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ABSTRACT
Modern Integrated Development Environments (IDEs) sup-
port many refactorings. Yet, programmers greatly underuse
automated refactorings. Recent studies have applied tradi-
tional usability testing methodologies such as surveys, lab
studies, and interviews to find the usability problems of
refactoring tools. However, these methodologies can identify
only certain kinds of usability problems. The critical inci-
dent technique (CIT) is a general methodology that uncovers
usability problems by analyzing troubling user interactions.
We adapt CIT to refactoring tools and show that alternate
refactoring paths are indicators of the usability problems of
refactoring tools. We define an alternate refactoring path as
a sequence of user interactions that contains cancellations,
reported messages, or repeated invocations of the refactoring
tool. We evaluated our method on a large corpus of refactor-
ing usage data, which we collected during a field study on
36 programmers over three months. This method revealed
15 usability problems, 13 of which were previously unknown.
We reported these problems and proposed design improve-
ments to Eclipse developers. The developers acknowledged
all of the problems and have already fixed four of them. This
result suggests that analyzing alternate paths is effective at
discovering the usability problems of interactive program
transformation (IPT) tools.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; H.5.2 [Information Interfaces and
Presentation]: User Interfaces

General Terms
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Keywords
Refactoring, usability, evaluation, critical incident, empirical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
http://dx.doi.org/10.1145/2568225.2568282
Copyright 2014 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Refactoring is changing code without altering its observ-

able behavior [25, 27, 38]. Major Integrated Development
Environments (IDEs), including Eclipse, IntelliJ, NetBeans,
Visual Studio, and Xcode, provide tool support to make
software refactoring more efficient and reliable. Nonetheless,
developers greatly underuse automated refactorings, mostly
due to usability problems [35,36,42]. ISO [17] defines usabil-
ity as “extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use”. Anything that
damages the usability of a product is a usability problem.

Researchers have evaluated refactoring tools with usability
testing methodologies such as lab studies and interviews [24,
26,31,33–35,41,42]. These methodologies find real usability
problems by recruiting only a small number of participants.
However, these methodologies are known to be suitable for
identifying only certain usability problems, e.g., those that
can be exposed during a short lab study or the ones that
a programmer can remember during an interview. This is
because such methodologies can evaluate the tool only for
a short period of time, limited kinds of tasks, and a small
number of participants.

Humans learn from their past mistakes. Certain events
severely affect our lives, e.g., accidents and injuries. Reflect-
ing on such events, we try to improve our future strategies.
If refactoring tools were human beings, how would they have
learned from their past experiences?

The critical incident technique (CIT) [23, 39] is a general
methodology for revealing problems by analyzing critical
incidents. A critical incident is a breakdown of a user’s in-
teraction with the system that seriously affects the user’s
task. The Human-Computer Interaction (HCI) community
has found that CIT is an effective, complementary method-
ology for discovering usability problems [18,28,29]. However,
the notion of “critical incidents” is not well-understood or
studied for interactive program transformation (IPT) tools,
e.g., refactoring tools. This leaves three research questions
open: What are the critical incidents for IPT tools? Are
these incidents indicators of the usability problems of IPT
tools? How can evaluators infer usability problems from
critical incidents?

Our work bridges the gap between two lines of research
(program transformation and CIT) by adapting CIT to refac-
toring tools. We show that alternate refactoring paths are
indicators of usability problems. An alternate (refactoring)
path is a sequence of user interactions with the refactoring
tool that differs from the primary path. The primary path,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/10208841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mvakili2@illinois.edu
mailto:rjohnson@illinois.edu
http://dx.doi.org/10.1145/2568225.2568282


1 class C {

2 static

3 void m() {

4 }

5 }

(a) This selection re-
sults in an invoca-
tion of Move Static
Members.

1 class C {

2 static

3 void m() {

4 }

5 }

(b) This selection re-
sults in an invoca-
tion of Move Compi-
lation Unit.

Figure 1: The Eclipse refactoring tool detects the
type of the Move refactoring based on the code se-
lection. The only difference between these selections
is the two leading spaces on line 2 of Figure 1b. Al-
though the code selections shown in this figure are
very similar, they result in invocations of different
refactorings: Move Static Members and Move Com-
pilation Unit.

also known as the happy path, is an ideal sequence of interac-
tions that leads to a successful application of the automated
refactoring. Refactoring tool users take alternate paths for
various reasons, e.g., making an invalid selection, invoking
the wrong automated refactoring, or violating a precondition
check.

We hypothesize that events such as cancellations, repeated
invocations, and reported messages of a refactoring tool,
which correspond to alternate paths, are likely to indicate
usability problems. To test this hypothesis, we conducted
a field study [42] with 36 programmers who used Eclipse
for a total of 2,320 programming hours over the course of
three months. By analyzing 145 alternate refactoring paths
in this data set, we found 15 usability problems [1–15], 13 of
which were previously unknown. We both reported the prob-
lems and proposed design improvements to the developers of
Eclipse. Consequently, the developers acknowledged all the
problems we reported and have already fixed four of them.
These results suggest that analyzing alternate refactoring
paths is effective at identifying the usability problems of
refactoring tools.

The analysis of alternate refactoring paths revealed a vari-
ety of usability problems (Section 4). For example, Figure 1
shows how a minor change to a code selection results in the
invocation of an unexpected Move refactoring. Reporting
this problem [7] to the Eclipse developers led to the discovery
of broader consequences of the problem (Section 4.5.2).

There are several advantages to our adaptation of CIT for
finding the usability problems of IPT tools. First, our auto-
matic data collection method can scale to many participants
and collect data for a long time. This makes it possible to
find usability problems from many user interaction paths.
Second, our automatic data collectors are unobtrusive. This
allows the evaluators to find usability problems without in-
terfering with programmers’ work. Third, the large set of
collected data can be mined to measure the frequency of us-
ability problems empirically. Finally, analyzing the alternate
paths reveals not only usability problems, but also design
improvements.

In summary, this work contributes to the field of refactoring
in several ways:

• We adapt (Section 3) and evaluate (Section 4) CIT for
finding the usability problems of refactoring tools. This
adaptation can be used to find the usability problems
of other refactoring or IPT tools.

• We find real usability problems (Section 4) of a refactor-
ing tool and propose design improvements to address
them. These problems are encountered by program-
mers in the field and confirmed by the developers of
the refactoring tool.

• We provide empirical evidence for the frequency of the
usability problems revealed by our method.

2. RELATED WORK
We discuss two main lines of research related to our work.

2.1 Usability Studies on Refactoring Tools
Any useful software continuously evolves. Refactoring

tools aim to reduce the cost and risk of evolving software.
Nonetheless, recent studies show that usability problems
deter programmers from using automated refactorings [35,42].
These studies have uncovered some of the usability problems
of refactoring tools by a combination of quantitative and
qualitative data analyses. Our work differs from these studies
in two ways. First, we derive a systematic usability evaluation
method for refactoring tools. Second, our evaluation method
relies mostly on automatically collected usage data rather
than qualitative data.

Researchers have proposed alternative designs to improve
the usability of refactoring tools [24, 26, 31–34, 41]. These
proposals seek to address specific usability problems such
as developers’ unawareness of automated refactorings [34],
poor methods of invoking automated refactorings [24,26,31,
32], and low predictability of automated refactorings [41].
While this line of work has generated promising ideas for
improving the usability of refactoring tools, they lack a
general mechanism for finding usability problems encountered
by programmers in the field.

2.2 The Critical Incident Technique

2.2.1 The Origins of CIT
The critical incident technique (CIT) is a general technique

developed in its current form by Flanagan and published in
Psychological Bulletin in 1954 [23]. The technique is believed
to have been founded even earlier by Galton (circa 1930).

Flanagan defined CIT as a set of procedures for collecting
and analyzing human behaviors that have critical significance
(positive or negative). Typically, the respondents are asked
to describe their significant experiences. Variations of this
method have been widely used in Human Factors [39]. De-
spite all the variations of CIT, a common definition of the
critical incident still holds. A critical incident is an event
during a task that is a significant indicator of some aspect
of the objective of the study.

Flanagan describes CIT as an outgrowth of the studies
conducted as part of the Aviation Psychology Program of
the United States Army Air Forces in World War II. One
of the early studies in this program that employed CIT was
analyzing the reasons of disorientation while flying. In this
study, the pilots were asked to think of occasions during
their flight that they experienced disorientation, i.e., they



felt uncertain about their spatial position. Then, they were
asked to describe what they saw, heard, or felt that caused
that experience. This study resulted in a number of rec-
ommendations for changing the cockpit design and training
pilots to avoid disorientation.

2.2.2 CIT in Human-Computer Interaction
del Galdo et al. adapted CIT to HCI in 1986 [22]. They

conducted a study to evaluate the documentation of a con-
ferencing system. The participants were asked to perform
a task using the system. They were also asked to report
any incident (success or failure) that they encountered while
using the documentation. The experimenters observed the
participants during the study. This variation of CIT in which
the participants report the incidents as they are encountered
is called the user-reported critical incident technique (UCIT).
del Galdo et al. made recommendations for improving the
documentation based on the reported incidents.

Hartson et al. adapted UCIT to remote usability evaluation,
where the users and evaluators are in different physical loca-
tions [28,29]. In this variant of CIT, the experimenters train
the users to identify and report critical incidents. The users
report the critical incidents as they are encountered during
the task. Later, the evaluators analyze the reports and the
accompanied contextual information (e.g., video recordings)
of the incidents. Hartson et al. showed the effectiveness of
CIT through several studies on web applications. They also
reported a problem with UCIT—users tend to delay report-
ing the incidents. While Hartson et al. used CIT to enable
remote usability evaluation, their studies were mostly in the
lab.

Akers et al. devised a variant of CIT for evaluating the
usability of applications like Google SketchUp and Adobe
Photoshop [18]. They conducted a lab study, in which they
instructed the participants to perform predefined tasks. The
system automatically recorded operations such as undo and
erase along with screen capture video. To obtain more con-
textual information about these events, the participants were
paired up to discuss their captured video episodes centered
around the recorded events. They found that the participants
sometimes failed to report problems because they forgot or
blamed themselves rather than the application. An inter-
esting difference in the results of our studies is that we did
not find undo a good indicator of the usability problems of
refactoring tools (Section 5).

Yoon et al. studied developers’ backtracking strategies
(e.g., removing inserted code or restoring removed code) [44].
This study can be viewed as an application of CIT with
implications for better tool support for backtracking strate-
gies [45].

Studies have confirmed the effectiveness of remote usability
evaluation in different settings [19, 20, 30]. Nevertheless,
practitioners do not practice it much, although when they
do, they appreciate its value [21].

While similar to this line of research we propose a variant
of CIT, there are several major differences. First, we focus
on IPT tools, for which the notion of critical incident is not
well-understood. Second, we seek to avoid interference with
programmers’ workflow. Thus, we capture more detailed
information automatically to reduce the involvement of the
users in identifying the usability problems. Finally, we eval-
uate our method by analyzing the authentic data collected

Table 1: Number of years of programming experi-
ence of the participants as reported by the 34 who
completed the demographic survey.

Years 1–2 2–5 5–10 > 10
Participants 2 6 17 9

from programmers performing real tasks in their normal
working environments.

3. METHODOLOGY
The critical incident technique (CIT) consists of two major

phases: data collection and data analysis. The rest of this
section describes how we adapted each of these phases for
identifying the usability problems of IPT tools.

3.1 Data Collection
Evaluators can collect the critical incidents through sur-

veys, interviews, observing the participants, or asking the
participants to report the incidents during the task. These
data collection techniques are not scalable to many users, are
based on artificial tasks, or interfere with users’ work. So, we
made our data collection automatic to collect a large set of
data that covers many usage scenarios of the refactoring tool
in a form that is amenable to automatic data analysis. We
made the data collection unobtrusive to avoid altering pro-
grammers’ behavior. Finally, instead of collecting the data
from predefined tasks performed at the lab, we decided to
collect the data from real tasks that are more representative
of how the refactoring tool is used in practice.

We conducted a field study on 36 programmers for three
months, collecting usage data for a total of 2,320 program-
ming hours.

3.1.1 Participants
We recruited participants from the industry (N = 17)

and academia (N = 19). We advertised the study to the
open-source community via mailing lists, IRC, and e-mail.
In addition, we invited researchers from six research labs
at the computer science department of the University of
Illinois at Urbana-Champaign. We did not remunerate the
participants. Instead, we explained to them the potential
contributions of our study. We asked the participants to fill
out a demographic survey. Based on the survey results, 26
participants had at least five years of programming experience
(Table 1). Moreover, the participants indicated that they
worked on a variety of domains such as banking, database
management systems, business process management, and
marketing.

3.1.2 Automatic Data Collector
We developed CodingSpectator [43], an unobtrusive

tool for collecting the usage data of the Eclipse refactoring
tool. The only interaction that the participants had with
CodingSpectator was to install it like any Eclipse plug-in,
and enter their username and password when prompted to
submit their data to our central repository. We chose to make
the data collection process unobtrusive to study software
evolution practices in the wild [37,42].
CodingSpectator captures more data about the usage

of the refactoring tool than what Eclipse already does. It



captures invocations of 23 automated refactorings of the
33 supported by Eclipse. The Eclipse refactoring history
captures the following information about only the automated
refactorings that are performed :

timestamp The invocation time of the automated refactor-
ing

kind The kind of the automated refactoring (e.g., Rename
Local Variable, Extract Method)

selection offsets The start and length of the code selection
used to invoke the refactoring

configuration options Information about how the pro-
grammer configured the automated refactoring (e.g.,
the name and accessibility of the new method created
by Extract Method)

Eclipse records data only about the primary paths that
users take while using the refactoring tool. In other words,
it only records the eventually performed automated refac-
torings. However, troubling interactions may make the user
take alternate refactoring paths by canceling or undoing a
refactoring that has reported a message or is hard to use.

Since our goal was to adapt and evaluate CIT for refactor-
ing tools, we made CodingSpectator augment the Eclipse
refactoring history in two ways. First, CodingSpectator
records canceled, undone, and redone automated refactorings
in addition to the performed ones along with any messages
reported by the refactoring tool. Second, it captures con-
textual information about refactoring activities that an eval-
uator can use to derive usability problems. The contextual
information consists of the following:

navigation history A description of how and when the
user navigated through the refactoring wizard

invocation method Whether the user has invoked the refac-
toring tool through the wizard

selection The piece of code selected to invoke the refactor-
ing, and a larger slice of code surrounding the selection1

messages All problems that the refactoring tool has re-
ported to the programmer (Section 3.1.3)

Since Eclipse does not provide a reusable API to capture
the above information, we instrumented the Eclipse source
code. During the installation process, CodingSpectator
replaces several existing Eclipse plug-ins, such as LTK and
JDT, by our instrumented versions of these plug-ins.

3.1.3 Refactoring Messages
A refactoring precondition is a property that the refactor-

ing tool checks at various stages, e.g., selection, invocation,
configuration, and commit, to guarantee that the change will
preserve the behavior of the program. If a precondition fails,
the refactoring reports a message whose type depends on
the severity of the problem and the stage of refactoring. We
refer to such a message as a refactoring message or just a
message in this paper.

The Eclipse refactoring tool may report any of about 640
messages of four types to its user [16]:
1We made CodingSpectator capture this information be-
cause the selection offsets captured by Eclipse do not always
reflect exactly the ones used by the programmer due to some
normalization that Eclipse applies on the selections.

Unavailable The refactoring tool refuses to open the refac-
toring wizard due to the failure of a precondition.

Warning This kind of message attempts to predict compi-
lation problems and can often be ignored safely.

Error The Eclipse documentation recommends not to con-
tinue an automated refactoring that has reported a
message of this kind, because it is very likely to break
the code.

Fatal Error The refactoring tool refuses to perform the
change on the code.

The refactoring tool may report an Unavailable message
only before the refactoring wizard is open, while it may report
the other types of messages only during the later stages of
refactoring.

3.2 Data Analysis
The data analysis phase of CIT consists of two major

phases: identifying critical incidents and inferring usabil-
ity problems. We automated the identification of critical
incidents and their accompanying contextual information.
However, inferring the usability problems from critical inci-
dents is a manual process that an evaluator can do. The rest
of this section describes how we adapted these two phases of
CIT to IPT tools.

3.2.1 Identifying Critical Incidents
Collecting the critical incidents. We first collected a
set I of critical incidents, i.e., refactoring invocations that
reported a message (Section 3.1.3) as well as canceled, undone,
and redone refactorings. Then, we add to I any refactoring
that occurred within five minutes of a critical incident in I.

Finding the most frequent refactoring messages. We
computed the frequency of each refactoring message by count-
ing the number of times it occurred in I. We consider the
frequency of a refactoring message a measure of the criti-
cality of the message as an incident. We have released the
data about the frequencies of the refactoring messages at
http://hdl.handle.net/2142/47414.

The number of all messages that the Eclipse refactoring
tool may report is large (N = 640). It is tedious to investi-
gate all possible messages for usability problems. Besides,
it is often impossible to infer a usability problem from a
message without having other contextual information about
the refactoring invocation. CodingSpectator’s data in-
dicates that the Eclipse refactoring tool reported only 83
different kinds of messages to the participants during the
study. Therefore, we focus on these messages that the refac-
toring tool reported in practice. In addition, we analyze the
most frequent messages in the contexts that they appeared.
The contextual information captured by CodingSpectator
allows us to identify the conditions under which the message
is reported and how the programmers react to the message.

Extracting refactoring batches. The refactoring batch
of a critical incident is a subset of I containing the events that
are semantically related to the critical incident. Examples of
semantically related events are cancellations and invocations
of the same refactoring or refactorings on related program
entities. A refactoring batch provides the context necessary
for inferring usability problems from a critical incident. We

http://hdl.handle.net/2142/47414


extracted the refactoring batches of the most frequent refac-
toring messages. To extract the refactoring batch of a critical
incident, we manually inspected the events in I that occurred
within 20 minutes of the critical incident and extracted those
that were semantically related to the critical incident. We
found that a window of 20 minutes was large enough to cover
all events that were semantically related to a critical incident.
For each event in the refactoring batch of a critical incident,
we took a note of how the event was related to the critical
incident. We referred to these notes while inferring usability
problems from refactoring batches.

3.2.2 Inferring Usability Problems

Analyzing the refactoring batches. We manually in-
spected 145 refactoring batches of the most frequent refac-
toring messages to infer usability problems. We used the
contextual information in each refactoring batch (e.g., code
snippet, selection, and invocation method) to reproduce the
behavior of the refactoring tool. For each refactoring batch,
we examined programmers’ reactions to the reported mes-
sages. If programmers dismissed the message, we checked if
the message was poor, e.g., vague, difficult to understand, or
uninformative. We evaluated the effectiveness of the message
ourselves based on general usability guidelines, and we did
not contact the participants. If the programmer canceled the
refactoring, we checked if the refactoring was later repeated.
If the refactoring was repeated, we checked for the possible
changes to the configurations of the refactoring or any man-
ual changes made to the code since the previous invocation.
Such changes often revealed why the refactoring failed in the
first attempt and how the refactoring tool could be improved
to avoid the failure. If the refactoring was repeated multiple
times unsuccessfully, we considered it a stronger indication
of a usability problem.

Confirming the usability problems. Finally, we re-
ported the usability problems that we inferred to Eclipse
developers to confirm that they are indeed considered us-
ability problems from the Eclipse developers’ points of view.
We included in our reports some empirical data about each
usability problem, e.g., the number of refactoring batches
with the same usability problem, the number of times pro-
grammers canceled or performed a refactoring as well as a
summary of the strategies that the programmers employed
to remedy the usability problem. We also made our reports
actionable by making concrete suggestions on how to resolve
the usability problems.

4. USABILITY PROBLEMS
We were able to infer usability problems by analyzing

alternate refactoring paths. This shows that alternate refac-
toring paths are indicators of usability problems. This section
presents some of the usability problems that we identified.
For each usability problem, we present its frequency in our
data set, how we identified the usability problem, and what
suggestion we made to Eclipse developers to resolve the
usability problem.

CodingSpectator recorded detailed information for 92%
(4,245 of 4,611) of the refactorings that were performed and
recorded by Eclipse. Table 2 illustrates the frequencies of
automated refactoring events. Table 3 introduces several
symbols that we use in the rest of the paper. Table 4 lists

Table 2: The frequency of each kind of automated
refactoring and refactoring message in the Cod-
ingSpectator data set.

Event P
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E
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r
o
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F
a
t
a
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E
r
r
o
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U
n
a
v
a
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a
b
l
e

Occ. 4,245 267 284 34 191 124 49 85

Table 3: Meanings of the symbols used to describe
an alternate refactoring path quantitatively. Occ.
can be greater than Per. + Can., because a refac-
toring with an Unavailable message is not counted
as either performed or canceled.

Symbol Meaning

Occ. The number of occurrences of the alternate path.

Par.
The number of participants affected by the
alternate path

Bat.
The number of refactoring batches containing the
alternate path

Per.
The number of instances of the alternate path that
the participants performed

Can.
The number of instances of the alternate path that
the participants canceled

Rank
The index of a message in an array of all messages
sorted by Occ. descendingly

the most frequent messages that the Eclipse refactoring tool
reported to our participants.

Due to privacy and confidentiality constraints of the field
study, we cannot present the participants’ code. Instead, we
demonstrate the usability problems using simplified versions
of the participants’ pieces of code.

4.1 Vague Messages
We analyzed the refactoring batches of the two most fre-

quent messages of the Eclipse refactoring tool (rank one and
two in Table 4). When we reproduced these messages, we no-
ticed that they are vague. That is, they do not clearly explain
the problem, leaving the programmer confused about the
risks of performing the refactoring and the actions required
to mitigate the risks. For example, for the most frequent
message (rank one in Table 4), neither the message nor any
other information on the refactoring wizard indicates what
part of the code modification may not be accurate. This
Warning is too broad to be of any actionable use. Perhaps
this is why the participants continued 96% (108 of 113) of the
refactorings despite reporting this Warning. We reported
several instances of this usability problem to the Eclipse
developers [1, 11–13].

4.2 Overly Strong Preconditions
Precondition checking of refactoring tools is a delicate

process. On one hand, the preconditions should be strong
enough to prevent the refactoring from breaking the code or
altering its behavior in unintended ways. On the other hand,
the preconditions should not be overly strong and reject
safe refactorings. Our prior study showed that programmers
prefer flexible refactorings, often ignore precondition failures,



Table 4: A list of the most frequent messages reported by the Eclipse refactoring tool. Column “Refactorings”
lists the refactorings that reported each message. Refer to Table 3 for meanings of the other column headers.

R
a
n
k

Message Type Refactorings

O
cc

.

P
a
r.

P
e
r.

C
a
n
.

- - - All 4200 29 4032 168

1
Code modification may not be accurate as affected
resource ∗ has compile errors Warning

Rename Compilation Unit,
Type, Enum Constant,
Field, Method, Package

113 17 108 5

2
Found potential matches. Please review changes on
the preview page. Error

Change Method Signature,
Move

44 14 35 9

3
Type ∗ contains a main method—some applications
(such as scripts) may not work after refactoring. Warning

Rename Compilation Unit,
Type, Package 41 7 39 2

4
This refactoring cannot be performed correctly due
to syntax errors in the compilation unit. To perform
this operation you will need to fix the errors.

Fatal Error Rename Field, Method 22 10 0 22

5
Ambiguous return value: Selected block contains
more than one assignment to local variables. Unavailable Extract Method 22 6 0 0

6
This name is discouraged. According to convention,
names of local variables should start with a
lowercase letter.

Warning
Change Method Signature,
Extract Local Variable,
Rename Local Variable

15 5 12 3

7
Selected statements contain a return statement but
not all possible execution flows end in a return.
Semantics may not be preserved if you proceed

Error Extract Method 15 6 8 7

and manually fix the problems afterwards [42]. The following
discusses two usability problems [2, 10] related to overly
strong preconditions that we identified.

Realizing the disadvantages of overly strong precondi-
tions, others have proposed a bounded-exhaustive testing
approach [40]. Our approach of finding overly strong pre-
conditions by analyzing critical incidents complements theirs
in two ways. First, we find overly strong preconditions that
programmers have encountered in real-world, while their ap-
proach finds overly strong preconditions in a large number of
automatically generated programs. Second, their approach
does not currently support refactorings below the method
level, e.g., Extract Method.

4.2.1 Ambiguous Return Value
The Extract Method refactoring reported the Unavail-

able message in Figure 2 to our participants (Occ. = 22,
Par. = 6).

We first reproduced the message using the information
captured in its refactoring batches to understand the condi-
tions under which the refactoring tool reports this message.
These batches contained an invocation of Extract Method
with a code selection similar to the one shown in Figure 3.
By studying the message itself and reproducing the repeated
refactorings in the refactoring batches of the message, we
found why the refactoring tool refuses to continue: the se-
lected code assigns to two local variables (a and b) that are
used outside the selection (line 6). Since a Java method can
return at most one value, the refactoring tool cannot infer the
return value of the extracted method (a or b). We identified
two usability problems by analyzing the refactoring batches
of this Unavailable message.

First, while trying to reproduce the message, we found that
the message is not descriptive enough. The message indicates
that the refactoring tool is unable to proceed because the
selected piece of code assigns two local variables. However,
this is not a sufficient condition. The refactoring tool refuses
to continue only when more than one local variables are both
assigned in the selected piece of code and used outside the

Figure 2: The Eclipse Extract Method refactoring
reports the message “Ambiguous return value” for
the code selection shown in Figure 3.

1 class C {
2 int m() {
3 int a, b;

4 a = 1;

5 b = 2;

6 return a + b;
7 }
8 }

Figure 3: The Eclipse Extract Method refactoring
reports the message “Ambiguous return value” (Fig-
ure 2) for the code selection shown in this figure.

selection. We suggested that the Eclipse developers make
the message more descriptive. The Eclipse developers fixed
this problem [1].

Second, this precondition check of Eclipse is overly strong.
Refusing to continue the refactoring caused additional over-
head to our participants as shown by their efforts to repeat
the refactoring in the refactoring batches. We examined the
cancellations and repeated invocations in refactoring batches
to understand how programmers handled this message. We
found that programmers used three solutions. They either
narrowed the selection, widened it, or converted the local
variables to fields and repeated the refactoring. Based on



this observation, we suggest that the refactoring tool be more
flexible and let the programmer continue the refactoring in
the following ways. One option is to warn the programmers
about the use of the local variables outside the selection but
still allow them to continue the refactoring and make the
new method have no return value. Alternatively, the tool
could suggest that it automatically converts the local vari-
ables to fields and proceed. We reported this overly strong
precondition to Eclipse developers. They acknowledged the
value of flexibility saying [2]:

I have had instances when I have had to perform
a refactoring manually because Eclipse would not
proceed because of an error. On such occasions I do
wish for things to be a bit more flexible.

4.2.2 Missing Return
The Error message with rank seven in Table 4 was the

second most frequent message of Extract Method. Seven
of the 11 refactoring batches that contained this message
contained at least one cancellation and one repeated invoca-
tion. In one refactoring batch, the participant invoked the
refactoring four times each time changing a configuration
option, selection, or code. These alternate paths indicate
the difficulty of using the tool and the possibility of usability
problems.

By reproducing the message, we found the underlying
reason of the message. Eclipse cannot extract a set of state-
ments that has some control flow paths ending in return

and some others not (Figure 4a). We examined the code
selections in the refactoring batches of this message to see if
this precondition check can be relaxed for certain common
code selections. As a result, we found that the refactoring
could have been more flexible and infer the missing return

statements (Figure 4b) in seven of the 11 batches that con-
tained this message. The IntelliJ refactoring can infer the
missing return statement in some cases. We suggested this
enhancement to Eclipse developers and they acknowledged
its benefits [10].

4.3 Name Conflicts
Refactorings such as Rename and Extract Local Variable,

which change the name of an existing program element or
introduce a new named program element, may cause name
conflicts. Table 5 lists the most frequent refactoring messages
that Eclipse reported to the participants due to name conflicts
(Occ. = 43, Par. = 14, Bat. = 36, Per. = 20, Can. = 23).

Our analysis of the refactoring batches showed that the
participants either continued the refactoring despite the mes-
sage and resolved the name conflict manually or canceled the
refactoring and invoked it again to enter a different name.
Having the programmers navigate back to the configuration
page or repeat the invocation of the refactoring with a differ-
ent name to refactor safely is an additional overhead, which
we consider a usability problem.We reported this source of
additional overhead to Eclipse developers and suggested that
the refactoring tool informs programmers about potential
name conflicts earlier [9, 15].

4.4 Unintuitive Configuration Options
The goal of the Move Instance Method refactoring is to

move the declaration of an instance method from its enclosing
class to another class. Figure 5 shows the effect of applying
Move Instance Method on an example piece of code.

1 class C {
2 boolean b;
3 boolean m() {

4 if (b)

5 return true;

6 else

7 System.out.

8 println(

9 "else");

10 return false;
11 }
12 }

(a) The selection con-
tains a return state-
ment but not all pos-
sible execution flows
end in a return.

1 class C {
2 boolean b;
3 boolean m() {
4 if (n())
5 return true;
6 return false;
7 }
8 boolean n() {
9 if (b)

10 return true;
11 else
12 System.out.
13 println(
14 "else");
15 return false;
16 }
17 }

(b) It is possible
to automatically in-
fer the missing re-

turn statement in
some cases.

Figure 4: The Extract Method refactoring of Eclipse
results in a compilation problem if it reports the Er-
ror message: “Selected statements contain a return
statement but not all possible execution flows end
in a return. . . . ”.

Six of the participants invoked the Move Instance Method
refactoring for a total of 16 times as parts of ten batches.
However, none of the invocations were applied. Either the
programmer canceled the refactoring (11 times), or the refac-
toring tool refused to continue and reported an Unavailable
message (5 times). Two refactoring batches indicated that
the participants invoked the refactoring tool three times
but did not succeed to perform the Move Instance Method
refactoring. These critical incidents led us to identify two
usability problems.

First, the configuration dialog provides options that pro-
grammers cannot easily interpret. The dialog asks for a
pair of “name” and “type” (Figure 6), while the programmer
would like to select the destination class. A refactoring batch
indicated that a participant spent 27 seconds on the con-
figuration dialog of Move Instance Method, which is higher
than the average time our participants spent on this dialog
(16.5 seconds). We asked the participant why he spent this
time on the configuration dialog and eventually canceled
the refactoring. The participant said that he expected the
refactoring tool to ask him about the destination class not
a pair of “name” and “type”. He canceled the refactoring
because he could not interpret the required options. How-
ever, selecting a destination class is not sufficient in general,
because the refactoring tool has to update the call sites as
well. The refactoring asks the programmer to select a vari-
able to determine the new receivers of the call sites. For the
example shown in Figure 5, the refactoring tool changes the
call c.m(e1, e2) (line 12, Figure 5a) to e1.m(c, e2) (line
8, Figure 5b). Nonetheless, since the configuration dialog
does not communicate the necessity of these options well,
the programmer gets confused.



Table 5: The most frequent refactoring messages that were due to name conflicts. Column “Refactorings”
lists the refactorings that reported each message. Refer to Table 3 for meanings of the other column headers.

R
a
n
k

Message Type Refactorings

O
cc

.

P
a
r.

P
e
r.

C
a
n
.

8 Duplicate local variable Error
Extract Local Variable, Rename
Local Variable

14 8 5 9

14
A variable with name ∗ is already defined in the visible
scope Warning Extract Local Variable 8 2 6 2

17 Package ∗ already exists in this project in folder Warning Rename Package 6 3 6 0
18 Type named ∗ already exists in package Error Rename Compilation Unit, Type 6 5 0 6
22 Compilation unit ∗ already exists Fatal Error Rename Compilation Unit, Type 5 4 0 5

1 class C {
2 D d1;
3 D d2;
4 void m (E e1,
5 E e2) {
6 d1.m();
7 }
8 void m2() {
9 E e1= new E();

10 E e2= new E();
11 C c= new C();
12 c.m(e1, e2);
13 }
14 }
15

16 class D {
17 void m() {
18 }
19 }
20

21 class E {
22 }

(a) Original code

1 class C {
2 D d1;
3 D d2;
4 void m2() {
5 E e1= new E();
6 E e2= new E();
7 C c= new C();
8 e1.m(c, e2);
9 }

10 }
11

12 class D {
13 void m() {
14 }
15 }
16

17 class E {
18 void m(C c,
19 E e2) {
20 c.d1.m();
21 }
22 }

(b) Refactored code

Figure 5: The programmer selects instance method
m (line 4) to move it from class C to E.

Second, the configuration dialog requires more options
than what is necessary for moving certain kinds of methods.
We found that fewer, simpler options were sufficient to sup-
port a common class of attempted refactorings captured in
refactoring batches. We say an instance method is effectively
static if it can be made static without introducing any
compilation problems. For example, in Figure 5, method
C.m2() (lines 8–13, Figure 5a) is effectively static. How-
ever, method C.m(E, E) (lines 4–7, Figure 5a) is not because
it depends on the instance field C.d1. In five batches, the
participants tried to move effectively static methods. If
the method is effectively static, it would be sufficient for
the dialog to ask the destination class from the programmer.
However, the Eclipse refactoring tool always requires the
programmer to select a field or parameter as the new target
of the method. This design is restrictive because it does
not allow the programmer to move an effectively static

method to a class other than those reachable from a field or
parameter.

We reported both of the above usability problems to Eclipse
developers [3,4]. The developers acknowledged these prob-
lems and made an improvement accordingly. To address the

Figure 6: The configuration options of the Move
Instance Method refactoring for the code example
shown in Figure 5. The refactoring requires the
new “target” of the method as a pair of “name” and
“type”. However, this requirement is neither easy to
interpret by programmers nor necessary.

first usability problem, we suggested that the configuration
dialog asks the destination class and new receiver separately
and clarify why it requires a new receiver. We provided
the developers with prototypes of alternative designs of the
configuration dialog. To resolve the second usability problem,
we suggested that the refactoring tool automatically detects
effectively static methods and allows the programmer to
move them to any writable class without requiring a new
receiver.

4.5 Invalid Code Selections
Programmers have to select pieces of code to invoke most

automated refactorings. However, selecting a valid piece of
code can be error-prone, especially when the selection is long.
Table 6 lists the most frequent refactoring messages reported
because of invalid code selections. In total, 30 refactoring
messages were reported due to invalid code selections. We
identified several usability problems [5–8,14] related to invalid
selections.

4.5.1 Trailing Semicolon
The inclusion or exclusion of a semicolon can make a se-

lection invalid for Extract Method. Figure 7 illustrates a
selection that causes Extract Method to report the Unavail-
able message with rank 23 in Table 6. The Extract Method
refactoring expects the trailing semicolon to be included in



Table 6: The most frequent refactoring messages due to invalid code selections. Column “Refactorings” lists
the refactorings that reported each message. Refer to Table 3 for meanings of the other column headers.

R
a
n
k

Message Type Refactorings

O
cc

.

P
a
r.

P
e
r.

C
a
n
.

19
The end of the selection contains characters that do not
belong to a statement Unavailable Extract Method 5 2 0 0

21 An expression must be selected to activate this refactoring. Unavailable
Extract Local Variable,
Constant

5 4 0 0

23 Cannot extract the left-hand side of an assignment. Unavailable Extract Method 5 2 0 0

1 class C {
2 void m() {
3 int i = 0;

4 i = 10 ;
5 }
6 }

Figure 7: Excluding a semicolon can make a selec-
tion invalid for Extract Method.

the selection because it expects a set of statements not ex-
pressions as its input. The participants that received this
message (Occ. = 5, Par. = 2, Bat. = 3) eventually extended
the selection to include the trailing semicolon and performed
the refactoring successfully. Nonetheless, in two batches,
the participants repeated the refactoring with the incorrect
selection until they noticed the trailing semicolon. These
repeated invocations indicate the subtlety of this message.
We examined the refactoring batches of this message to see if
the refactoring tool could be improved to avoid the alternate
refactoring paths. We found that if the refactoring tool had
automatically expanded such selections to include the trailing
semicolon, the cancellations and repeated invocations of all
refactoring batches of the message would have been avoided.
We reported a usability problem to Eclipse developers [5]
suggesting that the refactoring tool automatically expands
such selections. Eclipse developers fixed this problem.

By analyzing alternate refactoring paths, we found a simi-
lar problem caused by including a trailing semicolon in the
selection. This usability problem was already reported and
fixed by the Eclipse developers [6].

4.5.2 Equivalent Selections
We inferred a usability problem of the Move refactoring

by analyzing the refactoring batches containing the following
Fatal Error message (Occ. = 4, Par. = 3, Bat. = 4, Per.
= 0, Can. = 4): A file or folder cannot be moved to

its own parent.

The Move Compilation Unit refactoring reports the above
message when a compilation unit is about to be moved to
its enclosing package—the default destination.

The configuration options that CodingSpectator cap-
tured for these refactorings indicated that in three of the
batches the participants selected fields or methods and in-
voked the Move refactoring but the tool incorrectly inter-
preted the refactoring as Move Compilation Unit. We repro-
duced the attempted refactorings on pieces of code similar
to the ones recorded by CodingSpectator. Surprisingly,
we found that slight changes to the code selection result in
the invocation of an unexpected kind of Move refactoring.

Figure 1 shows two very similar code selections that are
interpreted differently by the Move refactoring. The selection
in Figure 1a results in an invocation of Move Static Members,
while the selection in Figure 1b results in an invocation of
Move Compilation Unit. This is because the former selection
tightly covers a method, while the latter covers slightly more
than a method (leading spaces on line 2, Figure 1b). The
refactoring tool interprets a selection that covers more than
a method as a selection of the enclosing compilation unit.

This high sensitivity to code selections is a usability prob-
lem. Reviewing our report of this usability problem [7] led the
Eclipse developers to discover more problems. The root cause
of the problem is that the Move refactoring only considers
the start offset of the selection. This observation uncovered
another problem: if a programmer selects two methods, the
Move refactoring will ignore the second one.

5. LESSONS LEARNED
Although we applied CIT to find the usability problems of

an IPT tool, we learned some lessons along the way that are
generalizable to other programming tools.

Reported messages. We found that the reported refactor-
ing messages were more likely to indicate usability problems
than other events. Nevertheless, we identified at least one
usability problem by just examining canceled refactorings.
Repeated invocations of an automated refactoring helped
us infer how the participant overcame a usability problem.
Unlike an adaptation of CIT to applications like Adobe Pho-
toshop [18], we did not find any usability problems by just
studying undone and redone refactorings. Nonetheless, un-
done and redone refactorings in a refactoring batch provided
stronger evidence for the usability problems revealed by other
events, e.g., reported messages. There are several possible
explanations for why undo is an indicator of usability prob-
lems for an application like Adobe Photoshop but not a
refactoring tool. First, the role of the undo operation may
be different in the two applications. Programmers seem to
use undo as a natural means of exploring a solution space.
Second, inferring usability problems from an undone auto-
mated refactoring may require more contextual information
that CodingSpectator does not capture.

Reproducibility. We found that reproducing the critical
incidents was required in most cases to infer the usability
problems. This suggests that the reproducibility of critical
incidents is an important criteria in adapting CIT to IPT
tools and other domains. The data collector has to capture
enough details about the incidents so that the evaluator can
later reproduce the critical incidents and examine them.

User reports. We contacted a participant to infer one
usability problem (Section 4.4). We were able to refresh



the participant’s memory by showing him CodingSpecta-
tor’s data of his refactoring. The lesson here is that it is
sometimes necessary to get the participant’s report of the
critical incident, e.g., what they were trying to achieve, what
prevented them from achieving their goal, and how they
overcame the problem. When employing CIT in a remote
usability evaluation, there are two general ways of getting
the participants’ reports of the critical incidents: either ask
the participants to report the incidents as they occur during
the task, or prompt them by presenting enough data about
their actions not too long after performing the task.

Design improvements. Although our goal was to infer
usability problems from alternate paths, we learned that al-
ternate paths can also suggest design improvements. We an-
alyzed the repeated refactorings to see how the programmers
overcame a usability problem manually. For some usability
problems (Sections 4.2.1 and 4.5.1), we suggested design
improvements that automated these manual strategies.

6. LIMITATIONS
Although we successfully identified usability problems, we

do not have an estimate of what fraction of the usability prob-
lems we identified. Future work may answer this question
by comparing the results of our method by conventional us-
ability evaluation methods. Eclipse developers acknowledged
all of the usability problems that we reported. Nonetheless,
developers’ judgments may not be perfect.

Although the contextual information that CodingSpec-
tator collects allows us to identify usability problems, our
identification process was mostly manual and tedious. Future
research could explore automated techniques to reduce the
burden on the evaluator. We used heuristics such as the
number of occurrences of the events and affected participants
to prioritize our evaluation efforts. Another possibility is to
ask the users report the critical incidents that they encounter.
The study of the pros and cons of such an approach is left
to future work.

We adapted and evaluated CIT for the Eclipse refactor-
ing tool. Since we were able to extend some of the results
to other refactoring tools, we expect our results to gener-
alize. Nonetheless, we did not thoroughly investigate the
generalizability of our method to other IPT tools.
CodingSpectator captures snippets of code close to

the program elements under refactoring. We found that
this information was crucial for deriving usability problems.
Nonetheless, recording such sensitive pieces of information
raises privacy and confidentiality issues. We faced difficulty
in recruiting participants because of these issues. There are
several challenges in scaling our method to a large number of
programmers. One challenge is to make the data collection
transparent. Another challenge is to design an incentive
mechanism for programmers to share their data.

7. FUTURE WORK
This work opens up future research in several directions.

One direction is to adapt other variants of CIT, e.g. UCIT,
to IPT tools. This would provide insight about the quantity
and quality of user reports and their effect on the number
and severity of inferred usability problems.

Another future line of research is to extend our method to
other IPT tools, e.g., code generators, bug fixers, and other
refactoring tools.

Finally, our vision is that programming environments adopt
data collection frameworks like CodingSpectator to make
remote asynchronous usability evaluation possible at a large
scale. This large scale will raise new research challenges
such as privacy assurance and automatic clustering of similar
critical incidents.

8. CONCLUSIONS
Interactive program transformation (IPT) tools, such as

refactoring tools, aim to make the evolution of software
more economical and reliable. Despite the automation of
many recurring or sophisticated changes, refactoring tools
are heavily underused [35,36,42]. Recent studies suggest that
usability problems are major obstacles to a widespread use of
refactoring tools [35, 42]. We advocate continuous collection
of usage data to analyze the interactions of programmers
with a refactoring tool. This technique is used in other
application domains, e.g., web applications. The challenge is
to find usability problems from a large corpus of usage data,
which is like finding a needle in a haystack.

We adapted the critical incident technique (CIT) to refac-
toring tools. We examined alternate refactoring paths to
find the usability problems of refactoring tools. Alternate
refactoring paths are paths of user interactions that differ
from the primary or happy path of using an automated refac-
toring. An alternate refactoring path contains events such
as cancellations, repeated invocations, and error messages.
We mined alternate refactoring paths in a large, real-world
refactoring usage data set and analyzed a subset of it to
identify usability problems. As a result, we found 15 usabil-
ity problems, all of which have been acknowledged by the
Eclipse developers and four have already been fixed. This
result shows that alternate refactoring paths reveal usability
problems.
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