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ABSTRACT

This dissertation presents models for reliability assessment, energy yield estimation,

and uncertainty analysis of renewable electric power systems. We propose system

performability models that describe system attributes while acknowledging failures

and repairs in constituent elements. Two broad classes of models are investigated:

i) Markov reliability and reward models, and ii) stochastic hybrid systems (SHS)

models. Conventional Markov models capture attributes that are largely static�

the only dynamics are due to changes in system con�guration due to failures and

repairs in constituent elements. On the other hand, SHS can model a wide variety

of dynamic phenomena, and provide signi�cant �exibility over Markov models.

From an applications perspective, we propose Markov reward models to estimate

the performability of photovoltaic energy conversion systems (PVECS) and wind en-

ergy conversion systems (WECS). A major impediment in formulating these models

is the lack of precise data on model parameters, e.g., component failure and repair

rates. Additionally, inputs to these models (e.g., incident insolation in PVECS and

wind speed in WECS) are inherently uncertain. Therefore, to ensure validity of the

results, we propose set-theoretic and probabilistic methods for uncertainty analysis

in these models.

With regard to SHS, we �rst demonstrate how Markov reliability/reward models

are a type of SHS. We also present applications to stochastic small-signal modeling

of power systems. Case studies demonstrate how to quantify the impact of renewable

resources uncertainty on power system dynamics.
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Chapter 1

INTRODUCTION

This dissertation presents system performability models for reliability assessment,

energy yield estimation, and uncertainty analysis of renewable electric power sys-

tems. System performability models describe notions of system performance while

acknowledging system reliability due to failures and repairs in constituent elements.

Two broad classes of models are investigated: i) Markov reliability and reward mod-

els, and ii) stochastic hybrid systems (SHS) models.

The methods we develop apply across the board to a wide class of systems. In

light of this, the theoretical developments are presented with a high level of gener-

ality and accompanied by a variety of numerical/analytical case studies. From an

applications perspective, we develop Markov models for photovoltaic energy con-

version systems (PVECS) and wind energy conversion systems (WECS). A major

impediment in formulating these models is the lack of precise data on model pa-

rameters, e.g., component failure and repair rates. Additionally, inputs to these

models are inherently uncertain, e.g., incident insolation in PVECS and wind speed

in WECS. Therefore, to ensure validity of the results, we propose set-theoretic and

probabilistic methods for uncertainty analysis. In the development of Markov mod-

els, we will note that these are largely static in nature�the only dynamics are due to

changes in system con�guration due to failures and repairs in constituent elements.

To provide an improved performability modeling framework, we will introduce SHS.

In the realm of SHS, we demonstrate how these can be used to derive very general

reward formalisms. We also show that Markov models are in fact an instance of SHS.

Additionally, we present applications of SHS to stochastic small-signal modeling of

power systems. The problem we study here is to quantify the impact of renewable

resources uncertainty on the dynamics of electromechanical states of power system

dynamic models.
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1.1 Markov Reliability and Reward Models

Markov reliability models are ubiquitous in power system reliability assessment [1,2],

and have been applied to study a wide array of systems including: WECS [3,4], small

hydro power plants [5], PVECS [6�8], and substation/distribution equipment [9,10].

The e�cacy of reliability and performability indices obtained from Markov reliability

models hinges on the accuracy of component failure and repair rate data. However,

due to scarcity of incidents, it is seldom possible to obtain accurate values of failure

and repair rates for the system under investigation [11]. Therefore, in order to

quantify the impact of imperfect information, uncertainty analysis must supplement

reliability studies which are usually performed at single-point best estimates of the

model parameter values [1, 12�14].

Common approaches that have been explored to tackle parametric uncertainty in

Markov models include: i) set-theoretic methods, in which parameters are modeled

as unknown quantities bounded around a nominal value, and ii) probabilistic meth-

ods, in which parameters are modeled as random variables with known distributions.

The main contribution of this dissertation pertains to the development of Taylor se-

ries expansions for the Markov chain stationary distribution that are then utilized

in set-theoretic and probabilistic methods to propagate parametric uncertainty. Ad-

ditionally, from an applications perspective, we demonstrate how these approaches

to sensitivity and uncertainty analysis can be applied in PVECS and WECS.

1.1.1 Methods to Quantify Probabilistic Parametric Uncertainty

Chapter 3 presents a general framework for probabilistic uncertainty analysis in

Markov reliability and reward models. Failure and repair rates are modeled as ran-

dom variables (in lieu of precise numbers) with distributions determined by various

methods, e.g., utilizing known con�dence intervals and distributions of aleatory un-

certainties such as the mean time to failure [15], applying the maximum entropy

principle if only the range of the uncertain parameters is known [16], or based on

expert opinions, engineering experience, and �eld data [17], [12]. Given the proba-

bility density functions (pdfs) of the uncertain parameters, we propose a framework

to compute the pdfs of the Markov reliability model stationary distribution, and

Markov reward model performability indices, both for repairable systems, in which

the underlying Markov chains are ergodic.
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The proposed framework involves the use of Taylor series expansions to approxi-

mate the entries of the Markov chain stationary distribution vector, i.e., the steady-

state occupational probabilities of di�erent states, as polynomial functions of the

uncertain parameters, which are modeled as random variables. A signi�cant con-

tribution of this work is the derivation of the Taylor series coe�cients, which are

expressed in closed form as functions of the generator-matrix group inverse [18].

Subsequently, random variable transformations are applied to numerically compute

the pdfs of the Markov chain steady-state probabilities and performability indices.

Additionally, closed-form expressions for the expectation and variance of these in-

dices are derived from a direct analysis of lower-order approximations of the Taylor

series expansion. Note that if closed-form expressions for the relevant indices as a

function of the model parameters were readily available, Taylor series expansions

would be unnecessary; however, in general, it is di�cult to obtain these expressions

in closed form.

The use of Taylor series expansions to study parametric uncertainty in Markov

reward models has been proposed in [16], [19]. In these works, the Taylor series

coe�cients are expressed in terms of the inverse of the underlying Markov chain

generator matrix. However, since the generator matrix of ergodic Markov chains

is singular, it is unclear how the ideas in [16], [19] can be implemented in practice.

Additionally, while the approach is sketched out, it is not applied directly in the case

studies. Methods to propagate uncertainty based on the Markov chain transient so-

lution sensitivity to model parameters are outlined in [12], [20], [21], and [22]. By

contrast, since we focus on repairable systems, our method focuses directly on the

stationary distribution of ergodic Markov chains which are used to model repairable

systems. Note also that our framework not only proposes closed-form approxima-

tions for the expectation and variance of reliability and performability indices, but

also provides a numerical method to derive the pdfs of these indices. The sensitiv-

ities could be computed following alternative methods (see e.g., [12], [20] and the

references therein) before applying the techniques proposed here to obtain the pdfs of

the reliability/performability indices. Finally, a signi�cant advantage of the proposed

framework is that the only required input is the Markov chain generator matrix; i.e.,

closed-form expressions for the stationary distribution and performability indices as

a function of the model parameters are not required a priori.

We demonstrate the application of the proposed framework in analyzing Markov

reliability and reward models with several case studies, including: i) a two-state
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model for a single component with two operating modes, ii) a three-state model for

a two-component load-sharing system with common-cause failures, and iii) an n+ 1

state model for n components, each with two operating modes. In the �rst two case

studies, we illustrate the accuracy of the proposed method by comparing results

with Monte Carlo simulations (and the exact analytical result when available). The

expectation and variance derived from the analytical expressions are also compared

with those obtained numerically from the derived pdfs. The �nal case study pre-

sented in this chapter compares the execution time of the proposed approach with

Monte Carlo simulations to compute the pdf of a particular performability metric.

The execution time of the proposed Taylor series method is noted to be lower than

Monte Carlo simulations for large models with a few uncertain parameters.

1.1.2 Methods to Quantify Worst-Case Parametric Uncertainty

In Chapter 4, we propose a set-theoretic method to propagate parametric uncertainty

to reliability and performability indices that result from Markov reliability models.

Instead of assuming that parameter probability distributions are available (or can

be obtained from �eld data), we assume that only upper and lower bounds around

nominal values are known. Thus, the values that these parameters can take are con-

strained within a set. Bounds on performability indices are obtained by propagating

the set that describes all possible values the parameters can take through the station-

ary distribution of the Markov chain. This represents a worst-case uncertainty anal-

ysis as no assumptions are made on the failure-/repair-rate statistics. This method

is more suited to reliability assessment when extensive failure/repair-rate data�that

would enable constructing probability distributions�are unavailable. In summary,

probabilistic parametric uncertainty models can be used to obtain statistics of reli-

ability/performability indices; i.e., instead of obtaining a single-point estimate, we

can obtain the distribution of the relevant indices. On the other hand, unknown-but-

bounded parametric uncertainty models do not yield any statistical information of

reliability/performability indices. Instead, they yield a bounding set that contains

all possible values the relevant indices can take; i.e., in an unknown-but-bounded

model, there is no notion of a most likely value, but we know with certainty that the

actual value is contained in this bounding set [23].

In the proposed method, we assume that the uncertain parameters take values in

a parallelotope, i.e., an extension of a parallelogram (in two dimensions) or a paral-
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lelepiped (in three dimensions) to any dimension [24]. The center of the parallelotope

corresponds to the nominal values that the parameters can take. A minimum-volume

ellipsoid is constructed to upper-bound this parallelotope. Then, by using set opera-

tions, this ellipsoid is propagated through a second-order Taylor series expansion of

the Markov chain stationary distribution.1 This facilitates computation of approx-

imate bounds on reliability and performability indices that arise from the Markov

chain stationary distribution. The Taylor series coe�cients are evaluated only once

for the nominal values that the parameters take, and therefore, the approach is com-

putationally inexpensive compared to repeated simulations, i.e., computing the rele-

vant indices for all possible parameter values. A signi�cant contribution of this work

is a numerical method to propagate ellipsoidal sets through second-order polynomial

systems�previous work in this area has been largely focused on linear systems [23].

This is relevant, as second-order Taylor-series expansions enable studies that can

gauge the impact of larger uncertainties in parameter values, and as demonstrated

in the case studies and examples in Chapter 4, they provide more accurate bounds

than those obtained with �rst-order approximations.

Methods to assess the impact of unknown-but-bounded parametric uncertainty

that exploit the sensitivity of the Markov chain transient solution to model parame-

ters are proposed in [12,20]. By contrast, we focus directly on the stationary distri-

bution of ergodic Markov chains employed in modeling repairable systems [13]. Tech-

niques based on interval arithmetic (see, e.g., [25]) have been proposed in [26,27]. In

these methods, the unknown parameters are assumed to belong to an interval�which

is propagated through the Markov model using methods from interval arithmetics.

Heuristic methods based on fuzzy set theory have also been explored to quan-

tify the impact of unknown-but-bounded parametric uncertainty [10, 28, 29]. How-

ever, it has been acknowledged that modeling uncertain transition rates by fuzzy

membership functions requires computationally expensive fuzzy logic calculations

[10]. The alternative is to derive explicit, closed-form equations for the reliabil-

ity/performability indices (before applying fuzzy arithmetic). However, it turns out

that this is infeasible for large models with multiple parameters [10]. The main ad-

vantage of our method is that the Markov chain generator matrix is the only required

input; i.e., closed-form expressions for the stationary distribution or performability

indices as a function of the model parameters are not required a priori. Based on

1Ellipsoids are preferred instead of the original parallelotope that they bound because set oper-
ations with ellipsoids involve simple matrix algebra.
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these features, the proposed method is best suited to analyze parametric uncertainty

in multi-state, multi-parameter Markov models, where closed-form expressions for

the relevant indices are di�cult to obtain, and exhaustive simulation of all possible

parameter values is computationally expensive.

We demonstrate the application of the proposed method with two case studies

in Chapter 4 : i) a two-component shared-load system with common-cause failures,

and ii) an electric-power distribution transformer with deterioration and preventa-

tive maintenance. In the �rst case study, we quantify the impact of parametric

uncertainty on a notion of reward de�ned for the two-component system, and in the

second, we explore the optimal preventative maintenance rate to maximize trans-

former availability, while taking into account the e�ect of parametric uncertainty. We

also compare the execution time of the proposed method by exhaustively simulating

all possible parameter values as the model order grows.

1.2 Stochastic Hybrid Systems

Stochastic hybrid systems provide a reward modeling framework that not only en-

compasses Markov reward models but can capture a variety of other system per-

formability notions. The framework foundations are a set of theoretical tools devel-

oped to analyze a class of stochastic processes referred to as piecewise-deterministic

Markov processes [30]. Fundamentals of SHS and several applications to system

performability modeling are presented in Chapter 5.

The state space of an SHS is comprised of a discrete state and a continuous state;

the pair formed by these is what we refer to as the combined state of the SHS.

The transitions of the discrete state are stochastic and the rates at which these

transitions occur are (in general) a function of time and the value of the continuous

state. For each value that the discrete state takes, the evolution of the continuous

state is described by a stochastic di�erential equation (SDE). The SDEs associated

with each value that the discrete states take need not be the same; indeed, in most

applications they di�er signi�cantly. Additionally, associated with each discrete-

state transition, there is a reset map that de�nes how the pre-transition discrete

and continuous states map into the post-transition discrete and continuous states.

Within the context of performability modeling, the set in which the discrete state

takes values describes the possible con�gurations/modes that a system can adopt,
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which not only includes the nominal (non-faulty) operational mode, but also those

operational modes that arise due to faults (and repairs) in the components that

comprise the system. The continuous state captures the evolution of some variables

associated with the system performance, and as such, can be used to de�ne speci�c

reward measures that capture notions of system performability. Finally, the reset

maps can de�ne instantaneous gains and losses in reward measures that result from

transitions due to failures and repairs.

In order to fully characterize an SHS-based reward model, we need to obtain the

distribution of the combined state. However, this is an intractable problem, due

to the coupling between the evolution of the discrete and continuous states and

the reset maps. This can be solved only in a few special cases. For instance, if

we assume that the discrete state does not depend on the continuous state, the

evolution of the former can be written as a continuous-time Markov chain (CTMC);

and as such, its probability distribution is fully characterized by the solution of the

Chapman-Kolmogorov equations. However, unless we also assume that the resets do

not change the value of the continuous state, it is not straightforward to obtain the

continuous-state probability distribution.

Given the di�culty in obtaining the distribution of the combined state, we settle

for a method that allows the computation of any arbitrary number of their raw mo-

ments. To this end, we rely on the extended generator of the SHS, which together

with Dynkin's formula can be used to obtain a di�erential equation that describes

the evolution of the expectation of any function of the combined state, as long as

such a function is in the domain of the extended generator. Following the approach

outlined in [31,32], we show that under certain general assumptions, monomial func-

tions are always in the domain of the extended generator, and thus, Dynkin's formula

holds. Additionally, for SHS where the reset maps, transition rates, and the vector

�elds de�ning the SDEs are polynomial, the generator maps the set of monomial

functions to itself. Therefore Dynkin's formula gives a closed set of ordinary di�er-

ential equations (ODEs) that describes the evolution of each moment in terms of the

values of the other moments. Since there are in�nitely many monomial functions,

this formally produces an in�nite-dimensional system of ODEs in what is referred

to in the stochastic process literature as a closure problem.

The examples and case studies presented in Chapter 5 demonstrate how the pro-

posed SHS framework applies to reward models where the rate at which the reward

grows is: i) constant�this case is referred as the rate reward model [33], ii) gov-
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erned by a �rst-order linear di�erential equation�we refer to this case as a �rst-order

reward model, and iii) governed by a linear SDE�this case is referred as the second-

order reward model [34]. The SHS framework can specify even more general reward

models, but we restrict attention to the above cases as they have been previously

studied in the literature which allows us to validate and verify our results. We will

show that the structure of the standard reward models described above is such that

there are �nite-dimensional truncations of the ODEs governing the moment evolu-

tion that are closed; i.e., there are �nite subsets of moments such that the evolution

of any member of this subset is a function only of the other members of this subset.

In other words, these conventional reward models do not lead to a closure prob-

lem, and therefore we only have to solve a �nite-dimensional ODE to determine the

evolution of the reward moments.

The SHS formalism not only applies to the reward models introduced above, but

as we will show subsequently, it provides a framework to specify even more general

reward models. Furthermore, while it is relatively simple to obtain analytical ex-

pressions for the reward distribution in rate and �rst-order reward models, for more

general reward models, e.g., second-order reward models with impulses and/or losses

in the accumulated reward, it is very di�cult to obtain explicit, closed-form, analyti-

cal solutions for the partial di�erential equations (PDEs) that describe the evolution

of the reward distributions [35]. In practice, in order to analyze such reward models,

numerical methods are utilized to integrate the PDEs governing the evolution of the

accumulated reward pdf [35,36]. However, as reported in the literature, these meth-

ods are oftentimes slow and inaccurate [34]. An alternative to numerical integration

for characterizing the distribution of the reward is to compute its moments. The

moments can then be used, e.g., to compute bounds on the probabilities of di�erent

events of interest using Markov/Chebyshev inequalities [37]. A number of meth-

ods have been proposed in the literature for computing moments in reward models.

For example, techniques based on the Laplace transform of the accumulated-reward

distribution are proposed in [33, 34, 38, 39]. Rate reward models with impulses are

speci�ed as stochastic activity networks in [40], while in [41], the �rst moment of

the accumulated reward in these models is computed following a method based on

the frequency of transitions in the underlying Markov chain. A numerical procedure

based on the uniformization method is proposed to compute the moments of the

accumulated reward in [42]. In [43], Taylor-series approximations of the vector �elds

and transition rates that govern the evolution of the continuous state are used to
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obtain a set of coupled di�erential equations whose solutions yield the moments of

interest. In the same vein of these earlier works, the SHS-based framework proposed

in this dissertation provides a method to compute any desired number of moments

of the reward. This method is relatively straightforward to implement in a com-

puter as it involves solving a linear ODE, for which there are very e�cient numerical

integration methods.

It is worth noting that in the nuclear engineering risk analysis literature there is

a related body of work referred to as dynamic probabilistic risk assessment (DPRA)

(see, e.g., [43�45] and the references therein). As in SHS, DPRA models are com-

prised of discrete and continuous dynamics; however, in DPRA models, the continu-

ous dynamics associated to each discrete state is described by an ordinary di�erential

equation (ODE). Additionally, although the transitions between discrete states in

DPRA models are stochastic, they do not depend on the value that the continuous

state takes. In fact, it is easy to verify that DPRA models are a particular instance of

SHS. In these works, as in second-order reward models, the Chapman- Kolmogorov

equations with appropriate Markovian assumptions are utilized to derive PDEs that

govern the continuous states; however, even in this body of work, it has been ac-

knowledged that closed-form analytical solutions to the PDEs can only be derived

for simple models [44,45]. In practice, most techniques for analyzing DPRA models

are based on Monte Carlo simulation.

1.3 Organization of this Dissertation and a Primer to the Case
Studies

This dissertation is organized as follows. In Chapter 2, we present fundamentals of

Markov reliability and reward models. Chapters 3 and 4 present methods to quan-

tify the impact of probabilistic and unknown-but-bounded parametric uncertainty,

respectively, on performability indices recovered from Markov models. Fundamen-

tals of SHS and their application to system performability modeling are presented

in Chapter 5. Note that in Chapters 3, 4, and 5, we present several case studies

pertaining to common reliability models which are very general and apply to a wide

variety of systems (i.e., not limited to renewable electric power systems).

We utilize the models (and their derivatives) in Chapters 6, 7, and 8, to demon-

strate several applications to reliability assessment, energy yield estimation, and
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uncertainty analysis of renewable electric power systems. A primer to these case

studies is provided below.

In Chapter 6, we present a modeling framework to integrate reliability considera-

tions into energy-yield and cost estimations of PVECS using Markov reward model

formalisms. Here, we use the analytical approach for parametric sensitivity anal-

ysis based on generalized matrix inversion techniques introduced in Chapter 2. In

Chapter 7, we propose a framework to quantify the impact of parametric and in-

put uncertainty on the reliability/performability of WECS. Parametric uncertainty

in these models relates to the uncertainty in failure and repair rates of the con-

stituent wind turbines in the farm. Input uncertainty is due to uncertainty in wind

speed. The methods utilized here to quantify the impact of parametric uncertainty

are adopted from Chapter 3. Finally, in Chapter 8, we explore a stochastic small-

signal power system model cast in the SHS framework. The general DAE model

that describes the evolution of the electromechanical states of the power system is

linearized around nominal values of real/reactive power injections (corresponding to

some nominal mode). As the discrete state evolves, so do the real/reactive power

injections�we describe how this can be used to model renewable resource variabil-

ity. Subsequently, we apply results from Chapter 5 to obtain the moments of the

electromechanical states of the power system. Concluding remarks and directions

for future work are summarized in Chapter 9.
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Chapter 2

FUNDAMENTALS OF MARKOV RELIABILITY

AND REWARD MODELS

In this chapter, we present some fundamentals of Markov reliability models, Markov

reward models, the group inverse of ergodic Markov chains, and the sensitivity of the

stationary distribution of Markov chains to model parameter variations. Our dis-

cussion is limited to mathematical fundamentals, and interested readers are referred

to [18,46�48], for a more detailed account on these topics. The building blocks intro-

duced in this chapter are used in uncertainty analysis methods described in Chapters

3-4.

2.1 Markov Reliability Models

Let Q = {Q(t), t ≥ 0} denote a stochastic process taking values in a set Q.

• The stochastic process Q is called a continuous time Markov chain (CTMC)

if it satis�es the so called Markov property, which is to say that [48]

Pr {Q(tn) = i|Q(tn−1) = jn−1, . . . , Q(t1) = j1}

= Pr {Q(tn) = i|Q(tn−1) = jn−1} , ∀i, j1, . . . , jn−1 ∈ Q, ∀t < · · · < tn. (2.1)

• The chain Q is said to be homogeneous if it satis�es

Pr {Q(t) = i|Q(s) = j} = Pr {Q(t− s) = i|Q(0) = j} , ∀i, j ∈ Q, 0 < s < t.

(2.2)

Homogeneity of Q implies that the times between transitions are exponentially

distributed.
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• The chain Q is said to be irreducible if

Pr {Q(t) = i|Q(0) = j} > 0, ∀i, j ∈ Q, for some t > 0. (2.3)

Said in words, every state in an irreducible chain is accessible from every other

state.

• The chain Q is said to be ergodic if it is irreducible, and the set Q is �nite.

Ergodic Markov chains have a unique stationary distribution independent of

initial conditions [47].

In the context of reliability/reward modeling, we consider the class of CTMCs that

are homogeneous, irreducible, and take values in a �nite set Q = {0, 1, 2, . . . , N},
where 0, 1, 2, . . . , N − 1 index system con�gurations that arise due to component

faults, and N indexes the nominal, non-faulty con�guration. Let Q denote a chain

belonging to this class. In light of the de�nitions above, the chain Q is ergodic and

has a unique stationary distribution.

Let πi(t), t ≥ 0, be the probability that the chain is in state i at time t, and

de�ne the corresponding probability vector as π(t) = [π0(t), π1(t), . . . , πN (t)]. The

evolution of π(t) is governed by the Chapman-Kolmogorov equations

π̇(t) = π(t)Λ, (2.4)

with πN (0) = 1, πi(0) = 0, i = 0, 1, . . . , N − 1, and where Λ ∈ RN+1×N+1 is the

Markov chain generator matrix whose entries are a function of component failure and

repair rates [46]. By construction, all the row sums in Λ are zero, which implies that

Λ is not invertible. The steady-state solution of (2.4) is referred to as the stationary

distribution of the chain; it is denoted by π, and is obtained as the solution of

πΛ = 0, πeT = 1, (2.5)

where e ∈ RN+1 is a row vector with all entries equal to one. The stationary distri-

bution of an ergodic Markov chain is unique (independent of initial conditions), and

a function of the generator-matrix parameters (interchangeably referred to as model

parameters) which are denoted by θj , j = 1, 2, . . . , m. To explicitly represent para-

metric dependence, the generator matrix and stationary distribution are expressed

as Λ(θ) and π(θ) = [π0(θ), . . . , πN (θ)], respectively, where θ = [θ1, θ2, . . . , θm] is the
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vector of model parameters.

2.2 Markov Reward Models

A Markov reward model is de�ned by a Markov chain taking values in a �nite set

Q and a reward function % : Q → R that maps each state i ∈ Q into a real-valued

quantity ρi, which captures some performance metric of interest while in state i.

At time t, the value that % takes can be described by a random variable P (t).

The instantaneous reward, denoted by ξ(t), is a probabilistic measure of system

performance given by the expected value of P (t)

ξ(t) := E[P (t)] =

n∑
i=0

πi(t)ρi = π(t)ρT , (2.6)

where ρ := [ρ0, ρ1, . . . , ρn]. The reward, denoted by ξ, is a long-term measure of

system performance, and it is de�ned as

ξ := lim
t→∞

ξ(t) = lim
t→∞

N∑
i=0

πi(t)ρi =

N∑
i=0

πiρi = πρT , (2.7)

where π = [π0, π1, . . . , πN ] is the Markov chain stationary distribution. If the values

that the reward function % takes are de�ned in per-unit time, then ξ describes the

average rate at which the system delivers/consumes some quantity that captures a

measure of system performance. The accumulated reward, denoted by γ, is a quantity

measuring system performance in a period [0, τ ], and it is de�ned as

γ :=

τˆ

0

E[P (t)]dt =

τˆ

0

π(t)ρTdt. (2.8)

For the systems we study, there is typically orders of magnitude di�erence in the

failure and repair rates. Consequently, the CTMC reaches steady state very fast,

and (2.8) can be approximated as

γ ≈ πρT τ = ξ · τ, (2.9)
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where π is the CTMC stationary distribution. A derivation of this result is provided

in Appendix A.1.

In subsequent discussions, the reward and accumulated reward are expressed as

ξ(θ) and γ(θ), respectively, to clearly represent their dependence on model parame-

ters.

2.3 Stationary Distribution and Group Inverse of CTMCs

For ergodic Markov chains, the generator-matrix group inverse enables the numer-

ical calculation of ∂kπi(θ)/∂θkj , i = 0, 1, . . . , n; j = 1, 2, . . . ,m; k > 0, as will be

discussed in Section 2.4. The group inverse of Λ = Λ(θ) for some θ is denoted by

Λ#, and is given by the unique solution of
ΛΛ#Λ = Λ,

Λ#ΛΛ# = Λ#,

ΛΛ# = Λ#Λ,

(2.10)

if and only if rank(Λ) = rank(Λ2), which is a condition that always holds for gen-

erator matrices of ergodic Markov chains [49]. A number of techniques amenable

for computer implementation have been proposed to compute the group inverse [18].

An approach involving the QR factorization of Λ yields the stationary distribution

π = π(θ), and the group inverse Λ# [50]. In this method, Λ is factored as Λ = QR,

where, Q, R ∈ RN+1×N+1. The matrix R is of the form

R =

[
U −UeT
0 0

]
, (2.11)

where U ∈ RN×N is a nonsingular upper-triangular matrix, and e ∈ RN is a row

vector with all entries equal to one. The stationary distribution can be derived by

normalizing the last column of Q

πj =
qj+1,N+1

n+1∑
i=1

qi, N+1

, j = 0, 1, . . . , N. (2.12)
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The group inverse is related to Q and R as follows:

Λ# = (I − eTπ)

[
U−1 0

0 0

]
QT (I − eTπ). (2.13)

2.4 Sensitivity to Model Parameters

For Markov reliability models, the �rst-order sensitivity of stationary distributions

to model parameters was derived in [8]. The ideas in [8] were extended to compute

higher-order sensitivities in [13, 14]. These results are summarized below. A proof

for the results below is included in Appendix A.2.

The k-order sensitivity of the i steady-state probability to the j parameter θj , is

given by
∂kπi(θ)

∂θkj
= k! (−1)k π(θ)

(
∂Λ

∂θj
Λ#

)k
eTi . (2.14)

The second-order mixed partial derivative is given by

∂π2
i (θ)

∂θj∂θk
= π(θ)T

(
∂Λ

∂θj
Λ# ∂Λ

∂θk
Λ# +

∂Λ

∂θk
Λ# ∂Λ

∂θj
Λ#

)
eTi , (2.15)

where ei ∈ RN+1 is a vector with 1 as the i entry and zero otherwise. Derivation

of analytical expressions for general mixed partial derivatives is the focus of ongoing

research. In the uncertainty analysis methods we propose in Chapters 3-4, we will

only use the sensitivities above.

Note that sensitivities of the reward and accumulated reward can easily be com-

puted from the expressions above. In particular, using (2.7) and (2.14), the sensi-

tivity of the reward to the i parameter can be expressed as

∂kξ(θ)

∂θki
=
∂kπ(θ)

∂θki
ρT = k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
ρT , (2.16)

and similarly, from the de�nition of the accumulated reward in (2.9), we get

∂kγ(θ)

∂θki
=
∂kξ(θ)

∂θki
τ = k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
ρT τ. (2.17)

We provide a short example next to illustrate the application of the group inverse
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in computing the sensitivities of the stationary distribution to model parameter

variations for a simple�albeit representative�Markov reliability model.

Example 1

Consider a component with two possible operational states. In state 1, the compo-

nent performs its intended function, and in state 0, it has failed. The failure and

repair rates of the component are denoted by λ and µ, respectively. The state of

the component (functioning or failed) can be described by a two-state Markov chain.

The state-transition diagram for this chain is illustrated in Fig. 2.1, from which it

follows that the generator matrix is given by

Λ =

[
−µ µ

λ −λ

]
.

The stationary distribution of the chain, π = [π0, π1], obtained by solving πΛ = 0

with πeT = 1, where e = [1, 1], is given by

π0 =
λ

µ+ λ
, π1 =

µ

µ+ λ
, (2.18)

from which the following sensitivities can be derived

∂π0

∂µ
= −∂π1

∂µ
= − λ

(λ+ µ)2
, (2.19)

∂π0

∂λ
= −∂π1

∂λ
=

µ

(λ+ µ)2
. (2.20)

Figure 2.1: State-transition diagram of the two-state Markov model investigated in
Example 1.
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We will now verify that by using (2.14), the same result is obtained. Towards this

end, the QR factorization of Λ yields

Q =
1√

λ2 + µ2

[
−µ λ

λ µ

]
, (2.21)

R =

[ √
λ2 + µ2 −

√
λ2 + µ2

0 0

]
. (2.22)

As described in (2.12), the stationary distribution can be obtained by normalizing the

last column of Q in (2.21). Comparing (2.22) and (2.11), we see that U =
√
λ2 + µ2.

Substituting U , (2.18), and (2.21) in (2.13) yields

Λ# =
1

(λ+ µ)2

[
−µ µ

λ −λ

]
. (2.23)

The sensitivity of the stationary distribution to µ and λ can be derived from (2.14)

as

∂π

∂µ
= −π∂Λ

∂µ
Λ# =

[
− λ

(λ+µ)2
λ

(λ+µ)2

]
,

∂π

∂λ
= −π∂Λ

∂λ
Λ# =

[
µ

(λ+µ)2 − µ
(λ+µ)2

]
,

where
∂Λ

∂µ
=

[
−1 1

0 0

]
,
∂Λ

∂λ
=

[
0 0

1 −1

]
,

and π = [π0, π1] is given by (2.18), and Λ# is given by (2.23). Note that the sensi-

tivities match those computed directly from the closed-form stationary distribution

in (2.19)-(2.20).

2.5 Dynamic Reward Models

We end this chapter with a discussion of dynamic reward models. A dynamic Markov

reward model is comprised of a Markov chain Q(t) taking values in the set Q, which
describes the possible system operational modes; and a reward Y (t), which captures

some performance measure of interest and depends on each particular operational

mode q ∈ Q. The most commonly studied dynamic Markov reward models are rate-
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reward models, and second-order reward models (see, e.g., [34,35] and the references

therein). In rate-reward models, the accumulated reward evolves according to

dY (t) = a(q)dt, ∀q ∈ Q, t ≥ 0, (2.24)

where a : Q → R is the (state-dependent) reward growth rate. In second-order

reward models, the accumulated reward evolves according to

dY (t) = a(q) dt+ c(q) dWt, ∀q ∈ Q, t ≥ 0, (2.25)

where a : Q → R, c : Q → R, andWt : R+ → R is the Wiener process. Impulses in the

accumulated reward capture one-time e�ects due to the failure/repair of a constituent

element in the system. As described in the introduction, various methods have been

proposed to tackle impulses in �rst-order reward models. While not detailed in the

original work in [34], computer tools by the same authors incorporate impulses in

second-order reward models [35].

The SHS formalism studied in Chapter 5 generalizes and uni�es a wide class of

reward models. The state space in a SHS is comprised of a discrete state that

represents the operational modes of the system under study, and a continuous state

describing the reward dynamics. Reset maps capture the impact of transitions on the

continuous state, which provides a systematic method to de�ne initial conditions for

the post-transition reward dynamics, and therefore enables the inclusion of impulses

and losses in the reward when transitions occur. Furthermore, in the most general

case, the vector �elds that govern the evolution of the continuous state, the transition

rates, and the reset maps are functions of time and/or (�nite) polynomial functions

of the continuous state. The generality of this modeling formalism facilitates wide

applicability to a variety of reward models. In Chapter 5, we demonstrate how rate

and second-order Markov reward models with impulses can be recovered as a special

case of an SHS. Then in Chapter 8, we demonstrate how small-signal stochastic

stability of power systems can be studied within the SHS formalism. This approach

can be adopted to examine the impact of renewable resources variability on power

systems dynamics.
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Chapter 3

PROBABILISTIC UNCERTAINTY ANALYSIS IN

MARKOV RELIABILITY AND REWARD MODELS

In this chapter, we propose numerical methods to compute the pdfs of the Markov

chain stationary distribution, the reward, and the accumulated reward, given the

parametrized Markov chain generator matrix and the model-parameter pdfs. This is

the �rst of two methods we propose for uncertainty analysis in Markov reliability and

reward models (in Chapter 4, we investigate a set-theoretic model). The methods we

develop in this chapter are applied to investigate the performability of wind energy

conversion systems in Chapter 7. We also present several case studies here applied to

common reliability/reward models. The material we present subsequently has been

published in [13].

First, we demonstrate how the pdfs of the stationary distribution can be derived

for the case where a single parameter in the generator matrix is uncertain. Then,

for the more general multiple-parameter case, we leverage the results of the single-

parameter case to show how the pdfs of the stationary distribution, the reward,

and the accumulated reward can be computed. Additionally, we also derive closed-

form expressions that approximate the expectation and variance of the stationary

distribution, the reward, and the accumulated reward.

3.1 Problem Formulation

Let Θ = [Θ1, Θ2, . . .Θm] be the vector of random variables that describes the model

parameters, and let fΘj (θj) denote the pdf of Θj , j = 1, 2, . . . , m. It is assumed that

the Θj 's are independent continuous random variables with known pdfs.1 Therefore,

the steady-state probabilities are random variables that can be collectively described

by a random vector Π = [Π0, Π1, . . . , ΠN ], where Πi = πi(Θ). Similarly, the reward,

1As shown in Section 3.3.1, this restriction can be relaxed if the joint distribution of the param-
eters, fΘ1,...,Θm(θ1, . . . , θm), is known.
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Ξ = ξ(Θ), and the accumulated reward, Γ = γ(Θ) = Ξ ·τ , are random variables with

pdfs fΞ(ξ) and fΓ(γ), respectively.

If closed-form expressions for the stationary distribution as a function of the

model parameters were available and if the expressions were invertible, then fΠi(πi),

fΞ(ξ), and fΓ(γ) could be determined through the well-known random-variable-

transformation method stated in the following Lemma (see [51] for a proof).

Lemma 1

Consider a random variable X with pdf fX(x), and a di�erentiable, real-valued

function g(x). The pdf of the random variable Y = g(X), fY (y), is given by

fY (y) =
r∑
i=1

fX(xi)

|g′(xi)|
, g′(xi) :=

dg

dx

∣∣∣∣
x=xi

6= 0, (3.1)

where x1, x2, . . . xr are r real roots of y = g(x).

The main impediment in directly applying the above Lemma to our problem is

that it is seldom possible to obtain closed-form expressions for the Markov chain

stationary distribution, π(θ) (g(x) in the context of Lemma 1). Furthermore, the

number of roots of y = g(x) depends on the value of y, and might not be �nite unless

g(x) is a polynomial.

In our method, to derive fΠi(πi) and fΞ(ξ), the functions πi(Θ) and ξ(Θ) are �rst

approximated by polynomials by truncating their Taylor series expansions. Since we

model these functions as polynomials, we are guaranteed to have a �nite number of

roots. The Taylor series coe�cients are the sensitivities ∂kπi(θ)/∂θk and ∂kξ(θ)/∂θk.

In general, obtaining these sensitivities is a di�cult task; however, they can be

computed from the generator-matrix group inverse as shown in (2.14)-(2.16). Once

the polynomial characterization is available, Lemma 1 (and its extension to the

multiple-parameter case) can be applied to compute fΠi(πi) and fΞ(ξ) by evaluating

the roots of the polynomial approximations, which are easy to obtain numerically.

Since the accumulated reward Γ is the product of the reward Ξ, and a constant τ ,

fΓ(γ) can be easily expressed as a function of fΞ(ξ) and τ .

20



3.2 Single Parameter Case

Consider the case where a single parameter in the generator matrix is uncertain.

This parameter is denoted by θ, and described by a random variable Θ, whose pdf

fΘ(θ), is known.2 To derive the pdf of the steady-state probability Πi = πi(Θ), we

begin by expressing Θ as

Θ = mΘ + ∆Θ, (3.2)

where mΘ is the mean of Θ, and ∆Θ is a zero-mean random variable such that

f∆Θ(∆θ) = fΘ(mΘ + ∆θ). We can expand πi(Θ) around the mean of Θ using a

Taylor series expansion as follows:

Πi = πi(mΘ + ∆Θ) = πi(mΘ) +
∞∑
k=1

aki
k!

∆Θk. (3.3)

The k-order Taylor series coe�cient, aki, follows from (2.14):

aki =
dkπi(θ)

dθk

∣∣∣∣
θ=mΘ

= k! (−1)k π(θ)

(
dΛ(θ)

dθ
Λ#

)k
eTi

∣∣∣∣∣
θ=mΘ

, (3.4)

where ei ∈ RN+1 is a row vector with a 1 as the i entry and zero otherwise.

3.2.1 Probability Density Function of Πi

Since the exact, analytical, closed-form expression for πi(∆Θ) is not known, to apply

the result in Lemma 1, Πi is �rst expressed as Πi = pi(∆Θ), where pi is a polynomial

with real coe�cients obtained by truncating the Taylor series in (3.3) at the t term

Πi = pi(∆Θ) = πi(mΘ) +
t∑

k=1

aki
k!

∆Θk. (3.5)

Then, applying (3.1), fΠi(πi) can be computed as

fΠi(πi) =

r∑
j=1

f∆Θ(∆θj)

|p′i(∆θj)|
, (3.6)

2While we have de�ned θ = [θ1, θ2, . . . , θm] as the vector of model parameters, in this subsection,
we abuse notation and denote the single uncertain model parameter by θ.
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where ∆θ1, ∆θ2, . . . , ∆θr are the r ≤ t real roots of πi = pi(∆θ), and

p′i(∆θj) :=
dpi(∆θ)

d∆θ

∣∣∣∣
∆θ=∆θj

=
t∑

k=1

aki
(k − 1)!

∆θk−1
j . (3.7)

3.2.2 Computer Implementation

Algorithm 1 provides the pseudocode for computer implementation of the method

outlined in (3.2)-(3.7) to compute fΠi(πi), i = 0, 1, . . . , N . Since (3.6) has to be

evaluated pointwise, πi is appropriately discretized between 0 and 1 in steps of dπi
to obtain the vector π̄i = [0 : dπi : 1]. A �rst-order Taylor series expansion can be

utilized if the function πi(θ) is not far from linear within one standard deviation

away from the mean mΘ [52]. Alternatively, higher-order expansions can be utilized.

Given the parametrized generator matrix, it is easy to compute ∂Λ/∂θ and obtain

the QR factorization of the generator matrix at the mean of Θ, Λ(mΘ). Next πi(mΘ)

is obtained as shown in (2.12) by normalizing the last column of Q, the group inverse

Λ# is obtained from (2.13), and the Taylor series coe�cients, aki, k = 1, 2, . . . , t, are

computed using (3.4). In the for loop, fΠi(πi) is evaluated point wise for each entry

of π̄i. This involves computing the r real roots of the equation π̄i(l) = pi(∆θ), ∀l,
where π̄i(l) is the l entry in π̄i, and then applying (3.6)-(3.7).

Algorithm 1 Computation of fΠi(πi) for the single-parameter case.

de�ne π̄i = [0 : dπi : 1]
de�ne Taylor series order t
compute ∂Λ

∂θ and QR = Λ(mΘ)
compute πi(mΘ) from (2.12), Λ# from (2.13), and aki, k = 1, 2, . . . , t from (3.4)
for π̂i = 0 : dπi : 1 do

compute real roots of πi(mΘ)− π̂i +
t∑

k=1

aki
k! ∆θk = 0, ∆θj , j = 1, . . . , r

for j = 1 to r do

compute f∆Θ(∆θj) and p′i(∆θj) =
t∑

k=1

aki
(k−1)!∆θ

k−1
j

end for

compute fΠi(π̂i) =
r∑
j=1

f∆Θ(∆θj)

|p′i(∆θj)|
end for
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3.2.3 Expectation and Variance of Πi

While the method outlined in (3.2)-(3.7) provides the pdf of the Markov chain sta-

tionary distribution, it might be su�cient�for the purpose of back-of-the-envelope

calculations�to compute the expected value and variance of Πi. These could then

be used together with Markov and Chebyshev inequalities to get accurate upper

bounds on the probabilities of various events of interest [37]. The expected value of

Πi, denoted by mΠi , can be derived from (3.5) as

mΠi := E[Πi] = πi(µΘ) +
t∑

k=1

aki
k!

E
[
∆Θk

]
. (3.8)

Since the pdf of ∆Θ is known, it is easy to compute the expectations E[∆Θk], k > 0.

The variance of Πi, denoted by σ2
Πi
, can be derived from (3.5) and (3.8) as

σ2
Πi

:= Var (Πi) =
t∑

k=1

(aki
k!

)2
Var(∆Θk) +

t∑
k=1

t∑
m=1,m 6=k

aki
k!

ami
m!
·Cov

(
∆Θk,∆Θm

)
,

(3.9)

where Var
(
∆Θk

)
, and Cov

(
∆Θk,∆Θm

)
are given by

Var(∆Θk) = E
[
∆Θ2k

]
−
(
E
[
∆Θk

])2
, (3.10)

Cov(∆Θk,∆Θm) = E
[
∆Θk+m

]
− E

[
∆Θk

]
E [∆Θm] . (3.11)

We now present an example that illustrates the ideas described so far.

Example 2

Consider the two-state Markov chain studied in Example 1. Recall that in state 1, the

component performs its intended function, and in state 0, it has failed. The failure

rate of the component is denoted by λ, and the repair rate is denoted by µ. The

state of the component (functioning or failed) can be described by a two-state Markov

chain. The generator matrix for this chain is given by Λ =

[
−µ µ

λ −λ

]
. Denote

the stationary distribution of the chain by π = [π0, π1]. Recall from (2.18), that the

stationary distribution of this chain is given by π0 = λ/(µ + λ), π1 = µ/(µ + λ).

Suppose the failure rate λ is uncertain and described by a normal random variable L
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with mean mL = 5.5, and standard deviation σL = 0.5. The repair rate is assumed

to be perfectly known and given by µ = 5.5. Note that failure and repair rates

have units of per-unit time. To streamline the presentation, we omit the units in the

following discussion. In this example, we describe how Algorithm 1 can be applied to

compute fΠ1(π1). Subsequently, we will compare the result obtained from Algorithm

1 with the exact analytical result.

Figure 3.1 depicts the function π1 = µ
µ+λ = µ

µ+(∆λ+mL) and three polynomial

approximations (t = 1, 2, 3), from which it is clear that a third-order expansion is

accurate enough. The QR factorization of Λ(λ) for λ = mL = 5.5 and µ = 5.5,

provides

Q =

[
−0.7071 −0.7071

0.7071 −0.7071

]
, R =

[
7.7782 −7.7782

0 0

]
. (3.12)

As described in (2.12), by normalizing the last column of Q, we obtain the stationary

distribution π(mL) = [π0(mL), π1(mL)] = [0.5, 0.5]. From (2.11) and (3.12), U =

7.7782. Then, applying (2.13), we obtain the group inverse

Λ# =

[
−0.0455 0.0455

0.0455 −0.0455

]
. (3.13)

Using (3.4) to compute the Taylor-series coe�cients provides the following third-

order polynomial approximation:

p1(∆λ) = π1(mL) + a11(∆λ) +
1

2
a21 (∆λ)2 +

1

6
a31 (∆λ)3

= 0.5− 0.0455(∆λ) + 0.0041(∆λ)2 − 3.7566e-4(∆λ)3. (3.14)

In order to numerically compute fΠ1(π1), 0 ≤ π1 ≤ 1, we discretize π1 as π̄1 =

[0 : 0.0001 : 1]. We then compute the roots of the equation π̄1(l) = p1(∆λ), ∀l,
where π̄1(l) denotes the l entry of π̄1. The real roots are subsequently used in (3.6)

to obtain fΠ1(π1). For example, for π̂1 = 0.5, the real root is ∆λ1 = 0, and there are

two complex roots, ∆λ2,3 = 5.5± 9.5263 j which are discarded. Since L (and hence

∆L) is normally distributed, it follows that

f∆L(∆λ1) =
1√

2πσ2
L

exp

(
−∆λ2

1

2σ2
L

)
= 0.7979. (3.15)

From (3.14) we obtain
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p′1(∆λ1) =
dp1(∆λ)

d∆λ

∣∣∣∣
∆λ=∆λ1

= −0.0455 + 0.0082(∆λ1)− 0.0011(∆λ1)2 = −0.0455.

(3.16)

Substituting (3.15) and (3.16) in (3.6), we get fΠ1(π̂1 = 0.5) = 17.5363. This

procedure is repeated for all other entries of π̄1 and the results are plotted in Fig.

3.2.

We can also compare the numerical solution with the exact solution obtained by

applying random-variable transformation to the function Π1 = µ/ (µ+ L), which

results in

fΠ1(π1) = fL(λ̃)

(
λ̃+ µ

)2

µ
, λ̃ =

µ(1− π1)

π1
. (3.17)

Figure 3.2 also depicts fΠ1(π1) computed using the exact analytical expression in

(3.17). The results show a very good match between the approximation and the

exact solution.
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Figure 3.1: Polynomial approximations
to model π1.
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Figure 3.2: Taylor series and exact
analytical results compared.

3.3 Multiple-Parameter Case

In this section, we consider the case where the generator matrix is a function of

m parameters, θ1, θ2, . . . , θm, described by random variables Θ1, Θ2, . . . , Θm. We

assume that the Θj 's are independent, and that the pdfs fΘj (θj), j = 1, 2, . . . , m

are known.
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3.3.1 Probability Density Function of Πi

To derive the pdf of Πi, we propose a method that builds upon the single-parameter

case. First, we pick a parameter, say Θ1, and seek the Taylor series expansion of Πi

around the mean of Θ1, mΘ1 , with the other parameters �xed. Along these lines,

express Θ as

Θ = mΘ + ∆Θ, (3.18)

where mΘ = [mΘ1 , θ2, . . . , θm], and ∆Θ = [∆Θ1, 0, . . . , 0]. We can expand πi(Θ)

around mΘ using a Taylor series expansion as

Πi = πi(Θ) = πi(mΘ + ∆Θ) = πi(mΘ) +

∞∑
k=1

bki
k!

∆Θk
1. (3.19)

The k-order Taylor series coe�cient, bki, is given by:

bki =
∂kπi(θ)

∂θk1

∣∣∣∣
θ=mΘ

= k! (−1)k π(θ)

(
∂Λ(θ)

∂θ1
Λ#

)k
eTi

∣∣∣∣∣
θ=mΘ

, (3.20)

where ei ∈ RN+1 is a row vector with 1 as the i entry and zero otherwise. We

then express Πi = pi(∆Θ1), where pi is a polynomial function with real coe�cients

obtained by truncating the Taylor series in (3.19) at the t term

Πi = pi(∆Θ1) = πi(mΘ) +
t∑

k=1

bki
k!

∆Θk
1. (3.21)

Analogous to (3.6), we can derive the conditional pdf

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) =

r∑
j=1

f∆Θ1(∆θ1,j)

|p′i(∆θ1,j)|
, (3.22)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t real roots of πi = pi(∆θ1) and3

p′i(∆θ1,j) =
dpi(∆θ1)

d∆θ1

∣∣∣∣
∆θ1=∆θ1,j

=
t∑

k=1

bki
(k − 1)!

∆θk−1
1,j . (3.23)

3Once the other parameters are �xed, pi is a function of a single parameter ∆θ1.
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The derivation of (3.22) is provided in Appendix A.3. Applying the total probability

theorem, and acknowledging the independence of Θ2, . . . ,Θm, it follows that

fΠi (πi) =

ˆ

θ2

. . .

ˆ

θm

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) fΘm(θm)dθm . . . fΘ2(θ2)dθ2. (3.24)

Remark

In the development above, the assumption of parameter independence is made from

a modeling perspective. The proposed method is still mathematically tractable if the

model parameters are dependent, and their joint distribution is known. In particular,

the conditional pdf fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) in this case is given by

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) =

r∑
j=1

f∆Θ1|Θ2,...,Θm
(∆θ1,j |θ2, . . . , θm)

|p′i(∆θ1,j)|
, (3.25)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t real roots of πi = pi(∆θ1). Appendix A.4

includes a short note on the computation of f∆Θ1|Θ2,...,Θm
(∆θ1,j |θ2, . . . , θm) from the

joint distribution of the model parameters, and the subsequent derivation of fΠi(πi)

from the total probability theorem.

3.3.2 Computer implementation

Algorithm 2 provides the pseudocode for computer implementation of the method

outlined in (3.18)-(3.24) to compute fΠi(πi), i = 0, 1, . . . , N given fΘj (θj), j =

1, 2, . . . , m. The vectors θ̄j = [θstartj : dθj : θendj ], j = 2, . . . , m, are de�ned so

that each vector spans several standard deviations on both sides of mΘj , the mean

of Θj . The nested for loops ensure that the conditional pdf in (3.22) is evaluated

point wise for the entries in θ̄j . The QR factorization of the generator matrix is

evaluated for every4 θ̂ = [mΘ1 , θ̂2, . . . , θ̂m], where θ̂j , j = 1, 2, . . . , m, denotes an

entry of the vector θ̄j . Next πi(θ̂) is obtained from (2.12) by normalizing the last

column of Q, the group inverse Λ# is obtained from (2.13), and the Taylor series

coe�cients, bki, k = 1, 2, . . . , t, are computed using (3.20). The r real roots of the

equation π̂i = pi(∆θ1) are computed, and the conditional fΠi|Θ2,...,Θm

(
π̂i|θ̂2, . . . , θ̂m

)
4Recall from Algorithm 1, that in the pseudocode we use the variable θ̂j to denote an entry in

the vector θ̄j , i.e., θ̂j = θ̄j(l), for some l.
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then follows from (3.6)-(3.7). The integrals at the end of each nested for loop can be

implemented using some numerical integration scheme, e.g., the trapezoidal method.

Algorithm 2 Computation of fΠi(πi) for the multi-parameter case.

de�ne π̄i = [0 : dπi : 1], θ̄2 =
[
θstart2 : dθ2 : θend2

]
, . . . , θ̄m =

[
θstartm : dθm : θendm

]
de�ne Taylor series order t
compute ∂Λ

∂θj
, j = 2, . . . ,m

for π̂i = 0 : dπi : 1 do

for θ̂2 = θstart2 : dθ2 : θend2 do
...
for θ̂m = θstartm : dθm : θendm do

compute QR = Λ(θ̂), where θ̂ =[mΘ1 , θ̂2, . . . , θ̂m]
compute πi(θ̂) from (2.12), Λ# from (2.13), bki, k = 1, 2, . . . , t from (3.20)

compute real roots of πi(θ̂)− π̂i +
t∑

k=1

bki
k! ∆θk1 = 0, ∆θ1,j , j = 1, . . . , r

for j = 1 to r do

compute f∆Θ1(∆θ1,j), and p′i(∆θ1,j) =
t∑

k=1

bki
(k−1)!∆θ

k−1
1,j

end for

compute fΠi|Θ2,...,Θm

(
π̂i|θ̂2, . . . , θ̂m

)
=

r∑
j=1

f∆Θ1
(∆θ1,j)

|p′i(∆θ1,j)|
end for

compute fΠi|Θ2,...,Θm−1

(
π̂i|θ̂2, . . . , θ̂m−1

)
...

end for

compute fΠi (π̂i) =
´
θ2
fΠi|Θ2

(
π̂i|θ̂2

)
fΘ2(θ̂2)dθ2

end for

3.3.3 Expected Value and Variance of Πi

To derive an expression for the expectation and variance of Πi, consider the multiple-

variable version of the Taylor series expansion

Πi = πi(Θ) = πi(mΘ + ∆Θ)

= πi(mΘ) +

∞∑
k1=1

· · ·
∞∑

km=1

∆Θk1
1 . . .∆Θkm

m

k1! . . . km!
· ∂

k1+...kmπi(θ)

∂θk1
1 . . . ∂θkmm

∣∣∣∣∣
θ=mΘ

, (3.26)
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where mΘ = [mΘ1 , µΘ2 , . . . , µΘm ]. While closed-form expressions for the partial

derivatives ∂kπi(θ)/∂θk are available (see Appendix A.2), derivation of analytical

expressions for the mixed partial derivatives of the form ∂k1+···+kmπi(θ)/∂θ
k1
1 . . . ∂θkmm

is the focus of ongoing research. Therefore, we will focus on lower-order Taylor series

expansions to approximate the expectation and variance of Πi. Towards this end,

let us consider a second-order expansion for πi(Θ)

Πi ≈ πi(mΘ) + ∆Θ ∇πi(θ)T
∣∣
θ=mΘ

+
1

2
∆Θ ∇2πi(θ)

∣∣
θ=mΘ

∆ΘT , (3.27)

where mΘ = [mΘ1 , µΘ2 , . . . , µΘm ], and the gradient ∇πi(θ), and Hessian ∇2πi(θ),

are given by

∇πi(θ) =

[
∂πi(θ)

∂θ1
,
∂πi(θ)

∂θ2
, . . . ,

∂πi(θ)

∂θm

]
, (3.28)

∇2πi(θ) =


∂2πi(θ)
∂θ2

1

∂2πi(θ)
∂θ1∂θ2

. . . ∂2πi(θ)
∂θ1∂θm

∂2πi(θ)
∂θ2∂θ1

∂2πi(θ)
∂θ2

2
. . . ∂2πi(θ)

∂θ2∂θm
...

...
. . .

...
∂2πi(θ)
∂θm∂θ1

∂2πi(θ)
∂θm∂θ2

. . . ∂2πi(θ)
∂θ2

m

 . (3.29)

Substituting the gradient and Hessian in (3.27) and taking into account i) the in-

dependence of the Θj 's, and ii) the fact that E[∆Θj ] = 0∀j = 1, 2, . . . , m, the

expected value of Πi is given by

mΠi = πi(mΘ) +
1

2

m∑
k=1

E[∆Θ2
k] ·

∂2πi(θ)

∂θ2
k

∣∣∣∣
θ=mΘ

+

m∑
j=1

m∑
k=1, k 6=j

E[∆Θj ] · E[∆Θk] ·
∂π2

i (θ)

∂θj∂θk

∣∣∣∣
θ=mΘ

= πi(mΘ) +
1

2

m∑
k=1

E[∆Θ2
k] ·

∂2πi(θ)

∂θ2
k

∣∣∣∣
θ=mΘ

. (3.30)

Similarly, assuming a �rst-order expansion for πi(Θ),

Πi ≈ πi(mΘ) + ∆Θ ∇πi(θ)T
∣∣
θ=mΘ

, (3.31)
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the variance of Πi is given by

σ2
Πi

=
m∑
k=1

Var[∆Θk]

(
∂πi(θ)

∂θk

)2
∣∣∣∣∣
θ=mΘ

. (3.32)

Algorithm 3 Computation of fΞ(ξ) and fΓ(γ) for the multiple-parameter case.

de�ne ρ = [ρ0, ρ1, . . . , ρn], τ , ξ̄ = [0 : dξ : ‖ρ‖1], γ̄ = [0 : dγ : τ · ‖ρ‖1], θ̄2 =[
θstart2 : dθ2 : θend2

]
,. . . , θ̄m =

[
θstartm : dθm : θendm

]
de�ne Taylor series order t

compute ∂Λ
∂θj

, j = 2, . . . ,m

for ξ̂ = 0 : dξ : ‖ρ‖1 do
for θ̂2 = θstart2 : dθ2 : θend2 do
...

for θ̂m = θstartm : dθm : θendm do

compute QR = Λ(θ̂) where θ̂ = [mΘ1 , θ̂2, . . . , θ̂m]

compute ξ(θ̂) = π(θ̂)ρT (2.12), Λ# (2.13), ck, k = 1, . . . , t (3.35)

compute real roots of ξ(θ̂)− ξ̂ +
t∑

k=1

ck
k! ∆θ

k
1 = 0, ∆θ1,j , j = 1, . . . , r

for j = 1 to r do

compute f∆Θ1(∆θ1,j), and x′(∆θ1,j) =
t∑

k=1

ck
(k−1)!∆θ

k−1
1,j

end for

compute fΞ|Θ2,...,Θm

(
ξ̂|θ̂2, . . . , θ̂m

)
=

r∑
j=1

f∆Θ1
(∆θ1,j)

|x′(∆θ1,j)|

end for

compute fΞ|Θ2,...,Θm−1

(
ξ̂|θ̂2, . . . , θ̂m−1

)
...

end for

compute fΞ(ξ̂) =
´
θ2
fΞ|Θ2

(ξ̂|θ̂2)fΘ2(θ̂2)dθ2

end for

for γ̂ = 0 : dγ : τ · ‖ρ‖1 do
fΓ(γ̂) = fΞ(γ̂/τ)

τ

end for
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3.4 Uncertainty in Markov Reward Models

In this section, we show how the pdfs of the reward Ξ = ΠρT , and accumulated

reward Γ = Ξ · τ�denoted by fΞ(ξ) and fΓ(γ), respectively�can be computed for

the multiple-parameter case. We also propose closed-form approximations for the

expectation and variance of Ξ and Γ.

3.4.1 Probability Density Function of Ξ and Γ

To derive the pdf of Ξ, we follow a procedure similar to the one outlined in Section

3.3. First, we pick a parameter, say Θ1, and seek the Taylor series expansion of ξ

around the mean of Θ1, with the other parameters �xed. As before, splitting Θ as

Θ = mΘ + ∆Θ, (3.33)

where mΘ = [mΘ1 , θ2, . . . , θm] and ∆Θ = [∆Θ1, 0, . . . , 0], we can express

Ξ = ξ(Θ) = ξ(mΘ + ∆Θ)

= ξ(mΘ) +
∞∑
k=1

ck
k!

∆Θk
1 = π(mΘ)ρT +

∞∑
k=1

ck
k!

∆Θk
1. (3.34)

The k-order Taylor series coe�cient ck is given by

ck =
∂kξ(θ)

∂θk1

∣∣∣∣
θ=mΘ

=
∂kπ(θ)

∂θk1
ρT
∣∣∣∣
θ=mΘ

= k! (−1)k π(θ)

(
∂Λ(θ)

∂θ1
Λ#

)k
ρT

∣∣∣∣∣
θ=mΘ

.(3.35)

We then truncate the Taylor series in (3.34) at the t term as follows:

Ξ = x(∆Θ1) = π(mΘ)ρT +
t∑

k=1

ck
k!

∆Θk
1. (3.36)

Then, analogous to (3.22), we get

fΞ|Θ2,...,Θm
(ξ|θ2, . . . , θm) =

r∑
j=1

f∆Θ1(∆θ1,j)

|x′(∆θ1,j)|
, (3.37)
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where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t roots of ξ = x(∆θ1). Applying the total

probability theorem, and acknowledging the independence of Θ2, . . . ,Θm,

fΞ (ξ) =

ˆ

θ2

. . .

ˆ

θm

fΞ|Θ2,...,Θm
(ξ|θ2, . . . , θm) fΘm(θm)dθm . . . fΘ2(θ2)dθ2. (3.38)

From the de�nition of Γ = Ξ · τ , it follows that

fΓ(γ) =
fΞ(γ/τ)

τ
. (3.39)

3.4.2 Computer Implementation

Algorithm 3 provides the pseudocode for computer implementation of the method

outlined in (3.33)-(3.39) to compute fΞ(ξ) and fΓ(γ) given fΘj (θj), j = 1, 2, . . . , m.

The pseudocode follows along similar lines to that in Algorithm 2. Note that the

vectors ξ̄ = [0 : dξ : ‖ρ‖1] and γ̄ = [0 : dγ : τ · ‖ρ‖1] are formulated based on the

one-norm of ρ, since ξ = πρT , γ = ξ · τ = π · ρT · τ and 0 ≤ πi ≤ 1, ∀i = 0, 1, . . . , N .

3.4.3 Expected Value and Variance of Ξ and Γ

Similar to (3.30), assuming a second-order expansion for ξ(Θ), we can express the

expected value of Ξ, denoted by mΞ, as

mΞ := E[Ξ] = π(mΘ)ρT +
1

2

m∑
k=1

E[∆Θ2
k]
∂2π(θ)

∂θ2
k

∣∣∣∣
θ=mΘ

ρT . (3.40)

Additionally, similar to (3.32), assuming a �rst-order expansion for ξ(Θ), the variance

of Ξ, denoted by σ2
Ξ, is given by

σ2
Ξ := Var(Ξ) =

m∑
k=1

Var (∆Θk)

(
∂π(θ)

∂θk
ρT
)2
∣∣∣∣∣
θ=mΘ

. (3.41)

From the de�nition of Γ = Ξ · τ , we get

mΓ := E[Γ] = E[Ξ · τ ] = mΞ · τ, (3.42)

σ2
Γ := Var(Γ) = Var(Ξ · τ) = σ2

Ξ · τ2. (3.43)
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3.5 Case Studies Covering Common Reliability Models

In this section, we present three case studies that demonstrate the applicability of the

proposed method in quantifying the impact of probabilistic parametric uncertainty

in common Markov reliability models. The �rst case study returns to the two-

state Markov model discussed in Example 2. While the example examined the

case with a single uncertain parameter, in this case study, we consider the case

where both parameters are uncertain. It is still fairly straightforward to derive an

analytical expression for the pdfs of the stationary distribution, the reward, and

hence, the accumulated reward, because the steady-state probabilities are simple

functions of the model parameters. The availability of an analytical solution allows

us to validate the Taylor series approach. The second case study explores a two-

component load-sharing system with common-cause failures [46]. In this case, it is

not possible to derive the pdfs of the steady-state probabilities and the reward from

the analytical expressions of the stationary distribution. Therefore the results from

the Taylor series approach are compared with those obtained from repeated Monte

Carlo simulations. In the �nal case study, we examine computer execution times for

an n+ 1 state reward model for a system of n identical components, each with two

operating modes.

In all the case studies that follow, we model the failure rates with normal distribu-

tions and repair rates with uniform distributions. This is based on the presumption

that typically the mean and variance of the failure rate might be available from �eld

data; however, due to the involvement of myriad human factors, only a range of

repair times might be known. We denote N ∼ N (µN , σ
2
N ) to be a normal random

variable with mean µN and variance σ2
N . Additionally, we denote U ∼ U(aU , bU ) to

be a uniform random variable over the interval [aU , bU ]. Also, note that failure and

repair rates have units of per-unit time. To streamline the presentation, we omit the

units in the following discussion.

3.5.1 Single Component with Two Operating States

Consider the two-state reliability model of Example 2. We de�ne a reward model by

choosing a reward vector ρ = [ρ0, ρ1], where ρ0 and ρ1 are constants that capture

some notion of performance while in states 0 and 1, respectively. As described in

(2.7), the long-term reward is given by ξ = ρ0π0 + ρ1π1, and as described in (2.8),
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the accumulated reward at time τ is given by γ = ξ · τ .
Since the failure and repair rates are not perfectly known, it is assumed that they

are described by random variables L andM with (known) pdfs fL(λ) and fM (µ), re-

spectively. Further, it is assumed that L and M are independent. Consequently, the

stationary distribution is described by random variables Π0 and Π1, and the reward

and accumulated reward are described by random variables Ξ and Γ, respectively.

Through random variable transformations, the following expressions for fΠ0(π0),

fΠ1(π1), and fΞ(ξ) can be derived from the closed-form expressions for π0 and π1

given in (2.18):

fΠ0(π0) =

ˆ

λ

λ

π2
0

· fM
(
λ(1− π0)

π0

)
· fL(λ)dλ, (3.44)

fΠ1(π1) =

ˆ

λ

λ

(1− π1)2 · fM
(

λπ1

(1− π1)

)
· fL(λ)dλ, (3.45)

fΞ(ξ) =

ˆ

λ

∣∣∣∣λ (ρ1 − ρ0)

(ρ1 − ξ)2

∣∣∣∣ · fM (λ (ξ − ρ0)

(ρ1 − ξ)

)
· fL(λ)dλ. (3.46)

Recall that fΓ(γ) can be obtained from fΞ(ξ) using (3.39).

For illustration, let us consider that the failure rate is normally distributed and

that the repair rate is uniformly distributed, i.e., L ∼ N (mL, σ
2
L), M ∼ U(aM , bM ).

Figures 3.3 and 3.4 depict the pdfs fΠ0(π0), fΠ1(π1), fΞ(ξ), and fΓ(γ) computed: i)

numerically using a third-order Taylor series expansion with the methods outlined in

Sections 3.3.2 and 3.4.2, ii) analytically using (3.44), (3.45), (3.46), and iii) numeri-

cally from a 1,000,000-sample Monte Carlo simulation performed as described next.

We �rst sample the distribution of the random vector Θ that describes the values

that the model parameters can take. For each sample θ, we obtain the corresponding

generator matrix Λ(θ) by substituting for the corresponding values. Then, by using

a QR factorization of Λ(θ), we obtain the stationary distribution of the chain π(θ)

without having to solve the Chapman-Kolmogorov equations (for the speci�c Λ(θ)

as t→∞).

The simulation parameters are mL = 0.55, σ2
L = 0.12, aM = 1, bM = 10,

ρ = [ρ0, ρ1] = [0.25, 0.75], and τ = 6. The results indicate that the pdfs com-

puted via the Taylor series method accurately match the exact analytical results

and those from Monte Carlo simulations. Tables 3.1-3.2 list the analytically com-
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Figure 3.3: fΠ0(π0), fΠ1(π1) for L ∼ N (0.55, 0.12) and M ∼ U(1, 10).
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Figure 3.4: fΞ(ξ), fΓ(γ) for L ∼ N (0.55, 0.12), M ∼ U(1, 10), ρ = [0.25, 0.75], and
τ = 6.

puted expectations and variances, respectively, for Π0, Π1, Ξ, and Γ for two sets of

parameter distributions: L ∼ N (0.55, 0.12), M ∼ U(1, 10), and L ∼ N (0.55, 0.12),

M ∼ U(100, 109). Recall that the analytical expressions for the expectation and

variance are based on lower-order approximations derived in Sections 3.3.3 and 3.4.3.

For comparison, the expectations and variances computed numerically from their

pdfs�derived using the third-order Taylor series expansion�are also computed.

The expectations computed analytically match those computed numerically in both

cases. However, the analytically computed variance matches the exact numerical

result only when the mean repair rate is several orders of magnitude larger than

the mean failure rate. Note that since the expectation and variance are computed
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Table 3.1: Analytical and numerical expectations compared for the model studied
in Section 3.5.1.

Case R.v. m: Analytical m: Numerical

Π0 0.1019 0.1167

L ∼ N (0.55, 0.12) Π1 0.8981 0.8833

M ∼ U(1, 10) Ξ 0.6991 0.6916

Γ 4.1943 4.1328

Π0 0.0052 0.0052

L ∼ N (0.55, 0.12) Π1 0.9948 0.9948

M ∼ U(100, 109) Ξ 0.7474 0.7474

Γ 4.4843 4.4954

assuming second- and �rst-order truncations of the Taylor-series expansion, respec-

tively, there might be an error introduced in the computed values if higher-order

terms are dominant. For the examples we explore in the case studies, the higher-

order terms are negligible if the mean repair rate is several orders of magnitude

higher than the mean failure rate�consequently, the analytical results match the

numerical values better in these cases. While the results may be inaccurate, the an-

alytical expressions can be evaluated with minimum e�ort, and thus serve useful for

back-of-the-envelope calculations. On the other hand, the pdfs computed following

the Taylor-series method are accurate (even if the analytically computed moments

are not accurate). This is because the method proposed to obtain the pdfs of the

reliability indices does not constrain the order of the Taylor-series expansion. We

obtain very accurate estimates for the mean and variance of the indices from the

computed pdfs�at the expense of computation time.

3.5.2 Two-Component Load-Sharing System with Common-Cause Failures

This example, adapted from [46], explores a system composed of two identical com-

ponents that share a common load. The component failure rate is denoted by λ, and

the repair rate is denoted by µ. In addition, the system is susceptible to common-

cause failures which cause all operational components to fail at the same time. The

common-cause failure rate is denoted by λC . The state transition diagram for this
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Table 3.2: Analytical and numerical variances compared for the model studied in
Section 3.5.1.

Case R.v. σ2: Analytical σ2: Numerical

Π0 0.0012 0.0053

L ∼ N (0.55, 0.12) Π1 0.0012 0.0053

M ∼ U(1, 10) Ξ 3.1151×10−4 0.0013

Γ 0.0112 0.0477

Π0 9.1312×10−7 9.1501×10−7

L ∼ N (0.55, 0.12) Π1 9.1312×10−7 9.1501×10−7

M ∼ U(100, 109) Ξ 2.2828×10−7 2.2875×10−7

Γ 8.2181×10−6 8.1940×10−6

system is shown in Fig. 3.5. Both components are operational in state 2, a single

component is operational in state 1, and in state 0, both components have failed.

Repairs restore the operation of one component at a time. From the state-transition

diagram in Fig. 3.5, the generator matrix can be derived as

Λ =

 −µ µ 0

λ+ λC −(λ+ λC + µ) µ

λC 2λ −(2λ+ λC)

 . (3.47)

Denote the stationary distribution of the chain by π = [π0, π1, π2]. Solving (2.5),

we obtain

π0 =
(λ+ λC)(2λ+ λC) + λCµ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (3.48)

π1 =
(2λ+ λC)µ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (3.49)

π2 =
µ2

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
. (3.50)

Notice how involved the analytical closed-form expressions are even for this simple

system. Consider that the performance of the system is proportional to the number

of operational components. Then, we can de�ne a reward model for this system by

choosing ρ = [ρ0, ρ1, ρ2] = [0, 1, 2]. The long-term reward is given by ξ = π · ρT =

π1 + 2π2.
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Figure 3.5: State-transition diagram for the three-state load-sharing system with
common-cause failures.

Table 3.3: Analytical and numerical expectations compared for the model studied
in Section 3.5.2.

Case R.v. m: Analytical m: Numerical

Π0 0.0330 0.0430

L ∼ N (0.5, 0.12) Π1 0.1777 0.1822

LC ∼ N (0.05, 0.012) Π2 0.7892 0.7748

M ∼ U(1, 10) Ξ 1.7562 1.7318

Π0 1.6579×10−4 1.6683×10−4

L ∼ N (1.6e-4, (25e-6)2) Π1 0.0027 0.0027

LC ∼ N (2e-5, (5e-6)2) Π2 0.9971 0.9968

M ∼ U(0.1, 0.15) Ξ 1.9969 1.9964

Suppose the failure rate, repair rate, and common-cause failure rate are described

by random variables L, M , and LC with (known) pdfs fL(λ), fM (µ), and fLC
(λC),

respectively. Additionally, it is assumed that L,M , and LC are independent. Conse-

quently, the components of the stationary distribution Π = [Π0 ,Π1, Π2] are random

variables with distributions fΠ0(π0), fΠ1(π1), and fΠ2(π2). Similarly, the reward,

Ξ = Π · ρT = Π1 + 2Π2 is a random variable with distribution fΞ(ξ). Unlike the

two-state example explored in Section 3.5.1, it is clear from the expressions of the

steady-state probabilities that closed-form expressions for the pdfs cannot be ob-

tained. Therefore, we recourse to the Taylor series approach to derive the pdfs of

the steady-state probabilities and the reward.

Let us consider L ∼ N (0.5, 0.12), LC ∼ N (0.05, 0.012), and M ∼ U(1, 10).
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Figure 3.6: fΠ0(π0), fΠ1(π1), fΠ2(π2), and fΞ(ξ) for L ∼ N (0.5, 0.12),
LC ∼ N (0.05, 0.012), M ∼ U(1, 10), ρ = [0, 1, 2].

Figure 3.6 depicts the pdfs fΠ0(π0), fΠ1(π1), fΠ2(π2), and fΞ(ξ), all computed using

a third-order Taylor series expansion with the methods outlined in Sections 3.3.2 and

3.4.2. Additionally, results from a 1,000,000-sample Monte Carlo simulation are also

shown. The �gures indicate that the pdfs computed via the Taylor series method

accurately match those obtained through Monte Carlo simulations.

Tables 3.3-3.4 list the analytically computed expectations and variances for Π0,

Π1, Π2, and Ξ for two sets of parameter distributions: L ∼ N (0.5, 0.12), LC ∼
N (0.05, 0.012),M ∼ U(1, 10), and L ∼ N (1.6e-4, (25e-6)2), LC ∼ N (2e-5, (5e-6)2),

M ∼ U(0.1, 0.15). Recall that the analytical expressions for the expectation and vari-

ance are based on lower-order approximations derived in Sections 3.3.3 and 3.4.3.

For comparison, the expectations and variances computed numerically from their

pdfs�derived with the third-order Taylor series approach�are also computed. As

before, while the expectations computed analytically match those computed numer-
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Table 3.4: Analytical and numerical variances compared for the model studied in
Section 3.5.2.

Case R.v. σ2: Analytical σ2: Numerical

Π0 3.8745×10−5 0.0024

L ∼ N (0.5, 0.12) Π1 6.6013×10−4 0.0070

LC ∼ N (0.05, 0.012) Π2 0.0010 0.0167

M ∼ U(1, 10) Ξ 0.0014 0.0312

Π0 1.9755×10−9 2.1305×10−9

L ∼ N (1.6e-4, (25e-6)2) Π1 2.5731×10−7 2.6977×10−7

LC ∼ N (2e-5, (5e-6)2) Π2 2.7533×10−7 2.8889×10−7

M ∼ U(0.1, 0.15) Ξ 2.9730×10−7 3.1215×10−7

ically in both cases, the analytically computed variance matches the exact numerical

result only when the mean repair rate is several orders of magnitude larger than the

mean failure rate.

3.5.3 System of n Components

The �nal case study compares the execution time te, of the proposed Taylor series

method with Monte Carlo simulations for a system of n identical components, each

with two operating modes (functioning/failed). The state-transition diagram that

models the reliability of this system is depicted in Fig. 3.7. The component failure

rate is denoted by λ, and the repair rate is denoted by µ. Repairs restore the

operation of all failed components simultaneously. The performance of the system

is proportional to the number of operational components. A reward model for this

system is formulated by choosing ρ = [ρ0, ρ1, . . . ρi, . . . , ρn] =
[
0, 1

n , . . .
i
n , . . . , 1

]
.

The long-term reward is given by ξ = πρT = 1
nπ1+ 2

nπ2+· · ·+ i
nπi+· · ·+πn. Suppose

the failure rate and repair rate are described by random variables L ∼ N (0.55, 0.12)

and M ∼ U(1, 10), respectively. Consequently, the components of the stationary

distribution Π = [Π0, Π1, . . . , Πi, . . . , Πn] are random variables, and the reward,

Ξ = ΠρT is a random variable with pdf fΞ(ξ).

This case study explores the impact of the number of samples in the Monte Carlo

simulation ns, and the dimension of the state space n, on the time to compute fΞ(ξ)
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Figure 3.7: State-transition diagram for system of n components.

Figure 3.8: Percentage error in σΞ as a
function of ns, n = 2.

Figure 3.9: Execution time te, as a
function of model order n, and number of
samples ns.

through: i) third-order Taylor series approach following the pseudocode outlined

in Section 3.4.2, ii) Monte Carlo simulations involving repeated sampling from ns-

length random samples of the failure and repair-rate distributions. The experiment is

performed on a PC with a 2.66 GHz Intel CoreTM2 Quad CPU processor with 4 GB

memory in the MATLAB environment. Figure 3.8 plots the percentage di�erence in

the variance of Ξ, σΞ, as a function of ns for n = 2 for one experimental run. The

result demonstrates the signi�cance of ns on the accuracy of Monte Carlo simulations.

Figure 3.9 plots the execution time of the two methods as a function of n and ns.

In the experiment, n is increased from 2 to 20 in steps of 2, and ns is increased from

65,000 to 75,000 in steps of 500. The Taylor series method execution time is lower

than Monte Carlo simulations over a wide range of ns (prominent for ns > 70, 000).

For large models (n > 20) and a su�ciently large number of samples (ns > 75, 000),

Fig. 3.9 clearly indicates that the proposed Taylor series method outperforms Monte

Carlo simulation.
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Chapter 4

UNKNOWN-BUT-BOUNDED UNCERTAINTY

ANALYSIS IN MARKOV RELIABILITY AND

REWARD MODELS

Recall that in Chapter 3, we described a probabilistic uncertainty model�in par-

ticular, parameters were modeled as random variables with known distributions.

Here, we explore the set theoretic counterpart of the probabilistic model, i.e., we

assume the model parameters are constrained to lie within a set. Given this set,

we then compute the set that bounds the reliability/performability indices of inter-

est. The ideas presented in this chapter constitute the second (of two) methods to

propagate parametric uncertainty through Markov models. The material we present

subsequently is partially adopted from [13].

First, we present some fundamentals, and then describe the ellipsoidal-propagation

method to quantify the impact of unknown-but-bounded parametric uncertainty in

Markov reliability and reward models.

4.1 Problem Formulation

With regard to the standard terminology introduced in Chapter 2, assume that the

model parameters, θj , j = 1, 2, . . . , m, are not perfectly known, but are constrained

to a range. The parameter vector can be expressed as θ = θ̄ + ∆θ, where θ̄ is the

vector of nominal parameter values and ∆θ ∈ X ⊆ Rm, where X is a parallelotope

de�ned as

X :=
{

∆θ :
∣∣κTi ∆θ

∣∣ ≤ 1, ∀i = 1, . . . , m
}
. (4.1)

The vertices of X are determined by the parameter value ranges, while the vectors

κi de�ne the edges of X [53]. Given this unknown-but-bounded parametric uncer-

tainty model, we are interested in characterizing the uncertainty in the stationary

distribution π(θ). In particular, we are interested in determining the set Y such

that ∆π = π − π̄ ∈ Y ⊆ RN+1, where π̄ := π(θ̄) = [π̄0, π̄1, π̄2, . . . , π̄N ]T is the

42



stationary distribution corresponding to the nominal parameter values. Notice that

the reward ξ(θ) = π(θ)Tρ is a linear projection of the stationary distribution π(θ)

onto the direction speci�ed by the vector ρ. Therefore, to bound the values that the

reward can take, we need to obtain the set Y and then apply a linear transformation

to recover a set C ∈ R, such that ξ(θ) = π(θ)Tρ ∈ C. A similar method applies to

obtain the set that bounds the accumulated reward γ.

The brute-force solution to the problem discussed here is to repeatedly compute

the stationary distribution and the associated reward (by solving (2.5), (2.7), respec-

tively) for a range of parameter values in the set {θ̄}⊕X . However, this approach is

bound to be computationally expensive as the dimension of the state space N , or the

number of model parameters m, increases. Therefore, in this work, we seek an ana-

lytical approach based on the Taylor-series expansion of the stationary distribution.

To illustrate ideas, we provide a short representative example below.

Example 3

Figure 4.1 graphically describes the problem discussed above in the context of

the two-state Markov reliability model for a single component with two operat-

ing modes�failed in state 0 and operational in state 1. Recall that we studied

this model in Examples 1 and 2. The probability that the component has failed is

given by π0(λ, µ) = λ/(λ + µ), and the probability that it is operational is given

by π1(λ, µ) = µ/(λ+ µ), where λ is the component failure rate, and µ is the repair

rate. The set X describes the values that the parameters λ and µ may take. We

are interested in recovering the set Y that captures all values that the stationary

distribution π = [π0, π1] may take, due to uncertainty in the values of λ and µ. In

the proposed method, we describe parametric uncertainty by an ellipsoidal set E (an

Figure 4.1: Illustrating the set-theoretic method for the two-state Markov
reliability model examined in Example 3.
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upper bound to the set X ). Then, we recover the set H by propagating E through

a second-order Taylor series expansion of π0(λ, µ) and π1(λ, µ) about the nominal

values of λ and µ (λ̄ and µ̄, respectively). The set H captures variability in π1 and

π0 up to second order. In general, for multi-state, multi-parameter models, it is

di�cult to obtain closed-form expressions for the stationary distribution�let alone

analytically probe the impact of parametric uncertainty on such expressions.1 The

proposed method addresses this problem by: i) expressing the stationary distribu-

tion with a Taylor-series expansion as a function of the model parameters, and ii)

providing a general method to propagate ellipsoidal-shaped sets through a second-

order Taylor-series expansion. We must note, that as hinted in the �gure, if the

parametric uncertainty is large, the set H may not upper-bound the set Y.

Next, we characterize the Markov-chain stationary-distribution Taylor-series ex-

pansion. Then, we propose methods to propagate ellipsoidal-shaped sets through

�rst- and second-order Taylor series expansions of the Markov chain stationary dis-

tribution.

4.2 Taylor-Series Expansion of the Stationary Distribution

To characterize uncertainty in the entries of the stationary distribution π(θ), we can

omit π0(θ) and only consider the other N (out of the N + 1) entries of π(θ). This is

because π0(θ) = 1−
N∑
i=1

πi(θ). For small perturbations around the nominal parameter

values, πi(θ), i = 1, 2, . . . , N , can be approximated by a second-order Taylor series

expansion:

πi(θ) = πi(θ̄) + ∆πi ≈ π̄i +∇πi(θ̄)∆θ +
1

2
∆θT∇2πi(θ̄)∆θ, (4.2)

where ∆θ = [∆θ1, ∆θ2, . . . , ∆θm]T = [θ1 − θ̄1, θ2 − θ̄2, . . . , θm − θ̄m]T ∈ Rm. In

(4.2), the gradient ∇πi(θ̄), and Hessian ∇2πi(θ̄), are given by

∇πi(θ̄) =

[
∂πi(θ̄)

∂θ1
,
∂πi(θ̄)

∂θ2
, . . . ,

∂πi(θ̄)

∂θm

]
, (4.3)

1To appreciate this aspect, readers are referred to (4.22)-(4.24) in Section 4.5.1�closed-form
expressions for the stationary distribution of a two-component shared-load system with common-
cause failures.
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∇2πi(θ̄) =


∂2πi(θ̄)
∂θ2

1

∂2πi(θ̄)
∂θ1∂θ2

. . . ∂2πi(θ̄)
∂θ1∂θm

∂2πi(θ̄)
∂θ2∂θ1

∂2πi(θ̄)
∂θ2

2
. . . ∂2πi(θ̄)

∂θ2∂θm
...

...
. . .

...
∂2πi(θ̄)
∂θm∂θ1

∂2πi(θ̄)
∂θm∂θ2

. . . ∂2πi(θ̄)
∂θ2

m

 . (4.4)

Since the generator matrix Λ is singular, it is easy to verify that the entries of the

matrices in (4.3)-(4.4) cannot be obtained by direct di�erentiation of (2.5). However,

as demonstrated in Chapter 2, the group inverse of Λ, denoted by Λ#, is a powerful

kernel to study the sensitivity of the stationary distribution to parameter variations.2

In particular, the sensitivities ∂πi(θ̄)/∂θj , ∂2πi(θ̄)/∂θ
2
j , and ∂2πi(θ̄)/∂θj∂θk, ∀i =

0, 1, . . . , n, ∀j, k = 1, 2, . . . , m, are given by

∂πi(θ̄)

∂θj
= −π(θ̄)T

∂Λ

∂θj
Λ#ei, (4.5)

∂π2
i (θ̄)

∂θ2
j

= 2π(θ̄)T
(
∂Λ

∂θj
Λ#

)2

ei, (4.6)

∂π2
i (θ̄)

∂θj∂θk
= π(θ̄)T

(
∂Λ

∂θj
Λ# ∂Λ

∂θk
Λ# +

∂Λ

∂θk
Λ# ∂Λ

∂θj
Λ#

)
ei, (4.7)

where π(θ̄) is the stationary distribution evaluated at the nominal parameter values,

Λ# is the group inverse of the generator matrix, and ei ∈ RN+1 is a vector with 1 as

the i entry and zero otherwise. The derivation of (4.5)-(4.7) is provided in Appendix

A.1. Both the group inverse Λ#, and the stationary distribution for the nominal

parameter values π(θ̄), can be obtained by a QR factorization of the generator

matrix Λ [50]. This method was summarized in Section 2.3. The nominal stationary

distribution and the sensitivities have to be computed just once to provide a complete

characterization of the second-order Taylor-series expansion.

As described in the introduction to this chapter, the values the model parame-

ters can take are unknown but lie within a parallelotope X centered around θ̄, i.e.,

θ = θ̄ + ∆θ, where ∆θ ∈ X ⊆ Rm. We are interested in propagating the set X
through the system de�ned in (4.2) to obtain the set Y that contains all possible

values that ∆π = [∆π1, . . . , ∆πN ]T can take. To address this problem, we build on

results for unknown-but-bounded analysis in a�ne systems [23], which provides a

2Recall that the group inverse of Λ is denoted by Λ#, and is given by the unique solution of i)
ΛΛ#Λ = Λ, ii) Λ#ΛΛ# = Λ#, and iii) ΛΛ# = Λ#Λ, if and only if rank(Λ) = rank(Λ2), which is a
condition that always holds for generator matrices of ergodic Markov chains [49].
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straightforward solution to the problem when (4.2) is truncated after the �rst-order

term. A major contribution of our work is to extend these results and include the

e�ect of unknown-but-bounded input uncertainty in second-order polynomial sys-

tems; i.e., we address the case where (4.2) is not truncated. This is relevant, since

we cannot guarantee linear (or almost linear) behavior of π(θ) with variations of

θ around the nominal value θ̄. As demonstrated in the case studies, second-order

approximations are far more accurate.

4.3 First-Order Approximation

Consider (4.2) truncated after the �rst-order term

π(θ) = π(θ̄) + ∆π ≈ π(θ̄) + J∆θ, (4.8)

where π(θ) = [π1(θ), . . . , πN (θ)]T (note that the �rst entry of the stationary distri-

bution is omitted, but we persist with the same notation), and J =
[
∂πi(θ̄)
∂θj

]
∈ RN×m

is the Jacobian matrix of π(θ) excluding π0(θ). Given the uncertainty in the values

that θ can take, we are interested in determining the values that π can take, i.e., we

wish to characterize the set Y such that ∆π = [∆π1, . . . , ∆πN ]T = π− π̄ ∈ Y ⊆ RN .
Assume that each entry in ∆θ = [∆θ1, ∆θ2, . . . , ∆θm]T is constrained to a sym-

metric interval (around 0), which implies that the set X which contains all possible

values of ∆θ is a parallelotope. A parallelotope can be tightly bound by the inter-

section of a family of ellipsoids that satisfy some criteria, e.g., minimum volume or

tightness along a given direction in the input space [54]. In this work, we bound the

uncertain parameters by a single minimum-volume ellipsoid E as follows:

∆θ ∈ X ⊆ E =
{

∆θ : ∆θTΨ−1∆θ ≤ 1
}
, (4.9)

where Ψ is a positive de�nite matrix that determines the shape of E . In particular,

the eigenvectors of Ψ determine the orientation of E , while the eigenvalues of Ψ

determine the lengths of the semimajor axes of E in the direction of the corresponding
eigenvectors [23]. The volume of the ellipsoid is proportional to (detΨ)1/2; therefore,
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Ψ can be determined by solving the following optimization program [55]:

min (detΨ)1/2

s.t. vTΨ−1v ≤ 1, ∀v ∈ V, (4.10)

where V is the set of vertices that de�ne X . The program in (4.10) can be e�ciently

solved using convex optimization techniques [55].

De�ne F as the set that bounds ∆π = J∆θ resulting from variations in ∆θ as

described in (4.9), i.e., ∆π ∈ Y ⊆ F . Then, it follows that F is an ellipsoid (see

e.g., [23]) described by

F =
{

∆π : ∆πTΓ−1∆π ≤ 1
}
, (4.11)

where the shape matrix Γ is given by

Γ = JΨJT . (4.12)

4.4 Second-Order Approximation

Here, we extend the ideas presented in Section 4.3 to the second-order Taylor-series

approximation in (4.2). As before, the set X that contains all possible values that

∆θ can take is bounded by a minimum-volume ellipsoid E as described in (4.9).

Following the method in Section 4.3, the linear component of (4.2), i.e., J∆θ, is

bounded by the ellipsoid F de�ned in (4.11). We handle the second-order term, i.e.,
1
2∆θT∇2πi(θ̄)∆θ, as follows. First, for each i, we solve3

∆πmini = min
1

2
∆θT∇2πi(θ̄)∆θ

s.t. ∆θ ∈ X , (4.13)

∆πmaxi = max
1

2
∆θT∇2πi(θ̄)∆θ

s.t. ∆θ ∈ X . (4.14)

3If the Hessian is negative (positive) de�nite�a condition that can be checked a priori�we only
need to solve (4.13) ((4.14)).
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Since we are interested in a worst-case bound, we can guarantee that

1

2
∆θT∇2πi(θ̄)∆θ ∈ Si, (4.15)

where Si = [−si, si], and si = max
{
|∆πmaxi | ,

∣∣∆πmini

∣∣}. Repeating this procedure

for i = 1, 2, . . . , N , we obtain a set S = S1 × S2 × · · · × SN ⊆ RN that bounds

the second-order term. Then, we can obtain a minimum-volume ellipsoid G that

contains S. The set Y ∈ RN (which contains ∆π) can be upper-bounded by the

Minkowski sum of the ellipsoids F and G, i.e., Y ⊆ F ⊕ G. In general, F ⊕ G is not

an ellipsoid, but we can obtain a family of ellipsoids Hγ =
{

∆π : ∆πTΦ−1
γ ∆π ≤ 1

}
that upper bounds F ⊕ G by choosing

Φγ = (1− γ)−1Σ + γ−1Γ, 0 < γ < 1, (4.16)

which ensures that Y ⊆ F ⊕ G ⊆ ⋂Hγ . The result in (4.16) follows from a special

type of Holder's inequality as discussed in [23]. Figure 4.2 illustrates the concepts

introduced so far: a single ellipsoid Hγ bounding Y is depicted in the �gure, whereas

a family of ellipsoids bounding Y (note that Y is not depicted in the �gure) may

be obtained by varying γ between 0 and 1. The intersection of the ellipsoids in this

family would yield a tighter upper bound to the set Y.

Figure 4.2: Ellipsoidal bounds for the Markov chain stationary distribution.

We now illustrate the ideas presented in Sections 4.3 and 4.4 with two simple nu-

merical examples. The �rst example examines a second-order system (for which the

Taylor-series expression is exact), and therefore the method proposed in Section 4.4

provides an upper bound on all possible values that the output can take. The second
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example investigates a third-order system, in which case a second-order Taylor-series

expansion is an approximation. Therefore, while the method outlined in Section 4.4

improves the linear approximation, the intersection of the Hγ 's does not provide, in
general, an upper bound for all possible output variations. Note that the examples

do not correspond to the stationary distribution of actual Markov chains, but are

constructed primarily to illustrate the notation and the concepts introduced so far.

Example 4

Consider the second-order system{
π1(θ1, θ2) = 2θ2

1 + 3θ1θ2 + θ2
2,

π2(θ1, θ2) = θ1 + θ2 − 9θ2
1 − 9θ2

2.
(4.17)

Suppose the nominal parameter values are given by θ̄ = [θ̄1, θ̄2]T = [1, 1]T ; then

from (4.17), it follows that π̄ = [π̄1, π̄2]T = [6, −16]T . The gradients ∇π1(θ̄) and

∇π2(θ̄) are given by{
∇π1(θ̄) = [4θ̄1 + 3θ̄2, 3θ̄1 + 2θ̄2] = [7, 5],

∇π2(θ̄) = [1− 18θ̄1, 1− 18θ̄2] = [−17, −17],
(4.18)

and ∇2π1(θ̄) and ∇2π2(θ̄) are given by

∇2π1(θ̄) =

[
4 3

3 2

]
, ∇2π2(θ̄) =

[
−18 0

0 −18

]
. (4.19)

Suppose θ1 ∈ [0.1, 1.9] and θ2 ∈ [0.1, 1.9], i.e., the parameters θ1 and θ2 vary

by up to 90% around their nominal values, which implies that ∆θ1 ∈ [−0.9, 0.9]

and ∆θ2 ∈ [−0.9, 0.9]. The set X is depicted in Fig. 4.3a, where we can see

that it is tightly bounded by the minimum volume ellipsoid E , also depicted in

Fig. 4.3a. Corresponding to E , and assuming a linear approximation as in Section

4.3, we obtain the bounding ellipsoid F with shape matrix Γ = JΨJT , where J =

[∇π1(θ̄), ∇π2(θ̄)]T is the Jacobian matrix, the entries of which are given in (4.18).

Figure 4.3b depicts F which captures uncertainty up to �rst order. In the �gure, we

also plot a cloud of points that results from solving (4.17) for all possible values of

θ1 and θ2. As expected, since the system is second order, this bound fails to capture

all possible values that ∆π can take. To improve the linear bound, we follow the
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procedure in Section 4.4 to determine an ellipsoidal bound for the second-order term.

First, the solution to (4.13)-(4.14) yields the sets S1 and S2, and a corresponding

minimum-volume ellipsoidal bound G, all illustrated in Fig. 4.3c. Finally, we obtain

the ellipsoids Hγ , with shape matrices Φγ computed from (4.16), for a set of values

γ chosen in the interval (0, 1). These are plotted in Fig. 4.3d, superimposed on

the exact values that π(θ) can take, obtained by exhaustively taking samples from

the set X . Since the function is second order, the Taylor-series characterization is

exact. Therefore, each Hγ captures the entire range of values that π(θ) can take.

An intersection of the Hγ 's provides a tighter bound.
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Figure 4.3: Results for second-order system studied in Example 4.
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Example 5

Consider the following third-order system:{
π1(θ1, θ2) = 2θ1 + θ2

2 + θ1θ2,

π2(θ1, θ2) = θ2
1 + θ3

2.
(4.20)

Suppose θ1 and θ2 vary by up to 90% around their nominal values, θ̄1 = 1, θ̄2 = 1.

Figure 4.4a plots a cloud of points obtained by solving (4.20) for all possible values

of θ1 and θ2, as well as the linear bound F . As expected, this bound does not

capture all possible values that π(θ) can take, since the system is of third order.

To improve the linear bound, we determine the ellipsoids Hγ for a set of values γ

chosen from the range (0, 1). These are plotted and superimposed in Fig. 4.4b.

Since the system is of third order, we see that the intersection of the Hγ 's�while

signi�cantly better than the �rst-order bound�fails to capture all possible values of

π(θ); in particular, there is a single point (emphasized for clarity in Fig. 4.4b) that

lies outside the intersection of the Hγ 's. This example demonstrates that the validity

of the proposed approach is contingent on how closely a second-order Taylor-series

expansion approximates the original function.
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Figure 4.4: Results for third-order system studied in Example 5.

4.5 Case Studies Covering Common Reliability Models

In this section, we examine the impact of parametric uncertainty in two reliability

models. In both case studies, we compare the results obtained using the ellipsoidal-
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shaped sets with repeated simulations. The repeated simulations are performed as

follows. We �rst create vectors with evenly spaced values for each parameter θj
(about the nominal values θ̄j) ∀ j = 1, . . . , m . The set

{
θ̄
}
⊕ X , where θ̄ =

[θ̄1, . . . , θ̄m], describes the Cartesian product of all the θj 's. For each θ̂ ∈
{
θ̄
}
⊕ X ,

we obtain the corresponding generator matrix Λ(θ̂) by substituting the corresponding

values of the parameters. Then, through a QR factorization of Λ(θ̂), we obtain the

stationary distribution of the chain π(θ̂) without having to solve the Chapman-

Kolmogorov equations (for the speci�c Λ(θ̂) as t → ∞). This is repeated for all

elements in
{
θ̄
}
⊕X . For large number of parameters m, or as the number of values

in each θj is increased (to increase the accuracy of the results), this process can get

computationally expensive as demonstrated in the second case study.

4.5.1 Two Components with Shared Load

This example, adapted from [46], explores the Markov reliability model for a system

of two identical components that share a common load. The failure and repair

rates of the components are denoted by λ and µ, respectively. The probabilistic

counterpart of this model was studied in Section 3.5.2. Additionally, the system is

susceptible to common-cause failures which cause both components to fail at a rate

λC . The state-transition diagram of the Markov chain describing the availability

of this system is depicted in Fig. 4.5. Both components are operational in state

2, a single component is operational in state 1, and in state 0, both components

have failed. Repairs restore the operation of one component at a time. From the

Figure 4.5: System of two identical components with shared load and
common-cause failures.
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state-transition diagram, the Markov chain generator matrix can be derived as

Λ =

 −µ µ 0

λ+ λC −(λ+ λC + µ) µ

λC 2λ −(2λ+ λC)

 . (4.21)

Solving (2.5) with Λ given in (4.21), it can be shown that [46]

π0 =
(λ+ λC)(2λ+ λC) + λCµ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (4.22)

π1 =
(2λ+ λC)µ

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
, (4.23)

π2 =
µ2

(λ+ λC + µ)(2λ+ λC) + λCµ+ µ2
. (4.24)

This illustrates a major advantage of our proposed framework in that closed-form

expressions of the sort in (4.22)-(4.24)�which are di�cult to obtain in general�are

not required a priori. Additionally, even if the expressions are available, given the

information that the parameters λ, µ, and λc belong to some set, it is di�cult to

compute bounds on the stationary distribution without repeatedly solving (2.5) for

all possible parameter values in the set.
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Figure 4.6: Ellipsoidal upper bounds to parameters with (a) 20% and (b) 30%
uncertainty.
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Figure 4.7: Linear- and second-order ellipsoidal bounds to stationary distribution
assuming (a) 20% and (b) 30% uncertainty.

The nominal values of the failure rate, repair rate, and common-cause failure rate

are given by: λ̄ = 1.6× 10−4 hr−1, µ̄ = 1.25× 10−1 hr−1, and λ̄c = 2× 10−5 hr−1,

respectively [46]. The nominal steady-state probabilities are given by π̄0 = 1.63 ×
10−4, π̄1 = 0.0027, and π̄2 = 0.9971. Let θ1 = λ, θ2 = µ, θ3 = λc, and consider that

each parameter θi ∈ [θ̄i − p
100 · θ̄i, θ̄i + p

100 · θ̄i], i = 1, 2, 3, where θ̄i is the nominal

value of the i parameter, and p describes the % variation in the value that the i

parameter θi can take. Figures 4.6a and 4.6b depict the sets X and corresponding

upper-bounding minimum-volume ellipsoids E that the parameters are constrained

to, assuming uncertainty p = 20% and p = 30%, respectively. Figures 4.7a and

4.7b depict linear and second-order ellipsoidal bounds (F and Hγ , respectively) on
the uncertainty in the steady-state probabilities. In both cases, we see that a linear

approximation is insu�cient. The intersection of the Hγ 's accurately captures all

possible variations for 20% uncertainty in the parameters. For 30% uncertainty,

there is a single point that lies outside the intersection of the Hγ 's.
Now, suppose that the performance of the system depends on the number of

operational components. De�ne a reward model by choosing ρ = [ρ0, ρ1, ρ2]T =

[0, 1, 2]T . The long-term reward is then given by ξ = πTρ = π1 + 2π2. Since

the parameters are uncertain, we can obtain bounds on ξ by simply projecting the

ellipsoidal bounds for the stationary distribution onto the direction de�ned by ρ.

Figure 4.8 depicts upper and lower bounds to the values that ξ can take as a function

of the level of uncertainty p. Results from repeatedly solving (2.5)-(2.7) for all

possible parameter values are superimposed. Notice that the ellipsoidal bounds

accurately capture the impact of uncertainty on the values that ξ can take.
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Figure 4.8: Uncertainty in reward as a function of parametric uncertainty.

4.5.2 Preventative Transformer Maintenance

This example examines the preventative maintenance of an electric-power distribu-

tion transformer (see [56] and the references therein for a detailed description of this

model). Note that similar models have been used to study the impact of preventative

maintenance in operational software systems [57]. The state-transition diagram that

describes the Markov reliability model is depicted in Fig. 4.9. The transformer has

an ideal operating state denoted by D1, and two deteriorated states, denoted by D2

and D3, respectively. Denote the rate at which complete failure due to deterioration

is expected by λ1, which implies that transitions between the deterioration states

occur at the rate 3λ1. Transformer failure due to deterioration is denoted by state

F1. Once in this state, repair at the rate µ1 restores the transformer to the ideal

operating state. Apart from gradual deterioration, a transition to a catastrophic

failure state, denoted by F0, at the rate λ0 is possible from any of the deteriorated

states. From this state, repair restores operation at a rate µ0. Preventative main-

tenance can be performed on the transformer when it is in states Di, i = 1, 2, 3.

Preventative maintenance in state Di (i > 1) restores operation to state Di−1 after

passing through the maintenance state Mi. Preventative maintenance is performed

at a rate λm and the time required for maintenance is captured by µm.
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Figure 4.9: Reliability model for transformer with deterioration and preventative
maintenance.

The availability of the transformer, ξ = π7 + π6 + π5, i.e., the sum of the steady-

state probabilities in states D1, D2, and D3. Note that the availability is given

by ξ = πTρ, where π is the stationary distribution and the reward vector ρ =

[0, 0, 0, 0, 0, 1, 1, 1]T . The problem of interest is to determine the optimal pre-

ventative maintenance rate λm, that maximizes the availability while taking into

account the e�ect of parametric uncertainty. We show that the proposed method to

uncertainty analysis can provide further insight into the problem.

The nominal parameter values are given by: λ̄1 = 1/1000 days−1, µ̄1 = 1/14 days−1,

µ̄m = 1/0.5 days−1, λ̄0 = 1/500 days−1, and µ̄0 = 1/7 days−1. Suppose the pa-

rameters λ1, µ1, and µm are unknown but bounded around their nominal values.

Assuming 10% uncertainty around the nominal values, Fig. 4.10 depicts the set

X (and corresponding upper-bounding minimum-volume ellipsoid E) that contains
all values that the parameters can take. Following the methods outlined in Section

4.4, we determine bounds on the stationary distribution. Figure 4.11 depicts linear

and second-order ellipsoidal bounds (F and Hγ , respectively) on the values that the

steady-state probabilities can take (without loss of generality, we just depict variabil-

ity in π7, π6, and π0). The exact solution�determined by repeated simulation�is

superimposed on the ellipsoidal bounds. We see that a linear approximation is insuf-

�cient, and the second-order approximation provides a better (albeit conservative)

bound. For 10% uncertainty around the nominal parameter values, Fig. 4.12 plots

the availability of the transformer as a function of λm. From this �gure, we see that

a maintenance rate in the order of 0.005 days−1 maximizes the transformer availabil-

ity. Notice that the second-order bound is more conservative, and in general lower
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bounds are more accurate than upper bounds.
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parameters with 10% uncertainty.
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Figure 4.12: Transformer availability as a function of preventative maintenance
rate assuming 10% parametric uncertainty.

Now, consider the state-transition diagram depicted in Fig. 4.9, except with an

arbitrary number of deterioration states. We compare the execution time of the

proposed method with the execution time involved in obtaining the solution by

running repeated simulations as the model order is increased (i.e., as the number

of deterioration states is increased). We utilize a �rst-order Taylor series expan-

sion for this experiment because the programs in (4.13)-(4.14) are not optimized

for execution time (this is grounds for future work). Consider that all parameters

λm, µm, λ1, µ1, λ0, µ0 are uncertain up to 5% around their nominal values. To per-

form the repeated simulations, for each parameter we sample the nominal value and
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two extreme values. The experiment is performed on a PC with a 2.66 GHz Intel

CoreTM2 Quad CPU processor with 4 GB memory in the MATLAB environment.

The execution time as a function of the number of deterioration states for the two

methods is plotted in Fig. 4.14. Figure 4.13 superimposes the bounds obtained

with the ellipsoidal method on the results of the repeated simulations. The results

indicate that for large models (as the number of states is increased beyond 60 in

this case), the proposed method has lower execution time compared to exhaustive

simulation of all possible parameter values.
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Chapter 5

STOCHASTIC HYBRID SYSTEMS FRAMEWORK

FOR REWARD MODELING

In this chapter, we propose a stochastic hybrid systems (SHS) formalism to tackle

a wide class of reward models that describe system reliability/performability. Our

discussion of the mathematical preliminaries is limited to fundamental mathematical

concepts and de�nitions, and interested readers are referred to [30�32, 47, 48] for a

detailed account. The main contribution of this chapter is to formulate the SHS

framework for performability modeling (previous applications have included other

domains). In doing so, we provide a modeling formalism for system reliability theory

that extends traditional notions such as availability to factor in relevant aspects

of system performance. In this chapter we present case studies covering common

reliability problems. The framework in this chapter is then applied to study the

impact of stochastic disturbances on power system dynamics in Chapter 8. The

material presented here is partially adopted from [58].

5.1 Preliminaries

In the most general sense, an SHS is a combination of a continuous-time, discrete-

state stochastic process Q(t) ∈ Q, coupled with a continuous-time, continuous-state

stochastic process X(t) ∈ Rd. Additionally, we assume that this system is fully

coupled, in the sense that the evolution of the continuous state depends on the

discrete state, and the transitions among the discrete states depend on the continuous

state. System reliability/performability is described by a reward which we denote

by Y (t), Y : R+ → R. In the forthcoming discussion, we will demonstrate how the

reward is derived from the continuous state X(t).

We provide an intuitive description of SHS next. Towards this end, consider the

functions

λj : Q× Rd → R+, φj : Q× Rd → Q× Rd, j ∈ J (5.1)
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which we call the transition rates and transition reset maps (interchangeably referred

as reset maps, subsequently). The idea of these functions is that at any time, the

system undergoes transition j with rate λj , and if it undergoes this transition, then

it instantaneously applies the map φj to the current discrete and continuous states

and discontinuously changes their values at that moment. More speci�cally, for

any time t > 0, we say that the probability of transition j occurring in the time

domain [t, t+ ∆t) is λj(Q(t), X(t))∆t+ o(∆t), and if it does occur, then we de�ne

(Q(t + ∆t), X(t + ∆t)) = φj(Q((t + ∆t)−), X((t + ∆t)−)), thus obtaining a new

mode and state.1 From this, we see that the probability of no transition occurring

in [t, t+ ∆t) is 1−∆t
∑

j∈J λj(q, x). Finally, between transitions, we prescribe that

X(t), Y (t) evolve according to the SDE

dX(t) = f(Q(t), X(t), t) dt+ g(Q(t), X(t), t) dWt,

Y (t) = h(Q(t), X(t), t), (5.2)

where Wt : R+ → Rl is the l-dimensional Wiener process, f : Q × Rd × R+ → Rd,
g : Q× Rd × R+ → Rd×l, and h : Q× Rd × R+ → R.
This combination of the discrete and continuous processes (Q(t), X(t)) is com-

monly referred to as a SHS [31]. For the class of SHS studied in [31], the vector

�elds that govern the evolution of the continuous state (f , g, and h), the reset

maps (φj), and the transition rates (λj), are required to be polynomial functions

of the continuous state. In this case, as illustrated in Section 5.7, the evolution of

the moments of the continuous state in such a system is governed by an in�nite-

dimensional system of ODEs, and moment closure methods have to be applied to

obtain truncated state-space descriptions [32]. For the class of reward models we

explore here, the vector �elds that govern the evolution of the continuous state and

the reset maps are linear, and, moreover, the transition rates are not assumed to be

functions of the continuous state. As we show below, this implies that the di�erential

equations that govern the evolution of the conditional moments in these models are

�nite dimensional and moment-closure methods are unnecessary.

The SHS formalism outlined above provides a uni�ed and generalized modeling

framework to tackle a wide variety of reward models (above and beyond the Markov

reward models developed in Chapter 2). As discussed in the introduction, since this

work presents the �rst application of SHS to system performability modeling, we

1We use the notation a(t−) = lim
s↗t

a(s) to denote the left-hand limit of the function a.
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restrict our attention to Markov reward models. We illustrate next how these are

derived from the general setting described above.

5.2 Markov Reward Models de�ned as SHS

In the case studies and examples that follow, we explore a reward framework that is

a special case of the SHS model described above, where we assume that: i) the SDEs

describing the �xed-mode evolution are linear (or, more precisely, a�ne) in the state

X(t), ii) the transition rates governing the jumps among modes are independent of

X(t), and iii) the reward is a linear function of the state. More precisely, we assume

that the SDE governing X(t) is given by

dX(t) = A(Q(t), t)X(t)dt+B(Q(t), t)dt+ C(Q(t), t) dWt,

Y (t) = R(Q(t), t)X(t), (5.3)

where Wt : R+ → Rl is the l-dimensional Wiener process, A : Q × R+ → Rd×d,
B : Q× R+ → Rd, C : Q× R+ → Rd×l, and R : Q× R+ → R1×d.

We �rst note that under these assumptions, the discrete process Q(t) is a CTMC�

in particular, one can understand the pathwise evolution of Q(t) without knowing

X(t), Y (t). Note that if we further assume that the transition rates are not a func-

tion of time, i.e., if λj : Q → R+, the Markov chain is homogeneous. In the con-

text of this work, the CTMC Q(t) describes the Markov reliability model, while

(Q(t), X(t), Y (t)) describes the Markov reward model.

It should be noted that rate reward, �rst-order reward, and second-order reward

models are all subsumed in this framework. In fact, to realize rate reward models,

we choose A = C = 0 in (5.3); to realize �rst-order reward models, we choose C = 0

in (5.3). Expressed as such, (5.3) describes a second-order reward model; this is the

most general model we explore in this work.

The results presented in [32] for SHS apply directly to the Markov reward models

examined in this work. Of particular interest is the method to obtain the moments

of the state (from which we can recover the accumulated-reward moments). As

described subsequently in Section 5.3, this method is based on de�ning appropriate

test functions and formulating the extended generator for the underlying stochastic

processes. We end this section by illustrating the notation introduced so far with a

simple example. We will revert to this example in Section 5.4 to demonstrate how
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the moments of the accumulated reward are obtained from appropriately de�ned

test functions.

Example 6

Consider a Markov reliability model described by a CTMC Q(t), taking values in

the set Q = {0, 1}.2 We give a schematic depiction of this model in Fig. 5.1.

Associated with this Markov chain, we consider a �rst-order reward model. To this

end, de�neX(t) = [X1(t), X2(t), . . . , Xd(t)]
T , which evolves according to

dX(t)

dt
= A(Q(t))X(t) =: AQ(t)X(t), (5.4)

where we denote AQ(t) = A0 ∈ Rd×d if Q(t) = 0, and AQ(t) = A1 ∈ Rd×d if Q(t) = 1.

The accumulated reward Y (t) is given by Y (t) = R(Q(t))X(t) =: RQ(t)X(t), where

Figure 5.1: First-order reward model studied in Example 6.

RQ(t) = R0 ∈ R1×d if Q(t) = 0, and RQ(t) = R1 ∈ R1×d if Q(t) = 1. Now choose

two numbers α, β ∈ R+ and two vectors v, w ∈ Rd; basically, α, v will govern the

transitions from state 1→ 0, so that we transition from mode 1 to mode 0 with rate

α, and when we do so, we reset the value of X(t) to v, and similarly for β,w in the

other direction. Following the notation introduced in Section 5.1, it is clear that we

have two transitions (J = {0, 1}), with transition rates3

λ0(q, x) = δq,1α, λ1(q, x) = δq,0β (5.5)

2This example reverts to the two-state model examined in Examples 1, 2, and 3. The added
�exibility a�orded by the SHS modeling framework allows us to consider dynamic rewards in this
case.

3In subsequent developments, we use the Kronecker delta notation, i.e., δi,j = 1 if i = j, and
δi,j = 0 if i 6= j.
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and reset maps

φ0(q, x) = (0, δq,1v), φ1(q, x) = (1, δq,0w). (5.6)

It turns out that there is another, more compact, way to formulate this in the SHS

framework. To this end, we can say that there is exactly one transition and de�ne

the following transition rates and reset maps:

λ(q, x) =

α, q = 1,

β, q = 0.
, φ(q, x) =

(0, v), q = 1,

(1, w), q = 0,
(5.7)

which can be written more compactly using the Kronecker delta notation as

λ(q, x) = δq,1α+ δq,0β, φ(q, x) = (1− q, δq,1v + δq,0w). (5.8)

These models are equivalent with probability one, since, if a transition has rate zero

then it occurs with probability zero. We will �nd that both of these viewpoints are

useful in di�erent contexts.

From standard results in Markov chains, the residence (sojourn) time in each mode

is exponentially distributed with the parameter given by the rate of transition out

of that state. More precisely, choose s > 0 so that Q(s) = 0. De�ne the stopping

time T by

T = inf
t>s
{t : Q(t) = 1}, (5.9)

which then implies Pr{T − s > t|Q(s) = 0} = e−βt. A similar statement exists

for the other transition. From this, for example, we can determine the probability

distribution of Q(t) for all t > 0, for how many transitions have occurred, etc., using

standard results from Markov chains.

In Section 5.4, we will revisit this example and obtain ODEs that capture the

evolution of the p-order uncentered moments of the accumulated reward E [Y p(t)],

p ≥ 1.

5.3 Test Function and Extended Generator of SHS

For the reward model introduced in (5.3), de�ne a test function ψ(q, x, t), ψ :

Q× Rd × R+ → R, where q represents the discrete state of the CTMC, and x rep-

resents the continuous state from which the accumulated reward is recovered. The
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extended generator (referred interchangeably as generator subsequently) denoted by

(Lψ) (q, x, t) is the composition of the Lie derivative and the test function of the

SHS, and it is given by

(Lψ)(q, x, t) :=
∂

∂x
ψ(q, x, t) · (A(q, t)x+B(q, t)) +

∂

∂t
ψ(q, x, t)

+
1

2

∑
i,j

(
(CCT )i,j(q, t)

∂2

∂xixj
ψ(q, x, t)

)
+

∑
j∈J

λj(q, x, t) (ψ (φj (q, x, t))− ψ(q, x, t)) , (5.10)

where ∂ψ/∂x ∈ R1×d and ∂2ψ/∂x2 ∈ Rd×d denote the gradient and Hessian of

ψ(q, x, t) with respect to x, respectively, and the summation (in the third line) is

over all transitions of the underlying CTMC [30,32]. The evolution of the expected

value of the test function E [ψ(Q(t), X(t), t)] is governed by Dynkin's formula, which

can be stated in di�erential form as follows [30,32]:

d

dt
E[ψ(Q(t), X(t), t)] = E[(Lψ)(Q(t), Xx(t), t)]. (5.11)

This holds for every ψ that is in the domain of the extended generator L.4 We point

out that in the current work, we will only consider those ψ that do not explicitly

depend on time, and so the second term in (5.10) does not appear.

Said in words, (5.11) means that the time rate of change of the expected value of

a test function evaluated on the stochastic process is given by the expected value

of the generator. Intuitively, this makes sense: the �rst line in (5.10) captures the

total derivative of the test function with respect to time, the second line captures the

e�ect of the Wiener process, while the third term describes the impact of the reset

maps (note that the second line in (5.10) is absent in rate and �rst-order reward

models). In particular, for pure di�usions (with no jumps), the generator of the

process is given by the �rst two lines of (5.10), and in the context of CTMCs (no

continuous state), the generator of the process is the third line of (5.10).

Next, we summarize the general procedure outlined in [32] to specify a family of

test functions from which the moments of the accumulated reward can be recovered

by applying the results in (5.10)-(5.11).

4Describing the domain of this operator is, in general, technically di�cult. However, it turns
out that in the current framework (namely, SDEs that have a�ne drifts with additive noise, and
state-independent transition rates) all functions polynomial in x are in the domain of L.
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5.4 Recovering Di�erential Equations for Conditional Moments
from Test Functions

For a Markov reward model where the underlying CTMC takes values in the set

Q = {0, 1, . . . , N}, we de�ne the family of test functions

ψmi (q, x) := δi,qx
m =

{
xm if q = i

0 if q 6= i
, ∀i ∈ Q, (5.12)

where m := (m1, m2, . . . , md) ∈ N1×d, and xm := xm1
1 xm2

2 . . . xmd
d . We also de�ne

the conditional moments at time t, µmi (t), ∀i ∈ Q, by

µmi (t) := E [ψmi (q, x)] = E [Xm(t)|Q(t) = i] · Pr {Q(t) = i} , (5.13)

and for every m ∈ N1×d, the vector of conditional moments

µm(t) := [µm0 (t), µm1 (t), . . . , µmN (t)] . (5.14)

The last equality in (5.13) follows from the de�nition of the test functions in (5.12).

By appropriately picking themi's, we can isolate the conditional moments of interest.

We demonstrate this next, in the context of the reward model introduced in Example

6 in Section 5.2.

Example 6 (continued)

Recall the reward model introduced in Example 6 in Section 5.2. Associated with

the two discrete states, de�ne the following test functions:

ψ
(m)
0 (q, x) = δq,0x

m =

{
xm if q = 0

0 if q = 1
,

ψ
(m)
1 (q, x) = δq,1x

m =

{
0 if q = 0

xm if q = 1
, (5.15)

where m ∈ N1×d and xm = xm1
1 xm2

2 . . . xmd
d . As stated previously, by appropriately

picking m, we can recover many conditional moments of interest. For instance,
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choosing m = (0, . . . , 0) recovers the occupational probabilities of the modes,

µ
(0,...,0)
i (t) = Pr {Q(t) = i} = πi(t). (5.16)

Similarly, picking m = (2, . . . , 0) isolates the second-order conditional moment of

X1(t)

µ
(2,...,0)
i (t) = E

[
X(2,...,0)(t)|Q(t) = i

]
· Pr {Q(t) = i}

= E
[
X2

1 (t)|Q(t) = i
]
· Pr {Q(t) = i} (5.17)

Finally, picking m = (1, . . . , 1) yields the conditional expectation of the product∏d
`=1X`(t)

µ
(1,...,1)
i (t) = E

[
X(1,...,1)(t)|Q(t) = i

]
· Pr {Q(t) = i}

= E

[
d∏
`=1

X`(t)|Q(t) = i

]
· Pr {Q(t) = i} . (5.18)

5.5 Evolution of the Accumulated Reward

For a given m (which, as shown previously, can be de�ned to isolate the conditional

moment of interest), we apply (5.10) to obtain expressions for N+1 extended gener-

ators,
(
Lψ

(m)
i

)
(q, x), i ∈ Q = {0, 1, . . . , N}. From Dynkin's formula in (5.11), we

then obtain a set of N+1 di�erential equations that govern the conditional moments

d

dt
µ

(m)
i (t) =

d

dt
E
[
ψ

(m)
i (q, x)

]
= E

[(
Lψ

(m)
i

)
(q, x)

]
, ∀i ∈ Q = {0, 1, . . . , N} .

(5.19)

The problem of interest is to obtain the p-order moment of the accumulated reward

E[Y p(t)], from the conditional moments de�ned above. Recall that the accumulated

reward is given by Y (t) = R(Q(t), t)X(t) =
d∑
j=1

rj(Q(t), t)Xj(t), which implies that

Y p(t) is a polynomial function of Xj(t), j = 1, 2, . . . , d. In particular, applying the

multinomial theorem, we can express

Y p(t) =
∑

m1+m2+···+md=p

(
p

m1, m2, . . . , md

) ∏
1≤s≤d

(rs(Q(t), t)Xs(t))
ms , (5.20)
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i.e., as a polynomial function of Xj(t), j = 1, 2, . . . , d. There is a more compact

way to write the multinomial theorem that we will �nd useful below: given a vector

of natural numbers m = (m1, . . . ,md), we de�ne

|m| :=
d∑
i=1

mi,

(
p

m

)
:=

(
p

m1, m2, . . . , md

)
. (5.21)

Then (5.20) can be expressed as

Y p(t) =
∑
|m|=p

(
p

m

)
(R(Q(t), t)X(t))m, (5.22)

where we use the notation

(R(Q(t), t)X(t))m = Rm(Q(t), t)Xm(t) =
d∏
l=1

(rl(Q(t), t)Xl(t))
ml . (5.23)

We will �nd (5.22) very useful since all of the powers in the right-hand side of (5.22)

are less than or equal to p. Therefore, if we know all of the moments µ(m)
j with

|m| ≤ p, j ∈ Q, then we can obtain the pth order moment of Y as follows:

E [Y p(t)] =
∑
|m|=p

(
p

m

)
E [(R(Q(t), t)X(t))m]

=
∑
|m|=p

(
p

m

)∑
i∈Q

E [(R(Q(t), t)X(t))m |Q(t) = i] Pr{Q(t) = i}

=
∑
|m|=p

(
p

m

)∑
i∈Q

(R(i, t))mE [Xm(t)|Q(t) = i] Pr{Q(t) = i}

=
∑
|m|=p

(
p

m

)∑
i∈Q

(R(i, t))mµ
(m)
i (t)

=
∑
i∈Q

∑
|m|=p

(
p

m

)
(R(i, t))mµ

(m)
i (t). (5.24)

Therefore, to compute E [Y p(t)], all we need to know are the moments µ(m)
i (t) with

i ∈ Q and |m| = p.
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Remark

As a special case, consider the Markov reward model described by the following

scalar system (i.e., d = 1):

dX(t) = (a(Q(t), t)X(t)dt+ b(Q(t), t)) dt+ C(Q(t), t) dWt,

Y (t) = r ·X(t), (5.25)

where Wt is the l-dimensional Wiener process, a : Q × R+ → R, b : Q × R+ → R,
C : Q× R+ → R1×l, and r ∈ R. Using (5.24), we have that

E [Y p(t)] = rp
N∑
i=0

µ
(p)
i (t). (5.26)

We now revert to Example 1 to illustrate how (5.24) applies in practice.

Example 6 (continued)

Let us again consider Example 6 in Section 5.2 but simply the case where d =

2. The accumulated reward is given by Y (t) = R(Q(t))X(t) = r1(Q(t))X1(t) +

r2(Q(t))X2(t). Suppose we are interested in computing the second-order moment of

the reward, E
[
Y 2(t)

]
. Using (5.24), we have

E
[
Y 2(t)

]
=

1∑
i=0

(
r2

1(i)µ
(2, 0)
i (t) + r2

2(i)µ
(0, 2)
i (t) + 2r1(i)r2(i)µ

(1, 1)
i (t)

)
. (5.27)

Note that there is no technical restriction to considering higher dimensional contin-

uous state spaces (i.e., d > 2), but this would give many more terms in (5.27). First

apply the law of total expectation to express the second-order moment of the reward
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as a function of the (relevant) conditional moments

E
[
Y 2(t)

]
= E

[
Y 2(t)|Q(t) = 0

]
· Pr {Q(t) = 0}

+E
[
Y 2(t)|Q(t) = 1

]
· Pr {Q(t) = 1}

= E[(d1(0), X1(t) + d2(0), X2(t))2|Q(t) = 0] · Pr{Q(t) = 0}
+E[(d1(1), X1(t) + d2(1), X2(t))2|Q(t) = 1] · Pr{Q(t) = 1}

=

1∑
i=0

d2
1(i)E[X1(t)2|Q(t) = i] · Pr{Q(t) = i}

+d2
2(i)E[X2(t)2|Q(t) = i] · Pr{Q(t) = i}

+2d1(i)d2(i)E[X1(t)X2(t)|Q(t) = i] · Pr{Q(t) = i}

=

1∑
i=0

d2
1(i)µ

(2, 0)
i (t) + d2

2(i)µ
(0, 2)
i (t) + 2d1(i)d2(i)µ

(1,1)
i (t). (5.28)

All that remains is to compute the evolution of µ(m)
i (t) with |m| = 2, for which we

use (5.19). First, we need to derive the extended generator of the process. Towards

this end, we use the de�nition of L from (5.10). There are two terms in the generator,

namely5

(Lψ)(q, x) =
∂

∂x
ψ(q, x) ·A(q)x+ λ(q, x)(ψ(φ(q, x))− ψ(q, x)). (5.29)

We want to compute (Lψ
(m)
i )(q, x) for |m| = 2. Towards this end, we consider each

term in (5.29) in turn. Let us �rst write the coordinates of A(q) as A(q) = [aijq ].

Then, we get

∂

∂x
ψ

(m)
i (q, x) = δi,q

[
m1x

−1
1 xm

m2x
−1
2 xm

]T
, A(q)x =

[
a11
q x1 + a12

q x2

a21
q x1 + a22

q x2

]
. (5.30)

5Recall that for this �rst-order model, B = C = 0, and ψ does not explicitly depend on time.
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So the �rst term in (5.29) is

∂

∂x
ψ

(m)
i (q, x) ·A(q)x

=δi,q

(
m1a

11
q x

m +m1a
12
q x

mx2

x1
+m2a

21
q x

mx1

x2
+m2a

22
q x

m

)
=δi,q

(
(m1a

11
q +m2a

22
q )xm +m1a

12
q x

(m1−1,m2+1) +m2a
21
q x

(m1+1,m2−1)
)

=δi,q

(
(m1a

11
q +m2a

22
q )xm +m1a

12
q x

(m1−1,m2+1) +m2a
21
q x

(m1+1,m2−1)
)
. (5.31)

This calculation shows us some patterns: i) the dynamics coming from the ODE

between jumps does not cross-couple discrete states (i.e., all the subscripts in this

equation are the same), ii) the o�-diagonal terms in the matrix cross-couple moments

(i.e., if Aq is diagonal, then all the superscripts in this equation are the same), and

iii) while the subtractions in the exponents might make us think that we have to

worry about negative-powered moments, notice that every time we subtract a power

we multiply by an m-dependent factor (e.g., if m1 = 0 then the second term in the

last equation is multiplied by zero, even though it formally has a −1 exponent in the

formula).

We now consider the second term of (5.29). Recalling (5.7), we have

λ(q, x)(ψ
(m)
i (φ(q, x))− ψ(m)

i (q, x))

=(δq,1α+ δq,0β)
(
ψ

(m)
i (1− q, δq,1v + δq,0w)− ψ(m)

i (q, x)
)

=(δq,1α+ δq,0β) (δ1−q,i(δq,1v
m + δq,0w

m)− δq,ixm)

=δi,0 (δq,1αv
m1(x)− δq,0βxm) + δi,1 (δq,0βw

m1(x)− δq,1βxm)

=δi,0

(
αvmψ

(0,0)
1 (q, x)− βψ(m)

0 (q, x)
)

+ δi,1

(
βwmψ

(0,0)
0 (q, x)− αψ(m)

1 (q, x)
)
,

(5.32)

where we add the 1(x) to stress the places where the function is constant in x. Note

that (5.32) works for general d and any vector m. Writing out the two cases, i = 0, 1,

we have

λ(q, x)(ψ
(m)
0 (φ(q, x))− ψ(m)

0 (q, x)) = αvmψ
(0,0)
1 (q, x)− βψ(m)

0 (q, x),

λ(q, x)(ψ
(m)
1 (φ(q, x))− ψ(m)

1 (q, x)) = βwmψ
(0,0)
0 (q, x)− αψ(m)

1 (q, x).
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Combining (5.11), (5.31), (5.32), we obtain

d

dt
µ

(m)
i = E

[
(Lψ

(m)
i )(q, x)

]
= E

[
(m1a

11
i +m2a

22
i )ψ

(m)
i (q, x)

]
+E

[
m1a

12
i ψ

(m1−1,m2+1)
i (q, x)

]
+ E

[
m2a

21
i ψ

(m1+1,m2−1)
i (q, x)

]
+E

[
δi,0

(
αvmψ

(0,0)
1 (q, x)− βψ(m)

0 (q, x)
)]

+E
[
δi,1

(
βwmψ

(0,0)
0 (q, x)− αψ(m)

1 (q, x)
)]

= (m1a
11
i +m2a

22
i )µ

(m)
i (t) +m1a

12
i µ

(m1−1,m2+1)
i (t) +m2a

21
i µ

(m1+1,m2−1)
i (t)

+δi,0

(
αvmµ

(0,0)
1 (t)− βµ(m)

0 (t)
)

+ δi,1

(
βwmµ

(0,0)
0 (t)− αµ(m)

1 (t)
)

= (m1a
11
i +m2a

22
i )µ

(m)
i (t) +m1a

12
i µ

(m1−1,m2+1)
i (t) +m2a

21
i µ

(m1+1,m2−1)
i (t)

+δi,0

(
αvmπ1(t)− βµ(m)

0 (t)
)

+ δi,1

(
βwmπ0(t)− αµ(m)

1 (t)
)
. (5.33)

From (5.28), it is clear that we can compute the evolution of E
[
Y 2(t)

]
given the

di�erential equations that govern the conditional moments µ(2, 0)(t), µ(0, 2)(t), and

µ(1, 1)(t) (which are obtained from appropriately speci�ed extended generators). Fol-

lowing a similar procedure, other moments of interest can be computed. For instance,

the expected value of the reward is given by

E[Y (t)] =
1∑
i=0

r1(i)µ
(1, 0)
i (t) + r2(i)µ

(0, 1)
i (t). (5.34)

To compute µ(1,0)
i (t) and µ(0,1)

i (t), we would substitute m = (1, 0) and m = (0, 1)

in (5.33).

Remark

Notice that (5.33) also yields the Chapman-Kolmogorov di�erential equations that

govern the evolution of the occupational probabilities π0(t) and π1(t). To see this,

substitute m = (0, 0) in (5.33):

d

dt
E[ψ

(0, 0)
0 (q, x)] = E

[(
Lψ

(0, 0)
0

)
(q, x)

]
= −βE

[
ψ

(0, 0)
0 (q, x)

]
+ αE

[
ψ

(0, 0)
1 (q, x)

]
, (5.35)
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d

dt
E[ψ

(0, 0)
1 (q, x)] = E

[(
Lψ

(0, 0)
1

)
(q, x)

]
= −αE

[
ψ

(0, 0)
1 (q, x)

]
+ βE

[
ψ

(0, 0)
0 (q, x)

]
. (5.36)

Recognizing that E[ψ
(0,0)
i (q, x)] = πi(t), we get{

π̇0(t) = −βπ0(t) + απ1(t),

π̇1(t) = −απ1(t) + βπ0(t),
(5.37)

which are precisely the Chapman�Kolmogorov di�erential equations for a two-state

Markov chain [46].

For illustration, we chose the parameters α = 6s−1, β = 4s−1, v = [v1, v2]T =

[10, −3]T , and w = [w1, w2]T = [−10, 8]T . Figure 5.2 plots the occupational proba-

bilities π0(t) and π1(t) computed by simulating (5.37), and the results of 2000 Monte

Carlo simulations. Figures 5.3 and 5.4 plot the �rst-, and second-order moments of

the reward obtained from the SHS approach with the results of 2000 Monte Carlo

simulations superimposed in each case.
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Figure 5.2: Occupational probabilities of
the two modes for the model studied in
Example 6.
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5.6 Case Studies Covering Common Reward Models

In this section, we present two case studies to demonstrate the applicability of the

proposed framework in modeling system performability. To demonstrate the validity
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Figure 5.4: Second-order moment of the accumulated reward for the model studied
in Example 6.

of the proposed approach, we compare the accuracy of the SHS framework with

Monte Carlo simulations and/or results from previous literature as appropriate.

The �rst case study examines the repair cost expended in maintaining a system

of two electric-power transformers. The system is cast as a rate-reward model with

impulses in the cost (associated with the one-time expense of enlisting the services

of a repair crew). In�ationary e�ects are modeled with a discount rate. This model

is adopted from [59], where the �rst-order moment of the accumulated repair cost

was derived using a method based on the frequency of transitions of the underlying

CTMC. We develop the SHS framework for this model, and reproduce the results in

[59]. In addition, we also obtain higher-order moments of the accumulated reward. In

the second case study, we consider a second-order reward model that was introduced

in [34] to describe the reliability of a communication network. A Laplace-transform

based method was adopted in [34] to obtain the moments of the accumulated reward.

We reproduce the results in [34] using the SHS framework, and in addition, consider

cases where there are losses and impulses in the accumulated reward.

5.6.1 Rate Reward Model with Impulses

This case study demonstrates how the SHS framework can be applied to model im-

pulses in a rate-reward model. We examine the accumulated repair cost to maintain

a system of two electric-power transformers with common-cause failures [59]. The

state-transition diagram that describes the reliability of the system is depicted in

Fig 5.5. In mode 2, both transformers are operational; in mode 1, a single trans-
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Figure 5.5: Rate reward model for transformer maintenance.

former is operational; and in mode 0, both transformers have failed. The failure

rate, repair rate, and common-cause failure rate are denoted by α, β, and αc, re-

spectively. The reward of interest is the cost of repair, denoted by X(t). The rate

at which the repair cost grows in mode i is denoted by ci(t) [$/yr]. Transitions due

to failures are associated with impulses in the repair cost that model the one-time

expenses in enlisting the services of a repair crew. The impulse change in repair

cost as a result of a failure transition from mode i to mode j is denoted by Cij(t)

[$]. The cost parameters are modeled to be time-dependent to factor in�ation. In

particular, we presume�following along the model in [59]�that ci(t) = cie
−γt and

Cij(t) = Cije
−γt. The parameter γ is the discount rate that represents future costs

by a discounted value [59]. The authors in [59] obtain analytical expressions for the

expected value of the accumulated repair cost with a method that is based on the

frequency of visits in a CTMC [41]. We demonstrate how to cast this problem in

the SHS framework. In doing so, we obtain a family of ODEs whose solution not

only yields the expected value of the accumulated cost, but also higher-order mo-

ments (the higher order moments were not tackled in [59]). We begin by de�ning

test functions for each state of the chain

ψ
(m)
i (q, x) = δq,ix

(m) =

{
x(m) if q = i

0 if q 6= i
, i = 0, 1, 2. (5.38)

The extended generators evaluated on the test functions are obtained from (5.10)

and given by(
Lψ

(m)
0

)
(q, x) = mc0(t)ψ

(m−1)
0 (q, x) + α

(
ψ

(1)
1 (q, x) + C10(t)ψ

(0)
1 (q, x)

)m
+αc

(
ψ

(1)
2 (q, x) + C20(t)ψ

(0)
2 (q, x)

)m
, (5.39)
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(
Lψ

(m)
1

)
(q, x) = mc1(t)ψ

(m−1)
1 (q, x)− (α+ β)ψ

(m)
1 (q, x)

+2α
(
ψ

(1)
2 (q, x) + C21(t)ψ

(0)
2 (q, x)

)m
, (5.40)

(
Lψ

(m)
2

)
(q, x) = mc2(t)ψ

(m−1)
2 (q, x)− (2α+ αc)ψ

(m)
2 (q, x) + βψ

(m)
1 (q, x). (5.41)

Applying (5.11) to (5.39), (5.40), and (5.41), we obtain the following di�erential

equations that govern the conditional moments:

d

dt
µ

(m)
0 (t) = mc0(t)µ

(m−1)
0 (t) + α

(
Cm10(t)π1(t) +

m−1∑
k=0

(
m

k

)
µ

(m−k)
1 (t)Ck10(t)

)

+αc

(
Cm20(t)π2(t) +

m−1∑
k=0

(
m

k

)
µ

(m−k)
2 (t)Ck20(t)

)
, (5.42)

d

dt
µ

(m)
1 (t) = mc1(t)µ

(m−1)
1 (t)− (α+ β)µ

(m)
1 (t)

+2α

(
Cm21(t)π2(t) +

m−1∑
k=0

(
m

k

)
µ

(m−k)
2 (t)Ck21(t)

)
, (5.43)

d

dt
µ

(m)
2 (t) = mc2(t)µ

(m−1)
2 (t)− (2α+ αc)µ

(m)
2 (t) + βµ

(m)
1 (t), (5.44)

where π0(t), π1(t), and π2(t) are the occupational probabilities of the di�erent modes.

Notice that substituting m = 0 in (5.42), (5.43), and (5.44) recovers the Chapman-

Kolmogorov equations: π̇(t) = π(t)Λ, where π(t) = [π0(t), π1(t), π2(t)], and Λ is the

generator matrix of the underlying CTMC given by:

Λ =

 0 0 0

α −(α+ β) β

αc 2α −(2α+ αc)

 . (5.45)

Them-order moment of the accumulated repair cost is given by (5.26), i.e., E[Xm(t)] =

µ
(m)
0 (t) + µ

(m)
1 (t) + µ

(m)
2 (t). The evolution of µ(m)

0 (t), µ(m)
0 (t), and µ(m)

0 (t) is given

by the solution of (5.42), (5.43), and (5.44).

For illustration, consider: α = 2 yr−1, β = 1000 yr−1, αc = 1 yr−1, c2 = $1000/yr,

c1 = $10, 000/yr, c0 = 0, C21 = $500, C20 = $1000, and C10 = $500 [59]. Figure 5.6

depicts the expected value of the accumulated repair cost for two di�erent values of γ.
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The results from the SHS approach (obtained by simulating (5.42), (5.43), and (5.44)

for m = 1, and then using E[X(t)] = µ
(1)
0 (t) + µ

(1)
1 (t) + µ

(1)
2 (t)) are superimposed

on the results from [59]. To further validate the approach, Figs. 5.7-5.8 depict the

second- and third-order moments of the accumulated cost (obtained by simulating

(5.42), (5.43), and (5.44) for m = 2 and m = 3, respectively) superimposed on

results obtained from 5000 Monte Carlo simulations. Note that it is unclear how the

method proposed in [59] can be extended to obtain higher-order moments. Therefore,

in these cases, we just include the Monte Carlo results for comparison and validation

of the SHS approach.
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5.6.2 Second-order Reward Model

In this case study, we examine the second-order Markov reward model illustrated

by the state-transition diagram in Fig. 5.9. Note that this is a generalized version

of the model presented in [34], which was employed to model the capacity of a

communication channel (the reward is the available channel capacity). Transitions

between di�erent modes and the associated transition rates are also illustrated in

the �gure. We assume that failure transitions are associated with a reset map that

can model partial total loss or impulses in the accumulated reward. In partial total

loss models, a (possibly mode-dependent) fraction of the total accumulated reward

is lost with each transition of the chain. With regard to the state-transition diagram

presented in Fig. 5.9, setting Cij ≡ 0, 0 ≤ κi ≤ 1, we recover a model that captures

partial total loss in the accumulated reward. Similarly, choosing Cij < 0, κi ≡ 0,

models impulses in the accumulated reward. Note that the analysis in [34] did not

include losses/impulses in the accumulated reward, although loss models have been

incorporated in computer tools by the same authors [35]. Furthermore, the moments

of the accumulated reward are derived from a direct analysis of the Laplace transform

of the accumulated-reward probability distribution in [34]. Here, we demonstrate

how to formulate the model within the SHS framework.

Figure 5.9: Second-order reward model for communication-channel reliability.

As before, begin by de�ning the test functions for each state of the chain as

ψ
(m)
i (q, x) =

{
xm if q = i

0 if q 6= i
, i = 0, 1, . . . , N. (5.46)

77



The generators for the states can be obtained from (5.10) as(
Lψ

(m)
0

)
(q, x) = ma0ψ

(m)
0 (q, x) +mb0ψ

(m−1)
0 (q, x)−Nβψ(m)

0 (q, x)

+α
(
α1ψ

(1)
1 (q, x) + C10

)m
ψ

(0)
1 (q, x) +

1

2
σ2

0m(m− 1)ψ(m−2)
n (q, x),(5.47)

(
Lψ

(m)
N

)
(q, x) = maNψ

(m)
N (q, x) +mbNψ

(m−1)
N (q, x) + βψ

(m)
N−1(q, x), (5.48)

−Nαψ(m)
n (q, x) +

1

2
σ2
Nm(m− 1)ψ

(m−2)
N (q, x) (5.49)

(
Lψ

(m)
i

)
(q, x) = maiψ

(m)
i (q, x) +mbiψ

(m−1)
i (q, x)− ((N − i)β + iα)ψ

(m)
i (q, x)

+(i+ 1)α
(
αi+1ψ

(1)
i+1 + C(i+1)i

)m
ψ

(0)
i+1(q, x) + (N − (i− 1))βψ

(m)
i−1(q, x)

+
1

2
σ2
im(m− 1)ψ

(m−2)
i (q, x), ∀i = 1, . . . , N − 1. (5.50)

As before, de�ne the conditional moments µ(m)
i (t) = E

[
ψ

(m)
i (q, x)

]
, i = 0, 1, . . . , N .

Applying (5.11), we see that the di�erential equations that govern the evolution of

µ
(m)
i (t), i = 0, 1, . . . , N are given by

d

dt
µ

(m)
0 (t) = ma0µ

(m)
0 (t) +mb0µ

(m−1)
0 (t)−Nβµ(m)

0 (t) +
1

2
σ2

0m(m− 1)µ
(m−2)
0 (t)

+ α

(
Cm10π1(t) +

m−1∑
k=0

(
m

k

)
κm−k1 µ

(m−k)
1 (t)Ck10

)
, (5.51)

d

dt
µ

(m)
N (t) = maNµ

(m)
N (t) +mbNµ

(m−1)
N (t) + βµ

(m)
N−1(t)

−Nαµ(m)
N (t) +

1

2
σ2
Nm(m− 1)µ

(m−2)
N (t), (5.52)

d

dt
µ

(m)
i (t) = maiµ

(m)
i (t) +mbiµ

(m−1)
i (t)− ((N − i)β + iα)µ

(m)
i (t)

+ (i+ 1)α

(
Cm(i+1)iπi+1(t) +

m−1∑
k=0

(
m

k

)
κm−ki+1 µ

(m−k)
i+1 (t)Ck(i+1)i

)

+ (N − (i− 1))βµ
(m)
i−1(t) +

1

2
σ2
im(m− 1)µ

(m−2)
i (t). (5.53)
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As a special case, consider ai = 0, bi = (C − ir), σi =
√
iσ, κi = 1, and Cij ≡ 0 .

This recovers the model studied in [34], where there are no losses in the accumulated

reward. In this case, (5.51)-(5.53) simplify to

d

dt
µ(m)(t) = µ(m)(t)Λ +mµ(m−1)(t)Γ +

1

2
m(m− 1)µ(m−2)(t)Υ, (5.54)

where µ(m)(t) is the vector of conditional moments at time t,

Γ = diag (C, . . . C − ir, . . . , C −Nr) , (5.55)

Υ = diag
(
0, . . . iσ2, . . . , Nσ2

)
, (5.56)

and Λ is the generator matrix of the underlying CTMC given by

Λ =


−Nβ 0 0

α (N − (i− 1)β) 0

0 · · · −((N − 1)β + iα) · · · 0

0 (i+ 1)α β

0 0 −Nα

 . (5.57)

Note that the expression in (5.54) exactly matches Equation (6) in Theorem 2 of [34].

For illustration, consider the following: N = 10, α = 5, β = 2, κi = 0.5,

Cij = −0.1, ai = i, bi = N , σi =
√
iσ. Figures 5.10, 5.11, 5.12 plot the �rst-,

second-, and third-order moments of the reward obtained from the SHS approach

(substituting m = 1, 2, 3, respectively in (5.51)-(5.53), and using (5.26)). The

results of 75,000 Monte Carlo simulations are superimposed in each case. The simu-

lations are repeated for di�erent values of σ to demonstrate the validity of the SHS

approach.

5.7 Moment Closure for Markov Reward Models

Recall that in the class of reward models explored in the �rst two case studies, the

vector �elds that govern the evolution of the continuous state and the reset maps are

linear, while the transition rates are independent of the continuous state. If these

assumptions are relaxed, the di�erential equations that govern the evolution of the

moments are in�nite dimensional and moment-closure techniques have to be applied
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to solve them.

To see the added di�culty, in all of the cases considered previously, the evolu-

tion equation for the pth order moments of the process have always depended on

lower-order moments, and thus the moment evolution equations always give a closed

system. For example, we could always �rst solve the Chapman-Kolmogorov equa-

tions to obtain the zeroth-order moments; from this, the equations for the �rst-order

moments depended only on themselves and these zeroth-order moments, the second-

order moments only depend on themselves and lower order, etc. We can then always

solve these systems iteratively. In general, however, we could have a case where the

evolution equation for a moment of a given order depends on moments of higher or-

ders; this system will not be closed and cannot be solved iteratively. We demonstrate

this for a simple example below.
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Figure 5.13: First-order single-mode model to illustrate moment closure.

Consider the state transition diagram illustrated in Fig. 5.13, for a �rst-order

reward model with a single discrete state. The generator for this process is given by(
Lψ(m)

)
(x) =

∂

∂x
ψ(m)(x) · ax+ βx

(
ψ(m) (φ(x))− ψ(m) (x)

)
= maψ(m)(x) + β (κm − 1)ψ(m+1)(x). (5.58)

Applying (5.11), we see that the di�erential equations that govern the moments of

X(t) are given by

µ̇(m)(t) = maµ(m)(t) + β (κm − 1)µ(m+1)(t). (5.59)

Notice that µ̇(m)(t) depends on µ(m+1)(t). Therefore, moment-closure methods are

required to solve (5.59), i.e., to simulate the di�erential equation that governs the m-

order moment, µ(m+1)(t) has to be expressed as some function of µ(i)(t), 1 ≤ i ≤ m.

Typically, moment-closure methods rely on assumptions about the underlying

distribution of the state. Methods tailored to SHS are described in [31, 32] and

the references therein. For the reward models introduced in Section 5.2, moment-

closure methods are unnecessary�note that as demonstrated in the previous two

case studies, this class of reward models is still very powerful and can be applied

to a variety of system performability modeling problems. A detailed discussion of

moment-closure methods (as they apply to reward models with state-dependent tran-

sition rates and/or general polynomial vector �elds governing the continuous states)

is beyond the scope of this work and part of ongoing research.
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Chapter 6

ESTIMATING PHOTOVOLTAIC ENERGY

CONVERSION SYSTEMS PERFORMABILITY

METRICS

This is the �rst of three chapters where we apply the methods outlined previously

to renewable energy systems applications. In this chapter, we demonstrate how

Markov models can be utilized to quantify reliability/performability of photovoltaic

energy conversion systems (PVECS). The material we present subsequently has been

published in [8].

To ensure continued growth in PVECS, it is imperative to address the high lev-

elized cost of energy (LCOE) for PV systems. The LCOE is de�ned as the ratio

of the present value of capital and operating costs to the energy yield over the sys-

tem's lifetime and serves as a useful metric to gauge the competitiveness of di�erent

sources of energy [60]. The LCOE is inversely proportional to the net annual energy

production, and directly proportional to O&M and replacement/overhaul costs [60].

Therefore, system reliability has a great impact not only on O&M and replace-

ment/overhaul costs, but also on annual energy yield. This dependence has been

evidenced by studies that demonstrated that LCOE of PVECS increases exponen-

tially with a decrease in lifetime [61].

System reliability/performance models should provide accurate energy-yield esti-

mation, and aid in system design to ensure favorable economics. Additionally, an

important aspect is the impact of model-parameter uncertainty, which will in turn

propagate to the LCOE estimate. The methods presented in this chapter address

the problems discussed above by providing: i) a modeling framework to integrate

reliability considerations into energy-yield and cost estimations using Markov reward

model formalisms [47]; and ii) an analytical approach for parametric sensitivity anal-

ysis based on generalized matrix inversion techniques [18]. The sensitivity analysis

is based on the results presented in Chapter 2.

The literature on system-level probabilistic reliability analysis for power systems

is very extensive (see, e.g., [1, 11, 62] and the references therein). In the context
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of PVECS, combinatorial-based methods for PV system reliability assessment have

been attempted in [63, 64], but they do not yield insight into other performance

metrics such as energy yield and are limited in scope and application. Reliability-

oriented design approaches for o�-grid, remote PVECS are explored in [6], where

the authors use Markov reliability models among other methods. The idea to utilize

Markov chains in PVECS reliability modeling was also proposed in [7, 65]. Our

work is related to the ideas presented in [59], where the authors develop a model

to integrate economic aspects in power system reliability and apply the concepts to

a two-transformer example. The Markovian framework proposed in this work goes

beyond standard Markov reliability models which provide metrics such as availability

and mean-time-to-failure, and provides performance-related metrics such as energy

yield, although other metrics that, for example, include cost as in [59] can be easily

de�ned.

The impact of parametric uncertainty on reliability and performance metrics has

already been stressed. Apart from identifying model parameters that are likely to

cause modeling errors, such analyses also aid in optimal system design [20,66]. The

case studies highlight how sensitivity analysis can be used to formulate optimal

maintenance policies, estimate the impact of parameter variations, and aid in opti-

mizing economic policies in residential-scale, utility-scale, and emerging distributed

microinverter systems.

6.1 Reliability and Performability Metrics of Interest in PVECS

A variety of reliability/performability metrics can be de�ned by Markov reward

models by appropriately formulating the reward vector ρ. We provide a few examples

below, and note that some of these will be used in the ensuing case studies. Recall

that the stochastic behavior due to component failures and repairs is described by

an ergodic Markov chain (i.e., the system is perfectly repaired) with states i =

0, 1, 2, . . . , N −1 indexing system con�gurations that arise due to faults, and i = N

indexing the non-faulty con�guration.
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6.1.1 Expected System Capacity

Consider a PVECS with power rating P . Denote by πi the long-term probability

that the system is operating in con�guration i, and the corresponding power rating

by Pi. The expected system capacity is denoted by Ξ, and following (2.7), it can be

de�ned as

Ξ = πρT = [π0 π1 ...πn] [P0 P1 ...Pn]T . (6.1)

E�ectively, this metric ensures that systems with the same power rating but di�erent

reliability models can be uniformly and unambiguously compared.

6.1.2 Energy Yield

Consider a grid-tied PVECS installed at a location characterized by a capacity factor

CF which is de�ned as

CF =
(h/day of 1-sun)

24 h/day
, (6.2)

where 1-sun is de�ned as an insolation of 1 kW/m2 [67]. For example, if the average

incident energy density at a given location is 5 kWh/m2-day, this corresponds to 5

h/day of 1-sun insolation, and a capacity factor of 20.8 %. Average capacity factors

for di�erent locations are computed using historical data and can be obtained from a

variety of sources (see, e.g., [67]). Over some period of time T , if the system satis�es

the conditions in (2.8), an estimate of its energy yield is given by

Γ = Ξ · CF · T. (6.3)

Multiplying the energy yield by the average price of electricity yields the monetary

gain over the period T .

Remark

In Section 6.5.1, we describe a method for explicitly considering uncertainty in the

PV source and how it can be propagated to reliability and performance metrics. This

method reformulates the entries of the reward vector as random variables whose dis-

tributions are derived from those of incident insolation and ambient temperature�

uncertain inputs to the PVECS.
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6.1.3 System Availability

By appropriate choice of the reward function, a Markov reward model can also pro-

vide standard reliability metrics. For example, system availability for an N +1 state

model can be recovered by choosing ρ so that ρi = 1 if the system is operational in

state i and ρi = 0 otherwise.

Next, we present several case studies that demonstrate the applicability of the

Markov modeling framework to PVECS. The �rst case study applies to a utility-

level system, and explores the impact of parameter variations and repair strategies

on system capacity and energy yield. Next, sensitivity analysis is utilized to optimize

repair rates for a residential-scale system. Finally, the sensitivity approach is utilized

for design trade-o� analysis in emerging distributed system architectures.

6.2 Utility-Scale Installations

Utility-owned installations constituted 8% of grid-tied PVECS in 2008 [68]. This

number is expected to increase as federal legislation has incentivized utilities to own

PV projects without separate investors [60]. The average installed capacity in utility

installations is typically in the range of hundreds of kilowatts. While economies of

scale guarantee lower operation and maintenance (O&M) costs (0.12% as compared

to 1.47% for residential systems according to [60]), the large size and complexity of

these systems presents various challenges to ensure high reliability.

The benchmark installation considered here is a P =225 kW grid-tied inverter

analyzed in [69]. The system architecture is depicted in Fig. 6.1, where it can be seen

that the inverter has nine string blocks (with rated power, Ps = P/9 = 25kW), each

of which consist of ten strings of series-connected PV modules. Each string has twelve

series-connected modules. In this case study, we assume there are two di�erent failure

modes: inverter and string blocks failures, with failure rates denoted by λi and λs,

respectively. The inverter and string blocks are repairable with repair rates denoted

by µi and µs, respectively, and repair brings the system back to its full functionality

(although alternate repair strategies are explored subsequently). The state-transition

diagram for the system stochastic behavior due to failures and repairs is depicted

in Fig. 6.2. Note that other failure mechanisms including failures in series strings

(e.g. due to arc faults), individual PV modules (e.g. due to faulty junction boxes
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or bypass diodes), blocking diodes, and protection equipment, can be incorporated

in the model by appropriately de�ning additional states. If representative transition

rates can be identi�ed, phenomena such as soiling and partial shading can also be

modeled similarly.

Figure 6.1: Electrical block diagram of
utility-scale system with a central
inverter and nine string blocks.

Figure 6.2: State-transition diagram
that describes reliability of the
utility-scale system.

6.2.1 Base Case

The performance metrics of interest are system capacity Ξ, and energy yield Γ.

Following the notation in (6.1), it follows that ρi = Pi = (i− 1)Ps = (i− 1)P/9, i =

1, ..., 10, and ρ0 = 0 (this con�guration corresponds to inverter failure, which causes

the whole system to fail at once). The failure and repair rate values are adopted

from [69], and given by λi = (1/3) yr−1, λs = (1/270) yr−1, µi = (365/15) yr−1,

and µs = (365/8) yr−1. The system capacity is Ξ = 221.94 kW. Then, assuming a

capacity factor, CF = 18%, and for a period T = 10 yr, an estimate of the energy

yield is Γ = 3.51 GWhr.

6.2.2 Failure/Repair Rate Uncertainty Analysis

Given the uncertainty in accurately determining transition rates [61], sensitivity

analysis can reveal what parameters have the largest impact on system capacity (and

therefore energy yield). Figures 6.3 (a)-(d) depict the system capacity sensitivity

with respect to transition rates. Notice that system capacity is most sensitive to

86



the inverter failure rate, followed by the string failure rate, inverter repair rate, and

string repair rate. This follows intuitively, as a failure in the inverter brings the

system down, whereas the system still delivers power if several strings have failed.

Also, note that ∂Ξ/∂µs and ∂Ξ/∂µi vary by over two orders of magnitude over the

range of µs and µi, respectively. This suggests that accurate estimates of repair

rates (or at least an accurate estimate on their range) are required for any analysis

that employs sensitivity analysis. To validate the accuracy of the analytical results

on sensitivity, we plot on the same �gures the sensitivities computed numerically

(∂Ξ/∂θi ≈ ∆Ξ/∆θi) which are seen to match those computed using the analytical

approach very well.
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Figure 6.3: Capacity sensitivity as a function of failure/repair rates.
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6.2.3 Impact of Repair Strategy on Repair Costs

Denote by ns the largest number of operational strings for which repair is initiated.

Figure 6.4 depicts the investigated repair strategies as ns is varied from 8 to 1.

Transitions due to inverter failure still exist but are not depicted in the �gure for

simplicity. The energy yield is calculated using (6.3) for the di�erent repair strategies

over a period of T =10 yr and capacity factor 18%. The results are plotted in Fig.

6.5. As expected, if more strings are allowed to fail before repair is initiated, the

expected energy yield is reduced. Energy-yield estimates can be used to determine

an alternative to the perfect repair strategy (corresponding to ns = 8). To do so, we

introduce the marginal utility of repair for the j repair strategy which is denoted by

MURj and de�ned as

MURj =
p(Γ8 − Γj)

CF · T
$

yr
, (6.4)

where Γj is the energy yield in kWhr when ns = j, p is the price of electricity in

$/kWhr. Essentially the marginal utility of repair suggests the added dollar amount

by which the cost of the repair strategy when ns = j can be relaxed with no monetary

loss to the system operator. Hence, one way to pick a repair strategy (or pick an ns)

given an added repair cost cr $/yr over the perfect repair strategy, is to solve the

optimization problem
max j

s.t. cr < MURj

1 ≤ j ≤ 8.

(6.5)

The MUR for the utility-scale system is plotted in Fig. 6.6 assuming that the

price of electricity is $0.087/kW-hr. For the illustrative repair cost (denoted by

cr and sketched as a dashed line in the �gure), we would pick the repair strategy

corresponding to ns = 6.
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Figure 6.4: Alternate repair strategies

Figure 6.5: Energy yield as a function of
repair strategy

Figure 6.6: Marginal utility of repair to
pick repair strategy

6.3 Optimum Repair Strategies for Residential PV Systems

Residential-scale systems had an average rating of 4.9 kW and constituted 27% of all

new grid-connected systems installed in 2008 [68]. While traditionally such systems

have been installed and operated by the homeowner, utilities have started to enter

this sector. For example, San Diego Gas and Electric owns multi-family residential-

scale PVECS, and Southern California Edison has similar initiatives to deploy utility-

owned systems [70]. To encourage growth in this sector, technical advances have to
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be coupled with improvements in economics. Focusing on this aspect, this case study

demonstrates how the proposed framework�especially the approach to sensitivity

analysis�can optimize repair rates for residential-scale systems.

The benchmark PV installation studied here is installed in the Gable Home�a

net-zero solar-powered home constructed by the University of Illinois for the 2009

Solar Decathlon Competition [71]. The system is comprised of a 9 kW PV array

with forty 225 W modules. Two 5 kW inverters are utilized to interface with the

utility grid. A block diagram of the system architecture is shown in Fig. 6.7. The

system could operate (albeit at a lower power rating) with a single inverter should

one fail. The Markov model developed to study this system focuses on inverter

reliability as inverter failure has been singled out as one of the chief reasons for low

energy yield in grid-connected PVECS [72]. Figure 6.8 depicts the Markov-model

state-transition diagram that captures inverter failures and repairs. Each state in

the diagram represents the number of functional inverters. The failure rate of the

inverters is denoted by λ. The repair rates corresponding to state 0 (the failed state)

and state 1 (single functional inverter) are denoted by µ0 and µ1, respectively. This

model captures the possibility that the time taken to repair two inverters could be

longer than that to repair a single inverter. From the above description, it follows

that ρ = [ρ0 ρ1 ρ2] = [0 P/2 P ], P = 10 kW.

Figure 6.7: Gable Home electrical
system block diagram.

Figure 6.8: State-transition diagram
capturing Gable Home inverter
reliability.

To demonstrate how repair rates might be chosen, let us begin by assuming that the

mean time to inverter failure is 10 yr (λ = (1/10) yr−1) [60]. Assume that the mean

time to repair the inverters is 10 days (µ0 = µ1 = (365/10) yr−1). The sensitivities
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of the system capacity to the failure and repair rates are: ∂Ξ/∂λ = −2.724x10−2,

∂Ξ/∂µ1 = 7.424x10−5, and ∂Ξ/∂µ0 = 4.068x10−7. From these numbers it is clear

that Ξ is not sensitive to the mean time to repair both inverters. This makes intuitive

sense, as the inverters are very reliable and restored to operation rather quickly.

These observations suggest that µ0 need not equal µ1. The quantities ∂Ξ/∂µ0 and

Ξ are plotted in Fig. 6.9 as a function of µ0. The capacity is normalized as Ξ = Ξ ·
(100/P ) to express it in %. Notice that the performance of the system is una�ected as

long as the mean time to repair both inverters is between 10 and 30 days (corresponds

to µ0 between 36.5 yr−1 and 12.16 yr−1). This suggests that the mean time to repair

two inverters could be relaxed to 30 days without signi�cantly a�ecting the expected

energy yield.

Figure 6.9: System capacity and its sensitivity to time to repair both inverters.

Similar case studies can provide invaluable insight to manufacturers and installers

in determining replacement, repair, and shipment policies to minimize costs. On the

other hand, system owners can not only compare the performance of several di�erent

systems with a uni�ed performance metric but also negotiate power purchase agree-

ments, warranties and repair policies. With proper data, the models can easily be

extended to include a detailed economic analysis by coupling the repair rates with

shipping and wage-related costs.
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6.4 Emerging Distributed Inverter Systems

Conventional installations where large PV arrays were connected to central inverters

(Fig. 6.10(a)) are expected to be replaced by distributed systems in which PV mod-

ules are coupled with module-integrated microinverters (Fig. 6.10(b)). Proponents

of such systems have touted various advantages to justify the added installed cost

over central systems [73]. Of particular interest is the reliability of microinverter-

based architectures. The main goals of this case study are to evaluate the impact of

failure and repair rates on system capacity.

(a) (b)

Figure 6.10: Block diagrams of the (a) central and (b) distributed inverter
architectures.

Consider a grid-tied PV system built with N microinverters. The state-transition

diagram for this system is shown in Fig. 6.11. As before, each state corresponds

to the number of operational microinverters. Repairs in each state are assumed

to restore the operation of all failed microinverters. The mean time to repair the

microinverters is denoted by µ, and their failure rate is denoted by λ. Such a repair

model is reasonable if the shipping time (which is ideally independent of the number

of microinverters) is greater than the time taken to replace the faulty units. The

stationary distribution for this chain is

π0 =

[
1 +

n∑
i=1

(
i∏

k=1

µ+ (k − 1)λ

kλ

)]−1

, (6.6)

πi =
µ+ (i− 1)λ

iλ
πi−1 ∀ 1 ≤ i ≤ n. (6.7)
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Figure 6.11: State-transition diagram for an n-microinverter PVECS.

For a system rated at P W comprising n microinverters, the reward vector and

system capacity are given by

ρ = [ρ0 ρ1 . . . ρi . . . ρn] =

[
0
P

n
. . .

iP

n
. . . P

]
, (6.8)

Ξ =
n∑
i=1

ρi · πi =
n∑
i=1

i

n
· P · πi, (6.9)

where the stationary distribution follows from (6.6)-(6.7). In light of the compli-

cated expressions above, the utility of the proposed numerical method in computing

the stationary distribution and its sensitivity to variations in system parameters is

immediately obvious.

6.4.1 Performance Metrics Variation with Number of Inverters

We evaluate the relationship between the number of inverters n, and the system

capacity Ξ. Figure 6.12 depicts the system capacity as a function of the number of

microinverters for three cases. In case 1, λ and µ are assumed to be the same as the

base values, λ = 1/10 yr−1 and µ = 365/10 yr−1, for all n. In case 2, λ is �xed to

the base value, while µ is varied as shown in Fig. 6.13. In case 3, µ is �xed to the

base value, while λ is varied as shown in Fig. 6.13. The monotonic reduction in λ

captures possible circuit-level reliability improvements, while the monotonic increase

in µ aims to quantify better repair policies. It emerges that with invariant failure and

repair rates, Ξ is not a function of the number of microinverters, n. Improvements

can only be made by reducing the failure rates or increasing the repair rates.
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Figure 6.12: System capacity as a
function of number of inverters.

Figure 6.13: Illustrative failure and
repair rates as a function of number of
inverters adopted for case study.
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Figure 6.14: System capacity as a function of failure and repair rates for a
microinverter system.

6.4.2 Application of Sensitivity Analysis to System Design

Consider the design of a grid-tied 5 kW PV array to be implemented with microin-

verters. Suppose the system is built with twenty module-integrated microinverters.

System capacity is plotted as a function of λ and µ in Fig. 6.14. A particularly

useful application of the sensitivity analysis is to suggest necessary failure and repair

rates to meet a speci�ed performance requirement. To the �rst order, the sensitivity

formulation implies that

∆Ξ ≈ ∂Ξ

∂θ
∆θT =

[
∂Ξ

∂θ1

∂Ξ

∂θ2
. . .

∂Ξ

∂θm

]
[∆θ1 ∆θ2 . . .∆θm]T . (6.10)
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For instance, a performance change due to variations in failure rate can be estimated

through

Ξ1 ≈ Ξ0 +
∂Ξ

∂λ
(λ1 − λ0) , (6.11)

where variables subscripted by 0 are the nominal values. Referring to the 5 kW

system considered above, it was noted that λ0 = 1/10 yr−1 and µ0 = 365/10 yr−1,

yielded Ξ0 = 99.73%. Suppose this were to be improved to Ξ1 = 99.90% (with the

same repair rate), (6.11) suggests that the required failure rate, λ1 = 1/26.667 yr−1.

This can be veri�ed numerically by calculating Ξ through (6.1).

6.5 Extensions and Future Work

In this section, we propose some avenues for future work to extend the methods

proposed in this chapter.

6.5.1 Propagating PV Source Uncertainty to Reliability/Performability
Metrics

As an alternative to the energy-yield estimation approach presented in the case

studies, this section explores an explicit method to propagate input uncertainty to

reliability metrics and PV energy-yield estimates. The �rst step is to reformulate the

reward vector ρ = [ρ0, ρ1, . . . , ρn] as R = [R0, R1, . . . Rn], where Ri, i = 0, 1, . . . n,

are random variables. Then, we seek the mapping

Ri = fi(S, ∆), (6.12)

where S and ∆ are also random variables describing the incident insolation and

ambient temperature at the given location. The function fi captures the PV-system

output in the i state and it can be formulated from standard PV performance models

(see, e.g., [74]). Subsequently, system capacity, Ξ = π · RT , and energy yield, Γ =

Ξ · T , are also random variables. The pdfs of S and ∆, fS(s) and f∆(δ), can be

determined from �eld data or from analytical models. Then, the pdfs of the reward

vector, system capacity, and energy yield, (fR(ρ), fΞ(ξ), and fΓ(γ), respectively)

can be determined through random variable transformation methods. Note that we

tackle this problem (of propagating input uncertainty to reliability/performability
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indices) in the context of wind energy conversion systems in the next chapter.

6.5.2 Considering Extenuating Distribution-System Conditions and
Common-Cause Failures

PV inverters are designed to meet the IEEE 1547 standard, which prescribes ac-

tive power curtailment in case there are sustained over-voltage, under-voltage, over-

frequency, or under-frequency conditions in the distribution system. The Markov

reward modeling framework can be easily extended to accommodate these phenom-

ena as described next. Consider Fig. 6.15, which depicts a three-state example

(similar to the one presented in Section III-B of the manuscript) augmented with an

additional state 0F in which the power output is curtailed due to the extenuating

phenomena described above. The power output is ρi in state i, ρj in state j and

zero in state 0F and state 0�which corresponds to the state in which no power is

produced due to component failures. Transitions between the states i, j and state

0F are introduced at the rates λF and µF , which can be determined from statistics

of �eld data. As in the models described in the case studies, transitions between the

states i, j and state 0 are due to component failure and repair (governed by transition

rates λi, λj , and µ). Finally, catastrophic failures that cause the entire system to fail

(e.g., failure in protection equipment, simultaneous failure in multiple inverters) can

be modeled by introducing common-cause failures at the rate λC . Now, the system

capacity Ξ = πiρi + πjρj factors in the probability of over/under voltage/frequency

conditions that cause active power curtailment, as well as common-cause failures.

Figure 6.15: Addressing common-cause failures and under/over voltage/frequency
conditions with Markov reward models.
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Chapter 7

ESTIMATING WIND ENERGY CONVERSION

SYSTEMS PERFORMABILITY METRICS

In this chapter, we provide a framework to quantify the impact of parametric and in-

put uncertainty on the reliability/performability of wind farms (referred interchange-

ably as WECS). Parametric uncertainty in these models relates to the uncertainty

in failure and repair rates of the constituent wind turbines in the farm. Input un-

certainty relates to uncertainty in wind speed. The models presented here apply

on longer time scales (months to years) and are useful for planning purposes; they

cannot be applied, e.g., to quantify the uncertainty in wind farm power output on

an hourly basis. The methods we will use to quantify the impact of parametric

uncertainty are adopted from Chapter 3. The material presented here is partially

adopted from [75].

7.1 Overview of Proposed Framework

The framework we propose is schematically illustrated in Fig. 7.1. Inputs to the

framework are pdfs of the failure rate, repair rate, and wind speed (blocks 1, 2,

and 5, respectively in Fig. 7.1). The two models that characterize the operation of

the wind farm are: i) a Markov reliability/reward model (block 3 in Fig. 7.1) that

describes failures and repairs in constituent wind turbines, and ii) the power versus

wind speed characteristic (henceforth referred to as the p − v characteristic) of the

wind farm (block 6 in Fig. 7.1).

The Markov reliability models we explore are described by two parameters�the

wind-turbine failure rate λ, and repair rate µ. The proposed methodology can easily

be extended to more involved models with other transitions (e.g., common-cause

failures [13]). Since λ and µ are not perfectly known, they are described by random

variables L and M , with pdfs fL(λ) and fM (µ), respectively, that are assumed

to be known (blocks 1 and 2). These distributions are typically determined from
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Figure 7.1: Block diagram illustrating proposed framework.

engineering experience or from �eld data [12,16,17]. State i of the underlying Markov

chain corresponds to i operational turbines. The steady-state probability πi captures

the average time in state i, i.e., the average time with i operational turbines. The

output of the Markov reward model is the wind farm capacity ξ, which is a measure of

the expected rated power output of the wind farm. It is determined as the weighted

sum of the rated power in each state of the chain�the weighting factors are the

steady-state probabilities. Since the transition rates are uncertain, the steady-state

probabilities are uncertain. Therefore, the wind farm capacity ξ is also uncertain and

described by a random variable Ξ, with pdf fΞ(ξ) that can be determined through

random-variable transformations as explained in Section 7.3.2. The method relies on

a Taylor-series expansion of the capacity as a function of the transition rates, since

closed-form expressions are not assumed to be known. Taylor series coe�cients are

determined from the group inverse of the underlying Markov chain generator matrix

as explained in Section 7.3.1.

The inputs to the p − v characteristic are the wind farm capacity and the wind

speed. Wind speed is described by a random variable V , with pdf fV (v), which

is assumed to be known. The power output of the wind farm p is uncertain, and

described by a random variable P . The pdf of P , fP (p), is also obtained through

random-variable transformations. We propose a p − v characteristic that has an

analytical closed form, and further, it is invertible�consequently, it is straightfor-

ward to apply well-known numerical methods for random-variable transformation.

Finally, the load d is described by a random variable D with pdf fD(d).

Given this framework, we compute wind generation indices such as the capacity
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factor and expected generated wind energy, as well as generation adequacy indices

such as the loss of load probability and expected energy not supplied. We will solve

the above problem in two parts. First, we will concentrate on blocks 5, 6, and 7, i.e.,

we will assume that the wind farm capacity ξ is fully determined (no uncertainty

in failure and repair rates), and that the only uncertainty is in the wind speed.

Subsequently, we model the uncertainty in capacity due to uncertainty in failure and

repair rates.

7.2 Quantifying Uncertainty in Wind Speed

The building blocks that capture this subset of the overall proposed framework are

illustrated in the block diagram shown in Fig. 7.2. The �rst input to the framework

is wind speed, modeled as a continuous random variable V , with pdf fV (v), which is

assumed to be known. The framework also requires a statistical availability model

for the wind farm; i.e., for a wind farm comprised of n turbines, the probabilities

πm, m = 0, 1, . . . , n, where πm is the probability that m turbines are operational.

These inputs are propagated through the wind farm p − v characteristic to obtain

the pdf of the wind-farm power, denoted by fP (p). It is worth reiterating that since

we do not model uncertainty in failure and repair rates, the probabilities πm are not

uncertain, and consequently, the system capacity is a �xed number.

Figure 7.2: Propagating wind speed uncertainty to wind farm power output.
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7.2.1 Wind Turbine p− v Characteristic

Following standard terminology (see, e.g., [67]), denote the cut-in, rated, and furling

wind speed of a wind turbine by vc, vr, and vf , respectively. Further, denote the

rated output power of the turbine by Pr. Let us consider the following piecewise

continuous function to model the power output of the wind turbine p, as a function

of wind speed v

p(v) =

{
p1(v) for 0 ≤ v ≤ vlim,
p2(v) for vlim < v ≤ vf ,

(7.1)

where

p1(v) = Pr − Pr
[
1 + exp

(
v − vmid

c

)]−1

, (7.2)

p2(v) = Pr − Prα (v − vlim)q , (7.3)

and where vmid, c, α, and q are parameters that determine the shape of the func-

tions [76]. We provide a brief note below on how the di�erent parameters can be

determined.

• The parameter vmid is the wind speed at which the power output of the turbine

is half the rated value, i.e., p1(vmid) = Pr/2. Hence it can be determined by

inspecting wind-turbine data sheets.

• The parameter c can be tuned to ensure that the characteristic is within some

predetermined percentage of the rated power, Pr, at the rated wind speed,

vr. For instance, if we require p1(vr) = β · Pr (typically β ≥ 0.99 to ensure

p1(vr) ≈ Pr), it is easy to show

c = (vr − vmid)
[
log

(
β

1− β

)]−1

. (7.4)

• The coe�cient α that governs the polynomial dropo� is obtained by solving

p2(vf ) = 0, and is given by

α = (vf − vlim)−q . (7.5)

The function p2(v) is formulated to model a q-order drop-o� in power output for

wind speeds greater than a limiting wind speed, vlim. The limiting wind speed can

be chosen to be arbitrarily close to the furling speed. As will be shown in the case
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studies in Section 7.2.5, a quadratic drop o� (q = 2) models the output of an actual

operating wind farm better than conventional models in which vlim = vf so that

p2(v) = 0 ∀v ≥ vf . Figure 7.3 illustrates the p − v characteristic for the Vestas

V90-2.0 MW turbine [77]. Relevant turbine speci�cations and model parameters�

extracted following the approach outlined above�are listed in Table 7.1.

Table 7.1: Parameters for the Vestas V90-2.0 MW wind turbine.

Symbol Parameter Value

Pr Rated power 2 MW
vc Cut-in wind speed 4 m/s
vr Rated wind speed 12 m/s
vlim Limiting wind speed 24 m/s
vf Furling wind speed 25 m/s
c Shape parameter that ensures p1(vr) = β · Pr 0.7617 m/s

vmid Wind speed such that p1(vmid) = Pr/2 8.5 m/s
q Order of drop o� for v > vlim 2
α Parameter that ensures p2(vf ) = 0 1 (m/s)−2

Figure 7.3: Sample p− v characteristic for the Vestas V90-2.0 MW wind turbine.

7.2.2 Wind Farm p− v Characteristic

Let us consider a wind farm comprising n identical wind turbines, with p−v charac-
teristics modeled by (7.1)-(7.3). If the turbines are staggered appropriately, interfer-

ence e�ects can be minimized [67], and the p− v characteristic of the farm is given
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by1

p(v) =

{
p1(v) for 0 ≤ v ≤ vlim,
p2(v) for vlim < v ≤ vf ,

(7.6)

where

p1(v) = ξ − ξ
[
1 + exp

(
v − vmid

c

)]−1

, (7.7)

p2(v) = ξ − ξα (v − vlim)q . (7.8)

The wind farm capacity (which is basically the expected rated power of the farm) is

denoted by ξ, and de�ned as

ξ = ω · Pr, (7.9)

where Pr is the rated power output of a single turbine, and ω is the expected number

of turbines during the period of study given by

ω = π0 · 0 + π1 · 1 + · · ·+ πn · n, (7.10)

where πm is the probability that m turbines are operational. As described in the

introduction to this chapter, the probabilities πi, i = 0, 1, . . . , n, can be obtained

from a Markov availability model (see, e.g., [3,4]). Alternately, they can be obtained

from �eld data. Also note that the wind farm capacity in this model is a �xed number

(since we do not model uncertainty in failure and repair rates yet). Subsequently,

in Section 7.3, we will assume that the wind turbine failure and repair rates are

uncertain. Consequently, the capacity will be described by a random variable Ξ,

whose pdf fΞ(ξ), will be determined following the methods outlined in Chapter 3.

7.2.3 Propagating Wind-Speed Uncertainty to the Wind-Farm Power
Output

Suppose the wind speed is described by a random variable V , with pdf fV (v), which

is assumed to be known. Applying random-variable transformations to (7.6), we get

fP (p) =
fV (v1)

|p′1(v1)| +
fV (v2)

|p′2(v2)| , (7.11)

1We abuse notation and denote the p− v characteristic of the wind farm by p(v). However, as
expressed in (7.6)-(7.8), the rated power is di�erent from that in (7.1)-(7.3). Subsequently, we will
only be dealing with the p− v characteristic of the wind farm as described in (7.6)-(7.8).
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where v1 and v2 can be obtained by inverting the p1(v), p2(v) characteristics in

(7.7)-(7.8) as follows:

v1 = vmid + c · log
(

p

ξ − p

)
, (7.12)

v2 = vlim +

(
1

α

ξ − p
ξ

)1/q

. (7.13)

The expressions for p′1(v) and p′2(v) in (7.11) can be obtained by di�erentiating

(7.7)-(7.8) which results in

p′1(v) =
ξ

c
exp

(
v − vmid

c

)[
1 + exp

(
v − vmid

c

)]−2

, (7.14)

p′2(v) = −2αξ(v − vlim). (7.15)

The equation in (7.11) follows from well-known random-variable transformation

methods [51]. In the context of propagating wind-speed uncertainty, these meth-

ods require inverting the p−v characteristic for each value of p�which is easy given

the form of p(v) in (7.7)-(7.8).

Wind speed pdf fV (v) can be obtained by �tting �eld data with standard distri-

butions. For instance the Weibull distribution

fV (v) =
b

ab
vb−1exp

(
−v
a

)b
, (7.16)

where b is called the shape parameter and a is called the scale parameter, has been

widely adopted to model wind-speed statistics [67, 78]. By way of notation, V ∼
W(a, b) denotes a Weibull-distributed random variable V with scale parameter a,

and shape parameter b. While we utilize the Weibull distribution in the case studies

that follow, note that the method proposed above is agnostic to the wind-speed

distribution.

We want to point out that the above method is accurate when the maximum

wind speed at the location is less than the cut-out speed. As part of future work,

we will augment the p − v characteristic to model the extenuating case when the

maximum wind speed at the location is expected to be signi�cantly higher than the

cut-out speed. If the power output is assumed to be zero beyond this value, mixed

distributions will be obtained.
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7.2.4 Computer Implementation

Algorithm 4 provides the pseudocode for computer implementation of the method

outlined in (7.11)-(7.15) to compute fP (p). Since (7.11) has to be evaluated point-

wise, p is appropriately discretized between pmin and pmax in steps of dp to obtain

the vector p̄ = [pmin : dp : pmax]. In the for loop, fP (p) is evaluated pointwise for

each entry of p̄, which we denote by p̂. This involves computing v1 and v2 through

(7.12)-(7.13), p′1(v1) and p′1(v1) through (7.14)-(7.15), and then applying (7.11).

Algorithm 4 Computation of fP (p).

de�ne p̄ = [pmin : dp : pmax]
Model parameters: vc, vr, vlim, vf , α, β, c, q, Pr
Expected number of operational wind turbines ω
Wind farm capacity ξ = ωPr
Wind-speed pdf fV (v)

for p̂ = pmin : dp : pmax do

compute v1 = vmid + c · log
(

p̂
ξ−p̂

)
v2 = vlim +

(
1
α
ξ−p̂
ξ

)1/q

compute p′1(v1) = ξ
cexp

(
v1−vmid

c

) [
1 + exp

(
v1−vmid

c

)]−2

p′2(v2) = −2αξ(v2 − vlim).

compute fP (p̂) = fV (v1)

|p′1(v1)| + fV (v2)

|p′2(v2)|
end for

7.2.5 Model Validation

In this section, we validate the proposed approach by comparing the wind farm power

pdf with results obtained from actual �eld data. We have access to 1-second data for

number of operational turbines, wind speed, and wind-farm power output recorded

at a wind farm comprising n = 75 turbines over a period of two months. The goal

of this case study is to demonstrate that the method proposed in Algorithm 4 can

be used to accurately extract the pdf of the wind-farm power output by comparing

the results with the �eld data.

The methodology comprises the following steps: i) obtain a statistical availability

model of the turbines in the farm, ii) �t the pdf of recorded wind speed at the

site with a Weibull distribution, iii) formulate the p − v characteristic of the wind

farm through (7.6)-(7.8), iv) propagate wind speed uncertainty through (7.11)-(7.15).
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Figure 7.4: Availability of turbines in
the wind farm.

Figure 7.5: Weibull �t to distribution of
wind speeds collected in the �eld.

Figure 7.6: Field data compared to
proposed p− v characteristic.

Figure 7.7: Distributions for power
compared.

These steps follow along Algorithm 4, and they are explained in detail subsequently.

As stated above, we �rst determine a statistical availability model for the wind

farm. In the context of the discussion in Section 7.2.2, this involves determining the

probabilities πm, m = 0, 1, . . . , n, where πm is the probability that the wind farm

has m operational turbines. From the available data on number of wind turbines,

πm can be computed as

πm =
Nm

N
, (7.17)

where Nm is the number of seconds with m operational turbines, and N = 2 ·30 ·24 ·
60 · 60 s, the number of seconds in 2 months�which is the duration of the observed

period. The results are plotted in Fig. 7.4, and from (7.10), we get the expected

number of operational turbines, ω = 62.7461.

In the next step, a Weibull distribution is �tted to the distribution of wind speed
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utilizing MATLAB's d�ttool function. The resulting scale and shape parameters are

a = 6.54818 m/s, and b = 2.35952, respectively. Figure 7.5 plots the Weibull �t and

the distribution computed from the raw wind speeds. The results show excellent

agreement.

Next, we determine the p− v characteristic of the wind farm. Figure 7.6 plots the

p− v characteristic of the wind farm computed from (7.6)-(7.8) and it also plots the

raw power data as a function of wind speed. Finally, we follow along the steps in

Algorithm 4 to determine the distribution fP (p) and compare the results with the

�eld data. Results plotted in Fig. 7.7 show good agreement over a wide power range.

The mean power from the �eld data is equal to 0.2673 p.u., while that computed

using the proposed method is 0.2374 p.u.

7.3 Quantifying Uncertainty in Failure and Repair Rates

In this section, we describe how to extend the uncertainty model presented in Section

7.2 to accommodate uncertainty in turbine failure and repair rates. This will allow

us to completely describe the uncertainty propagation method depicted in Fig. 7.1.

7.3.1 Wind Farm Markov Reward Model2

The wind-farm Markov reward model is comprised of a Markov chain that takes

values in a set Q, and a reward function % : Q → R that maps each element i of Q
into a real-valued quantity ρi that quanti�es some notion of wind farm performance

while in con�guration i. A long-term measure of performance can be described by

the reward

ξ =

n∑
i=0

ρiπi = π · ρT , (7.18)

where π = [π0, π1, . . . , πn] is the Markov-chain stationary distribution and ρ =

[ρ0, ρ1, . . . , ρn] is the reward vector. In the context of the models we describe here,

the reward is the wind farm capacity. To explicitly represent the dependence of the

stationary distribution and system capacity on the failure and repair rates, they are

expressed as π(θ) and ξ(θ), respectively, where θ = [λ, µ]. Also recall from Section

2For a comprehensive overview of Markov reward models, please refer Chapter 2. Here, we
provide a brief overview of key aspects.
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2.4, that the sensitivity of the reward to the i parameter, θi, can be expressed as

∂kξ(θ)

∂θki
=
∂kπ(θ)

∂θki
ρT = k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
ρT , (7.19)

where Λ# is the group inverse of the generator matrix and π(θ) is the stationary

distribution of the chain.

Reliability and performability indices of interest can be easily recovered from the

above formulation by appropriate choice of the reward. For instance, if the values

that the reward function % takes are de�ned in per-unit time, e.g., energy pro-

duced per unit time, then ξ describes the average rate at which the system will

deliver/consume some quantity that measures the system performance, e.g., energy

production [8]. In the context of this work, we recover the de�nition of system

capacity in (7.9) by choosing

ρi = i · Pr, i = 0, 1, . . . , n. (7.20)

7.3.2 Propagating Uncertainty in Failure and Repair Rates to Wind-Farm
Capacity

In this section, we summarize numerical methods proposed in Chapter 3 to compute

the pdf of the wind farm capacity, given the Markov chain generator matrix and

the model-parameter pdfs. Let Θ = [Θ1, Θ2] = [L, M ] be the vector of random

variables that describe the failure and repair rates. It is assumed that L and M

are independent, and that their pdfs, fL(λ) and fM (µ), are known. Therefore, the

steady-state probabilities are random variables that can be collectively described by a

random vector Π = [Π0, Π1, . . . , Πn], where Πi = πi(Θ) with pdf fΠi(πi). Similarly,

the capacity, Ξ = ξ(Θ) = Π(Θ) · ρT , is a random variable with pdf fΞ(ξ). Following

the method proposed in Chapter 3, to derive fΞ(ξ), ξ(Θ) is �rst approximated by a

Taylor-series polynomial expansion. The Taylor series coe�cients are the sensitivities

∂kξ(θ)/∂θk. In general, obtaining these sensitivities is a di�cult task; however,

they can be computed from the generator-matrix group inverse as shown in (7.19).

Once the polynomial characterization is available, an extension of Lemma 1�that

accommodates multiple parameters�can be applied to compute fΞ(ξ) by evaluating

the roots of the polynomial approximations, which are easy to obtain numerically.

The procedure was described in detail for general reward models in Section 3.4, and
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is summarized below for the speci�c two-parameter case (the parameters in this case

are the failure rate and the repair rate).

7.3.2.1 Determining the pdf of fΞ(ξ)

First, we pick a parameter, say the failure rate λ, and seek the Taylor series expansion

of ξ around µL, the mean of L, with the other parameter, µ, �xed. To do so, begin

by expressing Θ as

Θ = µΘ + ∆Θ, (7.21)

where µΘ = [µL, µ] and ∆Θ = [∆L, 0]�∆L is a zero-mean random variable with

pdf f∆L(∆λ) = fL(µL + ∆λ). Then, applying a Taylor-series expansion, we can

express

Ξ = ξ(Θ) = ξ(µΘ + ∆Θ) = ξ(µΘ) +
∞∑
k=1

ck
k!

∆Lk

= π(µΘ)ρT +
∞∑
k=1

ck
k!

∆Lk. (7.22)

The k-order Taylor series coe�cient, ck, follows from (7.19):

ck = k! (−1)k π(θ)

(
∂Λ(θ)

∂λ
Λ#

)k
ρT

∣∣∣∣∣
θ=µΘ

. (7.23)

We then express Ξ = x(∆L), where x is a polynomial function with real coe�cients

obtained by truncating the Taylor series in (7.22) at the t term:

Ξ = x(∆L) = π(µΘ)ρT +
t∑

k=1

ck
k!

∆Lk. (7.24)

Then, applying Lemma 1 we get

fΞ|M (ξ|µ) =

r∑
j=1

f∆L(∆λj)

|x′(∆λj)|
, (7.25)
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where ∆λ1, ∆λ2, . . .∆λr are the r ≤ t roots of ξ = x(∆λ) and

x′(∆λj) :=
dx(∆λ)

d∆λ

∣∣∣∣
∆λ=∆λj

=
t∑

k=1

ck
(k − 1)!

∆λk−1
j . (7.26)

Applying the total probability theorem, and acknowledging the independence of L

and M , it follows that

fΞ (ξ) =

ˆ

µ

fΞ|M (ξ|µ) fM (µ)dµ. (7.27)

7.3.2.2 Computer implementation

Algorithm 5 provides the pseudocode for computer implementation of the method

outlined in (7.21)-(7.27) to compute fΞ(ξ) given fL(λ) and fM (µ). The vector ξ̄ =

[0 : dξ : ‖ρ‖1 · Pr] is formulated based on the one-norm of ρ, since ξ =
(
πρT

)
· Pr

and 0 ≤ πi ≤ 1, ∀i = 0, 1, . . . , n. The vector µ̄ =
[
µstart : dµ : µend

]
is de�ned so

that it spans several standard deviations on both sides of µM , the mean of M . The

nested for loops ensure that the conditional pdf in (7.25) is evaluated point wise for

the entries in µ̄. The QR factorization of the generator matrix is evaluated for every

[µL, µ̂], where µ̂ denotes an entry of the vector µ̄. Next πi(θ̂) is obtained from (2.12)

by normalizing the last column of Q, the group inverse Λ# is obtained from (2.13),

and the Taylor series coe�cients, ck, k = 1, 2, . . . , t are computed using (7.23). The

r real roots of the equation ξ̂ = x(∆λ) are computed and the conditional fΞ|M

(
ξ̂|µ̂
)

follows from (7.25)-(7.26). The integrals at the end of the nested for loop can be

implemented using some numerical integration scheme, e.g., the trapezoidal method.

7.3.3 Determining the Wind Farm Power Output pdf

Given the pdfs of the capacity fΞ(ξ) and the pdf of the wind speed fV (v) (recall

(7.16)), we can now determine the wind farm power output pdf fP (p). The approach

closely mirrors the method outlined in Section 7.2.3. Applying random-variable

transformations to (7.6), we get

fP |Ξ(p|ξ) =
fV (v1)

|p′1(v1)| +
fV (v2)

|p′2(v2)| , (7.28)
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Algorithm 5 Computation of fΞ(ξ) given fL(λ) and fM (µ).

de�ne ρ = [ρ0, ρ1, . . . , ρn], ξ̄ = [0 : dξ : ‖ρ‖1 · Pr], µ̄ =
[
µstart : dµ : µend

]
.

de�ne Taylor series order t
compute ∂Λ

∂λ

for ξ̂ = 0 : dξ : ‖ρ‖1 do
for µ̂ = µstart : dµ : µend do

compute QR = Λ(θ̂) where θ̂ = [µΘ1 , µ̂]
compute ξ(θ̂) = π(θ̂) · ρT (2.12), Λ# (2.13), ck, k = 1, 2, . . . , t (7.23)

compute real roots of ξ(θ̂)− ξ̂ +
t∑

k=1

ck
k! ∆λ

k = 0, ∆λj , j = 1, . . . , r

for j = 1 to r do

compute f∆L(∆λj), and x′(∆λj) =
t∑

k=1

ck
(k−1)!∆λ

k−1
j

end for

compute fΞ|M

(
ξ̂|µ̂
)

=
r∑
j=1

f∆L(∆λj)
|x′(∆λj)|

end for

compute fΞ(ξ̂) =
´
µ fΞ|M (ξ̂|µ)fM (µ)dµ

end for

where v1 and v2 are given by (7.12), (7.13), and p′1(v) and p′2(v) are given by (7.14),

(7.15). Assuming that wind speed and system capacity are independent, by applying

the total probability theorem we can obtain the pdf of the wind-farm output from

fP |Ξ(p|ξ) (7.28) and fΞ(ξ) (7.27) as follows:

fP (p) =

ˆ

ξ

fP |Ξ (p|ξ) fΞ(ξ)dξ. (7.29)

7.3.3.1 Computer implementation

Algorithm 6 provides the pseudocode for computer implementation of the method

outlined in (7.28)-(7.29) to compute fP (p). Since (7.28) has to be evaluated point-

wise, p is appropriately discretized between pmin(chosen to be close to 0) and pmax
(chosen to be close to P ξr ) in steps of dp to obtain the vector p̄ = [pmin : dp : pmax].

In the for loop, fP (p) is evaluated pointwise for each entry of p̄, which we denote

by p̂. This involves computing v1 and v2 through (7.12), (7.13), p′1(v1) and p′1(v1)

through (7.14), (7.15), and then applying (7.28). Notice that this algorithm closely

follows along Algorithm 4, except in this case we model the uncertainty in the wind
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farm capacity.

Algorithm 6 Computation of fP (p).

de�ne p̄ = [pmin : dp : pmax]
de�ne model parameters: vc, vr, vlim, vf , α, β, c, q, Pr
de�ne Capacity pdf, fΞ(ξ) obtained from Algorithm 5
de�ne Wind-speed pdf, fV (v)
for p̂ = pmin : dp : pmax do

for ξ̂ = 0 : dξ : ‖ρ‖1 · Pr do
compute v1 = vmid + c · log

(
p̂

ξ̂−p̂

)
compute v2 = vlim +

(
1
α
ξ̂−p̂
ξ̂

)1/q

compute p′1(v1) = ξ̂
cexp

(
v1−vmid

c

) [
1 + exp

(
v1−vmid

c

)]−2

compute p′2(v2) = −2αξ̂(v2 − vlim).

compute fP |Ξ(p̂|ξ̂) = fV (v1)

|p′1(v1)| + fV (v2)

|p′2(v2)|
end for

compute fP (p̂) =
´
ξ fP |Ξ (p̂|ξ) fΞ(ξ)dξ

end for

7.3.4 Wind Generation Indices

The proposed framework can be utilized to compute common wind generation indices

that gauge the reliability/performability of wind farms [3, 4]. We introduce some

metrics of interest below and explain how they can be computed.

7.3.4.1 Installed Wind Power, IWP

The installed wind power is the sum of nominal rated power of all turbines

IWP = n× Pr [MW]. (7.30)

7.3.4.2 Installed Wind Energy, IWE

The installed wind energy is the maximum possible energy that can be extracted in

one year from the wind farm

IWE = IWP [MW]× 8760

[
hr
yr

]
. (7.31)
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7.3.4.3 Expected Available Wind Energy, EAWE

The energy expected to be generated by the wind farm in one year without consid-

ering wind-turbine failure is

EAWE =

ˆ

p

p · fP (p)|ω=n dp [MW]× 8760

[
hr
yr

]
. (7.32)

To compute this index, we need the expected power output of the wind-farm without

considering wind-turbine failure. The pdf of the power output without any failures,

fP (p)|ω=n, can be computed following the procedure in Section 7.2.3, with ω = n⇒
ξ = n · Pr.

7.3.4.4 Expected Generated Wind Energy, EGWE

The energy expected to be generated by the wind farm in one year considering

wind-turbine failures and repairs is

EGWE =

ˆ

p

p · fP (p) dp [MW]× 8760

[
hr
yr

]
. (7.33)

To compute this index, we need the expected power output of the wind-farm while

accommodating failures and repairs through an availability model.

7.3.4.5 Capacity Factor, CF

The capacity factor of the wind farm without considering wind-turbine failure is

CF =
EAWE
IWE

. (7.34)

7.3.4.6 Wind Generation Availability Factor, WGAF

The capacity factor of wind farm considering failures and repairs is

WGAF =
EGWE
IWE

. (7.35)
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This is the capacity factor of the the wind farm while factoring in failures and repairs

of the wind turbines.

7.3.4.7 Loss of Load Probability, LOLP

The loss of load probability (LOLP) is the probability of the event that the demand

exceeds the generation capacity. Denote the demand/load over the period of study

by d. We model the demand as a random variable D with pdf fD(d), which can

be determined from historical data. Given distributions for P and D, de�ne the

unserved load, U = P −D. The loss of load probability, LOLP = Pr{U = P −D <

0}. To compute this metric, we �rst determine the pdf of U = P −D by convolving

fP (p) and fD(−d), and then integrate over the region that P −D is negative.

7.3.4.8 Expected Energy Not Supplied (EENS):

The EENS provides an estimate of the energy not supplied to the load over the

period of investigation. This metric can be computed from the pdf of the random

variable U = P −D as follows:

EENS =

∣∣∣∣∣∣
0ˆ

umin

ufU (u)du

∣∣∣∣∣∣ [MW]× 8760

[
hr
yr

]
, (7.36)

where umin < 0 is the minimum value that the random variable U takes.

7.4 Case Studies that Demonstrate Impact of Input and
Parametric Uncertainty

In this section, we present two case studies. The �rst describes how the proposed

framework can be utilized to compute the wind generation indices explained above,

when there is no uncertainty in turbine failure and repair rates. The next case study

examines the case where there is uncertainty in both wind speed and turbine failure

and repair rates.
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7.4.1 Computing Wind Generation Indices

In this case study, we demonstrate the applicability of the proposed framework in

computing the wind generation indices listed in Section 7.3.4. Consider a wind

farm comprised of n = 50 wind turbines with speci�cations in Table 7.1. We will

investigate wind-generation indices for wind regimes characterized by the Weibull

distributions in Fig. 7.8. The installed wind power can be computed from (7.30)

as IWP = n · Pr = 50 × 2 = 100MW. Similarly, the installed wind energy can be

computed from (7.31) as IWE = IWP× 8760 = 8.76× 105 MWhr.

Figure 7.8: Representative Weibull
distributions (a varied, b = 5) to model
wind speeds.

Figure 7.9: Power distribution computed
for the wind-speed distributions in Fig.
7.8

Figure 7.10: Wind generation indices as a
function of the scale parameter.

Figure 7.9 depicts the pdfs fP (p) computed for wind speeds modeled by Weibull

distributions in Fig. 7.8 assuming no wind-turbine failures. The base power corre-
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sponding to 1 p.u. is 100 MW, the IWP. Figure 7.10 depicts the expected available

wind energy (EAWE), expected generated wind energy (EGWE), capacity factor

(CF), and wind generation availability factor (WGAF) as a function of the scale

parameter a, assuming ξ = 0.9 × n, i.e., 45 turbines are expected to operate on

average. These indices are computed from (7.32)-(7.35).

7.4.2 Quantifying the impact of Input and Peripatetic Uncertainty

Consider a wind farm comprised of n = 100 turbines. The wind-turbine parameters

are listed in Table 7.1. Without loss of generality, wind speed is modeled by a Weibull

distribution, turbine failure rate and the load are modeled by normal distributions,

and the turbine repair rate is modeled by a uniform distribution. Details on the

distributions are provided in Table 7.2. The results below demonstrate how the

proposed framework can be applied to compute the generation-adequacy and wind-

generation indices described in Section 7.3.4.

Table 7.2: Distributions of uncertain inputs and model parameters used in the case
study described in Section 7.4.2.

Symbol Parameter Value

L ∼ N (µL, σ
2
L) Wind-turbine failure rate µL = 1 yr−1, σL = 10% · µL

M ∼ U(aM , bM ) Wind-turbine repair rate aM = 80 yr−1, bM = 100 yr−1

V ∼ W(a, b) Wind speed a = 7 m/s, b = 9

D ∼ N (µD, σ
2
D) Wind-farm load µD = 25 MW, σD =10% · µD

Figures 7.11 (a), (b) depict the generation adequacy and wind generation indices as

a function of the mean wind speed, µV . Figures 7.11 (c), (d) depict the generation

adequacy and wind generation indices computed for di�erent mean wind-turbine

failure rates. And �nally, Figs. 7.11 (e), (f) depict the generation adequacy and wind

generation indices as the mean repair rate is increased. An interesting observation

is the precipitous change in the LOLP index as the mean repair rate changes from

2-3 and the mean failure rate changes from 1-2.

In Fig. 7.11, we also superimpose relevant results from repeated Monte Carlo sim-

ulations to demonstrate the validity of the analytical approach. These are obtained

by repeatedly sampling distributions of the parameters and inputs and computing
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the relevant indices with the p− v characteristic.
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Figure 7.11: Reliability and performability indices as a function of mean wind
speed, repair rate, and failure rate.
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Chapter 8

IMPACT OF RENEWABLE RESOURCE

VARIABILITY ON POWER SYSTEM

DYNAMICS�AN SHS APPROACH

In this chapter, we explore a stochastic small-signal power system model cast in

the SHS framework. The general DAE model that describes the evolution of the

electromechanical states of the power system is linearized around nominal values of

real/reactive power injections (corresponding to some nominal mode). With regard

to the SHS model prescribed in (5.2), this implies that f and g are linear/a�ne in

the state. As the mode Q(t) evolves (governed by the transition rates), so do the

real/reactive power injections�we describe how this can be used to model renew-

able resource variability in Section 8.3. Subsequently, we apply results from [30, 32]

to obtain the moments of the electromechanical states of the power system. We

further assume that the transition rates are not a function of the continuous state.

Under these assumptions, the di�erential equations that govern the evolution of

the moments of the state are �nite dimensional, and moment-closure methods are

unnecessary.

The assumptions that we make are not restrictive. Indeed, linear models are widely

used to study the impact of small-signal disturbances on power-system stability.

Similarly, with constant/time-dependent transition rates, we can model a wide class

of stochastic disturbances in power injections. It is worth noting that moment-

closure methods tailored to SHS (which as we have mentioned above, need to be

applied when, e.g., the transition rates are a function of the continuous state) are well

developed (see, e.g., [31, 32] and the references therein). Since this work represents

the �rst application of SHS to stochastic small-signal power systems analysis, we

restrict attention to linearized models, with state-independent transition rates so

that moment closure methods are unnecessary.

We want to point out that our methodology is closely related to [79] (see also

[80, 81] for related work), which established a framework for probabilistic steady-

state and dynamic security assessment of power systems. The authors in [79] consider
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di�erent modes that the power system can transition between in a stochastic fashion,

and derive a linear di�erential equation whose solution yields the distribution of

a performance metric�this is done from �rst principles, and SHS tools are not

employed. In [82], decentralized control methods for stabilization of power systems

are presented where uncertainties are modeled within a Markov jump linear systems

framework. It is worth noting that the models in [79, 82] can all be described with

SHS formalisms; in particular, it is very easy to show that jump linear Markov

processes are a type of SHS.

8.1 Linearized Power System Dynamics

In this section, we formulate the linearized electromechanical power-system model to

explicitly capture variations in power injections. Towards this end, we �rst consider

the standard DAE power-system model

ẋ = f(x, y),

0 = g(x, y, u), (8.1)

where x ∈ Rn is the vector of synchronous machine dynamic states, y ∈ Rp is the

vector of bus-voltage magnitudes and angles, u = [P1, Q1, . . . , Pr, Qr]
T ∈ R2r is

the vector of real/reactive power injections at the r PQ buses of the power system,

f : Rn+p → Rn , and g : Rn+p+2r → Rp. Denote the stable equilibrium point of the

above DAE by (x∗, y∗, u∗). Assuming that the power-�ow Jacobian is non-singular,

we can linearize (8.1) to obtain the following linear system:

ẋ = Ax+Bu+ C, (8.2)

where the entries of A, B, and C are a function of the entries of the Jacobians of

f(·, ·) and g(·, ·, ·) evaluated at (x∗, y∗, u∗). The complete derivation of (8.2), and

the expressions for A , B , and C, are provided in Appendix A.5.
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8.2 Linearized Power System Dynamics as SHS

Recall that the stochastic process Q(t) takes values in the set Q = {0, 1, , . . . , N},
where mode 0 is the nominal mode of the power system (with some nominal value

of real/reactive power injections), and in modes 1, . . . , N the real/reactive power

injections di�er from the nominal value, i.e., these modes capture disturbances in

the power system. In each mode q ∈ Q, we de�ne the vector of power injections uq =

[P q1 , Q
q
1, . . . , P

q
r , Q

q
r]
T ∈ R2r . We then de�ne the stochastic process U(Q(t)), U :

Q → R2r, which at each instant of time t, de�nes the power injections in the PQ

buses of the power system. In particular, if at some time t ≥ 0, Q(t) = i, then

U(i) = ui =
[
P i1, Q

i
1, . . . , P

i
r , Q

i
r

]T
denotes the vector of real and reactive power

injections in the r power-system PQ buses. As described above, without loss of

generality, assume the nominal mode of the system is q = 0.

The DAE model in (8.1) is linearized about the equilibrium point (x∗, y∗, u∗ = u0)

to obtain the linear system in (8.2). Since the power injections are described by a

stochastic process, the electromechanical states of the power system are also de-

scribed by a stochastic process X(t), whose evolution is governed by the following

linear ODE:1

dX(t) = (AX(t) +BU(Q(t)) + C) dt. (8.3)

Recall that we assume that the transition rates are independent of the state X(t);

i.e., they are of the form

λj(q, t), λj : Q× R+ → R+, ∀j ∈ J , (8.4)

where J is the set of transitions in the SHS. Also, as in Chapter 5, we consider the

transition reset maps

φj(q, x), φj : Q× Rd → Q× Rd, j ∈ J . (8.5)

The intuitive explanation of this model is as follows. The power system under-

goes transition j with rate λj , and if it undergoes this transition, then it instan-

taneously applies the map φj to the current discrete and continuous states and

1In the power-system SHS model, we do not include an additive noise term (i.e., the term
g(q, x, t)dWt in (5.2), although, this could straightforwardly be incorporated into the model to
capture mode-dependent uncertainty in real/reactive power injections.
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changes their values at that moment.2 More speci�cally, for any time t > 0, we

say that the probability of transition j occurring in the time domain [t, t + ∆t) is

λj(Q(t), X(t))∆t+o(∆t), and if it does occur, then we de�ne (Q(t+∆t), X(t+∆t)) =

φj(Q((t+ ∆t)−), X((t+ ∆t)−)), thus obtaining a new value of the discrete and con-

tinuous state. The evolution of the continuous states of the power system is governed

by (8.3) between transitions when the real/reactive power injections change. Also,

note that since we do not consider the transition rates to be explicit functions of the

continuous state, the discrete process Q(t) is a continuous time Markov chain�in

particular, the path-wise evolution of Q(t) is independent of X(t).

8.3 Renewable Resource Variability

The stochastic power injections described in the model above can straightforwardly

model variability in renewable resources. A variety of stochastic models have been

proposed to model renewable resources, and in many cases these can be cast in

the SHS framework we propose (i.e., di�erent real/reactive power injections in dif-

ferent modes with constant/time-dependent transition rates determined from �eld

data). For example, in [83�85] Markov models are proposed to model PV produc-

tion. Stochastic models for wind energy conversion systems are available in [3,86,87]

(these include SHS and Markov models). In the subsequent discussion, we abstract

out the particulars of the renewable resource (i.e., we do not make the explicit con-

nection to common stochastic models for renewables), but present our method with

a level of generality that allows it to be applied in general to stochastic small-signal

power systems studies.

We present a short example next to illustrate ideas.

Example 7

The state-transition diagram in Fig. 8.1 depicts an SHS model for a represen-

tative stochastic small-signal power systems study. This particular SHS model

has three modes Q = {0, 1, 2}, and two transitions J = {1, 2}.3 As described

above, the nominal mode is q = 0 with the nominal real/reactive power injections

2With each transition, the real/reactive power injections in the buses change.
3We will label the transition by the mode that it maps into. Along these lines, note that in this

example, transition 1 maps into mode 1, and transition 2 maps into mode 2.
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u(0) = [P 0
i , Q

0
i ]
T = [P ∗i , Q

∗
i ]
T . The disturbance in the power injections evolves

with transitions in Q(t) (which in turn is governed by the transition rates λ1 and

λ2). Consequently, the moments of the electromechanical states of the power system

X(t), are of interest. We follow the methods outlined in Chapter 5 to compute the

moments of X(t).

Figure 8.1: Sample SHS model for stochastic power-system small-signal analysis.

We end this section by illustrating the notation introduced so far with a single-

machine in�nite-bus example. We revert to this example in Section 8.4 where we

compute the moments of the electromechanical states.

Example 8

Consider the single-machine in�nite-bus (SMIB) system depicted in Fig. 8.2. The

synchronous-generator dynamic states are given by x = [δ, ω]T , where δ and ω are

the rotor angular position and velocity, respectively. We assume the classical model

for the generator dynamics; in particular, the DAEs that describe this SMIB system

are given by

δ̇ = ω − ωs,

ω̇ =
1

M

(
PM −

EV

XM
sin(δ − θ)−D(ω − ωs)

)
,

0 =
EV

XM
sin(δ − θ)− V∞V

XL
sin(θ)− P1,

0 =
EV

XM
cos(δ − θ)− V 2

XM
+
V∞V

XL
cos(θ)− V 2

XL
−Q1, (8.6)

121



where P1 and Q1 are the real and reactive power input injections (we make no

distinctions between constant power sources/loads), respectively, at the PQ bus,

V∞ is the voltage of the slack bus (1 p.u.), V ∠θ is the PQ bus voltage, and ωs,

M , D, Pm, E, Xm, and Xl are relevant machine and network constants/parameters.

The values of the constants/parameters are adopted from [88]. All quantities (except

the angular velocity) are in per unit.

Figure 8.2: SMIB SHS model studied in Example 8.

We will assume that the real/reactive power injections are uncertain. Particularly,

in a nominal mode q = 0, the nominal real/reactive power injections at the PQ bus

are denoted by P 0
1 = P ∗1 , Q

0
1 = Q∗1, respectively. The corresponding equilibrium

values of the system states are given by: δ∗, ω∗, V ∗, θ∗. Linearizing (8.6) about this

equilibrium point, assuming small variations in P1, Q1, we get the linear system in

(8.2) with the A, B, and C matrices derived following the approach prescribed in

Appendix A.5.

Now, consider a disturbance in this system, where the real/reactive power injec-

tions are given by P 1
1 = 0.5·P ∗1 , and Q1

1 = 0.5·Q∗1 . The duration of this disturbance
is uncertain, and described by a random variable T , with pdf and cdf denoted by

fT (t) and FT (t), respectively. The above model can be cast as an SHS with two

modes: a nominal mode q = 0 (with real/reactive power injections given by the

nominal values P 0
1 , Q

0
1), and a mode q = 1 (with a disturbance in the real/reactive

power injections P 1
1 , Q

1
1). There is a single transition from mode 1 to 0 that models

the clearing of the disturbance, with the transition rate given by the hazard rate

of the normal distribution, λ0(q, x, t) = δq1 (fT (t)/1− FT (t)) =: δq1α(t) . Finally,

note that since δ and ω do not jump due to the transition, the reset map is given by

φ0(q, x) = (0, x). The SHS described above is schematically illustrated in Fig. 8.2.
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8.4 Moment Evolution

In this section, we examine the evolution of the moments of the continuous stateX(t).

Towards this end, we �rst de�ne the extended generator of the stochastic process,

and then describe a general method to formulate appropriate test functions that

yield the moments of interest. The discussion in this section mirrors that presented

for general SHS in Chapter 5. We restate some of the key results in Chapter 5, so

this section is self contained and can be read independent of Chapter 5.

8.4.1 Extended Generator of the Power Systems SHS Model

For the power-system SHS model described in Section 8.2, we consider test func-

tions of the form ψ(q, x), for which the extended generator (Lψ)(q, x) (computed by

applying (5.10)), is given by

(Lψ)(q, x) =
∂

∂x
ψ(q, x) · (Ax+Bu(q) + C)

+
∑
j∈J

λj(q, x, t) (ψ (φj (q, x))− ψ(q, x)) . (8.7)

As described in Chapter 5, we can specify a family of test functions to obtain relevant

moments of the continuous states. The evolution of the moments is governed by

Dynkin's formula (5.11).

8.4.2 Test Functions for the Power Systems SHS Model

For a SHS where Q(t) takes values in the set Q = {0, 1, . . . , N}, we de�ne the

following family of test functions:

ψ
(m)
i (q, x) := δqix

m =

{
xm if q = i

0 if q 6= i
, ∀i ∈ Q, (8.8)

where m := (m1, m2, . . . , mn) ∈ N1×n, and xm := xm1
1 xm2

2 . . . xmn
n . We also de�ne

the conditional moments at time t, µ(m)
i (t), ∀i ∈ Q by

µ
(m)
i (t) := E

[
ψ

(m)
i (q, x)

]
= E [Xm(t)|Q(t) = i]πi(t), (8.9)
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where πi(t) denotes the occupational probability of mode i, i.e., πi(t) := Pr {Q(t) = i}.
As described in Section 5.4, by appropriately picking the mi's, we can isolate the

conditional moments of interest. We demonstrate this next, in the context of the

two-mode SMIB example introduced in Example 8.

Example 8 (continued)

Recall the SMIB model introduced in Section 8.2. Associated with the two discrete

modes, i = {0, 1}, de�ne the following test functions ψ(m)
i (q, x) = δqix

m, where

m ∈ N1×2 and xm = δm1ωm2 . By appropriately picking m, we can recover many

conditional moments of interest. For instance, note that choosingm = (0, 0) recovers

the occupational probabilities of the modes,

µ
(0,0)
i (t) = Pr {Q(t) = i} = πi(t). (8.10)

Similarly, picking m = (2, 0) isolates the second-order conditional moment of ∆(t):

µ
(2,0)
i (t) = E

[
X(2,0)(t)|Q(t) = i

]
· πi(t) = E

[
∆2(t)|Q(t) = i

]
· πi(t). (8.11)

Finally, pickingm = (1, 1) yields the conditional expectation of the product ∆(t)Ω(t):

µ
(1,1)
i (t) = E

[
X(1,1)(t)|Q(t) = i

]
· πi(t) = E [∆(t)Ω(t)|Q(t) = i] · πi(t) (8.12)

8.4.3 Evolution of the Moments of X(t)

Suppose we are interested in the evolution of a particular moment of the continuous

state, i.e., the evolution of E [Xm(t)] for some m ∈ N1×n. Applying the law of total

expectation, we can get this from the conditional moments µi:

E[Xm(t)] =
∑
i∈Q

E [Xm(t)|Q(t) = i]πi(t) =
∑
i∈Q

µ
(m)
i (t). (8.13)

Therefore, at each time t, to obtain E[Xm(t)] , we need to know µ
(m)
i (t), ∀i ∈ Q.

The time evolution of each µ(m)
i (t) can be obtained by �rst applying (8.7) to obtain

expressions for N + 1 extended generators
(
Lψ

(m)
i

)
(q, x), i ∈ Q, and then using
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Dynkin's formula as follows:

d

dt
µ

(m)
i (t) =

d

dt
E
[
ψ

(m)
i (q, x)

]
= E

[(
Lψ

(m)
i

)
(q, x)

]
. (8.14)

We revert to Example 8 to illustrate how (8.14) applies in practice.

Example 8 (continued)

Let us again consider Example 8. Suppose we are interested in computing E [Xm(t)] =

E [∆m1(t)Ωm2(t)] for some m ∈ N1×2. We go through this derivation in detail next.

First, we use the de�nition of L from (8.7) to obtain(
Lψ

(m)
i

)
(q, x) =

∂

∂x
ψ

(m)
i (q, x) · (Ax+Bu(i) + C)

+ λ0(q, x, t)
(
ψ

(m)
i (φ1(q, x))− ψ(m)

i (q, x)
)

(8.15)

Let us denote the entries in the ith row and jth column of A, B, and C as aij , bij , and

cij , respectively. From the de�nition of the test functions in (8.8) and the linearized

power-system dynamic model in (8.2), we get

∂

∂x
ψ

(m)
i (q, x) = δqi

[
m1δ

m1−1ωm2

m2δ
m1ωm2−1

]T
, (8.16)

Ax+Bu(i) + C =

[
a11δ + a12ω + b11P

i
1 + b12Q

i
1 + c11

a21δ + a22ω + b21P
i
1 + b22Q

i
1 + c21

]
. (8.17)

So, the �rst term in (8.15) is given by the dot product of (8.16) and (8.17):

∂

∂x
ψ

(m)
i (q, x) · (Ax+Bu(i) + C)

= δqi ((m1a11 +m2a22)xm

+m1a12x
(m1−1,m2+1) +m2a21x

(m1+1,m2−1)

+m1x
(m1−1,m2)

(
b11P

i
1 + b12Q

i
1 + c11

)
+ m2x

(m1,m2−1)
(
b21P

i
1 + b22Q

i
1 + c21

))
. (8.18)
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We now consider the second term of (8.15). Recalling that λ0(q, x, t) = δq1α(t), and

φ0(q, x) = (0, x), we get

λ0(q, x, t)
(
ψ

(m)
i (φ1(q, x))− ψ(m)

i (q, x)
)

= δq1α(t)
(
ψ

(m)
i (0, x)− ψ(m)

i (q, x)
)

= δq1α(t) (δ0ix
m − δqixm)

= δi0

(
α(t)ψ

(m)
1 (q, x)

)
+ δi1

(
−α(t)ψ

(m)
1 (q, x)

)
. (8.19)

Combining (8.18), (8.19), while acknowledging µ(m)
i (t) = E

[
ψ

(m)
i (q, x)

]
, we get

µ̇
(m)
i (t) = E

[(
Lψ

(m)
i

)
(q, x)

]
= (m1a11 +m2a22)µ

(m)
i (t)

+m1a12µ
(m1−1,m2+1)
i (t) +m2a21µ

(m1+1,m2−1)
i (t)

+m1

(
b11P

i
1 + b12Q

i
1 + c11

)
µ

(m1−1,m2)
i (t)

+m2

(
b21P

i
1 + b22Q

i
1 + c21

)
µ

(m1,m2−1)
i (t)

+δi0

(
α(t)µ

(m)
1 (t)

)
+ δi1

(
−α(t)µ

(m)
1 (t)

)
. (8.20)

By substituting di�erent values of m = (m1,m2) in (8.20), we can obtain ODEs that

govern the corresponding moments. For illustration, suppose the duration of the

disturbance is normally distributed with mean mT = 5s , and standard deviation

σT = 20
100mT . To illustrate the validity of the SHS approach, we will compare results

with Monte Carlo simulations implemented for the linearized system in (8.2). Figures

8.3-8.4 depict the �rst-order moments of the rotor angle and speed, respectively.

Superimposed in dashed lines are standard deviation bounds. Figures 8.5-8.6 depict

the second-order moments of the rotor angle and speed, respectively. The results

show excellent agreement, hence validating the SHS approach.

8.5 Three-machine Nine-bus Power System

In this section, we examine a three-machine nine-bus power system model. A re-

duced, third-order model is utilized to model the mechanical equations of motion and

the governor of each synchronous generator. The real/reactive power injections at

the PQ buses are uncertain, and modeled as a Markov process (i.e., adopting SHS

terminology, the transition rates of the discrete process are constant). We utilize
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the SHS framework to compute the moments of the synchronous-generator states.

First, we describe the power-system electromechanical model. Next, we describe the

stochastic load model, and �nally present simulation results for a number of di�er-

ent cases. In each case, the results from Monte Carlo simulations are included to

demonstrate the validity of the SHS approach.

8.5.1 Electromechanical Model Description

Consider the three-machine nine-bus system depicted in Fig. 8.7. We utilize a

reduced-order model for the synchronous machines in the power system. Partic-

ularly, the conventional nine-state synchronous machine model [89]�that includes

mechanical equations of motion, exciter, voltage regulator, turbine, governor, and

127



models for the damper windings�is reduced to a three-state model that captures the

governor dynamics and the mechanical equations of motion. For the i synchronous

machine, the system states of interest are the rotor angular position δi, rotor angle

velocity ωi, and the turbine power ξi. The evolution of these states is governed by

δ̇i = ωi − ωs,

ω̇i =
1

Mi

(
ξi −

EiVi
XMi

sin (δi − θi)−Di (ω − ωs)
)
,

ξ̇i =
1

Ti

(
−
(
ξi − P refi

)
− 1

RDiωs
(ωi − ωs)

)
, (8.21)

where ωs is the synchronous speed (377 rad/s), Mi is the machine inertia constant,

XMi is the machine impedance, Di is the damping coe�cient, Ei is the machine

internal voltage, Ti is the governor time constant, RDi is the slope of the machine

speed-droop characteristic, and P refi is a function of the unit base-point generation

[90]. The states of the i generator are described by the vector xi = [δi, ωi, ξi]
T , and

the vector x = [x1, x2, x3]T , x ∈ R9×1 captures all dynamic states of interest. The

power �ow equations for the buses j = 1, . . . , 9 are given by

9∑
k=1

VkVj (Gkj cos (θk − θj) +Bkj sin (θk − θj))− Pj = 0, (8.22)

9∑
k=1

VkVj (Gkj sin (θk − θj)−Bkj cos (θk − θj))−Qj = 0, (8.23)

where Gkj and Bkj are the conductance and susceptance, respectively, of the trans-

mission line between bus k and j.

8.5.2 Stochastic Real/Reactive Power-Injection Model

We will assume that the real/reactive power injections in the buses (j = 1, . . . , 9)

are uncertain. Towards this end, consider a nominal mode q = 0, where the nominal

real/reactive power injections at the buses are denoted by

u(0) = [P 0
1 , Q

0
1, . . . , P

0
9 , Q

0
9]T = [P ∗1 , Q

∗
1, . . . , P

∗
9 , Q

∗
9]T . (8.24)
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Figure 8.7: One-line diagram of three-machine nine-bus power system studied in
Section 8.5.

The corresponding equilibrium values of the system states are given by: δ∗i , ω
∗
i , V

∗
j , θ

∗
j ,

i = 1, 2, 3, j = 1, . . . , 9. Linearizing (8.21) about this equilibrium point, assuming

small variations in Pj , Qj , we get the linear system in (8.2) with the A, B, and C

matrices derived following the approach prescribed in Appendix A.5.

Now, consider a disturbance in this system, where the real/reactive power injec-

tions are denoted by

u(1) = [P 1
1 , Q

1
1, . . . , P

1
9 , Q

1
9]T (8.25)

We assume that the disturbance is described by a Markov model. In particular, the

transition rate that governs the disturbance occurrence is denoted by λ1(q, x) = α,

and the rate that governs the clearance of the disturbance is given by λ0(q, x) = β.

The above model can be cast as a SHS with two modes: a nominal mode q = 0 (with

real/reactive power injections given by the nominal values P 0
j , Q

0
j ), and a mode

q = 1 (with a disturbance in the real/reactive power injections P 1
j , Q

1
j ). Finally,

note that since δ and ω do not jump due to the transition, the reset maps are given

by φ0(q, x) = (0, x) and φ1(q, x) = (1, x). The SHS described above is schematically

illustrated in Fig. 8.8.

8.5.3 Moments of Generator Rotor Speed

The line and machine impedances for the system in Fig. 8.7 are adopted from [82];

Machine inertias, terminal voltages, and damping coe�cients are adopted from [88];

and �nally, the governor parameters are adopted from [91]. The base values of
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Figure 8.8: State-transition diagram for the SHS model of the three-machine
nine-bus power system studied in Section 8.5.

the bus loads corresponding to the nominal q = 0 mode (see (8.24) ) are adopted

from [82], and given by

u(0) = [0, 0, 0, 0, 0, 0, 0.25, 0.5, 0, 0, 0, 0, 0.3, 0.3, 0, 0, 0.20.35]T .

The values of the loads corresponding to mode q = 1 (see (8.25)) are given by

u(1) = [0, 0, 0, 0, 0, 0, 0.25, 0.5, 1, 0.5, 0, 0, 0.3, 0.3, 0.5, 0.2, 0.2, 0.35]T .

For these simulation parameters, Figures 8.9-8.10 depict the �rst- and second-order

moments, respectively, of Generator 1 speed for α = 5s−1 and β = 5s−1. Fig-

ures 8.11-8.12 depict the �rst- and second-order moments, respectively, of Generator

1 speed for α = 5s−1 and β = 10s−1. Finally, Figs. 8.13-8.14 depict the �rst-

and second-order moments, respectively, of Generator 1 speed for α = 10s−1 and

β = 5s−1. In each case the SHS results are superimposed on results of 1000 Monte

Carlo simulations. In Figs. 8.9, 8.11, and 8.13, standard-deviation bounds are su-

perimposed. The results indicate the validity of the SHS approach. Additionally,

as expected by intuition, notice that when the mean time to transition to the per-

turbed mode (q = 1) is much higher than the mean time to transition to the nominal

mode, i.e., when α < β, the expected system frequency deviates signi�cantly from

the nominal value. Interestingly, the standard deviation bounds are independent of

the transition rates. Further analysis of this stochastic system, integration of renew-

able models described in Section 8.3, stochastic control design, etc., while excellent

opportunities for future work, are beyond the scope of this dissertation.
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Figure 8.9: First-order moment of
Generator 1 rotor speed for α = 5s−1,
β = 5s−1.
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Figure 8.10: Second-order moment of
Generator 1 rotor speed for α = 5s−1,
β = 5s−1.
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Figure 8.11: First-order moment of
Generator 1 rotor speed for α = 5s−1,
β = 10s−1.

0 0.5 1 1.5 2
1.37

1.38

1.39

1.4

1.41

1.42

1.43x 10
5

t [s]

E
[Ω

2 1
(t
)]

(r
ad

/s
)2

 

 

SHS
Monte Carlo

Figure 8.12: Second-order moment of
Generator 1 rotor speed for α = 5s−1,
β = 10s−1.
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Figure 8.13: First-order moment of
Generator 1 rotor speed for α = 10s−1,
β = 5s−1.
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Figure 8.14: Second-order moment of
Generator 1 rotor speed for α = 10s−1,
β = 5s−1.
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Chapter 9

CONCLUDING REMARKS AND FUTURE WORK

In this chapter, we �rst summarize the work presented in the dissertation with a few

concluding remarks. Next, we present several avenues for future work related to the

numerical methods we have developed, and their applications to power and energy

systems models.

9.1 Concluding remarks

This dissertation presented performability models for analysis of renewable electric

power systems. In particular, we demonstrated how Markov reward models and

stochastic hybrid systems can be applied to study the energy yield, reliability, avail-

ability, and performance of wind energy conversion systems and photovoltaic energy

conversion systems.

In the domain of Markov models, it is widely recognized that the failure and re-

pair rates�the model parameters�are never perfectly known. Therefore, the model

outputs, i.e., performability measures, are also not perfectly known. To address this,

we developed analytical expressions for the sensitivity of performability measures

to model parameters. These were then utilized to formulate a Taylor-series ap-

proximation of the Markov chain stationary distribution that was employed in two

approaches for uncertainty analysis. The �rst is a probabilistic approach, where it

is assumed that the failure and repair rates are random numbers with known distri-

butions, and these distributions are propagated through the Taylor-series expansion

of the Markov chain stationary distribution to obtain distributions of performabil-

ity measures. The second is a set-theoretic approach, where we assume that model

parameters are constrained to an ellipsoidal set, and this set is propagated through

the stationary distribution Taylor-series expansion to obtain a set that constrains

all the values that the performability measures can take. We demonstrated several
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applications of the methods described above to study the performability of wind and

photovoltaic energy conversion systems subject to parametric uncertainty.

With regard to stochastic hybrid systems, we applied this modeling framework to

study a wide class of system performability problems. In this regard, we developed

dynamic reliability models to extend basic Markov reward models. Ongoing work in

this domain relates to the investigation of the impact of stochastic disturbances on

power system dynamics. Here, a linearized version of the nonlinear power system

DAE model is cast as a stochastic hybrid system, and moments of the power sys-

tem electromechanical states are derived using Dynkin's formula and the extended

generator of the stochastic process.

9.2 Future Work

This thesis presents several avenues for future work for both Markov models and

stochastic hybrid systems models. With regard to the uncertainty propagation

methods developed in Chapters 3 and 4, we could further investigate the multi-

variate Taylor-series expansion. To do so, general expressions for the higher-order

sensitivities of performability indices to model parameters need to be formulated. A

related problem is to compare the e�ciency and accuracy of the method we propose

to compute the sensitivities with that suggested in the literature.

With regard to the probabilistic approach to uncertainty analysis, we recognized

the proposed method applies very well for large models with a few uncertain param-

eters. Presumably, we could identify parameters that have minimal impact on the

performability indices and utilize that information to extend the methods to cases

where there are many uncertain parameters (perhaps by systematically ranking the

parameters in order of the impact they have). In the domain of set-theoretic meth-

ods, we need to develop numerically e�cient tools to solve optimization programs

for the propagation of ellipsoidal-shaped sets through the second-order Taylor-series

expansion (this has obvious applications to other areas of study). We could also

investigate other sets, e.g., zonotopes, to capture the parametric uncertainty.

A major challenge that was highlighted in our investigation of stochastic hybrid

systems relates to the problem of moment closure. We demonstrated that this prob-

lem arises, e.g., when the transition rates are functions of the continuous state. Pre-

sumably, if we had numerically e�cient and accurate moment closure methods at
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hand, the stochastic hybrid systems framework could be applied to an even broader

class of problems relevant to power and energy systems. This is because we could

model systems with polynomial vector �elds that governed the state evolution as

well as transition rates that were a function of the state. Inspiration could be sought

from previous work on in�nite-dimensional systems of di�erential equations to ad-

dress this problem. The alternative is to go along with present methods for moment

closure by investigating distributions for the continuous state tailored to the prob-

lem at hand based on engineering judgment. In summary, the key challenge that

needs to be addressed is to scale the numerical methods we have developed when the

dimension of the model parameters (with regard to Markov models) or the number

of moments (with regard to stochastic hybrid systems) increases.

From the application perspective, there are several directions to extend the pre-

sented models. We have already highlighted in Chapter 6 some avenues to extend

the work on performability modeling of photovoltaic systems. For instance, similar

to the methods presented in Chapter 7, we could propagate uncertainty in inputs

(ambient temperature, incident solar insolation, etc.) through common photovoltaic

performance models. Similarly, a wide variety of faults (extending beyond faults in

inverters and PV strings) could be modeled by augmenting the state space. With

regard to wind energy conversion systems, we need to develop and apply better per-

formance models to capture the wind power output that account for interference

e�ects. We can also investigate the sensitivity of common wind generation indices to

model parameters and inputs; this could be applied to improve the design of wind

farms.

Finally, with regard to the application of stochastic hybrid systems in power sys-

tem dynamics modeling, we need to develop the computational platform to integrate

a wide class of machine dynamic models. Also, since the moment dynamics are gov-

erned by a linear system, we can apply a wide class of tools that have been devel-

oped for general linear systems to get further insights into the stochastic behavior of

power systems. For instance, we could investigate problems such as: correlation of

dynamic states, eigenvalue sensitivity of the moment equations, and the impact of

model parameters on steady-state statistics. We also need to formulate the appro-

priate stochastic models to integrate the renewable resource uncertainty directly into

the stochastic hybrid systems modeling framework. A related problem is to model

dynamics in the power injections by augmenting the state space of the stochastic

hybrid systems.
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Appendix A

DERIVATIONS OF IMPORTANT RESULTS

A.1 Derivation of Result in (2.9)

Consider the de�nition of the accumulated reward in (2.8). Let t0 be the time at

which the e�ect of initial conditions in (2.4) has vanished, i.e., π(t) ≈ π ∀t ≥ t0.

Then, for τ � t0, it follows that

γ =

τˆ

0

π(t)ρTdt

=

t0ˆ

0

π(t)ρTdt+

τˆ

t0

π(t)ρTdt

≈
t0ˆ

0

π(t)ρTdt+ πρT (τ − t0). (A.1)

Now, by applying the mean-value theorem for integration to the �rst term of the

last equality above, we obtain

γ ≈ π(s)ρT t0 + πρT (τ − t0)

=
(
π(s)ρT − πρT

)
t0 + πρT τ

≈ πρT τ, (A.2)

where π(s) = π(t)|t=s for some s ∈ [0, t0]. Since 0 ≤ πi(s) ≤ 1 and 0 ≤ πi ≤ 1,

∀i = 0, 1, . . . , N , and τ � t0, the term πρT τ dominates
(
π(s)ρT − πρT

)
t0, and as

a result, γ ≈ πρT τ as claimed in (2.9).
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A.2 Derivation of Stationary Distribution Sensitivities in
(2.14)-(2.15)

Theorem 1

The k-order sensitivity of the stationary distribution, π(θ) of an ergodic continuous

time Markov chain (CTMC) described by (2.4) with respect to the i model param-

eter, θi, is given by
∂kπ(θ)

∂θki
= k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
, (A.3)

The second-order mixed partial derivative is given by

∂π2
i (θ)

∂θj∂θk
= π(θ)T

(
∂Λ

∂θj
Λ# ∂Λ

∂θk
Λ# +

∂Λ

∂θk
Λ# ∂Λ

∂θj
Λ#

)
eTi , (A.4)

where ei ∈ Rn+1 is a vector with 1 as the i entry and zero otherwise.where Λ# is the

group inverse of the generator matrix Λ.

Proof

Consider that the ergodic CTMC is associated with a discrete time Markov chain

(DTMC) whose distribution is governed by

p[k + 1] = p[k]P, (A.5)

where P = I + δΛ is a row-stochastic, irreducible, and primitive matrix (with an

appropriate choice of δ). De�ne the matrix

A = I − P = −δΛ, (A.6)

and denote the group inverse of A by A#. The stationary distribution of the DTMC

satis�es pA = 0. If we consider linear perturbations, i.e., ∂kA/∂θki = 0, ∀k > 1,

di�erentiating the expression pA = 0 a total of k times yields

∂kp

∂θki
A = −k∂

k−1p

∂θk−1
i

∂A

∂θi
. (A.7)
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Following along the lines of Theorem 3.2 in [50], since dimN(A) = 1 (the null space

of a matrix A is denoted by N(A)), we can express

∂kp

∂θki
= −k∂

k−1p

∂θk−1
i

∂A

∂θi
A# + αp for some α. (A.8)

We can determine α by noting that peT = 1⇒ ∂kp/∂θki e
T = 0. Since eT ∈ N(A) =

N(A#),

∂kp

∂θki
eT = −k∂

k−1p

∂θk−1
i

∂A

∂θi
A#eT + αpeT = αpeT = 0⇒ α = 0. (A.9)

Thus the k-order sensitivity of the stationary distribution of the DTMC to the i

parameter is given by
∂kp

∂θki
= −k∂

k−1p

∂θk−1
i

∂A

∂θi
A#. (A.10)

Expressing ∂k−1p/∂θk−1
i as a function of ∂k−2p/∂θk−2

i and so on, we get

∂kp

∂θki
= k!(−1)k−1 ∂p

∂θi

(
∂A

∂θi
A#

)k−1

= k!(−1)kp(θ)

(
∂A

∂θi
A#

)k
, (A.11)

which follows from the result

∂p

∂θi
= −p(θ)∂A

∂θi
A#, (A.12)

derived in Theorem 3.2 in [50]. Now, consider that the group inverse of the CTMC

generator matrix, Λ, denoted by Λ#, is given by

Λ# = −δA#, (A.13)

which can be shown by noting that Λ# satis�es the de�nition of the group inverse

given in (2.10). From (A.13) and (A.6),

∂Λ(θ)

∂θi
Λ# =

(
−δ−1∂A(θ)

∂θi

)(
−δA#

)
=
∂A(θ)

∂θi
A#. (A.14)
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Since the stationary distributions of the CTMC and the DTMC match, from (A.11)

and (A.14), we get the result in (2.14)

∂kπ(θ)

∂θki
= k! (−1)k π(θ)

(
∂Λ

∂θi
Λ#

)k
. (A.15)

Now di�erentiate (A.12) with respect to θj , j 6= i to obtain

∂2p

∂θj∂θi
A+

∂p

∂θi

∂A

∂θj
+
∂p

∂θj

∂A

∂θi
+ p

∂2A

∂θj∂θi
= 0. (A.16)

Given the assumption of linear parameter perturbations, (A.16) simpli�es as follows:

∂2p

∂θj∂θi
A = p

∂A

∂θi
A# ∂A

∂θj
+ p

∂A

∂θj
A# ∂A

∂θi
. (A.17)

Following along the lines of Theorem 3.2 in [50], we get:

∂2p

∂θj∂θi
= p

∂A

∂θi
A# ∂A

∂θj
A# + p

∂A

∂θj
A# ∂A

∂θi
A#, (A.18)

where A# is the group inverse of A. Since the stationary distributions of the CTMC

and DTMC match, we get the result in (2.15)

∂π2

∂θj∂θi
= πT

(
∂Λ

∂θj
Λ# ∂Λ

∂θi
Λ# +

∂Λ

∂θi
Λ# ∂Λ

∂θj
Λ#

)
. (A.19)

A.3 Derivation of Result in (3.22)

The expression in (3.22) can be derived as follows:1

Pr {πi ≤ Πi ≤ πi + ∆(πi) |Θ2 = θ2, . . . , Θm = θm}
=

∑
j∈J−

Pr {∆θ1,j + ∆(∆θ1,j) < ∆Θ1 < ∆θ1,j |Θ2 = θ2, . . . , Θm = θm}

+
∑

j∈J+

Pr {∆θ1,j < ∆Θ1 < ∆θ1,j + ∆(∆θ1,j) |Θ2 = θ2, . . . , Θm = θm} ,(A.20)

1The operator ∆(x) denotes an incremental change (possibly negative) in the quantity x.
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where ∆θ1,j , j = 1, . . . , t are the roots of the equation πi = pi(∆θ1), with pi(∆θ1)

de�ned in (3.21), and

J + =
{
j : p′i(∆θ1,j) > 0

}
, J − =

{
j : p′i(∆θ1,j) < 0

}
. (A.21)

It follows that ∆(∆θ1,j) > 0 ∀j ∈ J + and similarly, ∆(∆θ1,j) < 0 ∀j ∈ J −. Using
this fact and the independence of the Θi's, we can simplify (A.20) as

Pr {πi ≤ Πi ≤ πi + ∆(πi) |Θ2 = θ2, Θ3 = θ3, . . . , Θm = θm}
=
∑

j∈J−
Pr {∆θ1,j − |∆(∆θ1,j)| < ∆Θ1 < ∆θ1,j}

+
∑

j∈J+

Pr {∆θ1,j < ∆Θ1 < ∆θ1,j + |∆(∆θ1,j)|} . (A.22)

Further, since Pr {x ≤ X ≤ x+ |∆(x)|} = Pr {x− |∆(x)| ≤ X ≤ x} ≈ fX(x)·|∆(x)|,
it follows from (A.22) that

fΠi|Θ2,...,Θm
(πi | θ2, . . . , θm) ·∆πi =

∑
j∈J−

f∆Θ1(∆θ1,j) · |∆(∆θ1,j)|

+
∑
j∈J+

f∆Θ1(∆θ1,j) · |∆(∆θ1,j)|

=

t∑
j=1

f∆Θ1(∆θ1,j) · |∆(∆θ1,j)|. (A.23)

By construction, ∆πi > 0, which implies |∆πi| = ∆πi, and therefore

fΠi|Θ2,...,Θm
(πi | θ2, . . . , θm) =

t∑
j=1

f∆Θ1(∆θ1,j) ·
|∆(∆θ1,j)|
|∆πi|

=

t∑
j=1

f∆Θ1(∆θ1,j) ·
∣∣∣∣ ∆πi
∆(∆θ1,j)

∣∣∣∣−1

. (A.24)
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In the limit, as ∆(∆θ1,j)→ 0,

fΠi|Θ2,...,Θm
(πi | θ2, . . . , θm) =

t∑
j=1

f∆Θ1(∆θ1,j) · lim
∆(∆θ1,j)→0

∣∣∣∣ ∆πi
∆(∆θ1,j)

∣∣∣∣−1

=
t∑

j=1

f∆Θ1(∆θ1,j) ·
∣∣∣∣ lim
∆(∆θ1,j)→0

∆πi
∆(∆θ1,j)

∣∣∣∣−1

=
t∑

j=1

f∆Θ1(∆θ1,j)

|p′i(∆θ1,j)|
· (A.25)

A.4 The Case of Dependent Model Parameters Considered in
(3.25)

In order to obtain fΠi(πi), (pdfs of the other indices follow similarly), we �rst com-

pute fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) as

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) =

r∑
j=1

f∆Θ1|Θ2,...,Θm
(∆θ1,j |θ2, . . . , θm)

|p′i(∆θ1,j)|
, (A.26)

where ∆θ1,1, ∆θ1,2, . . .∆θ1,r are the r ≤ t real roots of πi = πi(mΘ)+
∑t

k=1
bki
k! ∆Θk

1,

and mΘ = [mΘ1 , θ2, . . . , θm]. Note that the above result follows from (A.22). Since

the model parameters are dependent, the numerator in (A.26) does not simplify to

f∆Θ1(∆θ1,j) (as was the case in (3.22)). If the joint pdf of the model parameters is

known, f∆Θ1|Θ2,...,Θm
(∆θ1,j |θ2, . . . , θm) can be obtained as

f∆Θ1|Θ2,...,Θm
(∆θ1|θ2, . . . , θm) = fΘ1|Θ2,...,Θm

(mΘ1 + ∆θ1|θ2, . . . , θm)

=
fΘ1,Θ2,...,Θm(mΘ1 + ∆θ1, θ2, . . . , θm)

fΘ2,...Θm(θ2, . . . , θm)

=
fΘ1,Θ2,...,Θm(mΘ1 + ∆θ1, θ2, . . . , θm)´

θ1
fΘ1,Θ2,...,Θm(θ1, θ2, . . . , θm)dθ1

.(A.27)

The last step in the derivation above is necessary, since we assume only the joint

distribution is known. Once fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) is computed, it is straight-
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forward to obtain fΠi(πi) from the total probability theorem as

fΠi (πi) =

ˆ

θ2

. . .

ˆ

θm

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) fΘ2,...Θm(θ2, . . . θm)dθ2 . . . dθm

=

ˆ

θ2

. . .

ˆ

θm

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm)

ˆ
θ1

fΘ1,...,Θm(θ1, . . . θm)dθ1

 dθ2 . . . dθm.(A.28)

Since fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) does not depend on θ1, we can express (A.28) as

follows:

fΠi (πi) =

ˆ

θ1

. . .

ˆ

θm

fΠi|Θ2,...,Θm
(πi|θ2, . . . , θm) fΘ1,...Θm(θ1, . . . θm)dθ1dθ2 . . . dθm.

(A.29)

A.5 Derivation of Linearized Power-System Model in (8.2)

Recall the standard power-system DAE model in (8.1). Denote the Jacobian of f(·, ·)
and g(·, ·, ·) evaluated at (x∗, y∗, u∗) by

Jf |(x∗,y∗) =

[
∂f

∂x
,
∂f

∂y

]∣∣∣∣T
(x∗,y∗)

=: [fx, fy]
T , (A.30)

Jg|(x∗,y∗,u∗) =

[
∂g

∂x
,
∂g

∂y
,
∂g

∂u

]∣∣∣∣T
(x∗,y∗,u∗)

=: [gx, gy, gu]T . (A.31)

Linearizing f(·, ·) about the equilibrium point, up to �rst order, we get

ẋ ≈ f(x∗, y∗) + fx (x− x∗) + fy (y − y∗) = fxx+ fyy − fxx∗ − fyy∗, (A.32)

where we have used the fact f(x∗, y∗) = 0. Similarly, linearizing g(·, ·, ·) about the
equilibrium point,

0 ≈ g(x∗, y∗, u∗) + gx (x− x∗) + gy (y − y∗) + gu (u− u∗) . (A.33)

Assuming that gy = ∂g/∂y|(x∗,y∗,u∗) is invertible, and recognizing that g(x∗, y∗, u∗) =

0 , we get

y ≈ g−1
y (−gx (x− x∗)− gu (u− u∗) + gyy

∗) . (A.34)
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Finally, substituting for y from (A.34) in (A.32), we get the linear system ẋ =

Ax+Bu+ C, with A , B , and C given by

A = fx − g−1
y gx (A.35)

B = fy − g−1
y gu, (A.36)

C =
(
g−1
y gx − fx

)
x∗ + (I − fy) y∗ + g−1

y guu
∗. (A.37)
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