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Abstract

As environmental regulatory agencies have limited resources to enforce compliance, they tend

to optimize the efficiency of resource allocation by employing targeting strategies. This thesis

investigates the scheduling of Clean Water Act inspections in Illinois and the extent to which

these inspections are memoryless. Using facility level and local EPA agency level data, we

test inspection strategies for common decision factors, such as environmental performance,

and compare them across the different jurisdictions in Illinois.

Our analysis has several key results. First, at the facility level, a majority of inspections

are memoryless, though they are targeted according to local jurisdiction parameters. Second,

although some facilities are targeted for more frequent non-memoryless inspections, none of

our environmental performance parameters seem to influence this sorting. Finally, differ-

ent inspection types are implemented in different ways, suggesting that they serve distinct

purposes in the regulatory process.
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1

Introduction And Literature Review

In the United States, environmental regulations are generally decided at the federal level

and the implementation of these regulations falls to federal and state agencies. State en-

vironmental agencies have limited resources and cannot monitor thoroughly all regulated

industries, thus requiring regulators to adopt strategies to try to optimize the efficiency of

their regulatory actions. Different forms of resource allocation strategies may be referred

to as targeting. Targeting generally consists of defining how the components of regulatory

action should be used. Generally, these components are site inspections and enforcement

actions. Numerous empirical studies measure the efficiency of different kinds of targeting

strategies (Laplante and Rilstone, 1996; Helland, 1998; Eckert, 2004). They report how reg-

ulators use past and current environmental performance information from regulated firms

to allocate their limited resources. The key element of these studies is to investigate the

relationships between violations of environmental standards, site inspections, enforcements

and relevant specific characteristics. In this study, we address the following questions: what

kind of targeting strategy is used by the Environmental Protection Agency (EPA) in Illinois

to implement the regulations of the Clean Water Act (CWA), and what are its determinants?

Harrington (1988) is one of the first authors to introduce a theoretical framework for

targeting strategies for environmental compliance. His model consists of sorting polluting

facilities in two groups on the basis of their past environmental performance and allocating

regulatory resources accordingly. The environmental agency applies a greater control on

the ‘bad’ firms, thus increasing inspection probability and expected fines. An increasing

compliance level can be observed from the ‘bad’ firms, however, the ‘good’ firms have a
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lower incentive to comply since the probability of having a violation detected decreases.

Magat and Viscusi (1990) underline the importance of an appropriate enforcement strategy

and intensity given a desired environmental standard and suggest that inspections should

play a role in encouraging the self-reporting of violations.

Following early theoretical contributions on targeting, a number of empirical studies

address two important aspects of environmental regulations. The first issue is the efficiency

of targeting strategies in deterring violations. The second is the expected regulatory pressure

that a plant faces given its polluting activity. Gray and Deily (1996) analyze the interaction

between regulatory decisions and compliance decisions at the plant level for steel plants.

They find enforcement increases compliance, but at the same time compliance behavior

induces fewer enforcement decisions. Although inspections do not always appear to be

effective at increasing compliance, the threat of an inspection and the potential detection of a

violation associated with it have an effect on a firm’s decisions. For example, Earnhart (2004)

finds a significant impact of enforcement on the emission levels of wastewater treatment

plants in Kansas. Conversely, he finds that inspections have no deterrence effect while the

threat of future inspections or enforcement actions has a deterrence effect. Eckert (2004)

shows that past warnings increase the probability of an inspection as well as deter future

violations. Likewise, Magat and Viscusi (1990) and Helland (1998) find that targeting

potential violators has a significant effect on self-reporting of violations but does not lead

to significant deterrence effects on emission levels. Similarly, Laplante and Rilstone (1996)

find that increased inspections induce improved self-reporting of emissions and also find that

both inspections and the threat of inspections reduce pollution emissions. Nadeau (1997)

distinguishes the extent and the duration of harm caused by emissions violations. He shows

that the EPA effectively reduces violation time, notably by allowing for separate strategies

between compliant and non-compliant firms. Shimshack and Ward (2008) suggest that the

randomness and jointness1 of pollutant emissions generate compliance from noncompliant

1Randomness refers to the uncertainty of the extent of pollutant emissions and jointness expresses the
fact that a reduction in emissions of one pollutant is often linked to a reduction in emissions of another.
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firms as well as over-compliance from already compliant firms. Their study of pollutant

discharges of the pulp and paper industry points out how enforcement can generate greater

welfare than expected. Another type of indirect effect of environmental regulation is due

to the spatial location of firms. Eckert and Eckert (2010) use the geospatial dimension of

inspections of petroleum storage sites in Manitoba to demonstrate that inspections can be

spatially correlated and that a plant is less likely to violate when its neighbors have been

recently found to violate.

As these studies suggest, the empirical literature has shown quite similar results regarding

the effects of enforcement actions but contrasting results concerning the effects of regulatory

inspections. One reason for differences in the observed effects of inspections may reside in

differences in the role played by inspections. In his early paper, Harrington (1988) considers

inspections as the only means to detect violations while in most of the studies cited above,

violations are self-reported and inspections have rather a routine control role and a threat-

ening role. In our context, violations are self-reported, and therefore, the role of inspections

is primarily to ensure that facilities are truthfully reporting their emissions and possibly to

detect other kinds of defaults uncovered by reporting requirements. Consequently to this

change in the role of inspection activity, a change in inspection strategy is to be expected.

In a study focused on inspections, Rousseau (2007) distinguishes three different types of

inspection to analyze the strategy of the Flemish environmental agency towards the textile

industry in Flanders (Belgium). In order to determine if the environmental agency uses tar-

geting, she uses survival analysis to estimate the probability of having an inspection given the

amount of time since the last inspection as a function of past compliance behavior, together

with relevant characteristics of the firms. As the different types of inspection2 are estimated

separately, the results show that the factors influencing the different types of inspection are

In particular, Shimshack and Ward (2008) indicate that Biological Oxygen Demand (BOD) reductions have
important implications for other pollutant levels.

2Rousseau (2007) distinguishes reactive, routine and project-related inspections and estimates the prob-
ability of inspection for each type to show that the types are treated differently by the inspection agency.
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also different.

Finally, the literature identifies the decision level at which environmental investigation is

decided, generally by distinguishing federal inspections from state inspections. While CWA

regulations are decided at the federal level, implementation frequently falls at the state level

and studies generally assume consistent decisions for regulatory actions within a state. For

example, Earnhart (2004) differentiates federal and state inspections and enforcement threats

and actual actions and shows that the threat of federal actions has a greater deterrence effect.

He also analyzes interactions between federal and state inspections and how they follow each

other. Federal inspections follow state inspections as EPA may collect its own evidence, and

state inspections follow federal inspections as the state agency may revisit after federal

inspections.

The aim of this thesis is to investigate empirically the EPA’s regulatory activities under

the Clean Water Act towards major3 point source polluters in Illinois. We analyze regulatory

inspection decisions from two different angles: at the facility level by investigating each

facility’s inspections history using a fine time scale (quarters) and at the jurisdiction level

by comparing local agencies’ inspection schemes.

There are three major contributions of this thesis. First, although the state EPA imple-

ments CWA, day to day operational decisions are taken by local offices. For example, in

Illinois the state is divided into seven independent jurisdictions. To the best of our knowl-

edge, no published study has considered this finer scale of decision making. Our results

suggest that jurisdiction-level heterogeneity of both industry type and regulators’ prefer-

ences do affect inspection decisions.

Second, both previous studies and the federal EPA’s current recommendations emphasize

the importance of targeting inspections based on previous performance. Our results show a

weak relationship between inspection frequency and location of facilities on impaired water

3Water discharging facilities are divided into two categories: major and non-major, based on specific
rating criteria. Major facilities discharge equal to or greater than one million gallons per day and are
required to self-report their emissions.
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bodies4 and previous violations and enforcement actions. However, there is evidence that

local agencies target according to other parameters such as travel time and industry type.

Third, EPA uses different types of inspections that differ in terms of complexity and

time for both the inspected facilities and the inspector. Previous studies have not carefully

distinguished between inspection types. Our results show that local jurisdictions use different

inspection types in different ways that are consistent with their relative costliness.

The remainder of the thesis is laid out as follows. First we present an institutional

background where we detail implementation of the CWA and practices of local EPA agencies.

Then, we justify and develop the econometric methods used based on results from the

inspection targeting literature. In particular, we describe econometric methods to analyze

the extent to which inspections are memoryless (using a test for a Poisson process and probit

regression) and the determinants of facility level inspection rates (using OLS). A data section

explains the dataset and presents summary statistics. Following this, results are presented

and the thesis concludes with a discussion of results and policy implications.

4A large number of major water dischargers in Illinois discharge in streams listed under the 303(d) list
of impaired waters of the CWA.
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2

Institutional Background

Enacted in 1972, the Clean Water Act (CWA) seeks to “restore and maintain the chemical,

physical, and biological integrity of the nation’s waters.” To serve this goal, the CWA estab-

lished the National Pollutant Discharge Elimination System (NPDES). Under the NPDES

program, all facilities discharging pollutants from any point source5 into the waters of the

United States are required to obtain a permit issued by the U.S. EPA or by an authorized

state agency. As a result, all municipal and industrial facilities are issued a permit with

numerical limits for regulated chemicals and are required to self-report their emission levels

monthly. Facilities that cannot meet the NPDES permit limits still have the option to ob-

tain a permit along with a compliance schedule. Compliance schedules allow dischargers to

proceed with the installation of needed abatement technology while continuing to operate in

noncompliance. Failure to meet with compliance schedule deadlines results in a violation.

The Integrated Compliance Information System National Pollutant Discharge Elimina-

tion System (ICIS-NPDES) gathers data from a large number of states and territories in a

common database scheme. Different types of violation are recorded in ICIS-NPDES. Non-

compliance with an effluent limit or a failure to report effluent levels automatically results

in a permit violation. Noncompliance with previously scheduled work or compliance levels

is also recorded in the corresponding category.

Inspections and enforcement actions are the two common regulatory actions conducted

by EPA. For our purpose, we are interested in inspections and more particularly in under-

5Point source discharges refer to facilities with an identified connection to water bodies. They typically
comprise industrial facilities and Publicly Owned Treatment Works (POTW). On the other hand, non-point
sources (e.g. agricultural fields) are exempt from the NPDES program.
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standing how the regulator employs them. NPDES inspections are of several different types.

Reconnaissance inspections With Sampling or withOut Sampling (RWS/ROS) involve a vi-

sual control of the permittee’s installation including the proper use of abatement technology.

Given the short amount of time and procedures needed for RWS and ROS inspections, they

are considered the least costly inspection type. Comprehensive inspections involve a more

stringent review of facilities’ monitoring records, interviews of the personnel, and inspec-

tion of wastewater treatment processes. The principal types are Compliance Evaluation

Inspections (CEI), Compliance Biomonitoring Inspections (CBI), Compliance Sampling In-

spections (CSI), Performance Audit Inspections (PAI), Diagnostic Inspections (DI), and

Toxic Sampling Inspections (XSI). Because of their extensive requirements, comprehensive

inspections are relatively costly for industries as well as for regulators in terms of time and

effort. The federal EPA currently requires that a comprehensive inspection is performed at

least once every two fiscal years for each facility.6

The other type of regulatory actions are enforcement actions. Informal enforcements are

commonly used when facilities are in violation and consist of a warning through a phone call

or a letter. Formal enforcements are less frequent7 and are only applied to a small proportion

of facilities in violation. Formal enforcements are generally administrative compliance orders

and a smaller proportion concerns penalty orders.

While environmental regulations are decided at the federal level through the CWA, EPA

may authorize states, territories, or tribes to implement the NPDES program. In most

of the country, EPA has delegated to states the implementation of the program. States

then operate with little intervention from the federal EPA. As a consequence, there may be

different strategies for enforcing compliance across states corresponding to different political

contexts or different budget constraints. In Illinois, the state EPA performs most regulatory

actions. As mentioned in the previous section, there is also an even more local level of decision

6Frequency goal set by the Office of Enforcement and Compliance Assurance as of 2008.
7In our dataset, there are 247 formal enforcements versus 648 informal enforcements.
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making at the jurisdiction level. A jurisdiction generally features one or two agencies from

which facilities are located within fairly short driving distances. Illinois is divided into seven

non-overlapping jurisdictions (Figure 1).

Finally, as public wastewater treatment plants represent most of the major water dis-

chargers in Illinois, it is relevant to provide a short description of this industry. Most facilities

are old and need to be expanded or rehabilitated and the collection system is over 50 years

old.8 Many public wastewater agencies are financially constrained and have difficulties per-

forming maintenance and upgrade work on their facilities. The EPA maintains relevant

information about the state of wastewater plants as they vary in size and work load. In

particular the ‘critical list’ indicates those plants that are close to reaching their maximum

treatment capacity and cannot be connected to additional sewer systems without a careful

investigation.9 A common expansion practice for current plants is to install pretreatment

equipment. Such installations may be integrated into a compliance schedule.

8A more detailed report is available at: http://www.infrastructurereportcard.org/node/182
9There is also a ‘restricted list’ concerning plants that have reached their maximum capacity, but none

of the major facilities in Illinois is on the restrited list.
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3

Methods

We are concerned with the scheduling and determinants of inspections by local regulatory

agencies. The federal EPA clearly states that the goal of CWA inspections is to “ensure and

document whether entities possessing NPDES permits are complying with their CWA obli-

gations.”10 It also recommends state administrators to “direct resources towards the most

important noncompliance and environmental problems.” On the other hand, local agencies

are budget constrained, must meet minimum frequencies for comprehensive inspections for

all facilities, and may be concerned with potential strategic behavior from facilities. The

interaction of these features of the local regulatory process guides our choice of econometric

strategy.

As seen before, the timing of inspections can be a function of firms’ environmental per-

formance (Rousseau, 2007) and the threat of future inspections can deter the occurrence of

violations as well as decrease their duration. In some cases, the regulator may lack relevant

information about firms’ environmental performance or face uncertainty regarding when

non-compliance may occur.11 Also, from facilities’ point of view, uncertainty regarding the

timing of the next inspection may give an incentive for staying constantly in compliance,

even after a recent inspection.

We assume that a strategic firm is particularly interested in the probability of having an

inspection at a given time P (It). If inspection probabilities vary over time in a way that is

predictable to the firm, the firm will have time varying incentives to adjust its effort. This

10Documents related to CWA inspections available, as of June 2012, at:
http://cfpub.epa.gov/compliance/resources/policies/civil/cwa/

11In particular, heavy rainfall events may cause greater pollution of water bodies.
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is a challenge for a budget constrained regulator that cannot inspect all facilities regularly.

One solution for the regulator would be not to condition the inspection probability on the

time since the last inspection:

P (It) = P (It|It−1) (3.1)

Note that even if inspections are memoryless, as equation (3.1) suggests, regulators can

still target facilities according to their environmental performance. In the case of noncom-

pliant facilities, more frequent memoryless inspections could encourage a faster return to

compliance. In the case of compliant facilities, less frequent memoryless inspections would

encourage the maintenance of compliance even after a recent inspection. Then, the proba-

bility of inspection would be constant at each facility and as a consequence the regulatory

pressure would be the same at any time t for that facility.

The property of memorylessness is equivalent to having inspection times generated by

a Poisson process. In a theoretical study on the availability of maintained systems subject

to random failures, Wortman and Klutke (1994) explain how a random inspection strategy,

based on a Poisson process, can maintain a constant availability. This idea can be transferred

to environmental inspections: when information is reduced or uncertain, the regulator could

adopt a Poisson process to inspect facilities.12

For these reasons, we test if inspections are memoryless, which is equivalent to testing the

hypothesis that the regulator does not choose any particular times to inspect each facility or

that each facility is inspected randomly over time. Our analysis first tests if the history of

inspections of each facility is compatible with a Poisson process. If the times of inspections

are independent, we can consider that the regulator randomly chooses the time when a

facility is inspected. Thus, this test allows us to sort between the facilities that are randomly

inspected over time and those that are not. Note that this methodology differs from survival

analysis and, to the best of our knowledge, has not been used in environmental economics.

12When inspections are not a response to already known violations, a Poisson process could be used to
maximize the findings of inspections, particularly in the case of reconnaissance inspections.
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A Poisson process refers to a series of events for which the time between two events has a

parameterized exponential distribution (Poisson distribution). In order to test for a Poisson

process, we choose to use the Conditional Chi-squared statistic described in equation (3.2)

where X is a random variable, in our case the number of inspections per quarter. Under

the null hypothesis described in equation (3.3) TCC has a Chi-square distribution with n− 1

degrees of freedom (i.e. TCC ∼ χ2
n−1;1−α).

TCC =
∑ (Xi −X)2

X
(3.2)

 H0 : Xi ∼ Poiss(λi), λ1 = ... = λn

Ha : Xi ∼ Poiss(λi),
∑(

λi − λ̄
)2
> 0

(3.3)

This methodology is described by Cochran (1954) as the test of variance for the Poisson

distribution and has proven to be reasonably sensitive for this purpose. Under the null

hypothesis, we cannot reject that the random variable X is drawn from a Poisson distribution

of mean λ, and under the alternative hypothesis, we reject that the observations of X are

issued from the same Poisson distribution. This procedure enables us to consider individually

each facility in the sample and to test if each sequence of inspections is compatible with a

Poisson process.

It is relevant to note that failing to reject the hypothesis that inspections are compatible

with a Poisson process does not mean that inspections are totally random and that the

regulator does not have a targeting strategy. Indeed, it implies, as mentioned before, that

inspections are memoryless13 and that, in our model, the number of quarterly inspections

is exponentially distributed with parameter λ.14 In other words, the regulator chooses the

rate of inspections for each facility as a result of his targeting strategy. In the following part

of this study, we are interested in investigating the determinants of the rate of inspections.

13Or, the time intervals between two inspections are independent random variables.
14The mean number of inspections per quarter is then λ.
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We calculate the rate of inspections as the mean number of inspections per quarter. As this

rate is a continuous variable, we choose to use an OLS model with the rate of inspection as

the dependent variable in order to investigate what facility level characteristics are involved

in the regulator’s choice. With such a model, we seek to verify if our data are compatible

with a targeting strategy of increased pressure towards noncompliant facilities (Magat and

Viscusi, 1990).

For those facilities whose inspections are consistent with a Poisson process, we regress

the rate of inspection r using facility level attributes. Equation (3.4) describes our OLS

regression model where ri is the rate of inspection for facility i and ri = λi, RAi is a vector

representing counts of regulatory actions towards facility i over the period, Ti is the travel

time faced by the regulator to reach facility i, Ii is a vector of binary variables indicating

the industry type of facility i (wastewater treatment plant, electric services, plastic industry,

others), and µi is the error term. Since we differentiate reconnaissance and comprehensive

inspections, ri is either the rate of reconnaissance inspections or the rate of comprehensive

inspections.

ri = α + βRAi + γTi + δIi + µi (3.4)

Since environmental inspections and regulatory actions are parallel processes over time,

decisions can be made by the regulator regarding both processes simultaneously. In order to

avoid endogeneity issues, we estimate the rate of inspection using prior regulatory actions.

Thus, variables in RAi are lagged. Ultimately, this model permits estimation of factors

influencing the inspectors’ decisions about how much regulatory pressure should be applied

on each plant. As we estimate reconnaissance and comprehensive inspections separately, we

are able to reveal any difference in the factors influencing inspection frequency for the two

types of control.

In our first modeling approach, we build on previous economic theory that supports
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the determination of groups within the industry (Harrington, 1988; Magat and Viscusi,

1990) and separates plants according to environmental performance. In our second modeling

approach, we inspect how information available to the regulator may be used to produce

such a sorting. In particular, prior environmental performance is taken into account as we

test the importance of the most common chemicals involved in water quality evaluation in

the regulator’s decision. Our choice of variables includes cumulative violation or enforcement

counts as encountered in Rousseau (2007) or Eckert (2004) and chemical-specific violations

as in Laplante and Rilstone (1996) or Earnhart (2004), so that we are able to investigate the

precision level or pollutant specific concerns of the regulator in his decision process. Notably,

the current EPA recommendations for targeting insist on general noncompliance, but also

emphasize site impairment (i.e. impaired receiving water bodies) that generally relates to

pollution from wastewater treatment plants with specific pollutants (e.g. BOD, coliform).

Because the levels of different pollutants are often linked, the regulator may focus only on

a few of them believed to be the best indicators of plants’ behavior. In order to measure

if individual pollutant events make a difference, we estimate the probability for facilities to

belong to the group that is not inspected randomly over time. If inspections do not occur

randomly over time, we suppose that the regulator is reactive to certain parameters or events

and adjusts his rate of inspection accordingly. Thus, we use a probit model containing lagged

individual pollutant violation events and enforcement events.

P (Facilityi ∈ NotRandom) =β0 + β1FormalEnfi + β2InformalEnfi

+ β3BODi + β4Chlorinei + β5Coliformsi

+ β6TSSi + β7Overduei + νi (3.5)

Equation (3.5) describes the probit model discussed above. Regressors are composed of

formal and informal enforcement counts, violation counts of three common pollutants: BOD,
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chlorine, and fecal coliform, and violation counts of overdue monitoring reports.
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4

Data

The data used in this study are composed of environmental performance records and geospa-

tial information. The environmental performance data are extracted from the EPA’s Inte-

grated Compliance Information System-NPDES (ICIS-NPDES). This database comprises

records for all discharging facilities in the United States.15 These facilities are divided into

two categories: major and non-major facilities, according to specific ratings criteria devel-

oped by EPA or States. Major facilities include facilities discharging equal to or greater

than one million gallons per day. Such facilities are required to self-report their emissions

levels. Reporting is voluntary for non-major facilities and as a result emissions data are

often missing. In this thesis, we use only major facility data for consistency. Even though

non-major facilities are more numerous, emissions from major facilities constitute the largest

proportion of emissions and are thus more important to the regulator.

This study focuses on the 275 major facilities located in Illinois, their environmental

performance and the related inspection activity of the EPA during the period 2001-2009. As

Figure 1 shows, the state of Illinois is divided into seven jurisdictions and each jurisdiction is

locally supervised by an EPA office in charge of monitoring regulated facilities. The facilities

are unevenly concentrated in space with five jurisdictions having a lower concentration of

facilities and the other two having a higher concentration. This fact reflects the dispari-

ties between rural and urban areas. Indeed, the jurisdiction comprising the Chicago area

concentrates a greater number of facilities compared to the other jurisdictions.

15The modernized ICIS-NPDES is used by a large proportion of U.S. states and territories, although the
older Permit Compliance System (PCS) is still used in the rest of the country.
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Our primary variable of interest represents the inspection activity of the regulator. Based

on the date of all inspection events, we aggregate inspections by quarter and use the count of

inspections per quarter. We consider inspection types separately so that inspection counts

are grouped by type: reconnaissance and comprehensive. During the first part of the analysis,

we test for a Poisson process in the occurrences of inspections over time. The result of that

test is then represented in a binary variable used in the next stages of the study with a zero

value when the series is compatible with a Poisson process and a value of one when it is not.

Secondly, a set of variables describes facilities’ characteristics. Three binary variables

indicate the type of industry: sewerage systems, electric services, and plastic materials

plants. The other types of plants are not flagged in the analysis. In order to signal whether

or not a plant is located in a sensitive area, we use a binary variable indicating whether the

plant is discharging in a stream listed under the 303(d) list of impaired waters of the CWA.16

We also use dummy variables to account for the jurisdiction each facility belongs to. The

last characteristic is the travel time from the local EPA agency to the facility. We favor

travel time over distance in order to represent better the difference in travel cost between

rural and urban areas for the regulator. Travel time is calculated using the Directions tool

of Google Maps.

Finally, a set of variables denotes facilities’ environmental performance over time. Facility

level violations, enforcement actions, and penalty fines are reported per year. Violations are

reported for the most important water quality pollutants such as chlorine, fecal coliform,

nitrogen, BOD (5-day BOD at 20◦C), TSS, and pH. Violations are also recorded when self-

reports of emissions are overdue. Enforcement actions are represented by three variables to

distinguish the count of informal enforcements, the count of formal enforcements, and the

sum of penalties accompanying a formal enforcement. All these variables are aggregated by

year so that we can use them as lagged values.

16The CWA requires water bodies not meeting water quality standards to be listed. Water bodies in the
303(d) list are prioritized for restoration and protected by Total Maximum Daily Load (TMDL) programs.
Currently the U.S has 14,153 waters on the 303(d) list, including 1,057 in Illinois.
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As Table 1 shows, most of the major facilities are wastewater treatment plants17 (208/275),

followed by electric services plants (30/275). We also note that more than 50% of the major

facilities discharge into impaired waters. Given CWA requirements for impaired waters, we

expect these facilities to receive more oversight from the regulator. It is not surprising that

travel time is variable across facilities as facilities are distributed across jurisdictions (Figure

1). Only jurisdiction 3 presents two obvious industrial spatial clusters, though each of them

comprises an EPA agency.

Between 2001 and 2009, the regulator performed 2,519 comprehensive inspections and

11,776 reconnaissance inspections. This activity was focused on wastewater facilities with

respectively 2,025 and 9,849 inspections for comprehensive and reconnaissance. Note that

there is a decreasing trend in the amount of inspections during our sample time frame with

reconnaissance inspections strongly declining as Figure 2 shows. The data also reveal that

the regulator increased water sampling during reconnaissance inspections.18

Table 1 also provides violation records as two separate types: overdue violations and limit

exceedance violations. An overdue violation is recorded when a facility fails to transmit all

its required monitoring values to EPA. An exceedance violation is recorded when a facility

reports emission levels greater than the value specified by its NPDES permit; a percentage of

exceedance is associated with the violation record. Wastewater treatment plants account for

most of the exceedance violations with 5,652 violations. These violations are also on average

greater in exceedance percentage than for other industries. This may be attributed to the

uncertainty of weather events and the variability of water flows as well as the limited capacity

of wastewater treatment plants, thus making the wastewater industry an important concern

for the regulator. As opposed to other studies (Rousseau, 2007), violations are automatically

generated and are not necessarily linked to inspections.

The unit of observation used to count inspections is a quarter of a year. We believe that

17Table 2 presents specific variables for this industry.
18Inspections records show that ROS are replaced by RWS over time.
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using quarterly data is a realistic approach considering that inspections may not happen

more than a few times a year for most facilities. Table 3 shows when violations occur across

quarters. As expected, water pollution shows some seasonality effects for limit exceedance

violations. This is particularly observable for chlorine and coliform with higher counts for

quarters 3 and 4 (April to June and July to September) which correspond to periods when

rainfall is heavier and when wastewater treatment plants may face greater loads. Values for

coliform are significantly greater from April to September at the 0.001 level and values for

chlorine are greater at least at the 0.1 level. Surprisingly, overdue violation counts increase

over the calendar year and may be linked to different levels of administrative or financial

constraints as the year progresses.

The last regulatory action reported in this study is enforcement actions. We observe

that violations do not necessarily lead to enforcement actions, even informal ones, as the

count of enforcements is less than that of violations. Perhaps the regulator considers that

the issuance of a violation is a sufficient signal to the industry, or that if a facility receives

an enforcement after a violation, it will not be enforced again for its following violations.

We can also suppose that enforcements concern only the worst violations with high level of

exceedance. Another explanation for the lower number of actions is they are very costly to

the regulator. The same pattern is observed with financial penalties as formal enforcement

actions are not necessarily accompanied by a penalty. Only 23 formal enforcements in the

wastewater industry out of 247 resulted in a total $74 million in penalties. Penalties are

generally issued after a court decision which could explain their scarcity. The large number

in the righthand column of Table 1 ($201 million) is entirely due to a single petroleum plant.

Finally, Table 4 presents the data as used in our analysis. We use annual formal and

informal enforcement counts as well as financial penalties from 2001 to 2004 to estimate

regulatory actions from 2005 to 2009. This lag between variables is adopted in order to

avoid endogeneity. Similarly, we use counts of violations for relevant pollutants from 2001 to

2004. Chlorine, fecal coliforms, and TSS related violations are provided as well as overdue
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violations.
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5

Results

We begin by reporting the results for the test of variance for the Poisson distribution (Equa-

tion 3.2). Recall that the analysis is carried out using facility-level inspection data. For

each jurisdiction, Table 5 presents the number of facilities for which the hypothesis that

inspections are memoryless can be rejected (i.e. are significantly different from a Poisson

process) over the period 2001 to 2009. For each type of inspection, the proportion of all

facilities is given as well as the proportion among wastewater treatment plants. In the case

of reconnaissance inspections, almost all inspection timings seem to be memoryless. In the

case of comprehensive inspections the proportion of facilities for which the hypothesis that

inspections are memoryless can be rejected is between 20% and 50%. This means that for

this subset of facilities, the probability of a comprehensive inspection is conditioned on the

time since the last inspection. Also, wastewater treatment plants do not seem to be treated

differently as their proportions resemble the total proportions (Table 5). This trend sug-

gests that as the cost of inspections increases, the regulator increases the number of facilities

non-randomly inspected.

The most striking result is the proportion of non-memoryless reconnaissance inspections

in jurisdiction 3 (81%), corresponding to the Peoria area in western Illinois. As mentioned

before, this jurisdiction presents some distinct characteristics. It has two spatial clusters of

facilities, each of them having an EPA agency near to them. We also observe the greatest

decrease in the average number of inspections over time in this jurisdiction (see Table A.1).

These two facts suggest that jurisdiction 3 has adopted different targeting strategies than

seen in other jurisdictions.
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Overall, we note the difference between the two types of inspections. At the facility level,

reconnaissance inspections are randomly distributed over time. This type of inspection can

serve as a way to maintain a threat of receiving an intervention (Earnhart, 2004). This

practice also encourages self-reporting (Magat and Viscusi, 1990; Laplante and Rilstone,

1996; Helland, 1998) as a facility is unable to predict its next inspection.

On the other hand, scheduling comprehensive inspections may have different factors as

nearly one out of three facilities has inspections that are not memoryless. Comprehensive

inspections have different purposes than reconnaissance inspections. In particular, the state

regulator is required to perform at least one comprehensive inspection every two years for

each facility. Comprehensive inspections also play an important role in enforcing environ-

mental compliance. Because they involve a rigorous scrutiny of facilities’ equipment and

records, they may reveal concealed violations. Moreover, given their higher cost, it is not

surprising that the regulator employs a different scheduling strategy. It is interesting to note

that having memoryless comprehensive inspections and having memoryless reconnaissance

inspections are significantly independent. The Pearson Chi-squared test for dependence is

equal to χ2 = 5.30e− 3 with p value = 0.94, so we cannot reject the hypothesis that memo-

ryless reconnaissance inspections over time and memoryless comprehensive inspections over

time are independent,19 which reinforces the idea that the two types have different purposes

for the regulator.

Theoretical results have shown that memoryless inspections are desirable when the un-

derlying failure rate is random (Wortman and Klutke, 1994). Next, we analyze whether

or not the occurrences of violations reported by facilities are memoryless (Table 6). We

observe that for most facilities, overdue violations and limit exceedance violations are not

randomly distributed in time. This suggests that those events are either smoothly distributed

over time or concentrated at certain dates. Since a lot of facilities (e.g. wastewater) may

have under-dimensioned equipment and some major weather events may overload plants’

19See Appendix A for complete independence test results.

21



treatment capacity, both scenarios are plausible. Conversely, when looking at particular

pollutant violations we can observe a variety of patterns (Table 6). Overall, chlorine and

BOD5 violations appear to be randomly distributed over time. Depending on jurisdiction,

coliform violations are more or less randomly distributed, with higher rates of non-random

patterns in jurisdiction 1, 3, and 7. This may be due to disparities in wastewater treatment

equipment.20 Concerning TSS, a consistent 30-40% of facilities have non-randomly occurring

violations. Overall, violations do not appear to be randomly distributed over time, which

is an advantage for the regulator if he wants to follow up on violations. However, if the

regulator focuses on particular pollutants (e.g. BOD5), his strategy should account for the

random character of their occurrences.

It is interesting to note that, for the physical and chemical violation types, the highest

rates of non-memoryless violations occur in jurisdiction 3. Because this pattern is seen for

both wastewater and other facilities, this may be interpreted as consistent with strategic

behavior in emissions violations by facilities.

Table 7 presents OLS estimations for our inspection rate model. The purpose of this

model is to explain the rate of inspection for facilities that were identified as having memory-

less inspections in the previous part. We use the methodology presented above to determine

which facilities have a sequence of inspections consistent with a Poisson process over a three

year period. Then we create several subsets of our dataset in order to extract facility-level

observations. Finally, we calculate the quarterly average rate of inspection during the same

three year period to obtain the response variable. The model is completed with lagged

enforcement count variables, travel time in minutes, and industry-specific binary variables.

The results are presented for different periods of the response variable for robustness21

and we observe some consistent outcomes. Again, we note that the two types of inspection

exhibit important differences.

20Coliform violations concern only the wastewater treatment industry.
21See Appendix A for more detailed results.
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We find heteroskedasticity for both reconnaissance rate estimations using the Breusch-

Pagan test, with p values of 0.01 and 0.0004. Therefore, we adjust the standard errors with

White’s heteroskedasticity-consistent estimator. The other two estimations for comprehen-

sive inspection rates do not present any sign of heteroskedasticity. Models are also tested for

multicollinearity using the Variance Inflation Factor and show no evidence of multicollinear-

ity (we observe VIF values no greater than 2.3).

The rate for reconnaissance inspections appears to be significantly positively correlated

with lagged informal enforcements of a prior year, indicating that the regulator may be

increasing effort towards those facilities that have recently been warned. We note that in-

formal enforcements from 2003 are significant in both time settings, which suggests that the

regulator is interested in events that occurred during 2003 rather than in events occurring

with a specific lag. None of the formal enforcement variables are significant indicating that

reconnaissance inspections may not be considered as follow-up visits after an administrative

decision. Unsurprisingly, we note that inspection rate is negatively correlated with travel

time. It is likely that for budget or time constraints, further distances discourage the regula-

tor and there may be a trade-off between spending time driving and spending time inspecting

as reconnaissance inspections are rather short in time. As the coefficient of the travel time

variable is −0.004, we estimate that a facility located 100 minutes further away from the EPA

agency has 1.6 less inspections per year compared to a facility located nearer to the agency.

Note that previous studies using state level data have not been able to use travel time as a

variable because the location of the inspectors was not defined. Concerning industry type,

it appears that wastewater treatment plants are more subject to reconnaissance inspections.

Many reasons may motivate the regulator to visit this industry more frequently, notably

because it has a large pollution potential and its equipment requires careful attention and

operation. Moreover this industry is particularly challenged by uncertainty due to weather

events. Our results are consistent with the intuition given by Rousseau (2007) who finds

that, for certain lags, violations significantly increase (or decrease) the probability of routine
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inspections.

Comprehensive inspection rates present some similarities concerning past enforcement

records. Although in this analysis no coefficient for informal enforcement is significant, some

lagged formal enforcements have weak positive significance. As opposed to reconnaissance

inspections, comprehensive inspections may serve as follow-up visits after a formal enforce-

ment is issued, requiring the regulator to inspect facilities more thoroughly. However, this

significance of formal enforcement is not consistent across time settings (Table 7). Travel

time and wastewater variables are not as significant compared to reconnaissance inspections

with coefficients an order of magnitude less. Indeed, the mandatory character of compre-

hensive inspections may reduce the importance of travel cost, while wastewater treatment

plants may not require increased comprehensive inspection effort.

We now consider differences between facilities with and without memoryless comprehen-

sive inspections.22 For comprehensive inspections during the period 2005 to 2009 the rate

of inspection is significantly higher for non-memoryless inspections, with an average of 0.29

inspections per quarter, versus 0.21 memoryless inspections per quarter. The Welch t-test

for the difference in means is t = 3.00 and p value = 3.65e-3. This trend is consistent for

our different time periods.

The higher rate of comprehensive inspections for facilities with non-memoryless compre-

hensive inspections suggests that the regulator targets these facilities by allocating more of

his resources towards them. Recall also that in all jurisdictions during 2001 to 2009, 20

to 50% of facilities have non-memoryless comprehensive inspections (Table 5). Next, we

use shorter intervals to observe whether facilities enter and exit the non-memoryless group.

We observe respectively 59, 48, and 49 non-memoryless patterns over the periods 2003-07,

2004-08, and 2005-09, with a turnover of 30.5% between the first two periods, 25% between

the two last ones, and finally with 52.5% of the initial group remaining through all periods.

22Differences in rates of reconnaissance inspections are significant but almost all non-memoryless inspec-
tions are in jurisdiction 3, which has a low average reconnaissance inspection frequency.
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This suggests that when a facility is in the non-memoryless group (i.e. the targeted group),

it tends to stay in this group in the following periods. Consequently, the regulator appears

to be targeting the same facilities for higher inspection frequencies.

To try to understand the determinants of this targeting, we use a probit model to es-

timate the probability of non-memoryless comprehensive inspections. Building on previous

literature (Eckert, 2004; Earnhart, 2004; Rousseau, 2007) as well as EPA’s current recom-

mendations for targeting we use a set of environmental performance variables and facility

characteristic variables. We also separate the dataset into two groups in order to investigate

wastewater treatment plants separately to allow the usage of a set of explanatory variables

specific to wastewater plants.

Both previous literature and EPA’s current recommendations claim that targeting should

be applied to noncompliant facilities and environmental problems. However, the results of

our estimations do not show any consistent significant estimates for environmental perfor-

mance variables or enforcement action variables (Tables 8 and 9). Similarly, impaired water

body dummies are not significant. Other tested variables (not shown in the tables) include

travel time and percentage of minorities within three miles; neither of these variables is sig-

nificant. Wastewater treatment plant-specific variables (e.g. flow capacity, inflow) also do

not provide any evidence (Table 8). Overall, the information provided by the ICIS-NPDES

does not permit us to identify the determinants of targeting for comprehensive inspections.

Our results show that although there is a sub group of facilities that are targeted for

higher inspection frequencies over long periods, none of the environmental performance fac-

tors that we would expect to be determinants of targeting are significant. This suggests

that the local jurisdictions are using information that is not available in the ICIS-NPDES

database for targeting. Potential relevant variables involved in targeting for this type of

inspection may be other facility characteristics that are not publicly available or other types

of variable such as citizen complaints, demographics, or other political factors.
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6

Discussion And Concluding Remarks

Economic theory indicates that environmental agencies should use targeting in order to in-

crease compliance. This targeting should involve an analysis of environmental performance

and specific characteristics of firms to determine an adapted assignment of regulatory agen-

cies’ limited resources.

In this thesis, we look for evidence of a sorting strategy of water-polluting facilities by

the regulator. We consider inspections performed under the Clean Water Act in the seven

local EPA jurisdictions of Illinois. For the period 2001 to 2009, we analyze inspection and

violation data for 275 facilities classified as major water dischargers and regulated under the

Clean Water Act. We report three main results.

First, we take into account the planning of inspections for each facility and identify those

inspection schemes that are memoryless. With the exception of one jurisdiction, we find

that reconnaissance inspections (the quickest, cheapest inspection type) are memoryless.

For these inspections, we find that the rate of inspection increases for facilities closer to the

local EPA agency, for wastewater treatment plants, and for facilities that previously received

warnings. Interestingly, we find that in the jurisdictions that have memoryless reconnaissance

inspections, violations of physical and chemical parameters tend to be memoryless too. In

the one jurisdiction that has mostly non-memoryless reconnaissance inspections, a higher

proportion of violations are non-memoryless too, which may indicate strategic behavior by

facilities.

On the other hand, a significant proportion of comprehensive inspections is found not

to be memoryless, so that inspections are not randomly distributed over time at the facility
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level. Memoryless comprehensive inspections, though, have higher inspection frequencies

for the wastewater industry and shorter travel time. Together these results echo Rousseau

(2007) by showing that different inspection types serve different purposes in the regulator’s

strategy. Future work on understanding regulatory objectives should account for different

inspection types.

Second, non-memoryless comprehensive inspections occur at a higher frequency than

memoryless comprehensive inspections which suggests that the regulator is targeting a subset

of facilities. This kind of targeting is consistent with previous theoretical studies. Targeting

is encouraged by EPA’s current guidelines. However, we cannot identify any determinant

for the observed targeting within the data extracted from the ICIS-NPDES database, such

as inspection, enforcement, and violation histories, as well as firms’ characteristics, such as

discharging into an impaired water body. This suggests the local agencies are using other

information in targeting facilities for inspections.

Third, even though most inspection schedules are memoryless, this does not mean that

there is no targeting. In particular, we find that wastewater treatment plants and facilities

that are located closer to local offices are inspected more frequently. This result shows

that jurisdiction level parameters are important in determining regulatory behavior. Future

studies should be undertaken at the jurisdiction level if possible.

The implications of this study concern primarily inspection strategies and resource al-

location. At the local level jurisdictions do not seem to respond to parameters emphasized

in EPA’s current targeting recommendations and previous theoretical studies (Harrington,

1988; Magat and Viscusi, 1990). Budget constraints seem to be a limiting factor in the reg-

ulator’s activity as both our findings for travel time and the general decrease in inspection

frequencies over the years suggest. Nevertheless, inspections remain an important means of

ensuring that wastewater treatment equipment is working properly. This role is particularly

important in the wastewater industry because of limited treatment capacity and uncertain

effluent concentrations due to variable wet weather flows. However, our results do not sug-
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gest that the regulator allocates more resources to noncompliant plants. Since the majority

of plants are publicly owned, the regulator may not want to spend resources where the major

concern is to upgrade or replace old equipment.

As the determinants of targeting for comprehensive inspections remain unclear, future

work may investigate other variables such as detailed demographic parameters or political

actions from the public or from interest groups. Also, because Illinois uses a combination of

reconnaissance and comprehensive inspections, it may be interesting to compare targeting

strategies with other states using the same combination of types of inspection or to other

states using only comprehensive inspections. Another step in the analysis of inspection

activity would be to interview a sample of EPA inspection officers to collect data about the

objectives, demands, and contraints related to their activity. From a broader perspective,

as we observe that travel time plays an important role in inspectors’ activity, we could

change the jurisdictions’ boundaries and the inherent distribution of facilities within them

and optimize the assignment of facilities to EPA agencies taking into account inspection

schedules and travel time.
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Tables

Table 1: Summary Statistics for Major Facilities in Illinois

Industry Wastewater Electric Plastic & Resin Other

Count 208 30 6 31
Impaired 122 21 5 19
Travel Time Mean 55.37 62.42 80.01 53.00
(minutes) SD 28.06 31.66 23.95 31.11

Min 5.45 11.53 51.10 16.67
Max 140.38 120.38 114.18 130.28

Inspection Compr. 2025 208 51 235
Recon. 9849 983 168 776

Violation Overdue 1730 262 89 361
Exceed. 5652 265 171 724

Enforcement Informal 648 34 11 84
Formal 247 8 7 33

Penalty Count 23 2 2 2
($) Sum 74,776,808 13,000 8,187,951 201,914,089

Mean 302,740.11 1,625.00 1,169,707.29 6,118,608.76
SD 3,816,508.09 3,543.10 3,090,595.70 35,135,269.92

Upper table shows facility related values.

Lower table shows regulatory action values over the industry.
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Table 2: Complementary Summary Statistics for Wastewater Treatment Plants in Illinois

Count Mean SD Min Max

Facilities 208
Design Flow (million Gal/day) 15.8 89.61 < 1 1200
Pretreatment 69
NON-POTW1 5
POTW1 203
Critical 13
1 (Non) Publicly Owned Treatment Works.

Table 3: Seasonality of Violations

Quarter1 Overdue Limit TSS Chlorine2 BOD5 Coliforms3

1 442 1666 501 34 90 255
2 508 1901 327 89 80 449
3 681 1754 239 87 45 457
4 811 1491 367 64 80 295

1 Values represent sums per quarter during 2001-2009.
2 Regression of yearly counts with quarter dummies show that quarter 2 and 3 are

significantly greater than quarter 1 at the 0.001 level and than quarter 4 at the 0.1 level.
3 Values for quarter 2 and 3 are significantly greater than 1 and 4 at the 0.001 level.
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Table 4: Summary Statistics for Regulatory Action

Mean SD Max Min

Formal 2001 0.11 0.36 2 0
Formal 2002 0.10 0.31 2 0
Formal 2003 0.08 0.31 2 0
Formal 2004 0.11 0.35 2 0
Informal 2001 0.39 0.75 5 0
Informal 2002 0.39 0.70 4 0
Informal 2003 0.41 0.77 5 0
Informal 2004 0.25 0.56 2 0

Overdue 2001 0.56 2.33 24 0
Overdue 2002 0.59 2.35 33 0
Overdue 2003 0.58 1.71 14 0
Overdue 2004 0.64 2.01 21 0
Chlorine 2001 0.13 0.73 10 0
Chlorine 2002 0.15 0.64 8 0
Chlorine 2003 0.15 0.56 6 0
Chlorine 2004 0.10 0.50 6 0
BOD5 2001 0.23 2.10 31 0
BOD5 2002 0.24 1.65 22 0
BOD5 2003 0.17 0.92 9 0
BOD5 2004 0.13 0.75 8 0
Coliform 2001 0.52 1.69 12 0
Coliform 2002 0.61 1.68 12 0
Coliform 2003 0.47 1.44 12 0
Coliform 2004 0.61 1.71 12 0
TSS 2001 0.55 2.05 19 0
TSS 2002 0.60 1.74 13 0
TSS 2003 0.49 1.46 13 0
TSS 2004 0.45 1.24 9 0

Comp. Insp. Rate 2003-07 0.26 0.13 0.80 0
Comp. Insp. Rate 2004-08 0.25 0.12 0.75 0
Comp. Insp. Rate 2005-09 0.23 0.11 0.70 0
Reco. Insp. Rate 2003-07 1.28 0.83 3.35 0
Reco. Insp. Rate 2004-08 1.05 0.78 3.35 0
Reco. Insp. Rate 2005-09 0.86 0.73 3.25 0

Upper section shows formal and informal enforcements.

Middle section shows specific pollutants.

Lower section shows inspection rates for randomly inspected facilities.
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Table 5: Non-Memoryless Inspections of Facilities (Proportions)

Facilities1 Recon. Insp.2 Compr. Insp.2

Jurisdiction Total Wastewater Total Wastewater Total Wastewater

1 28 21 0.00 0.00 0.32 0.38
2 121 98 0.02 0.00 0.19 0.18
3 32 21 0.81 0.81 0.50 0.48
4 25 17 0.04 0.06 0.36 0.47
5 20 13 0.00 0.00 0.35 0.31
6 28 21 0.00 0.00 0.43 0.52
7 21 17 0.00 0.00 0.38 0.47

1 Counts of facilities. Values are presented for all facilities (Total) and for wasterwater

treatment plants only (Wastewater).
2 Proportions of facilities with non-memoryless inspections. Values are presented for all

facilities (Total) and for wasterwater treatment plants only (Wastewater).

Table 6: Non-Memoryless Violations (Proportions)

Jurisdiction 1 2 3 4 5 6 7

Facilities T 28 121 32 25 20 28 21
W 21 98 21 17 13 21 17

Overdue T 0.79 0.67 0.62 0.80 0.85 0.68 0.33
W 0.76 0.67 0.48 0.76 0.77 0.67 0.29

Limit T 0.61 0.60 0.78 0.52 0.60 0.75 0.67
W 0.62 0.59 0.81 0.53 0.69 0.71 0.65

TSS T 0.29 0.37 0.56 0.28 0.45 0.39 0.43
W 0.38 0.38 0.57 0.24 0.38 0.33 0.41

Chlorine T 0.00 0.03 0.16 0.04 0.05 0.07 0.00
W 0.00 0.03 0.14 0.06 0.00 0.10 0.00

BOD5 T 0.04 0.06 0.22 0.12 0.15 0.04 0.05
W 0.00 0.02 0.14 0.00 0.08 0.00 0.00

Coliforms T 0.18 0.12 0.31 0.12 0.05 0.07 0.29
W 0.24 0.14 0.48 0.18 0.08 0.10 0.35

T: Total, W: Wastewater only
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Table 7: OLS Regression of the Rate of Inspection

Recon. 2004-08 Recon. 2005-09 Comp. 2004-08 Comp. 2005-09

(Intercept) 0.629∗∗∗ 0.624∗∗∗ 0.214∗∗∗ 0.197∗∗∗

(0.178) (0.155) (0.025) (0.024)
Formal 2002 0.006 0.034

(0.144) (0.024)
Formal 2003 −0.271 −0.137 0.060∗∗ 0.031

(0.161) (0.207) (0.020) (0.020)
Formal 2004 −0.221 0.031

(0.135) (0.019)
Informal 2002 0.110 0.004

(0.074) (0.011)
Informal 2003 0.242∗∗∗ 0.193∗∗ −0.009 −0.004

(0.067) (0.067) (0.009) (0.009)
Informal 2004 −0.002 −0.024∗

(0.098) (0.012)
Travel Time (min) −0.004∗ −0.004∗∗ −5.024e−4∗ −3.802e−4

(0.002) (0.002) (2.251e−4) (2.218e−4)
Wastewater 0.676∗∗∗ 0.674∗∗∗ 0.051∗ 0.051∗

(0.150) (0.130) (0.022) (0.021)
Electric 0.362 0.376∗ 0.001 0.013

(0.188) (0.167) (0.028) (0.027)
Plastic 0.219 0.221 0.033 −0.014

(0.293) (0.317) (0.048) (0.047)

Log-likelihood −269.785 −229.953 213.377 217.890
N 248 215 227 226

standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: Probability of Non-Memoryless Comprehensive Inspections for Wastewater Facili-
ties

Comp. 2003-07 Comp. 2004-08 Comp. 2005-09

(Intercept) −0.780∗∗∗ −0.947∗∗∗ −0.920∗∗∗

(0.173) (0.187) (0.192)
Impaired −0.547∗∗ −0.357 −0.211

(0.212) (0.223) (0.220)
Design Flow −0.004 −0.008 −0.005
(million Gal/Day) (0.005) (0.010) (0.008)
NON-POTW1 0.121 −4.274 0.176

(0.673) (262.395) (0.662)
Pretreatment 0.722∗∗ 0.424 0.140

(0.223) (0.243) (0.242)
Critical −0.129 −0.883 −0.722

(0.420) (0.606) (0.552)
Informal 2001 0.325∗∗ 0.217 0.452∗∗∗

(0.126) (0.127) (0.131)
Informal 2002 0.025 0.153 −0.007

(0.143) (0.140) (0.148)
Informal 2003 0.088 0.149

(0.134) (0.137)
Informal 2004 −0.319

(0.220)

Log-likelihood −103.141 −91.347 −92.529
N 208 208 208

standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
1 Non Public Owned Treatment Works.
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Table 9: Probability of Non-Memoryless Comprehensive Inspections for Other Facilities

Comp. 2003-07 Comp. 2004-08 Comp. 2005-09

(Intercept) −1.404∗∗ −1.654∗∗ −1.151
(0.461) (0.571) (0.639)

Impaired 0.607 0.764 0.176
(0.504) (0.598) (0.626)

Informal 2001 −0.133 0.054 0.177
(0.412) (0.406) (0.393)

Informal 2002 −1.128 −0.619 −0.955
(0.838) (0.685) (1.103)

Informal 2003 −0.812 −0.785
(0.639) (0.667)

Informal 2004 0.943
(0.581)

Mean Exceed. 2001 0.103 0.138∗ −0.006
(0.063) (0.069) (0.038)

Mean Exceed. 2002 0.006 0.036 0.030
(0.004) (0.020) (0.021)

Mean Exceed. 2003 0.015 0.028
(0.011) (0.040)

Mean Exceed. 2004 −0.393
(0.626)

Max. Exceed. 2001 −0.071 −0.096∗ −0.003
(0.044) (0.048) (0.013)

Max. Exceed. 2002 −0.002 −0.017 −0.015
(0.001) (0.011) (0.012)

Max. Exceed. 2003 −0.003 −0.023
(0.002) (0.038)

Max. Exceed. 2004 0.084
(0.129)

Log-likelihood −22.870 −19.988 −14.378
N 67 67 67

standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figures

Figure 1: Industry and EPA in Illinois
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Figure 2: Counts of Inspections over Time
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Appendix A

Additional Material

A.1 Independence Test for Inspection Types

The following are the results of the test for independence of non-memoryless (different from a

Poisson process) comprehensive inspections and non-memoryless reconnaissance inspections

performed on the whole dataset (275 facilities). The null hypothesis states that variables

outcomes are statistically independent.

Pearson’s Chi-squared test with Yates’ continuity correction:

χ2 = 0.0053, df = 1, pvalue = 0.942

We cannot reject the null hypothesis and conclude that having non-memoryless compre-

hensive inspections and having non-memoryless reconnaissance inspections are independent

processes.
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A.2 Evolution of Environmental Inspections

Inspection activities appear to have changed over the recent years in Illinois. There is a

general decreasing trend in the number of inspection in all jurisdictions (Table A.1).

Table A.1: Facility Average Number of Inspections by Year across Jurisdictions

Jurisdiction 2001 2002 2003 2004 2005 2006 2007 2008 2009

1 9.04 8.68 8.39 8.00 7.50 7.86 7.89 4.18 2.46
2 5.02 6.17 6.17 5.13 5.87 2.21 1.40 1.02 0.85
3 12.69 12.12 5.19 2.84 5.78 3.78 1.25 1.09 0.34
4 8.48 8.36 6.72 6.28 8.56 7.00 7.24 3.00 3.20
5 12.30 10.85 10.30 9.05 9.00 9.15 9.85 4.65 3.05
6 7.82 11.21 10.96 8.96 10.61 9.93 9.36 5.04 4.71
7 11.95 12.24 11.24 8.81 10.43 9.48 8.33 5.48 4.48

Usage of inspection types also change over the period 2001-2009. Figure A.1 shows the

proportions of each inspection type for jurisdiction 1, corresponding to the northwestern

corner of Illinois. We observe that reconnaissance inspections started to comprise water

sampling in 2007. Figure A.2 shows that jurisdiction 2, corresponding to the Chicago area,

has a different evolution with an increase of the proportion of comprehensive inspections.
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Figure A.1: Evolution of Inspection Types in Jurisdiction 1
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Figure A.2: Evolution of Inspection Types in Jurisdiction 2
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Figure A.3: Facilities with Memoryless Comprehensive Inspections
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Figure A.4: Facilities with Memoryless Reconnaissance Inspections
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A.3 Evolution of Violations

Tables A.2 and A.3 present respectively the counts of violation per year per jurisdiction and

the facility-average counts of violation per year per jurisdiction.

Table A.2: Number of Violations per Year

Jurisdiction 2001 2002 2003 2004 2005 2006 2007 2008 2009

1 146 109 77 95 102 83 82 143 128
2 284 479 503 360 426 412 404 461 610
3 150 144 92 113 150 123 140 219 272
4 70 61 70 120 52 54 74 68 115
5 51 71 97 68 87 61 65 99 127
6 40 75 66 72 60 70 75 168 256
7 94 92 69 66 57 74 35 91 77

Table A.3: Violations per Facility (Average)

Jurisdiction 2001 2002 2003 2004 2005 2006 2007 2008 2009

1 5.21 3.89 2.75 3.39 3.64 2.96 2.93 5.11 4.57
2 2.35 3.96 4.16 2.98 3.52 3.40 3.34 3.81 5.04
3 4.69 4.50 2.88 3.53 4.69 3.84 4.38 6.84 8.50
4 2.80 2.44 2.80 4.80 2.08 2.16 2.96 2.72 4.60
5 2.55 3.55 4.85 3.40 4.35 3.05 3.25 4.95 6.35
6 1.43 2.68 2.36 2.57 2.14 2.50 2.68 6.00 9.14
7 4.48 4.38 3.29 3.14 2.71 3.52 1.67 4.33 3.67

A.4 Robustness Tests for OLS Regressions

As we use an OLS model to estimate the factors involved in the rate of inspection for

facilities randomly inspected over time, we perform a series of robustness tests. We first test

the model on three different time settings: we regress the rate of inspection during 2003-07
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with 1-year and 2-year lagged variables and repeat the estimation after shifting dependent

variable to 2004-08 and then 2005-09. Results are shown in Tables A.4 and A.5.

Our next robustness tests concern multicollinearity and heteroskedasticity. The former

is tested using the variance inflation factor (VIF) and the later is tested with the Breusch-

Pagan test. Both are performed within R with already existing functions. Table A.6 shows

the VIF results and Table A.7 shows the Breusch-Pagan test. There is no sign of mul-

collinearity, however models for reconnaissance inspections for 2004-08 and 2005-09 have

heteroskedasticity. Thus, these models are corrected using White’s standard errors in Table

7.

A.5 Robustness Tests for Probit Regressions

Table A.8 shows the predictions of our different probit models. The fourth column contains

the percentage of correct predictions and the fifth column contains the percentage of the

largest observed value.
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Table A.4: OLS Regression of the Rate of Reconnaissance Inspection

2003-07 2004-08 2005-09

(Intercept) 0.809∗∗∗ 0.629∗∗∗ 0.624∗∗∗

(0.174) (0.173) (0.172)
Formal 2001 0.132

(0.153)
Formal 2002 −0.112 0.006

(0.171) (0.161)
Formal 2003 −0.271 −0.137

(0.173) (0.195)
Formal 2004 −0.221

(0.144)
Informal 2001 0.089

(0.075)
Informal 2002 0.162∗ 0.110

(0.071) (0.070)
Informal 2003 0.242∗∗∗ 0.193∗∗

(0.065) (0.068)
Informal 2004 −0.002

(0.096)
Travel Time (min) −0.004∗ −0.004∗ −0.004∗∗

(0.002) (0.002) (0.002)
Wastewater 0.795∗∗∗ 0.676∗∗∗ 0.674∗∗∗

(0.158) (0.153) (0.149)
Electric 0.310 0.362 0.376

(0.208) (0.203) (0.199)
Plastic 0.116 0.219 0.221

(0.376) (0.361) (0.390)

R-squared 0.175 0.178 0.159
Log-likelihood −288.202 −269.785 −229.953
N 253 248 215

standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.5: OLS Regression of the Rate of Comprehensive Inspections

2003-07 2004-08 2005-09

(Intercept) 0.225∗∗∗ 0.214∗∗∗ 0.197∗∗∗

(0.026) (0.025) (0.024)
Formal 2001 0.032

(0.023)
Formal 2002 0.059∗ 0.034

(0.026) (0.024)
Formal 2003 0.060∗∗ 0.031

(0.020) (0.020)
Formal 2004 0.031

(0.019)
Informal 2001 −0.015

(0.011)
Informal 2002 0.011 0.004

(0.010) (0.011)
Informal 2003 −0.009 −0.004

(0.009) (0.009)
Informal 2004 −0.024∗

(0.012)
Travel Time (min) −5.314e−4∗ −5.024e−4∗ −3.802e−4

(2.405e−4) (2.251e−4) (2.218e−4)
Wastewater 0.041 0.051∗ 0.051∗

(0.023) (0.022) (0.021)
Electric −0.012 0.001 0.013

(0.028) (0.028) (0.027)
Plastic 0.051 0.033 −0.014

(0.050) (0.048) (0.047)

R-squared 0.115 0.128 0.096
Log-likelihood 192.440 213.377 217.890
N 216 227 226

standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.7: Heteroskedasticity Test for OLS Regressions

Model Breusch-Pagan Test df p value

Rec. 2003-07 8.156 8 0.4184
Rec. 2004-08 19.087 8 0.0144
Rec. 2005-09 28.687 8 0.00036
Comp. 2003-07 10.942 8 0.205
Comp. 2004-08 5.168 8 0.7395
Comp. 2005-09 4.575 8 0.8019

Table A.8: Prediction of Probit Models

Model N Hit % Correct % Largest Value

Comprehensive 2003-07 W 208 161 77.40 75.96
Comprehensive 2004-08 W 208 171 82.21 81.73
Comprehensive 2005-09 W 208 169 81.25 80.77
Comprehensive 2003-07 O 67 57 85.07 86.57
Comprehensive 2004-08 O 67 58 86.57 85.07
Comprehensive 2005-09 O 67 61 91.04 86.57

W: Wastewater, O:Other
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A.6 Proportions of Memoryless Inspections

The following tables show the proportions of facilities with non-memoryless inspections over

different time windows.

Table A.9: Non-Memoryless Inspections of Facilities from 2001 to 2005 (Proportions)

Facilities Recon. Insp. Compr. Insp.
Jurisdiction Total Wastewater Total Wastewater Total Wastewater

1 28 21 0.00 0.00 0.25 0.29
2 121 98 0.02 0.00 0.22 0.22
3 32 21 0.12 0.14 0.47 0.57
4 25 17 0.04 0.06 0.32 0.41
5 20 13 0.00 0.00 0.30 0.38
6 28 21 0.00 0.00 0.46 0.48
7 21 17 0.00 0.00 0.33 0.41

Table A.10: Non-Memoryless Inspections of Facilities from 2002 to 2006 (Proportions)

Facilities Recon. Insp. Compr. Insp.
Jurisdiction Total Wastewater Total Wastewater Total Wastewater

1 28 21 0.00 0.00 0.18 0.19
2 121 98 0.02 0.00 0.16 0.15
3 32 21 0.31 0.33 0.50 0.48
4 25 17 0.04 0.06 0.36 0.53
5 20 13 0.00 0.00 0.15 0.15
6 28 21 0.00 0.00 0.25 0.29
7 21 17 0.00 0.00 0.29 0.35
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Table A.11: Non-Memoryless Inspections of Facilities from 2003 to 2007 (Proportions)

Facilities Recon. Insp. Compr. Insp.
Jurisdiction Total Wastewater Total Wastewater Total Wastewater

1 28 21 0.04 0.05 0.29 0.33
2 121 98 0.02 0.01 0.13 0.13
3 32 21 0.56 0.67 0.34 0.33
4 25 17 0.00 0.00 0.28 0.41
5 20 13 0.00 0.00 0.05 0.08
6 28 21 0.00 0.00 0.36 0.43
7 21 17 0.00 0.00 0.29 0.35

Table A.12: Non-Memoryless Inspections of Facilities from 2004 to 2008 (Proportions)

Facilities Recon. Insp. Compr. Insp.
Jurisdiction Total Wastewater Total Wastewater Total Wastewater

1 28 21 0.00 0.00 0.25 0.29
2 121 98 0.08 0.08 0.08 0.08
3 32 21 0.50 0.52 0.34 0.24
4 25 17 0.04 0.00 0.12 0.18
5 20 13 0.00 0.00 0.15 0.23
6 28 21 0.00 0.00 0.29 0.33
7 21 17 0.00 0.00 0.29 0.35

Table A.13: Non-Memoryless Inspections of Facilities from 2005 to 2009 (Proportions)

Facilities Recon. Insp. Compr. Insp.
Jurisdiction Total Wastewater Total Wastewater Total Wastewater

1 28 21 0.00 0.00 0.32 0.38
2 121 98 0.31 0.37 0.08 0.09
3 32 21 0.66 0.71 0.31 0.19
4 25 17 0.04 0.00 0.16 0.24
5 20 13 0.05 0.08 0.20 0.31
6 28 21 0.00 0.00 0.18 0.24
7 21 17 0.00 0.00 0.33 0.35
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Appendix B

Code

B.1 SQL Extraction From the ICIS-NPDES Database

This section presents the SQL queries used to extract data from the ICIS-NPDES. After

downloading records from the EPA ECHO website, we create a database comprising one

SQL table for each ICIS-NPDES table (e.g. inspections, violations) and load the data into

them. The following queries then extract relevant variables for statistical analyses.

SQL Queries

select perexno, viotype, viocode, vioparm, vioparm_text, viomvdt, vioepct,

viovtcd, year(viomvdt) as year, month(viomvdt) as month

from ECHO.dmr_violations

where 2001 <= year(viomvdt) and year(viomvdt) <= 2009;

select perexno, acttypc, cpoa, f_sttldt, actsepa, f_enfcoac_text, t_enfcfpa,

t_enfcslp, t_enfctsa, t_enfccaa, year(f_sttldt), month(f_sttldt)

from ECHO.formal_enforcement_actions enf

where 2001 <= year(f_sttldt) and year(f_sttldt) < 2010;

select perexno, enftypc, enftype, enfdate, enfsepa, year(enfdate),

month(enfdate)

from ECHO.informal_enforcement_actions enf

where 2001 <= year(enfdate) and year(enfdate) < 2010;

select ins.perexno, codes.sic, cmpmoty, cmpaced,

year(cmpaced), month(cmpaced)

from ECHO.inspections ins

join ECHO.snc_naic_code codes on (ins.perexno = codes.perexno)
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where 2001 <= year(cmpaced) and year(cmpaced) < 2010;

B.2 Travel Duration with GoogleMaps in Python

# Facilities file contains lat/lon coordinates for each plant

# and lat/lon coordinates of the corresponding EPA office

from geopy import distance

from geopy import geocoders

from geopy.point import Point

from googlemaps import GoogleMaps

import csv

import re

gmaps = GoogleMaps()

outWriter = csv.writer(open(’facitiliestraveltime.csv’, ’wb’), \

quoting=csv.QUOTE_MINIMAL)

with open(’../data/facilities.csv’, "rb" ) as theFile:

reader = csv.DictReader( theFile )

for line in reader:

start = gmaps.latlng_to_address(float(line[’jurlat’]), \

float(line[’jurlon’]))

dest = gmaps.latlng_to_address(float(line[’lat’]), \

float(line[’lon’]))

correctedDest = re.sub(’Unnamed Rd, ’,’’,dest)

dirs = gmaps.directions(start, correctedDest)

time = dirs[’Directions’][’Duration’][’seconds’]

dist = dirs[’Directions’][’Distance’][’meters’]

res = [line[’perexno’],line[’jurisdiction’],time, dist]

print res

outWriter.writerow(res)
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B.3 Statistics and Econometrics with R

Poisson Process Analysis of Inspections

library(doBy)

library(xtable)

library(reshape)

# Conditional Chi Sq

TCC <- function(X)

{

X.mean = mean(X)

n = length(X)

t.cc = 0

S2 = var(X)

t.cc = (n-1) * S2 / X.mean

integral = pchisq(t.cc, n-1)

pval = 1 - integral

return(c(t.cc, integral, pval))

}

facilities = read.csv("facilitiessimple.csv")

quarterid = seq(1,36)

inspquarterly = merge(facilities,quarterid)

names(inspquarterly)[names(inspquarterly)=="y"]<-"quarterid"

Recon = seq(0,1)

inspquarterly = merge(inspquarterly, Recon)

names(inspquarterly)[names(inspquarterly)=="y"]<-"Recon"

inspcountquart = read.csv("2001-2009-all-insp-recon-quarterid.csv")

inspcountquart = merge(inspquarterly,inspcountquart, all=TRUE)

inspcountquart[is.na(inspcountquart$nbinsp),]$nbinsp = 0

nbplant = dim(facilities)[1]

inspintvl = subset(inspcountquart, 17 <= quarterid & quarterid <= 36)

resultpoisson = data.frame(matrix(nrow=nbplant, ncol=7))

names(resultpoisson) <- c("perexno","juris","SIC","Rec.pval","Nrec.pval",

"meanrec","meancom")

for (i in 1:nbplant)

{

plantsub = subset(inspintvl,
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perexno == facilities$perexno[i] & Recon == 1)

Rec = TCC(plantsub$nbinsp)

mrec = mean(plantsub$nbinsp)

plantsub = subset(inspintvl,

perexno == facilities$perexno[i] & Recon == 0)

Nrec = TCC(plantsub$nbinsp)

mcom = mean(plantsub$nbinsp)

resultpoisson[i,1] <- as.character(facilities$perexno[i])

resultpoisson[i,c(2:7)] <- c(facilities$juris[i], facilities$SIC[i],

Rec[3], Nrec[3], mrec, mcom)

}

resultpoisson$wastewat = 0

resultpoisson[resultpoisson$SIC == 4952,]$wastewat = 1

resultpoisson$RecNP = 0

resultpoisson[is.na(resultpoisson$Rec.pval)==FALSE &

resultpoisson$Rec.pval <= 0.1,]$RecNP = 1

resultpoisson$ComNP = 0

resultpoisson[is.na(resultpoisson$Nrec.pval)==FALSE &

resultpoisson$Nrec.pval <= 0.1,]$ComNP = 1

write.csv(resultpoisson, "facilities-poissonness.csv")

datacum = resultpoisson

datacum = merge(datacum, resultpoisson)

names(datacum)[names(datacum)=="RecNP"]<-"NPR0509"

names(datacum)[names(datacum)=="ComNP"]<-"NPC0509"

datacum = datacum[c(-4,-5,-6,-7)]

datacum = datacum[c(-8,-9,-10,-11)]

# Table Non Poissonness of Inspections

resultpoisson$wastewat = 0

resultpoisson[resultpoisson$SIC == 4952,]$wastewat = 1

outputpoisson = summaryBy(perexno ~ juris + wastewat, data=facilities,

FUN=c(length))

names(outputpoisson)[names(outputpoisson)=="perexno.length"] = "nbPlants"

# Number of Non-Reconnaissance Inspections that do not follow

# a Poisson Process

plantsub = subset(resultpoisson, Nrec.pval <= 0.1)

temp = summaryBy(perexno ~ juris + wastewat, data=plantsub, FUN=c(length))

names(temp)[names(temp)=="perexno.length"] = "NrecNotPoisson"

outputpoisson = merge(outputpoisson, temp, all=TRUE)

outputpoisson[is.na(outputpoisson$NrecNotPoisson),]$NrecNotPoisson = 0
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# Number of Reconnaissance Inspections that do not follow Poisson Process

plantsub = subset(resultpoisson, Rec.pval <= 0.1)

temp = summaryBy(perexno ~ juris + wastewat, data=plantsub, FUN=c(length))

names(temp)[names(temp)=="perexno.length"] = "RecNotPoisson"

outputpoisson = merge(outputpoisson, temp, all=TRUE)

outputpoisson[is.na(outputpoisson$RecNotPoisson),]$RecNotPoisson = 0

temp = melt(outputpoisson, c("juris", "wastewat"))

result = cast(temp, juris ~ wastewat + variable)

result$nbPlantTot = result$‘0_nbPlants‘ + result$‘1_nbPlants‘

result$nbWaste = result$‘1_nbPlants‘

result$nbNotRandRecon = result$‘0_RecNotPoisson‘ +

result$‘1_RecNotPoisson‘

result$nbWasteNotRandRecon = result$‘1_RecNotPoisson‘

result$nbNotRandNrecon = result$‘0_NrecNotPoisson‘ +

result$‘1_NrecNotPoisson‘

result$nbWasteNotRandNrecon = result$‘1_NrecNotPoisson‘

temp = result[c(-2,-3,-4,-5,-6,-7)]

temp$propTotNRndRecon = temp$nbNotRandRecon / temp$nbPlantTot

temp$propWasNRndRecon = temp$nbWasteNotRandRecon / temp$nbWaste

temp$propTotNRndNrecon = temp$nbNotRandNrecon / temp$nbPlantTot

temp$propWasNRndNrecon = temp$nbWasteNotRandNrecon / temp$nbWaste

Poisson Process Analysis of Violations

# Poisson Test fot violations

vio = read.csv("2001-2009-all-vio-date-v2.csv")

v1 = merge(vio, facilities)

v1$quarterRel = (vio$month-1)%/%3 + 1

v1$quarterAbs = (vio$year-2001)*4 + (vio$month-1)%/%3 + 1

quarterid = seq(1,36)

vioquarterly = merge(facilities,quarterid)

names(vioquarterly)[names(vioquarterly)=="y"]<-"quarterid"

tmp = subset(v1, viocode != "E90")

t = summaryBy(perexno ~ perexno + quarterAbs, data=tmp, FUN=length)

names(t)[names(t)=="perexno.length"]<-"nbVioOverdue"

vioquarterly = merge(vioquarterly, t, by.x=c("perexno","quarterid"),
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by.y=c("perexno","quarterAbs") ,all.x=T)

tmp = subset(v1, viocode == "E90")

t = summaryBy(perexno ~ perexno + quarterAbs, data=tmp, FUN=length)

names(t)[names(t)=="perexno.length"]<-"nbVioLimit"

vioquarterly = merge(vioquarterly, t, by.x=c("perexno","quarterid"),

by.y=c("perexno","quarterAbs") ,all.x=T)

#TSS

tmp = subset(v1, vioparm==530)

t = summaryBy(perexno ~ perexno + quarterAbs, data=tmp, FUN=length)

names(t)[names(t)=="perexno.length"]<-"nbVioTSS"

vioquarterly = merge(vioquarterly, t, by.x=c("perexno","quarterid"),

by.y=c("perexno","quarterAbs") ,all.x=T)

#Chlorine

tmp = subset(v1, vioparm==50060)

t = summaryBy(perexno ~ perexno + quarterAbs, data=tmp, FUN=length)

names(t)[names(t)=="perexno.length"]<-"nbVioChlo"

vioquarterly = merge(vioquarterly, t, by.x=c("perexno","quarterid"),

by.y=c("perexno","quarterAbs") ,all.x=T)

#BOD5

tmp = subset(v1, vioparm==310)

t = summaryBy(perexno ~ perexno + quarterAbs, data=tmp, FUN=length)

names(t)[names(t)=="perexno.length"]<-"nbVioBOD5"

vioquarterly = merge(vioquarterly, t, by.x=c("perexno","quarterid"),

by.y=c("perexno","quarterAbs") ,all.x=T)

#coliform

tmp = subset(v1, vioparm==74055)

t = summaryBy(perexno ~ perexno + quarterAbs, data=tmp, FUN=length)

names(t)[names(t)=="perexno.length"]<-"nbVioColi"

vioquarterly = merge(vioquarterly, t, by.x=c("perexno","quarterid"),

by.y=c("perexno","quarterAbs") ,all.x=T)

vioquarterly[is.na(vioquarterly)] <- 0

vioquarterly$quarterRel = vioquarterly$quarterid %% 4

vioquarterly[vioquarterly$quarterRel==0,]$quarterRel <- 4

tmp = summaryBy(nbVioOverdue + nbVioLimit + nbVioTSS + nbVioChlo

+ nbVioBOD5 + nbVioColi ~ quarterRel,

data=vioquarterly, FUN=sum)

xtable(tmp)

resultPoisTotal = facilities

resultPoisVio = data.frame(matrix(nrow=nbplant, ncol=5))

names(resultPoisVio) <- c("perexno","juris","SIC","pval","meanVioColi")

for (i in 1:nbplant)
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{

plantsub = subset(vioquarterly, perexno == facilities$perexno[i])

pval = TCC(plantsub$nbVioColi)

mvio = mean(plantsub$nbVioColi)

resultPoisVio[i,1] <- as.character(facilities$perexno[i])

resultPoisVio[i,c(2:5)] <- c(facilities$juris[i],

facilities$SIC[i], pval[3], vio)

}

resultPoisVio$NPColi = 0

resultPoisVio[is.na(resultPoisVio$pval)==FALSE &

resultPoisVio$pval <= 0.1,]$NPColi = 1

resultPoisTotal = merge(resultPoisTotal, resultPoisVio[c(-4)])

write.csv(resultPoisTotal, "ResultsPoissonViolation.csv")

output = summaryBy(perexno ~ juris, data=resultPoisTotal, FUN=length)

names(output)[names(output)=="perexno.length"]<-"nbFacility"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, sicGroup==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbWasteWater"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPOverdue==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPOverdue"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal,

NPOverdue==1 & sicGroup==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPOverdueWW"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPLimit==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPLimit"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPLimit==1 & sicGroup==1),

FUN=length), all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPLimitWW"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPTSS==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPTSS"

output = merge(output, summaryBy(perexno ~ juris,
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data=subset(resultPoisTotal, NPTSS==1 & sicGroup==1),

FUN=length), all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPTSSWW"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPChlo==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPChlo"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPChlo==1 & sicGroup==1),

FUN=length), all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPChloWW"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPBOD5==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPBOD5"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPBOD5==1 & sicGroup==1),

FUN=length), all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPBOD5WW"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPColi==1), FUN=length),

all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPColi"

output = merge(output, summaryBy(perexno ~ juris,

data=subset(resultPoisTotal, NPColi==1 & sicGroup==1),

FUN=length), all.x=T)

names(output)[names(output)=="perexno.length"]<-"nbNPColiWW"

output[is.na(output)] <- 0

output$pctOverdue = output$nbNPOverdue / output$nbFacility

output$pctOverdueWW = output$nbNPOverdueWW / output$nbWasteWater

output$pctLimit = output$nbNPLimit / output$nbFacility

output$pctLimitWW = output$nbNPLimitWW / output$nbWasteWater

output$pctTSS = output$nbNPTSS / output$nbFacility

output$pctTSSWW = output$nbNPTSSWW / output$nbWasteWater

output$pctChlo = output$nbNPChlo / output$nbFacility

output$pctChloWW = output$nbNPChloWW / output$nbWasteWater

output$pctBOD5 = output$nbNPBOD5 / output$nbFacility

output$pctBOD5WW = output$nbNPBOD5WW / output$nbWasteWater

output$pctColi = output$nbNPColi / output$nbFacility

output$pctColiWW = output$nbNPColiWW / output$nbWasteWater
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OLS Regression of the Rate of Inspection

inspintvl = subset(inspcountquart, 9 <= quarterid & quarterid <= 28)

insprate = summaryBy(nbinsp ~ perexno + Recon, data=inspintvl, FUN=mean)

names(insprate)[names(insprate)=="nbinsp.mean"] = "IR"

insprate[insprate$Recon==0,]$Recon = "C"

insprate[insprate$Recon==1,]$Recon = "R"

facIR = cast(insprate, perexno ~ Recon)

names(facIR)[names(facIR)=="C"] = "IRC0307"

names(facIR)[names(facIR)=="R"] = "IRR0307"

datacum <- merge(datacum, facIR, all.x=T)

inspintvl = subset(inspcountquart, 13 <= quarterid & quarterid <= 32)

insprate = summaryBy(nbinsp ~ perexno + Recon, data=inspintvl, FUN=mean)

names(insprate)[names(insprate)=="nbinsp.mean"] = "IR"

insprate[insprate$Recon==0,]$Recon = "C"

insprate[insprate$Recon==1,]$Recon = "R"

facIR = cast(insprate, perexno ~ Recon)

names(facIR)[names(facIR)=="C"] = "IRC0408"

names(facIR)[names(facIR)=="R"] = "IRR0408"

datacum <- merge(datacum, facIR, all.x=T)

inspintvl = subset(inspcountquart, 17 <= quarterid & quarterid <= 36)

insprate = summaryBy(nbinsp ~ perexno + Recon, data=inspintvl, FUN=mean)

names(insprate)[names(insprate)=="nbinsp.mean"] = "IR"

insprate[insprate$Recon==0,]$Recon = "C"

insprate[insprate$Recon==1,]$Recon = "R"

facIR = cast(insprate, perexno ~ Recon)

names(facIR)[names(facIR)=="C"] = "IRC0509"

names(facIR)[names(facIR)=="R"] = "IRR0509"

datacum <- merge(datacum, facIR, all.x=T)

datacum = merge(datacum, facilities, all.x=T)

datacum$impaired = 0

datacum[datacum$S303D == "Y",]$impaired = 1

datacum$wastewat = 0

datacum[datacum$SIC == 4952,]$wastewat = 1
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datacum$elec = 0

datacum[datacum$SIC == 4911,]$elec = 1

datacum$plastic = 0

datacum[datacum$SIC == 2821,]$plastic = 1

temp = subset(datacum, NPR0307==0)

OLS.R3 = lm(IRR0307 ~ E01 + E02 + IE01 + IE02

+ travMin + wastewat + elec + plastic, data=temp)

temp = subset(datacum, NPR0408==0)

OLS.R4 = lm(IRR0408 ~ E02 + E03 + IE02 + IE03

+ travMin + wastewat + elec + plastic, data=temp)

temp = subset(datacum, NPR0509==0)

OLS.R5 = lm(IRR0509 ~ E03 + E04 + IE03 + IE04

+ travMin + wastewat + elec + plastic, data=temp)

temp = subset(datacum, NPC0307==0)

OLS.C3 = lm(IRC0307 ~ E01 + E02 + IE01 + IE02

+ travMin + wastewat + elec + plastic, data=temp)

temp = subset(datacum, NPC0408==0)

OLS.C4 = lm(IRC0408 ~ E02 + E03 + IE02 + IE03

+ travMin + wastewat + elec + plastic, data=temp)

temp = subset(datacum, NPC0509==0)

OLS.C5 = lm(IRC0509 ~ E03 + E04 + IE03 + IE04

+ travMin + wastewat + elec + plastic, data=temp)

tmp = mtable(OLS.R3, OLS.R4, OLS.R5, OLS.C3, OLS.C4, OLS.C5)

toLatex(tmp)

Test for Mulitcollinearity

vif(OLS.R3)

vif(OLS.R4)

vif(OLS.R5)

vif(OLS.C3)

vif(OLS.C4)

vif(OLS.C5)

61



Test for Heteroskedasticity

library(lmtests)

ncvTest(OLS.R3)

bptest(OLS.R3$model, data=temp)

ncvTest(OLS.R4)

bptest(OLS.R4$model, data=temp)

ncvTest(OLS.R5)

bptest(OLS.R5$model, data=temp)

ncvTest(OLS.C3)

bptest(OLS.C3$model, data=temp)

ncvTest(OLS.C4)

bptest(OLS.C4$model, data=temp)

ncvTest(OLS.C5)

bptest(OLS.C5$model, data=temp)

Probit Models for the Probability of Non-Random Inspections

probit.R5 <- glm(NPR0509 ~ IE01 + IE02 + IE03 + IE04

+ V_bot_2001 + V_bot_2002

+ V_bot_2003 + V_bot_2004

+ V_clo_2001 + V_clo_2002

+ V_clo_2003 + V_clo_2004

+ V_col_2001 + V_col_2002

+ V_col_2003 + V_col_2004

+ V_ddl_2001 + V_ddl_2002

+ V_ddl_2003 + V_ddl_2004

+ V_tss_2001 + V_tss_2002

+ V_tss_2003 + V_tss_2004

+ travtime

+ impaired + noTSS + noChlo + noBOD5

, family=binomial(link="probit"), data=datacum)

probit.R4 <- glm(NPR0408 ~ IE01 + IE02 + IE03

+ V_bot_2001

+ V_bot_2002 + V_bot_2003

+ V_clo_2001

+ V_clo_2002 + V_clo_2003

+ V_col_2001 +

+ V_col_2002 + V_col_2003
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+ V_ddl_2001

+ V_ddl_2002 + V_ddl_2003

+ V_tss_2001

+ V_tss_2002 + V_tss_2003

+ travtime

+ impaired + noTSS + noChlo + noBOD5

, family=binomial(link="probit"), data=datacum)

probit.R3 <- glm(NPR0307 ~ IE01 + IE02

+ V_bot_2001 + V_bot_2002

+ V_clo_2001 + V_clo_2002

+ V_col_2001 + V_col_2002

+ V_ddl_2001 + V_ddl_2002

+ V_tss_2001 + V_tss_2002

+ travtime

+ impaired + noTSS + noChlo + noBOD5

,family=binomial(link="probit"), data=datacum)

tmp = mtable(probit.R3, probit.R4, probit.R5)

temp = subset(datacum, wastewat == 1)

probit.C5 <- glm(NPC0509 ~ impaired + perdflw + nonpotw

+ pretreat + critical

+ IE01 + IE02 + IE03 + IE04,

family=binomial(link="probit"), data=temp)

probit.C4 <- glm(NPC0408 ~ impaired + perdflw + nonpotw

+ pretreat + critical

+ IE01 + IE02 + IE03,

family=binomial(link="probit"), data=temp)

probit.C3 <- glm(NPC0307 ~ impaired + perdflw + nonpotw

+ pretreat + critical

+ IE01 + IE02,

family=binomial(link="probit"), data=temp)

tmp = mtable(probit.C5, probit.C4, probit.C3)

temp = subset(datacum, wastewat == 0)

probit.C5 <- glm(NPC0509 ~ impaired + pretreat + noBOD5

+ IE03 + IE04

+ MV_2003 + MV_2004

+ MaxV_2003 + MaxV_2004

, family=binomial(link="probit"), data=temp)
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probit.C4 <- glm(NPC0408 ~ impaired + pretreat + noBOD5

+ IE02 + IE03

+ MV_2002 + MV_2003

+ MaxV_2002 + MaxV_2003

, family=binomial(link="probit"), data=temp)

probit.C3 <- glm(NPC0307 ~ impaired + pretreat + noBOD5

+ IE01 + IE02

+ MV_2001 + MV_2002

+ MaxV_2001 + MaxV_2002

, family=binomial(link="probit"), data=temp)

tmp = mtable(probit.C5, probit.C4, probit.C3)

Independence Test for Inspection Types

# Independence Test for Reconnaissance / Compliance

library(MASS)

t = table(datacum$NPC0509, datacum$NPR0509)

chisq.test(t)
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