exploration would be needed.
Consequently, we leave it as future work to be investigated
if we see more scenarios where exploration would be useful.

6. RELATED WORK
There is a rich body of work on runtime verification [1,

12, 13, 16, 25, 31, 33]. Most of them have hardwired specifi-
cation languages. For example, Java-MaC [31] uses a cus-
tomized language for interval temporal logic and PaX [25]
only supports LTL. Moreover, all these runtime verification
frameworks monitor rather than enforce properties. Java-
MOP [12,13] is a parametric runtime verification framework
which supports multiple logic formalisms. EnforceMOP is
extending JavaMOP with the ability to enforce properties
in multithreaded programs. Control theory techniques have
been applied to steer program execution before a property
is violated [18], but that is orthogonal to our approach in
EnforceMOP; they did not aim to enforce properties in mul-
tithreaded programs by controlling thread schedules.

Many approaches have been proposed by researchers to
test and verify multithreaded programs, such as static/-
dynamic analysis [10, 20, 21], testing [15, 19, 27, 32, 38–40],
and state space exploration [23, 34]. EnforceMOP does not
aim to find bugs in multithreaded programs; rather, it is
used as a testing framework to specify schedules in multi-
threaded unit tests. ConAn [32] uses a scripting language for
specifying method sequences and test schedules to generate
test driver code for multithreaded programs. Multithread-
edTC [40] employed ticks to specify thread schedules. A
domain-specific language to specify particular thread inter-
leaving scenarios is proposed in [11], together with scenario-
guided exploration of multithreaded programs. Our earlier
work IMUnit [27] proposed a language together with event
annotations to specify schedules in multithreaded unit tests.
EnforceMOP supports all the features of the above frame-
works, as described in Section 4.2. Moreover, with the un-
derlying power of multiple logic formalisms, EnforceMOP
can enforce complex schedules precisely and concisely.

A data-centric synchronization approach to avoiding cer-
tain concurrency errors such as data races is proposed in [17].
Their idea is to group fields into atomic sets and automat-
ically enforce the atomicity when accessing those fields at
runtime. EnforceMOP follows the same idea that synchro-
nization in the program can be semantic rather than syn-
tactic, but, with its different logic formalisms, EnforceMOP
is able to express more complex properties than atomicity.

7. CONCLUSION
Multithreaded programs are hard to develop and test. In

this paper we presented EnforceMOP, a novel framework
for specifying and enforcing complex properties in multi-
threaded programs. We implemented EnforceMOP on top
of JavaMOP, so it supports parametric properties and al-
lows users to use various logic formalisms with different ex-
pressiveness. EnforceMOP is used in two kinds of applica-
tions. First, as a framework to enforce general properties
which are not bound to any program locations or thread
schedules. Second, as a testing framework to enforce spe-
cific thread schedules in unit tests, and we compared it with
several other testing frameworks. Results showed that En-
forceMOP is able to enforce both general properties and
specific schedules effectively and efficiently.
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