
c© 2012 Rini Kaushik



GREENHDFS: DATA-CENTRIC AND CYBER-PHYSICAL ENERGY MANAGEMENT SYSTEM
FOR BIG DATA CLOUDS

BY

RINI KAUSHIK

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Klara Nahrstedt, Chair
Professor Laxmikant Sanjay Kale
Professor Tarek Abdelzaher
Professor Remzi Arpaci-Dusseau, University of Wisconsin, Madison



ABSTRACT

Explosion in Big Data has led to a rapid increase in the popularity of Big Data analytics. With

the increase in the sheer volume of data that needs to be stored and processed, storage and

computing demands of the Big Data analytics workloads are growing exponentially, leading to a

surge in extremely large-scale Big Data cloud platforms, and resulting in burgeoning energy costs

and environmental impact.

The sheer size of Big Data lends it significant data movement inertia and that coupled with

the network bandwidth constraints inherent in the cloud’s cost-efficient and scale-out economic

paradigm, makes data-locality a necessity for high performance in the Big Data environments.

Instead of sending data to the computations as has been the norm, computations are sent to

the data to take advantage of the higher data-local performance. The state-of-the-art run-time

energy management techniques are job-centric in nature and rely on thermal- and energy-aware job

placement, job consolidation, or job migration to derive energy costs savings. Unfortunately, data-

locality requirement of the compute model limits the applicability of the state-of-the-art run-time

energy management techniques as these techniques are inherently data-placement-agnostic in

nature, and provide energy savings at significant performance impact in the Big Data environment.

Big Data analytics clusters have moved away from shared network attached storage (NAS) or

storage area network (SAN) model to completely clustered, commodity storage model that allows

direct access path between the storage servers and the clients in interest of high scalability and

performance. The underlying storage system distributes file chunks and replicas across the servers

for high performance, load-balancing, and resiliency. However, with files distributed across all

servers, any server may be participating in the reading, writing, or computation of a file chunk at

any time. Such a storage model complicates scale-down based power-management by making it

hard to generate significant periods of idleness in the Big Data analytics clusters.

GreenHDFS is based on the observation that data needs to be a first-class object in energy-
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management in the Big Data environments to allow high data access performance. GreenHDFS

takes a novel data-centric, cyber-physical approach to reduce compute (i.e., server) and cooling

operating energy costs. On the physical-side, GreenHDFS is cognizant that all-servers-are-not-

alike in the Big Data analytics cloud and is aware of the variations in the thermal-profiles of

the servers. On the cyber-side, GreenHDFS is aware that all-data-is-not-alike and knows the

differences in the data-semantics (i.e., computational jobs arrival rate, size, popularity, and evo-

lution life spans) of the Big Data placed in the Big Data analytics cloud. Armed with this

cyber-physical knowledge, and coupled with its insights, predictive data models, and run-time in-

formation GreenHDFS does proactive, cyber-physical, thermal- and energy-aware file placement,

and data-classification-driven scale-down, which implicitly results in thermal- and energy-aware

job placement in the Big Data analytics cloud compute model. GreenHDFS’s data-centric energy-

and thermal-management approach results in a reduction in energy costs without any associated

performance impact, allows scale-down of a subset of servers in spite of the unique challenges

posed by Big Data analytics cloud to scale-down, and ensures thermal-reliability of the servers in

the cluster.

GreenHDFS evaluation results with one-month long real-world traces from a production Big Data

analytics cluster at Yahoo! show up to 59% reduction in the cooling energy costs while performing

9x better than the state-of-the-art data-agnostic cooling techniques, up to a 26% reduction in

the server operating energy costs, and significant reduction in the total cost of ownership (TCO)

of the Big Data analytics cluster. GreenHDFS provides a software-based mechanism to increase

energy-proportionality even with non-energy-proportional server components.

Free-cooling or air- and water-side economization (i.e., use outside air or natural water resources

to cool the data center) is gaining popularity as it can result in significant cooling energy costs

savings. There is also a drive towards increasing the cooling set point of the cooling systems to

make them more efficient. If the ambient temperature of the outside air or the cooling set point

temperature is high, the inlet temperatures of the servers get high which reduces their ability

to dissipate computational heat, resulting in an increase in server temperatures. The servers are

rated to operate safely only with a certain temperature range, beyond which the failure rates

increase. GreenHDFS considers the differences in the thermal-reliability-driven load-tolerance

upper-bound of the servers in its predictive thermal-aware file placement and places file chunks

in a manner that ensures that temperatures of servers don’t exceed temperature upper-bound.

Thus, by ensuring thermal-reliability at all times and by lowering the overall temperature of the

servers, GreenHDFS enables data centers to enjoy energy-saving economizer mode for longer
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periods of time and also enables an increase in the cooling set point.

There are a substantial number of data centers that still rely fully on traditional air-conditioning.

These data centers can not always be retrofitted with the economizer modes or hot- and cold-aisle

air containment as incorporation of the economizer and air containment may require space for

ductwork, and heat exchangers which may not be available in the data center. Existing data

centers may also not be favorably located geographically; air-side economization is more viable

in geographic locations where ambient air temperatures are low for most part of the year and

humidity is in the tolerable range. GreenHDFS provides a software-based approach to enhance

the cooling-efficiency of such traditional data centers as it lowers the overall temperature in the

cluster, makes the thermal-profile much more uniform, and reduces hot air recirculation, resulting

in lowered cooling energy costs.
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CHAPTER 1

INTRODUCTION

In today’s digital world, Big Data is ubiquitous in myriad forms such as high-definition videos,

movies, photos, scientific simulations, medical records and images, financial transactions, phone

records, genomics data sets, seismic images, climatology and weather records, and geo-spatial

maps. Social media sites such as Facebook and YouTube store billions of pictures and videos

whose total size is already in excess of petabytes. Sensors in smart phones, human bodies,

vehicles, smart energy meters, servers, and traffic controllers continuously generate significant

amount of sensed data, which is then used to provide value-added services such as power usage

monitoring and dynamic power pricing, location sensing, targeted advertising, traffic condition

monitoring, patient management, and care for the elderly. International Data Corporation (IDC)

predicts that the total digital data will exceed 35.2 zettabytes by 2020 [7]. And, this data is only

expected to grow every year with the projected growth rate of 40% [101].

Explosion in Big Data [33] has led to a surge in Big Data analytics [48] which revolves around

performing computations over extremely large data sets. There is a wealth of information hidden in

the Big Data that can be leveraged for significant value add across technology frontiers. Internet

services and e-commerce companies such as Google, Facebook, Yahoo!, Amazon, Microsoft,

Twitter, and eBay mine petabytes of web logs daily to generate better business insights and to

predict user interests for targeted advertising. Myriad use cases of Big Data analytics range from

fraud detection in financial transactions, system log processing to identify errors, satellite image

processing for astronomical discoveries, seismic data analysis for earthquake predictions, geo-

spatial mapping for oil exploration, mail anti-spam detection, machine learning and data mining

to build predictive user interest models for advertising optimizations, improving security through

better intelligence gathering, portfolio risk management in real-estate, and all the way to genomics

research for disease profiling, drug discoveries, and better health-care management. There are

many Big Data platforms and analytical solutions available such as IBM’s InfoSphere BigInsights

[73], HP’s Vertica [70], EMC’s Greenplum [56], Oracle’s Exadata [112], and open-source Hadoop
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[144]. The data management and analytics software business is expanding significantly and is

estimated to be almost $100 billion [54] already.

1.1 Motivation

With the sheer volume of the data that needs to be stored and processed, storage and computing

demands of the Big Data analytics workloads are on a rapid increase. Big Data requires infras-

tructure that is capable of massive scale-out at economies-of-scale. This has led to an increase in

big cloud data centers that provide Big Data analytics as software-as-a-service (SaaS). Gartner

predicts that by 2015, world-wide data center hardware spending will surpass $126.2 billion and

71 percent of this spending will come from the big data center class [1]. The huge infrastructure

brings in its wake burgeoning energy costs as over the lifetime of IT equipment, the operating

energy costs are comparable to and may even exceed the initial equipment acquisition costs [32],

and constitute a significant part of the total cost of ownership (TCO) of a data center [39,86,116].

Energy costs of powering and cooling the IT equipment are the dominant costs in the overall

energy costs of the data centers [15, 59].

Energy efficiency of data centers is defined in terms of power usage effectiveness (PUE), which

is the ratio of the total building power to the IT power. A PUE value of 1 is ideal as it entails

that all the building power is consumed by the IT equipment and there are no power overheads.

However, majority of the data centers still have a high PUE of 1.8 as per a 2011 survey of 500

data centers [2], and cooling system’s power overhead is major culprit in the high PUE. Given the

high power densities prevalent in today’s data centers, a lot of heat is generated by the computing

equipment and efficient removal of the heat is a necessity. The goal of cooling system in the

data centers is to maintain the server temperatures within a safe operating range as increase in

a server’s temperature adversely impacts its reliability and lifetime. For every one watt of power

consumed by the computing infrastructure, another one-half to one watt is consumed in powering

the cooling infrastructure [113]. Environmental impact of cooling is also significant: a traditional

15 kilowatts water-chiller based data center uses a whopping 360,000 gallons of water a day for

cooling [3]. Data centers in US alone emit an upwards of 170,000 metric tons of carbon dioxide

annually and this number is only expected to quadruple in the coming years. Hence, reduction

in overall (i.e., both server and cooling) operating energy costs and needs of the extremely

large-scale, Big Data analytics clouds has become an urgent priority [40, 57].
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Cooling energy costs are proportional to the difference in the temperature of the hot air exhausted

by the servers in the data center and the cooling set point temperature of the cooling system.

One way to curtail the cooling energy costs is to raise the cooling set point temperature of

the cooling system which also has a beneficial side-effect of increasing the efficiency of the

cooling system [27], further reducing the cooling energy costs. And, the other way is to use

air-side or water-side economization (free-cooling) fully or in conjunction with traditional cooling

systems [110]. In economization or free-cooling mode, outside air is used to cool the data center

bypassing the traditional cooling systems such as chillers and air conditioners which are high

cooling power consumers; the cooling energy costs of the data centers can be cut down if they

are capable of supporting and operating for extended periods of time in the economizer mode.

The cooling-efficacy in the economizer mode depends on the temperature and the quality of

the outside air. If the ambient temperature of the air is high in the economizer mode or if

the set point temperature of the air conditioner is high, the inlet temperatures of the servers

may get high, thereby reducing their cooling-efficiency, and resulting in their temperature rise.

Now, the servers can safely operate only within their rated, allowable temperature range; if the

server temperature goes out of the allowable range, failure rates increase. For example, the

safe operating temperature range of Dell Blade is 50oF - 95oF, IBM Blade is 50oF - 95oF, and

NetAppStorage is 50oF - 104oF. Thus, a thermal energy management technique is needed that

ensures thermal-reliability of the servers in addition to reducing cooling energy costs. Ensuring

thermal-reliability is much more important in the purely free-cooled data centers as they are

totally at the mercy of the ambient temperatures and conditions.

While several companies such as Microsoft, Google, and Yahoo! have announced new data centers

that rely only on free-cooling or air- and water-side economization, there are a substantial number

of traditional data centers that still rely on air- or liquid-cooling either entirely or in-part coupled

with economization. The existing data centers can not always be retrofitted with the economizer

modes as incorporation of the economizers may require space for ductwork, and addition of heat

exchangers which may not be available in the data center. Based on the location of the older

data centers, free-cooling may or may not be an option as free-cooling is sensitive to outside

ambient air temperature and climatic conditions; it is easier and more viable to use in locations

where ambient air temperatures are low for most part of the year and humidity is in the tolerable

range.

To make operation in economizer mode feasible for longer periods of time and many more
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geographic locations, American Society of Heating, Refrigerating and Air-conditioning Engi-

neers (ASHRAE) has even increased the allowable operating safety temperature range of the

servers [27]; however, servers need to be designed to be able to support that range before the

economization modes can be introduced. And, it just may be too expensive for some of the

existing data centers to completely overhaul their existing servers in interest of new servers with

higher thermal tolerance. Furthermore, a transition between the economizer and a traditional

cooling mode should happen reliably during unfavorable climate conditions for the economizer

mode. However, the reliability may not be as good in a retrofitted system, and hence, presents an

additional concern to retrofitting economizer mode in the existing data centers. Thus, tradition-

ally cooled data centers abound, and a cooling energy costs reduction and thermal-management

technique that works for both traditionally cooled, and new free-cooled data centers is

needed.

In addition to reducing energy costs and ensuring thermal-reliability, energy-proportionality is

increasingly becoming an important consideration [28]. In an ideal, perfectly energy-proportional

system, almost no power should be consumed when the system is idle and power consumption

should increase in proportion to the increase in the activity level. In reality, instead of consuming

negligible power, the server components consume almost 40%-70% [28] of the peak power during

idle utilization. Main culprits are the memory systems, disk drives, and the networking equipment,

and not the processors as their dynamic range (i.e., the range between the power draw at peak

utilization vs. idle utilization) is much lower than that of the processor. In fact, processors

that allow voltage and frequency scaling are the most energy-proportional server components.

The dynamic range is approximately 2.0x for memory (DRAM DIMM consumes 3.5-5W at peak

utilization and 1.8-2.5W at idle utilization), 1.2x for disks (Seagate Barracuda ES.2 1TB consumes

11.16W at peak utilization and 9.29W at idle utilization), and less than 1.2x for networking

switches.

The ground reality is grim. A six-month study of 5000 servers in a compute cluster at Google

shows that servers spend majority of the time in the 10%-50% utilization range. This is a

very energy-inefficient range as the power consumption of the these servers can be as high as

70% of the peak power at 10% utilization, and as high as 84% of the peak power at 50%

utilization [68]. Energy-proportionality cannot be achieved through processor optimizations such

as dynamic voltage and frequency scaling (DVFS) alone (as has been the focus), and requires

improvements across all server components. Some non-energy-proportional components such as

the disks require greater innovation to be energy-proportional. Disk drives consume significant
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amount of power simply to keep the platters spinning, possibly as much as 70% of their total power

for high RPM drives [65]. Now, hardware-level innovations to make server hardware components

energy-proportional may take significant time. Hence, there is an need to come up with software-

based resource management policies to make Big Data analytics clusters energy-proportional even

with non-energy-proportional server components.

1.2 Limitations of Existing Energy Management Techniques

The Big Data Analytics cloud data centers have very different compute, energy and storage

models compared to those of traditional data centers. This brings forth many new and unique

challenges to energy management [68] techniques as outlined below.

1.2.1 Cooling Energy Management

Majority of the existing research on run-time reduction of cooling energy costs relies on thermal-

aware computational job placement/migration to reduce the cooling energy costs [16, 29, 106,

107,113,126,134,137]. These techniques either aim to place incoming computationally intensive

jobs in a thermal-aware manner on servers with lower run-time temperatures or attempt to

reactively migrate jobs from high run-time temperature servers to servers with lower run-time

temperatures. These techniques are inherently data-placement-agnostic in nature and work very

well when servers are state-less, data resides on a shared storage area network (SAN) or network

attached storage (NAS) device, data sizes are small, and data can be sent to the computation

without network bandwidth constraints.

Big Data analytics cloud mandates a different compute model which presents a significant chal-

lenge to the existing run-time cooling techniques. The network bandwidth constraints of the

commodity network switches and the huge data sizes of Big Data render sending data to compu-

tations infeasible. Server-local bandwidth can be 8-20x higher than inter-rack bandwidth in these

clusters [68]. Hence, data-locality is a really important consideration for high performance, and

computations are sent to the servers where the data resides [49] instead of sending data to the

computations as was done traditionally. An incoming computational job is split into sub-jobs,
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and each sub-job is sent to the server hosting the target data in interest of data-locality.

Data-locality brings forth challenging performance and energy trade-offs as illustrated in the

example in the Figure 1.1. Respecting data-locality in thermal-aware job placement constrains

placement only to the servers that host chunks of the job’s target file. Now, these servers may

not all be thermally-conducive to the placement of the new job. In the example shown in the

Figure 1.1, two of the chunks of the target file reside on the servers with the highest temperature

in the cluster. When the sub-jobs follow the chunks, the resultant computational loads further

increase the temperatures of the two servers. The example illustrates that non-thermal-aware,

data-local job placement may result in an unbounded rise in server temperatures, resulting in

thermal-unreliability, and an increase in the cooling energy costs.

Figure 1.1: Illustration of data-agnostic thermal-aware job placement limitation in Big
Data analytic cloud.

On the other hand, neglecting data-locality results in cooling energy costs savings at high perfor-

mance cost. In Figure 1.1, the incoming new job is placed on the coolest run-time temperature

server in a data-agnostic manner. Now, not all chunks of the target file of the jobs are server-local

and some chunks reside on different servers on the same rack and some on servers in altogether

different racks. Since the inter-rack and intra-rack bandwidths are much lower than the server-

local bandwidth, such data accesses will suffer from significantly degraded performance and an

increase in the overall job completion time. And, the increase in the job completion time will

further reduce the cooling energy costs benefit of such a scheme. Thus, there is a need for new
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cooling energy management techniques for Big Data analytics cloud that deliver cooling energy

savings while allowing data-local high data access performance.

1.2.2 Compute Energy Management

There is significant amount of research on increasing energy-efficiency of the individual com-

ponents of the server such as the processor [44, 47, 69, 105, 128, 138, 143], storage subsys-

tem [51, 60, 65, 92, 118, 130, 141, 147], memory [17, 18, 50, 71, 89, 94, 95, 103, 131, 146] and net-

working [25, 83, 96, 109, 124]. However, no single server component (i.e., processor, memory or

disks) contributes significantly to the overall power consumption in the commodity cloud servers

as discussed in Section 2.1.5 and hence, an energy-management scheme, such as scale-down,

that encompasses the entire server is needed.

Scale-down, that involves transitioning server components such as the processor, memory, and

disks to an inactive, low-power sleep/standby power state during periods of idle utilization, is an

attractive technique to conserve energy. A typical server consumes only 1%-10% of peak power

in an inactive sleeping state vs. 40%-70% of peak power in active idle power mode. Given the

non-energy-proportional nature of some of the state-of-the-art server components, scale-down is

one of the most viable options for yielding energy-proportionality during idle periods. However,

scale-down cannot be done naively. Scale-down mandates significant periods of idleness in the

server components as energy is expended and transition time penalty is incurred anytime the

components are transitioned back to an active power mode.

There is significant amount of research literature on scale-down [29, 87, 107, 108, 126]. A major-

ity of these techniques tries to scale-down servers by manufacturing idleness by migrating and

consolidating workloads and their corresponding state to fewer machines during periods of low

load. This can be relatively easy to accomplish when using simple data models, when servers

are mostly stateless, e.g., serving data that resides on a shared network attached storage (NAS)

or storage area network (SAN). When the data resides on a shared NAS/SAN, the data access

latency is the same between any server in the cluster and the storage system; hence, workloads

can be moved around servers without any performance impact.

However, given the massive bandwidth requirements and the sheer amount of the data that

needs to be processed, Big Data analytics clusters have moved away from NAS/SAN model
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to completely clustered, commodity storage model that allows direct access path between the

storage servers and the clients [61]. The underlying storage system distributes file chunks and

replicas across the servers for high performance, load-balancing and resiliency. However, now

with files distributed across all servers, any server may be participating in the reading, writing, or

computation of a file chunk at any time. Thus, such a data placement complicates scale-down

based power-management and makes it hard to generate significant periods of idleness in the Big

Data analytics clusters and renders usage of inactive power modes infeasible [91].

Big Data analytics cloud mandates a different compute model which presents a significant chal-

lenge to the existing scale-down techniques. The network bandwidth constraints of the commodity

network switches and the huge data sizes of Big Data render sending data to computations in-

feasible. Data-locality is a really important consideration for high performance as server-local

bandwidth can be 8-20x higher than inter-rack bandwidth in these clusters [68]. To avail high

server-local data access bandwidth, computations are sent to the servers where the data is resid-

ing [49]. This brings forth challenging performance and energy trade-offs: respecting data-locality

makes workload consolidation very constrained or almost impossible; neglecting data-locality re-

sults in power savings at high performance cost. Figure 1.2, captures the above-mentioned

Figure 1.2: Racks and servers in the cluster. Jobs 1, 2, and 3 are consolidated on few
servers while the relevant data (marked in same color) for each job resides on other
servers (same or different racks) in the cluster.

challenges. In the example in the Figure 1.2, there are three incoming jobs during a period of

low load. A job consolidation based scale-down technique consolidates three jobs on few servers
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during periods of low load in the hope of scaling-down rest of the servers for saving energy costs.

However, the rest of the servers actually host the very files chunks these jobs need to process

and can not be scaled-down. And, such a data-placement-agnostic job consolidation comes at

significant performance impact. The servers on which the jobs have been consolidated, don’t

host all the file chunks that these jobs need to process resulting in either a rack-local or even

an inter-rack data access resulting in a significant performance degradation. Another possibility

could be to consolidate both the jobs and the target files on few servers during periods of low

load. However, such a technique will still suffer from performance impact as Big Data analytics

relies on high parallel file access performance which happens only when the files are chunked and

spread across the clusters.

Leverich et. al. [91] and Amur et. al. [23] have taken an energy-aware replica placement approach

whereby primary replicas are consolidated on a covering set of servers that are always kept in a

powered-on state, and secondary and tertiary replicas are placed on the rest of the servers which

are then scaled-down. While being promising, these techniques suffer from degraded read and

write data access performance. The covering set of servers containing the primary replicas of

the files have all the data read and write accesses directed to them, resulting in an increase in

queuing delays, and lower data read and write access performance. In Big Data analytics clusters,

file writes happen mostly at the time of new file creation and a write is considered complete only

when all the replicas of the file chunks have been written to the servers. Now, in order to avoid

waking up scaled-down servers to store the secondary and tertiary replicas, these techniques rely

on write off-loading technique, whereby write requests on scaled-down servers are temporarily

redirected to persistent storage elsewhere in the data center [108]. The few write-offloading

servers further serve as a performance bottleneck during the file writes. Write-performance is

an important consideration in Big Data analytics production clusters as significant amount of

new data is written daily on the cluster and is computed upon right afterwards. Reduce phase

of Map Reduce, the most popular framework for Big Data analytics [49], writes intermediate

computation results back to the cluster further mandating high write performance to ensure high

overall performance of a Map Reduce task.

Lang and Patel propose an “All-In” strategy (AIS) for scale-down in Map Reduce clusters [85].

AIS uses all servers in the cluster to run a workload and then powers down the entire cluster.

However, in production clusters, service level agreements (SLA), completion deadlines, and re-

source constraints may prevent batching the workloads together. Sharma et. al. [125] have

extended upon Meisner et. al.’s work [102] to allow energy savings via blinking (i.e., transitioning
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between high-power active state and low-power inactive state). However, both these approaches

assume Solid State Drive (SSD) based clusters. Given the low capacities and high costs of the

SSD drives, clusters comprising entirely of SSD drives are not feasible at the moment, especially

with the petascale storage demands of production Big Data analytics clusters [36]. Disk-based

clusters will suffer from significant performance degradation because of the transition penalty as-

sociated with frequent state transitions that happen under these schemes. In addition, hardware

reliability may also get impacted as disks have limited start/stop cycles and disk longevity goes

down with very frequent state transitions required by these schemes. Thus there is a need for

new scale-down techniques that work in spite of the unique challenges posed by the Big Data

analytics clouds, and yield compute energy costs savings and energy-proportionality without any

or reduced performance impact.

1.3 GreenHDFS

GreenHDFS is based on the observation that to support the increase in digital data exhaust,

the technology has to fundamentally adapt and change to meet the needs of the Big Data and

that data needs to be a first-class object in energy-management in the Big Data environments.

To reduce compute (i.e., server operating) energy costs and to provide energy-proportionality,

GreenHDFS takes a data-centric, cyber-physical scale-down approach which is different from the

state-of-the-art job-centric scale-down approaches. Instead of energy-aware consolidation of jobs

or replicas as was done earlier, GreenHDFS focuses on energy-aware differentiation and consoli-

dation of files to realize sufficient idleness to enable scale-down. On the cyber-side, GreenHDFS

is cognizant that all-the-files-are-not-alike in the cluster and have different job arrival rates, sizes,

popularity, and evolution life spans. On the physical-side, GreenHDFS is cognizant of uneven

thermal-profile of the servers. Instead of treating the files and the servers alike, GreenHDFS

differentiates between them on cost, performance, temperature, and power basis, and separates

cluster servers and files into logical Active and Inactive zones. Zoning is done in an energy-,

thermal-, and performance-aware manner that ensures high read and write performance of the

newly arriving and active files in addition to allowing energy costs savings.

Because of compliance, government regulations around file retentions, and disaster recovery

requirements, presence of dormant files, i.e., files are just lying dormant in the system without

getting computed upon or accessed has increased significantly. A study of a production Big Data
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analytics Hadoop cluster at Yahoo! [79] found that 56% of the storage in the cluster was lying

dormant (i.e., had not been accessed in the entire one-month long analysis duration). A majority

of this dormant data needs to exist for regulatory and historical trend analysis purposes and can

not just be deleted [79]. IDC has also pointed out that up to 70% data in the data centers is

dormant in nature and a study of Microsoft Big Data analytics cloud found 50% dormant data in

their Big Data analytics cluster [64]. GreenHDFS consolidates the dormant files on the Inactive

zone, and spreads out the active and newly created files on the Active zone.

Since computations exhibit high data-locality in Big Data analytics frameworks such as Map Re-

duce [144], energy-aware file placement translates into energy-aware computation placement. The

computations flow naturally to the files in the Active zone, resulting in maximal computational

load in the Active zone and minimal computational load in the Inactive zone. GreenHDFS

results in a number of servers in the Inactive zone with very low utilization and guaranteed

periods of idleness, making scale-down feasible.

To reduce cooling energy costs and to ensure thermal-reliability, GreenHDFS takes a different

data-centric, cyber-physical cooling energy management approach which is fully data-placement-

aware and doesn’t involve energy savings and performance trade-offs. GreenHDFS is aware that

the cooling and server power consumption depend on the load on the servers, and since jobs follow

the files, the load on a server directly depends on the way the files are chunked and distributed

across the servers in the cluster. Thus, file distribution affects the load distribution in the cluster,

which in turn affects the cluster’s energy costs. In GreenHDFS, files are placed first in the cluster

in a thermal- and energy-aware manner so that the computational jobs can then automatically

enjoy energy costs savings in addition to high data-local performance by following such proactively

placed files. Various cyber-physical components such as controller, monitor, and actuator, and

policies of GreenHDFS work in tandem to allow scale-down and cooling energy management.

The various challenges faced by the data-centric cooling energy management and scale-down

approach in GreenHDFS are discussed next.

1.3.1 GreenHDFS Data-Centric Scale-Down Challenges

Scale-down cannot be done naively. Energy is expended and transition time penalty is in-

curred when the components are transitioned back to an active power mode. While inactive
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sleep/standby power states of disks are very attractive as they consume negligible power com-

pared to active idle mode which still consumes significant power, these inactive modes involve a

wake-up latency as high as ten seconds for an inactive-to-active mode transition. A scale-down

technique raises following questions to be effective:

• Is there a way to realize sufficient idleness in the servers to ensure that energy savings by

scaling-down is higher than the energy spent in the inactive-to-active power state transition?

• Is it possible to ensure that there is no hardware reliability risk as some components (e.g.,

disks) have limited number of start/stop cycles (e.g., 50,000) and frequent power state

transitions may adversely impact the lifetime of the disks?

• Is there a way to ensure that there is no performance degradation because of scaled-down

servers? Disks take as high as ten seconds to transition from active-to-inactive power

state. Hence, frequent accesses to the data residing on the scaled-down servers will result

in frequent power state transitions which can lead to significant performance degradation.

Thus, steps need to be taken to reduce the need to access the data residing on the scaled-

down servers, and also, to amortize the performance penalty of the unavoidable power state

transitions that do need to occur.

• Is there a way to ensure that there is no performance impact of load-unbalancing caused

by scaling-down some servers in the data center? Steps need to be taken to ensure that

load concentration on the remaining active state servers does not adversely impact overall

performance (including data read and write access performance) of the system.

• GreenHDFS data-centric scale-down approach requires consolidation of the dormant files.

This raises several additional questions/challenges:

– How should dormant files get identified?

– How should truly dormant files get distinguished from files that are simply experiencing

a temporary lull in jobs arrival?

– What are the repercussions of inaccurate dormancy determination?

– Should the dormancy determination be coarse-grained at data-set level or fine-grained

at file-level? What are the advantages and disadvantages of either approaches?
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– Is it possible to determine dormancy onset in the files predictively?

– Should thresholds be used in the determination; if yes, what is the sensitivity of the

system to threshold values?

– How should the situation when a dormant file is no longer dormant be handled?

– What support does dormancy determination require from the rest of the system?

What is the performance repurcussion of this determination?

– How often should the dormant files get moved to the Inactive zone?

– When should the dormant files get moved to the Inactive zone?

• How should the Inactive zone servers be selected to reduce the migration time of the

dormant files?

• What trade-offs are involved in the selection of the Inactive zone servers?

• How should the cluster get split into logical Active and Inactive zones in an energy, and

performance-aware fashion?

1.3.2 GreenHDFS Data-Centric Cooling Energy Management Challenges

A naive way to do thermal-aware file placement is to place an incoming file f̃j on the server i

that has the lowest temperature at that time instance. However, this naive file placement can

result in higher server temperatures than anticipated, and may impact the cooling energy costs

and thermal reliability as illustrated in the example in Figure 1.3. Let there be two servers S1 and

S2 in the cluster. At file f3’s arrival at t = 1, server S2’s temperature T2,t=1 is lower than server

S1’s temperature T1,t=1. The naive placement will choose server S2 as the destination for file f3

because of its lower temperature. However, S2 is a bad choice for f3. The cumulative load of

files f3 and f2 (f2 is already resident on the server S2), may result in very high computational

load at t = 5 on server S2. As a result, S2’s temperature T2,t=5 may even exceed the reliability-

driven temperature upper-bound Tmax (which is stated in the data sheet of the servers) at t = 5,

resulting in an increase in the failure rate of the server.
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Figure 1.3: Thermal-aware file placement challenge.

On the contrary, f3’s expected load-profile is a much fit better fit for S1’s expected thermal-profile.

The cumulative load-profile of f3 and f1 won’t result in S2 exceeding Tmax at any point in time as

the two load-profiles are complementary in nature. Thus, there is a need for more sophisticated

and predictive thermal-aware file placement algorithms and heuristics that can somehow glean

information about the “future” computational load profile of an incoming file and the cumulative

“future” computational load profile of the servers in the cluster and then place the file “now”

on the server that will be most thermally conducive in the “future”. Informed thermal-aware file

placement is further challenging and raises several hard questions:

• Is it even possible to have an optimal solution for thermal-aware file placement or else, is

there a need to rely on approximate algorithms?

• How and what aspects of the computation job-profile of the file should be predicted to gain

futuristic knowledge to guide the file placement?

• How should the files be placed on servers in a way that ensures that the cumulative com-
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putational load of the files results in a thermal- and cooling-efficient temperature-profile of

the server?

• There are various varieties of cooling techniques in today’s data centers as elaborated in the

Background Chapter. Is it possible to have a technique that can ensure thermal reliability,

lower thermal-profile, and reduce cooling energy costs both in: 1) new data centers with

air- or water-side economization and hot- and cold-aisle air containment, and 2) traditional

air-conditioner or water-chiller cooled data centers without air containment or economizer

modes and high PUE values?

• How sensitive is the technique to cluster, workload, and data set parameters such as file

size skew, delta in inlet thermal-profile, utilization, file creation rate and sampling rate?

• How much run-time information should be incorporated in the file placement decision mak-

ing process?

1.4 Contributions of the Dissertation

GreenHDFS’s main contributions lie in introducing a data-centric, cyber-physical thermal and

energy management Big Data analytics cloud [78–82]. To the best of our knowledge, this is

the first dissertation that takes a data-centric approach to reduce cooling energy costs, ensure

thermal-reliability of the servers, and to scale servers down in Big Data analytics cloud while

allowing data-local high performance. Evaluation with one-month long real-world traces from

a production Big Data analytics cluster (2600 servers, 5 petabytes, 34 million files) at Yahoo!

shows that GreenHDFS significantly lowers cooling costs by up to 59%, and compute energy

costs by 26%, while giving up to 9x times higher performance than state-of-the-art data-agnostic

job placement centric cooling energy management techniques. GreenHDFS results in lower over-

all cluster temperature, more uniform thermal-profile, less thermal hot-spots, thermal-reliability

assurance, and higher cooling-efficiency of the cooling system in both traditional and new data

centers. The specific contributions are as follows:

• Performance- and Energy-Aware Zone Partitioning Zoning needs to be done in such

a way that energy savings can be realized without performance impact. GreenHDFS uses

zone partitioning optimization algorithm detailed in Section 4.5.1 to determine the opti-
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mal number of servers to be assigned to the Inactive zone subject to performance (i.e.,

throughput and response time) and capacity constraints. The zone partitioning algorithm

ensures that throughput and response time is not impacted by the load-unbalancing caused

by zoning.

• Thermal-Aware Zoning GreenHDFS is aware that in data centers uneven inlet thermal-

profile is ubiquitous because of distance from and varying ability of the cooling system

to cool different parts of the data center. In traditional air-cooled data centers, uneven

thermal-profile is further aggravated because of hot air recirculation and air bypass. Due to

the complex nature of airflow inside data centers, some of the hot air from the outlets of the

servers recirculates into the inlets of other servers. The recirculated hot air mixes with the

supplied cold air and causes inlets of some of the servers in the data center to experience

a rise in inlet temperature. The higher the inlet temperature of a server, the lower is

its cooling-efficiency (i.e., ability to remove the heat generated). Lower cooling-efficiency

compromises the ability of a server to dissipate the heat generated by the computational

load. GreenHDFS is cognizant of the uneven inlet temperatures (i.e., varying cooling-

efficiencies) of the servers in the cluster and does thermal-aware server zone partitioning

as illustrated in Section 4.5.2 which aids in cooling energy costs reduction in addition to

compute energy costs reduction. Dormant files with low computation profile and thereby,

low heat dissipation, are deemed a perfect fit for cooling-inefficient servers by GreenHDFS,

and are placed on these servers accordingly. On the other hand, active files with high

computation profile and high heat dissipation are deemed a perfect fit for cooling-efficient

servers.

• No Performance, Energy Costs Savings Trade-offs GreenHDFS is fully cognizant of

the importance of data-locality in the Big Data analytics cloud. GreenHDFS does energy-

and thermal-aware file placement which naturally results in an energy-efficient job placement

resulting in cooling energy costs reduction. The computational jobs enjoy server-local, low

latency data accesses and hence, the performance is not impacted.

• High Performance of Active Files Big Data Analytics is data-intensive in nature and

relies on high data access performance. GreenHDFS takes several steps to ensure high

performance of the active data as shown below:

– GreenHDFS takes benefit of zoned bit recording (ZBR) to place active data on the

outer hard disk cylinder zones which have higher transfer bandwidth as shown in
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Section 4.5.1. Such a placement reduces the service time of the data accesses, and

hence, alleviates the load-unbalancing caused by scale-down.

– All files are not alike and heterogeneity in file sizes and computational job profiles exists

in Big Data analytics as well. As shown in Section 4.6.2, small files are present even

in Big Data Analytic platforms and many a times suffer in data access performance

because of line-blocking behind bigger files. GreenHDFS uses its predictive modeling

to do fine-grained and fine-tuned proactive zone selection for an incoming file as shown

in Section 4.6.2. Suitable small files are pro-actively placed in servers containing Solid

State Drives; such a separation aids in performance. GreenHDFS also does proactive

and self-adaptive replication and de-replication for files based on their predicted job-

profile and active lifespan as shown in Section 4.6.4.

– Majority of the servers are assigned to the Active zone and minority to the Inactive

zone so that active files can be load-balanced in a fine-grained manner across the

servers in the Active zone which is very important for high parallel data access. Since

there can be larger amount of dormant files than active files, measures need to be taken

to reduce the server footprint of the Inactive zone servers so that more servers can be

assigned to the Active zone. GreenHDFS allocates more disks to the Inactive zone

servers, and uses reliability mechanism as shown in Section 4.6.4, and space-efficient

compression as shown in Section 4.6.5that reduces Inactive zone’s storage footprint.

• Energy-Aware Data Management Scale-down mandates long periods of idleness, less

number of power state transitions, and ways to reduce the need to wake up servers to

ensure energy savings, amortization of performance degradation, and hardware reliability.

GreenHDFS governs the Inactive zone with a totally different set of policies that are

designed in a way to ensure effective scale-down as shown in Section 4.6.3 and 4.6.6.

GreenHDFS policies are designed to curtail accesses to the scaled-down servers in order to

limit the impact on power state transition penalty on performance.

• File Dormancy Determination GreenHDFS is aware that all-files-are-not-alike in the

cluster. GreenHDFS relies on a policy called File Migration Policy covered in Section 4.6.7

to identify, move, and consolidate dormant files on the Inactive zone. The policy is during

periods of low load to ensure no performance impact to the rest of the system.

GreenHDFS uses two variants of File Migration Policy to classify dormant files: reactive
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and predictive that offer different energy costs savings, performance, and storage-efficiency

trade-offs. Reactive GreenHDFS covered in Section 4.6.7.1 relies on insights gleaned reac-

tively from the observed access patterns of the files to drive its energy-aware file policies.

Reactive GreenHDFS doesn’t possess any knowledge of the “future” and is coarse-grained

in nature. Predictive GreenHDFS covered in Section 4.6.7.2 uses predictive models which

it builds from supervised machine learning of historical traces to predict file attributes to

guide file placement in a proactive and finely-tuned manner instead of relying on one-size-

fits-all file policies allowing higher energy costs savings, storage-efficiency and performance

than Reactive GreenHDFS. However, the predictive models are specific for workloads and

different feature sets and training methods need to be identified for different workloads.

On the other hand, Reactive GreenHDFS can work across multiple workloads.

• Storage-Efficiency The File Migration Policy covered in Section 4.6.7 not only aids in

scale-down, but also results in much more available storage capacity in the Active zone

which can be used for better active file layout, and more aggressive replication for obviating

performance hot-spots.

• Energy-Proportionality GreenHDFS presents opportunity to consolidate workloads on

the Active zone servers allowing them to be at a higher, more energy-efficient utilization

than the 10%-50%, highly energy-inefficient utilization common in the Big Data analytics

clusters. On the other hand, the Inactive zone servers enjoy significant idleness under

GreenHDFS and can be effectively scaled-down. Thus, GreenHDFS provides in a software-

based mechanism to allow energy-proportionality even with non-energy-proportional server

components.

• Incorporation of Wimpy Nodes The computational profile of the Inactive zone servers

makes them good candidates for low cost, low performance, and low power processors, and

less memory. Incorporation of such wimpy nodes further aids in total cost of ownership

reduction of the Big Data analytics cluster.

• Self-Adaptive, Cyber-Physical System Uneven thermal-profile and thermal hot spots are

a ubiquitous issue in data centers because of complex air flow patterns and varying ability

of the cooling system to cool different parts of the data center. GreenHDFS combines

its data-semantics knowledge on the cyber-side with the thermal-profile knowledge of the

cluster on the physical-side to do energy- and thermal-aware file placement. Cyber-physical

control loops and components such as controller, monitor, and actuator discussed in Section
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4.5 result in a self-adaptive energy-conserving system.

• Thermal Reliability GreenHDFS ensures that servers don’t exceed the reliability upper-

bound of temperature at any time by doing an asymmetric file placement which is cognizant

of the differences in the maximum computational load that can be tolerated by a server.

The difference in the load tolerance arises mainly from differences in the inlet temperatures

of the servers in the cluster as detailed in Section 5.1.6.

• Predictive Thermal-Aware File Placement The thermal-aware file placement needs to

be done in an informed fashion to realize cooling energy costs savings, and ensure thermal-

reliability. GreenHDFS uses predictive models to predict file information which allows it

to approximate the new, incoming file’s computation profile to guide its thermal-aware file

placement. The file placement is done in such a manner at the file creation time itself

that it implicitly allows thermal-aware computational load placement in the future. Section

5.3.2.2 details the various predictive thermal-aware data placement heuristics in place in

GreenHDFS.

• Exploration of Various Heuristics GreenHDFS compares predictive thermal-aware file

placement with several other placement options: 1) non-thermal-aware random file place-

ment in which files are randomly placed on the cluster with out any thermal-awareness, 2)

thermal-aware non-predictive file placement which aims to place new incoming files either

on servers with lowest run-time temperatures or on servers with lowest inlet temperatures,

3) thermal-aware computational job placement, and 4) thermal-aware replica placement to

better understand the trade-offs.

• Sensitivity Analysis GreenHDFS evaluates the sensitivity of the cooling energy costs

savings, thermal-reliability, load-balancing and storage capacity balancing possible with each

heuristic on system variables such as monitoring service’s sampling rate, job durations, file

size skew, file creation rate, and delta in the cooling-efficiencies of the servers in the cluster.

• Real-World Evaluation and Analysis To understand the feasibility of the dissertation,

significant analysis of the evolution life spans, jobs arrival rate, and sizes of the files is

done using month-long real-world file system traces from a large-scale (2600 servers, 5

petabytes, 34 million files) production Big Data Analytics Hadoop cluster at Yahoo!. The

analysis focuses on the clickstream dataset as clickstream processing, an example of log

processing, is one of the most important use cases of Big Data analytics, has significant
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business value and is critical to the Internet economy [54]. A clickstream shows when

and where a person came in to a web site, all the pages viewed, and the time spent

on each page. Clickstream analysis is used to predict whether a customer is likely to

purchase from an e-commerce website [41], to improve customer satisfaction with the

website and in effective content delivery (e.g., right bandwidth, resolution, etc.) and to

assess the effectiveness of advertising on a web page or site. Internet services companies

such as Facebook, Google, Twitter, LinkedIn, and Yahoo! [34] rely on clickstream processing

[34,52,133] of huge web logs daily to calculate the web-based advertising revenues (source

of majority of their income), and to derive user interest models and predictions. Every day

60-90TB uncompressed raw log data is loaded into Hadoop at Facebook [135], 100s of

GB log data is loaded at Orbitz [123], and at Europe’s largest ad targeting company [72].

Evaluation is performed using traces from the same production cluster to demonstrate the

effectiveness and robustness of GreenHDFS’s design and algorithms.

1.5 Structure of the Dissertation

The remainder of the dissertation is structured as follows: Chapter 2 provides the models and

assumptions made in the dissertation and discusses relevant background information. Chapter

3 discusses related work in energy management. Chapter 4 discusses thermal-aware zoning,

its partitioning schemes and algorithms, supporting observations from the real-world Big Data

analytics cluster at Yahoo!, energy-aware policies, and evaluation of the Reactive, Predictive and

Thermal-Aware policies demonstrating the effectiveness and robustness of GreenHDFS’s design

and algorithms. A detailed Total Cost of Ownership analysis is also presented for a cluster

managed by GreenHDFS and for a cluster in which GreenHDFS is not deployed. Chapter 5

presents details of the motivation, challenges, algorithms and heuristics, predictive modeling,

cyber-physical system, and evaluation related to thermal-aware file placement. Lastly, Chapter 6

summarizes GreenHDFS, the lessons learnt, and the future work.
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CHAPTER 2

BACKGROUND

In today’s digital world, Big Data is everywhere. Social media sites such as Facebook and YouTube

store billions of pictures and videos whose total size is in excess of petabytes. E-commerce and

Internet services companies collect petabytes of web logs daily to garner business insights from

user behavior captured in the web logs. Sensors abound in smart phones, human bodies, vehi-

cles, smart energy meters, servers, and traffic controllers and continuously generate significant

amount of sensed data, which is then used for location sensing, targeted advertising, traffic con-

dition monitoring, patient management, elder-care, and power usage and dynamic power pricing.

Multimedia entertainment (e.g., high-definition videos and movies), surveillance, scientific simu-

lations, medical records, financial transactions, phone records, genomics, seismology, climatology,

geo-spatial mapping and so on are some other sources of very big data sets.

IDC predicts that the total digital data will exceed 35.2 zettabytes by 2020 [7]. And, this data is

only expected to grow; the projected growth rate of data is 40% every year [101]. There is a wealth

of information hidden in the Big Data that can be leveraged for better business insights, health-

care management, fraud detection, crime prevention and combat, national security, earthquake

prevention and so on–the list of use cases is limitless. The data management and analytics

software business is expanding significantly and is estimated to be almost $100 billion [54]. The

sheer size of Big Data presents a challenge to traditional processing and storage tools and new

analysis and storage mechanisms are needed.

2.1 Models and Assumptions

In this chapter, we provide relevant background, and detail the various models used and as-

sumptions made in the dissertation. The Big Data analytics cloud data centers upon which this
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dissertation is based have totally different compute, energy and storage models from traditional

data centers as discussed next.

2.1.1 Data Center Model

Big Data analytics requires tremendous amount of storage and computing infrastructure. In this

environment, scaling-up hardware by buying high-end, high-performance processors, or additional

network attached storage boxes becomes exorbitant without giving the desired performance and

capacity. Thus, vertical scale-up of the hardware is just not sufficient and horizontal scale-out

is required to keep up with the burgeoning data. Cost-efficiency is a very important metric

given the sheer scale-out required. Instead of using high-end and expensive components such as

network switches with very high bisection bandwidth, infiniband interconnects, hardware RAID

(Redundant Array of Inexpensive Drives) controllers, network attached storage (NAS) or large

symmetric multiprocessors (SMP) servers, these data centers use low-cost, commodity hardware

such as ethernet switches, non-enterprise-grade hard disks, and low-end, 1U or 2U server-class

machines typically with dual quad core CPUs, 16-24GB RAM, and 4-12 directly attached serial

advanced technology attachment (SATA) disks.

2.1.2 Network Model

The servers in these data centers are arranged in racks and are interconnected using low-end

ethernet switches keeping cost-efficiency in consideration [68]. The rack-level switches have

up-links connected to cluster-level ethernet switches. Each server in the racks is connected to

the rack-switch with a 1-Gbps link. The rack-switch uses eight 1-Gbps links to connect to the

cluster-level switch resulting in a over-subscription factor of five. This makes inter-rack data

access bandwidth almost 5-10x times worse than the intra-rack bandwidth and 8-20x times worse

than disk local access. Any software running on the system needs to be cognizant of the network

bandwidth constraints and should make decisions accordingly.
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2.1.3 Compute Model

The above-mentioned network model mandates software that is able to utilize the resources such

as the network very efficiently by being cognizant of the network bandwidth limitations. Big Data

further complicates the situation with its sheer size and movement inertia. It is no longer feasible

or scalable to move data to the computations given the huge and ever-growing data set sizes,

and network bandwidth constraints. Now, computations need to move to the data and efficient

data access from disks is an essential part of the computation. As a result, data-locality is a very

important consideration for high performance. Map Reduce, a highly scalable, parallel processing

framework is widely used for Big Data analytics [49]. Map Reduce owes its high performance to

its data-locality feature.

2.1.4 Storage Model

Traditional storage solutions such as Network Attached Storage (NAS) have a client/server model

that is just not scalable enough in the Big Data environment. The gateways/filer heads in these

systems (NFS, or CIFS) acts as performance and scalability bottleneck during the critical data

access path as all the data accesses have to go through them. These systems are also very

expensive (e.g. a NAS box may cost $400-$600 per terabyte) as they typically use expensive, high-

end hardware such as infiniband interconnects, RAID controllers, and enterprise-grade hard drives.

Thus, these solutions become prohibitively expensive when scaled-out to multiple petabytes range

as required by the Big Data.

The specialized distributed file systems for data-intensive computing over Big Data such as Google

File System (GFS) and the Hadoop Distributed File System (HDFS) follow a totally different

storage and file system paradigm from the traditional systems. There are no gateways/filer heads

and clients interact with a metadata server (MDS) for metadata operations and communicate

directly with storage devices (OSDs) for file I/O (reads and writes). Such an architecture leads

to a direct data access path between the clients and the servers hosting the data, resulting in

a very scalable and high performance system. And, decoupling of the metadata from the main

data aids in the scalability of the system. The direct data access path between the client and

the servers hosting the data gives complete visibility on the data layout to the clients–something

necessary to make data-local computing possible. The OSDs have their own local file system to
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manage the data that has been placed on them resulting in overall system flexibility.

GFS and HDFS are built on top of low-end, inexpensive commodity hardware for economies-of-

scale. Fault tolerance is a first class concern given the commodity hardware where failure is a

norm rather than an exception. GFS and HDFS rely on file-level replication for resiliency, and

fast failure recovery and distribute file chunks and their replicas over the entire cluster.

2.1.5 Energy Model

In a typical commodity server in a Big Data analytics cluster, no single server component (i.e.,

processor, memory, or disks) contributes significantly to the overall power consumption (CPU

33%, DRAM 30%, Disks 10%, other components 27% [68]). This energy model is different

from the energy model of the high-end, high performance computing servers [35] where the

processors are responsible for the highest power draw and hence, techniques such as dynamic

voltage and frequency scaling (DVFS) work well in energy conservation. The feature sizes of

CPUs are much smaller in today’s world and core voltages at the highest frequency are 1.1V to

1.4V. The small feature sizes result in the static leakage power reaching or exceeding dynamic

power, and the low core voltages reduce the voltage scaling window. Therefore, the potential

to save energy via DVFS is reduced [88]. On the storage side, significant amount of energy

management research happened in context of RAID systems. However, the cloud servers don’t

use expensive hardware RAID controllers in interest of cost-efficiency. Since, disks contribute

just 10% to overall power consumption, techniques such as disk spin-down or disk-level energy

management are not sufficient and there is a need for server-wide energy management.

2.1.6 File Model

Big Data analytics frameworks such as Map Reduce comprise of a distributed file system under-

neath, which divides the incoming file into multiple file chunks and then places these chunks into

many servers distributed across the cluster as shown in Figure 2.1. Each file chunk is typically

64-128 MB in size [61, 84]. Let fkj = chunk k of file j, 1 ≤ k ≤ n̂j, 1 ≤ j ≤ Z where Z is the

number of files in the cluster and n̂j is the number of chunks into which file j is divided. Denote
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f̃j = {f 1
j , f

2
j , · · · , f

n̂j

j } to be the set of all chunks of file j. F = {f̃1, f̃2, · · · , f̃Z} to be the set

of all the file chunks in the cluster. F is itself a set of individual file chunk sets f̃j.

Let ckj,i be the chunk k of file j assigned to server i. Let Cj,i be a set of file j’s chunks assigned

to server i = {c1j,i, c2j,i, · · · , c
nj,i

j,i }, where nj,i is the number of file fj’s chunks assigned to server

i. Let C̃i be the set of chunks of different files assigned to server i = a set of the set of file

chunks assigned to server i = {C1,i, C2,i, · · · , CNi,i}, where Ni is the number of the files whose

chunks are assigned to server i. Let C̈ = {C̃1, C̃2, · · · , C̃N̈}, where N̈ = number of servers in

the cluster with chunks assigned to them. N̈ is equal to the total number of the servers S in

the cluster usually. A mapping function π : F → C̈ then takes the set of all file chunks F as its

input and produces an ordered set C̈ as output. Thus, π assists in mapping the file chunks to

the cluster servers.

In a Big Data analytics production clusters, a file is merely a container for the input data and

the aggregated output data of the compute jobs. A file is predominantly only accessed by the

compute jobs because of strict privacy, security, and business SLA concerns and not by ad hoc

users. Each incoming job translates into one sub-job per file chunk fkj of the file f̃j, thus each

file chunk fkj also has a job arrival rate λj(t) akin to that of its parent file fj. Since, each file is

computed upon in its entirety, each job results in all the chunks getting accessed.

Figure 2.1: File model in Big Data analytics

25



Figure 2.2: Stages in a file’s evolution.

A file goes to several stages in its lifetime as shown in the Figure 2.2: 1) file creation, 2) active

period during which the file is frequently being computed upon and hence, being frequently

accessed, 3) dormant period during which file is not being computed upon and hence, not been

accessed, and 4) deletion. We introduced and considered various lifespan metrics in our analysis

to characterize a file’s evolution. A study of the various lifespan distributions helps in deciding

the energy-management policy thresholds that need to be in place in GreenHDFS.

• Lcfr ,j metric is defined as the file lifespan between the file creation and first computational

job directed to the file. This metric is used to find the clustering of the computational jobs

around the file creation.

• Lactive,j metric is defined as the file lifespan between creation and last computational job

received by the file. This metric is used to determine the active profile of the files.

• Ldormant ,j metric is defined as the file lifespan between last computational job directed to

the file and file deletion. This metric helps in determine the dormancy profile of the files

as this is the period for which files are dormant in the system.

• Lflr ,j metric is defined as the file lifespan between first computational job and last compu-
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tational job directed to the file. This metric helps in determining another dimension of the

active profile of the files.

• Llifetime,j. This metric helps in determining the lifetime of the file between its creation and

its deletion.

Figure 2.3: Thermal model of a server

2.1.7 Thermal Model

A server i in the cloud cluster can be modeled as a heat source (i.e., CPU, Disk, DRAM, Network),

where T ini,t is the inlet temperature, T outi,t is the outlet temperature, and Ti,t is the temperature

of server i at time t as shown in Figure 2.3. The power Pi,t consumed by a server i with

computational load Li,t at time t can be stated as a linear function of Li,t [67]:

Pi,t = wi1 · Li,t + wi2 , (2.1)

where wi1 and wi2 are coefficients expressed in joules/sec units. Coefficient wi1 is the difference

between the peak power consumption and the static power consumption (i.e., when the server

is at idle utilization with no computational load), and coefficient wi2 gives the static power
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consumption. We assume a homogeneous cluster in this paper, whereby all servers have the

exact same hardware. Hence, the values of wi1 and wi2 are the same for each server.

At steady state, the temperature of a server i, Ti,t is a function of the inlet temperature T ini,t of

a server and the power Pi,t being consumed at load Li,t [93]:

Ti,t = T ini,t + ci · Pi,t (2.2)

where, constant ci expressed in kelvin.secs/joules units, is a factor of server’s heat exchange rate,

it’s air flow, and heat capacity density of the air. In a data center with perfect hot- and cold-aisle

air containment, whereby there is no air recirculation from the hot aisle to the cold aisle, the

differences in the inlet temperature of each server is predominantly dependent on the distance of

the server from the vents or the cooling unit. We assume T ini,t to be known empirically for each

server. Thus, temperature Ti,t can be modeled as a linear function of Li,t, i.e.

Ti,t = T ini,t + ci · (wi1 · Li,t + wi2) (2.3)

It is important to ensure a server i’s temperature Ti,t remains less than Tmax at all times t, where

Tmax is the reliability driven upper-bound on the temperature that can be tolerated by a server

and is specified in its data sheet; exceeding Tmax results in higher hardware failure rates.

At steady-state, the temperature of the hot air exhausted from the server i’s outlet, T outi,t is a

function of the power Pi,t being consumed at server i at load Li,t, the temperature of the server

Ti,t, and the heat exchange rate of the server i, θi expressed in joules/kelvin.secs units as shown

below:

T outi,t = Ti,t −
Pi,t
θi

(2.4)

The hot air exhausted by the servers in the cluster enters the cooling subsystem which then cools

the hot air to a temperature Tac which is the air supply temperature set point of the cooling

subsystem. The cooling power consumption is proportional to the heat removed by the cooling

subsystem, which is proportional to the difference in the temperature T outc,t of the hot exhausted

air entering the cooling subsystem and the temperature Tac. The cooling power consumption is
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given by:

Pc,t =

cair · fac ·
(
T outc,t − Tac

)
COP

, (2.5)

where, cair is the heat capacity constant, fac is the flow rate of the cooling unit, and |S| is the

number of servers in the cluster. The efficiency of cooling unit is characterized by its coefficient

of performance (COP) defined as the ratio of the amount of heat removed by the cooling device

and the work required to do so.

2.2 Cooling in Data Centers

The electricity consumed by the servers almost entirely gets converted into heat. Given, the high

power densities prevalent in today’s data centers, a lot of heat is generated by the computing

equipment and efficient removal of the heat is a necessity. The goal of cooling system in the

data centers is to maintain the server temperatures within a safe operating range; a temperature

outside the safe operating range adversely impacts server’s reliability and lifetime. There are

various cooling systems available for the data centers today:

• Water-Cooling In these systems, the refrigeration cycle happens inside a water chiller.

Chiller’s function is to produce chilled water which is then pumped through pipes to the

computer room air handling unit (CRAH) located inside the data centers. The hot ex-

hausted air from the IT equipment comes in touch with the chilled water circulating in the

coils inside the CRAH, and an heat exchange takes places between the chilled water and

the hot air. The heat from the hot exhausted air gets transferred to the chilled water and

warmed up water is sent back to the chiller to get cooled down. While there are several

advantages to chilled water system, it does have few drawbacks: 1) it introduces water

inside the data center; any water leakage from the pipes can damage the IT equipment,

and 2) the life expectancy of the water-based cooling is lowered by the corrosive affect of

water flowing through the pipes.

• Air-Cooling The computer room air conditioner(CRAC) use a combination of compressor

and condenser to cool the hot exhausted air from the IT equipment. The compressor and

the condenser can be in the same unit (higher reliability) or split with compressor being
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inside the building and condenser being outside. The refrigeration cycle is responsible for

the movement of the heat energy from the inside of the data center to outside. First, hot

exhausted air comes in contact with evaporator coils inside the CRAC which have chilled

refrigerant flowing through them. The refrigerant absorbs the heat from the air and turns

into gaseous state. It is then sent to the compressor which compresses the refrigerant

making its temperature rise (a fundamental property of gases). The refrigerant then goes

to the condenser which transfers heat from the refrigerant to the outside. The refrigerant is

then expanded in the expansion valve which reduces the temperature of the refrigerant and

is sent back to the evaporator coil. Air-cooling is the more pervasive in the data centers

than water-cooling as it doesn’t introduce liquid inside the data centers and hence, doesn’t

have to deal with leakages.

• Free-Cooling In the economizer mode, which is also refered to as free-cooling mode,

outside air and/or water from natural sources such as lakes, or oceans are used to cool the

data centers either in conjunction with air- and water-cooling systems covered earlier or in

stand-alone fashion. The free-cooling can be done in two ways: air-side, or water-side. The

air-side economizer uses outside air to cool the data centers while bypassing air conditioners

to save cooling energy costs. Fans blow in cold air from outside through data center vents

if the ambient temperature of the outside air is lower than certain temperature set points.

The outside air is filtered to remove dust and other contaminants as much as possible. If

the outside air is not as cold as desired, it is passed through evaporative coils which cools

it down. However, this scheme introduces some extra-humidity in the system. In case, the

ambient air temperature is much higher than the set point, backup air conditioning unit

is used to cool down the data center. There is another variation of free-cooling, whereby,

the cold air from outside is not directly blown into the data center. Instead, cold air from

outside is used to cool down the exhaust air which is then passed back in. In case of

water-side cooling, outside air is used to chill the water when its ambient temperature is

conducive bypassing the chiller. Some data centers such as one from Google, use cold

water from a lake as the source of chilled water, hence bypassing the water-chiller.

Economization or free-cooling can significantly save cooling energy costs even though it

is not exactly free as pumping, dehumidification, filtration, and fans do consume energy.

To enable the usage of free-cooling for longer periods of time and in more locations,

the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE)

has increased the allowable temperature ranges of the servers. Free-cooling is sensitive
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to outside ambient air temperature and climatic conditions. If the ambient air is not

very cold, the inlet temperatures of the servers rise, lowering their cooling-efficiency, and

resulting in higher server temperature. Since hardware reliability gets impacted at higher

server temperature, in order to make free-cooling viable, attention needs to be given to

thermal-reliability and it is important to implement techniques in the cluster to safe-guard

servers during periods of high load, and higher ambient temperatures.

While, several companies such as Microsoft, Google, and Yahoo! have announced new data

centers that rely only on free-cooling or air- and water-side economization, there are a substantial

number of traditional data centers that still rely on air- or liquid-cooling either entirely or in-part

coupled with economization. The existing data centers can not always be retrofitted with the

economizer modes as incorporation of the economizer requires space for ductwork, and addition

of heat exchangers and the required space may not be available in the data center. Free-cooling is

sensitive to outside ambient air temperature and climatic conditions; it is easier and more viable to

use in locations where ambient air temperatures are low for most part of the year and humidity is

in the tolerable range. Hence, based on the location of the older data centers, economization may

or may not be an option. And, even though the American Society of Heating, Refrigerating and

Air-conditioning Engineers (ASHRAE) has increased the inlet temperature guidelines, the servers

need to be designed to be able to support that range before the economization modes can be

introduced. And, it just may be too expensive for some of the existing data centers to completely

overhaul their existing servers in interest of new servers with higher thermal tolerance. Finally,

to be effective in cooling, free-cooling does require hot aisle containment whereby hot exhaust

air coming out of the servers is separated out from the input air. Unfortunately, many a times it

is hard to retrofit hot-aisle containment in existing data centers. Since a transition between the

economizer and a refrigerant mode needs to happen because of unfavorable climate conditions

for the economizer, the refrigerant mode transition should happen reliably. The reliability may

not be as good in a retrofitted system, and hence, presents an additional concern to retrofitting

in existing data centers. Power usage effectiveness (PUE) is the ratio of the total building power

to the IT power. Majority of the data centers still have a high PUE of 1.8 as per a 2011 survey

of 500 data centers [2]. The high PUE is because the power overheads such as 42% overhead

of the CRAC and the chiller. GreenHDFS considers both traditional air-cooled data centers and

free-cooled data centers and aims to reduce cooling energy costs and provide thermal-reliability

in these data centers.
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Figure 2.4: Hot and cold aisle layout and hot air recirculation.

A typical traditional data center is laid out with a hot-aisle/cold-aisle arrangement by installing

the racks and perforated floor tiles in the raised floor [132] as shown in the Figure 2.4. CRAC

delivers cold air under the elevated floor. The cool air enters the racks from their front side, picks

up heat while flowing through these racks, and exits from the rear of the racks. The heated exit

air forms hot aisles behind the racks, and is extracted back to the air conditioner intakes, which,

in most cases, are positioned above the hot aisles. Each rack consists of several chassis, and each

chassis accommodates several computational devices (servers or networking equipment).

Due to the complex nature of airflow inside data centers, some of the hot air from the outlets

of the servers recirculates into the inlets of other servers. The recirculated hot air mixes with

the supplied cold air and causes inlets of some of the servers in the data center to experience a

rise in inlet temperature. This reduces the cooling-efficiency of these servers and results in an

increase in their temperature which results in thermal hot-spots and overall higher temperature

in the data center. The thermal hot-spots are the main cause for high cooling energy costs. To

offset the recirculation problem, in majority of the real-world data centers, the temperature of the

air supplied by the cooling system is set much lower than the red-line temperature, low enough

to bring all the inlet temperatures well below the red-line threshold. Unfortunately, operating the
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air conditioning units (CRACs) at lower temperature reduces their coefficient of efficiency (COP)

and results in higher cooling costs. COP characterizes the efficiency of an air conditioner system;

it is defined as the ratio of the amount of heat removed by the cooling device to the energy

consumed by the cooling device. Thus, work required to remove heat is inversely proportional to

the COP. New data centers have started using hot- or cold-aisle containment, as shown in Figure

Figure 2.5: Hot-aisle containment to reduce hot air recirculation.

2.5, to limit the recirculation of the air and thereby, have increased the efficiency of cooling. The

cold inlet and hot outlet streams are separated out. Such containment aids in a reduction of the

thermal hot-spots. However, even with air containment, air leakage is possible and hence, it is

possible that hot spots won’t be removed entirely. While newer data centers are already being

designed with containment in mind, there is still a vast majority of pre-containment era data

centers which can not be retrofited with containment because of issues like data center layout,

and lack of space. Furthermore, CRAC units still vary in their ability to cool different places in

a data center (e.g., a corner of the room, farthest from the CRAC), and further aid in uneven

thermal-profile [29]. Thus an uneven thermal profile and thermal hot spots are an ubiquitous

issue in data centers.
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One way to curtail the cooling energy costs is to raise the set point temperature of the air

conditioner as that increases the efficiency of the air conditioner and reduces the cooling costs.

And, the other way is to use air-side or water-side economization. Since both these techniques

help lower the PUE, i.e, increase the data center energy efficiency, American Society of Heating,

Refrigerating and in 2011, Air-Conditioning Engineers (ASHRAE) has increased the allowable

temperature operating ranges of all the data center classes: A1 (59oF − 89.6oF ), A2 (50oF −
95oF ), A3 (41oF − 104oF ) and A4 (41oF − 113oF ) just to enable more geographic locations to

have more hours in the economizer mode and to allow a raise in the air conditioner’s set point

temperature. However, higher set point temperature of the air conditioner means that the inlet

temperatures at the servers would be higher, resulting in lower cooling-efficiency. Now, servers

are rated to operate safely only within specified temperature range and thermal-reliability can not

be traded-off for higher energy-efficiency. For example, the operating temperature of Sun Blade

is 4oF − 90oF , Dell Blade is 50oF − 95oF , IBM Blade is 50oF − 95oF , and NetAppStorage

is 50oF − 104oF . Also, higher temperatures also may mean higher server power consumption

because of an increase in the server’s fan power consumption and increase in leakage current with

increase in temperature. Ensuring thermal-reliability is even more important in the purely air-

cooled, chiller-less data centers who are at the mercy of the ambient temperatures and conditions.

GreenHDFS is cognizant of the variations in the thermal-profile of the servers and their varying

cooling-efficiencies. It factors in this knowledge of the physical world in its cyber-world data

placement decisions. GreenHDFS is not tied to any specific data center cooling model and since

it aims to reduce the overall temperature in the cluster, it can be applied modern and traditional

data centers. Increasing the inlet supply temperature of the servers increases the efficiency of

the cooling unit. GreenHDFS lowers the overall temperature in the cluster, making it feasible to

increase the inlet temperature without adversely impacting the reliability.

2.3 Map Reduce and Hadoop Background

Map Reduce is a programming model designed to simplify data processing [49] and is one of

the most popular Big Data analytics framework. A Map Reduce application is implemented

through two user-supplied primitives: Map and Reduce. Map tasks take input key-value pairs and

generate intermediate key-value pairs through certain user-defined computation. The intermediate

results are subsequently converted to output key-value pairs in the reduce stage with user-defined
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reduction processing. A high-performance distributed file system such as Google File System

(GFS) or Hadoop Distributed File System (HDFS), is used to store the input, intermediate, and

the output data.

Map Reduce is fully cognizant of the network bandwidth constraints and the movement inertia

of the Big Data. Data-locality of the computations is the most important feature of the Map

Reduce framework and is responsible for its high performance. A performance test performed at

Google showed that Map Reduce is capable of sorting 1TB on 1,000 computers in 68 seconds [62],

thereby, illustrating its power. Instead of sending data to the computations, Map Reduce tries to

colocate the computation with the data to allow for fast local data access [144]. Thus, every time

computation needs to happen on a data, HDFS/GFS determines the nearest server containing a

replica of the data and computation is then directed to that server.

Hadoop is an open-source implementation of Map Reduce [26]. It is logically separated into two

subsystems: a highly resilient and fault-tolerant Hadoop Distributed File System (HDFS) [84]

which is modeled after the Google File System [61], and a Map Reduce task execution framework.

Hadoop runs on clusters of low-cost commodity hardware and can scale-out significantly. HDFS

is an object-based distributed file system and is designed for storing large files with streaming

data access patterns [144]. It aims to provide high throughput of data accesses and hence, it

is more suitable for batch-processing applications than for interactive applications which require

low latency data access. HDFS supports a single namespace architecture which consists of a

hierarchy of files and directories.

HDFS cluster has two types of servers: one NameNode (master) server and a number of DataN-

ode (slaves) servers. NameNode manages the filesystem namespace and metadata. Files and

directories are represented on the NameNode by inodes, which contain permissions, modification

and access times, user, owner, replication factor, size and absolute file path for these files and

directories. Each file in HDFS is split into chunks of typically 64MB - 128MB in size. HDFS

distributes the file chunks across the DataNodes for resiliency, high data access throughput, and

fine-grained load-balancing. The NameNode maintains the namespace tree and the mapping of

the file chunks to the DataNodes. The actual disk placement of the chunk on the DataNode is

done by the local file system such as ext3 that is running on the DataNode.

Resiliency and fault tolerance are very important for these Big Data analytics clusters as they

comprise of low-end commodity hardware, where failure is a norm. HDFS relies on replication as

the means to provide resiliency and each file chunk is replicated n-way for resiliency. The default
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replication factor is three in HDFS and at the time of file write, the second replica of a file chunk

is written on a server in the same rack as the first replica and the third replica is written on a

server in a totally different rack from the previous two replicas.

The file system operations supported by HDFS are “Open”, “Create”, “Rename”, “Delete”,

“SetReplication”, “SetOwner”, “SetPermission”, and “MkDir”. The current implementation of

HDFS doesn’t support appends and the only writes to a file happen during file creation as part

of the Create call. The files follow the write-once ready-many (WORM) pattern. In case of GFS,

data can be appended to the files at anytime. The reads to a file happen as part of the Open

call.

The clients access HDFS via a HDFS client called DFSClient. At the time of the file read,

the DFSClient opens a stream to the file the user wishes to read. It internally contacts the

NameNode via a RPC and gets the location of the DataNodes containing the first few file chunk.

The client then contacts the DataNodes, reads the chunks and populates the stream. At the

time of file writes, the DFSClient internally contacts the NameNode for DataNode mapping and

writes chunks to a subset of DataNodes.

During normal operations, DataNodes send heartbeats to the NameNode at fixed interval. The

heartbeats allow the NameNode to verify that a DataNode is alive. The DataNodes also send

a block report to the NameNode where each block report contains blockid, generation stamp

and length of each replica hosted by the DataNode, every 1 hour. The block reports keep the

NameNode updated with the latest view of the block replicas on the cluster. Heartbeats also

carry information about the total storage capacity, fraction of storage in use and number of data

transfers currently in progress. If the NameNode doesn’t receive a heartbeat from the DataNode

in ten minutes, the NameNode marks the DataNode as dead and assumes that the block replicas

hosted by the DataNode are unavailable. The NameNode then rereplicates the replicas on the

DataNode marked as dead on other DataNodes.

A single JobTracker process running on the NameNode keeps track of the current jobs status and

performs task scheduling. On each DataNode server, a TaskTracker process tracks the available

execution slots. A DataNode can execute up to M Map tasks and R Reduce tasks simultaneously

(M and R default to 2). A TaskTracker contacts the JobTracker for an assignment when it detects

an empty execution slot on the machine.
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CHAPTER 3

RELATED WORK

3.1 Existing Cooling Energy Management Techniques

Cooling strategies can be broadly divided into server-level, ensemble-level, and data-center-level

strategies. They can be further classified as run-time and static strategies. Server-level strategies

include active server fan tuning to cool down the servers [100]. Cohen et. al. propose control

strategies via DVFS to enforce constraints on the chip temperature and on the workload execution

[77]. At the ensemble level, Niraj et. al. rely on workload migration and location-dependent

cooling-efficiency of the fans to manage the power and thermal characteristics of the ensemble.

There is significant research on reducing cooling energy costs at the data-center-level [30,31,38,

46, 114, 115, 134, 140]. The research on cooling-efficient data center layouts, models and server

and rack designs [113, 122, 132] is orthogonal to GreenHDFS.

The run-time strategies mostly rely on thermal-aware job-placement to reduce cooling energy

costs [16,29,106,107,120,126,134,137]. For example, Moore et. al. [107] provide a mechanism to

do temperature-aware workload placement. Sharma et. al. [126] present a framework for thermal

load balancing whereby they show how an asymmetric, thermal-aware workload placement and

migration can result in uniform temperature distribution in the data center. Bash et. al. [29]

attempt to place heavy computational workloads on servers in cooling-inefficient locations in

the data center. Sarood et. al. do thermal-aware load balancing [120]. Parolini et. al. and

Tang et. al. present a cyber-physical systems approach for data center modeling and control for

energy-efficiency which is again relies on thermal-aware job-placement [97, 134].

As we show in the evaluation, thermal-aware job-placement results in significant performance

impact in the Big Data environment where data-locality is extremely important for low data

access latency. Data-locality consideration and significant server state limit thermal-aware task
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placement and task migration based cooling techniques. Given the explosion in Big Data, data

needs to become a first-class object in computing and the computing paradigms need to change

accordingly. GreenHDFS takes a data-centric thermal and energy management approach and

does proactive, thermal-aware data placement which in turn leads to thermal-aware computation

placement.

Recent research on scale-down in MapReduce GFS and HDFS managed clusters seeks to ex-

ploit the replication feature of these file systems and proposes energy-aware replica placement

techniques for server scale-down [23]. Lang and Patel propose an ”All-In” strategy (AIS) for

scale-down in MapReduce clusters [85]. These techniques are not thermal-aware and focus only

on the computing energy costs savings.

sectionExisting Compute Energy Costs Reduction Techniques There is significant amount of

research on increasing energy-efficiency of the individual components of the server such as the

processor [44, 47, 69, 105, 128, 138, 143], storage subsystem [51, 60, 65, 92, 118, 130, 141, 147],

memory [17, 18, 50, 71, 89, 94, 95, 103, 131, 146] and networking [25, 83, 96, 109, 124]. However,

in a typical commodity server in a compute cluster, no single server component (i.e., CPU,

DRAM or HDD) contributes significantly to the overall power consumption and hence, an energy-

management scheme that encompasses the entire server such as server scale-down is needed.

3.2 Existing Scale-Down Approaches

The scale-down based techniques to reduce the server operating energy costs can be broadly

classified into four categories: 1) Workload migration/placement based techniques, 2) Replica

placement techniques, 3) Workload scheduling techniques. Techniques 2), and 3) have been

proposed specifically for MapReduce based data-intensive compute clusters.

3.2.1 Workload Migration/Placement

One technique to scale-down servers is by manufacturing idleness through migrating workloads and

their corresponding state to fewer machines during periods of low activity [42,43,45,107,126,137].
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Workload migration is viable when servers are state-less (i.e., serving data that resides on a shared

NAS or SAN storage system). Big Data analytics’ highly scalable, shared-nothing architecture

brings with it unique scale-down challenges. Servers in a Big Data analytics clusters such as

Hadoop or other Map Reduce clusters are not state-less. Data-locality is an important feature

in Big Data analytics which is responsible for the high performance of data processing in Big

Data analytics. Computations are colocated with the data and hence, computation migration is

limited to only the servers hosting a replica of the data that needs to be processed. Furthermore,

with data distributed across all nodes, any node may be participating in the reading, writing,

or computation of a data-block at any time. Such data placement makes it hard to generate

significant periods of idleness in the Big Data analytics clusters even during low activity periods.

3.2.2 Replica Placement

Big Data Analytics clusters such as Hadoop clusters maintains replicas (default replication factor

is three-way) of each data chunk in the system for resiliency, and reliability. Recent research

on scale-down compute clusters such as Hadoop clusters [23, 91] seeks to exploit the replication

feature of these file systems and proposes energy-aware replica placement techniques. Leverich

et. al. [91] propose maintaining a primary replica of the data on a “Covering Subset” (CS) of

nodes that are guaranteed to be always on. The rest of the servers can be then scaled-down

for energy savings. However, using just the CS servers for all the data accesses may result in

degraded data access performance (response time will increase because of the increase in the

queuing delays in the disks of the CS servers).

Amur et. al. [23] extend Leverich et. al.’s work by providing ideal power-proportionality in addition

by using an “equal-work” data-layout policy, whereby replicas are stored on non-overlapping

subsets of nodes. Their proposed file system Rabbit is capable of providing a range of power-

performance options. The lowest power, lowest performance option in Rabbit is achieved by

keeping just the servers with the primary replicas on. More servers are powered up as performance

needs increase.

While promising, these solutions do suffer from degraded write-performance as they rely on

write off-loading technique. Write off-loading allows write requests on spun-down disks to be

temporarily redirected to persistent storage elsewhere in the data center [108] to avoid server
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wakeups at the time of file writes. Write-performance is an important consideration in Hadoop.

Reduce phase of a MapReduce task writes intermediate computation results back to the Hadoop

cluster and relies on high write performance for overall performance of a MapReduce task.

Furthermore, a study of a production Hadoop cluster at Yahoo! observed that the majority

of the data in the cluster has a news-server like access pattern [78]. Production clusters are

the truly large-scale compute clusters [36] and are the ones that will benefit the most from the

energy-conservation techniques. Predominant number of computations happens on newly created

data; thereby mandating good read and write performance of the newly created data. Given, the

huge data set sizes, good write performance happens when the incoming data chunks are written

in parallel across a large number of DataNodes in the cluster. Write off-loading is just not a

performant and a scalable option for such writes. If these techniques do try to wakeup servers

to absorb the new writes, they will still suffer performance degradation due to the power state

transition penalty. Furthermore, given the significant number of file writes that happen in a day

on a production cluster, waking up servers to absorb the writes will also adversely impact the

lifetime of the components such as the disks.

3.2.3 Workload Scheduling

Lang and Patel propose an “All-In” strategy (AIS) for scale-down in MapReduce clusters [85].

AIS uses all nodes in the cluster to run a workload and then powers down the entire cluster. The

advantages of the AIS technique are that 1) It is a simple approach and does not need any code

changes or over provisioning of the storage on a subset of servers, and 2) It offers same data

access throughput as the baseline Hadoop and does not need any data layout changes.

This technique makes an underlying assumption that all the workloads happen simultaneously on

the system. However, a typical production cluster has several workloads running on the system

with varying start and stop times. Given, the globalization rampant today, significant number of

clusters are in use 24/7 and hence, such a technique may not see enough idleness in the system

to justify a scale-down. The authors also propose batching intermittently arriving jobs and then,

submitting all the jobs in the batch simultaneously. Some of the jobs may have Service Level

Agreements (SLA) considerations and it may not be acceptable to batch and execute such jobs

at a later time. Resource contention may also arise if jobs are all invoked simultaneously on the
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cluster. For example, the cluster may not have enough map/reduce compute slots available to

be able to service all the jobs simultaneously.

Sharma et. al. [125] have extended upon Meisner et. al.’s work [102] to allow energy savings

via blinking (i.e., transitioning between high-power active state and low-power inactive state).

However, both these approaches have assumed non-hard disk clusters. Disk-based clusters may

suffer from significant performance degradation and impact on disk longetivity with frequent

state transitions. Given, the low capacities and high costs of the SSD drives, clusters comprising

entirely of SSD drives are not feasible at the moment, especially given the petascale storage

demands of a single production compute cluster [36].

3.2.4 Wimpy Nodes

In addition to the scale-down techniques, Vasudevan et. al. [139] and Hamilton [66] have proposed

data-intensive clusters built with low power, lower performance processors (Wimpy Nodes) that

aim to reduce the peak power consumption of the cluster. While promising, Lang et. al. [86] do

point out that for more complex workloads, the low power, lower performance clusters result in

a more expensive and lower performance solution.

3.3 Predictive Modeling

Existing highly scalable file systems such as Google file system [61] and HDFS [144] do not do any

energy management nor incorporate machine learning based predictive data management cluster

policies. To the best of our knowledge, GreenHDFS is the first system to provide a mechanism

to predict file attributes for a data-intensive compute framework such as Hadoop and to use the

predictions in driving energy and data management policies.

On the predictive data and file management side, some hints-based file systems have been pro-

posed in the past which allow applications to supply hints about the access patterns to the file

system to aid in prefetching and selective caching of data [63, 111]. However, these systems

either require application or compiler-level changes. Other predictive techniques in file system
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involve run-time, computationally intensive analysis and may not scale in the current trend of

petascale storage systems [21, 99]. For example, Akyürek et. al. require in-memory counters per

disk block [21].

Ellard et. al, propose a file classification scheme in which they use a combination of several

attributes such as file name, owner, group identifiers, permissions and creation time as the

parameters in their classifier to predict file access patterns [55]. The dataset used by Ellard et.

al. is based on Network File System traces. Big Data analytics storage model discussed in 2.1.4,

has moved away from NFS based NAS systems because of the inherent performance bottlenecks

present in the client/server model of NFS. Hence, there is a need to study Big Data analytics

data sets to figure the feature sets that would make sense for that data set.

Since, not all file attributes are relevant and using too many attributes in the feature set can result

in over-fitting issues, we exhaustively examined real-world traces from a large-scale production

Big Data analytics Hadoop cluster at Yahoo! and realized that the directory hierarchy of a file

in itself is a strong predictor for the clickstream data set (dataset with the most business value).

Ellard et. al., aim to create classes of data and hence, use a classification technique. On the

other hand, Predictive GreenHDFS needs to predict numeric values of the various file attributes

and hence, requires a regression technique.

On the predictive energy management side, Essary and Amer used predictive data grouping to

reduce the energy consumption of hard disks [58]. However, in a typical commodity server in a

compute cluster, no single server component (i.e., CPU, DRAM or HDD) contributes significantly

to the overall power consumption and hence, an energy-management scheme that encompasses

the entire system is needed. Furthermore, Energy-proportionality is increasingly becoming an

important consideration [59]. In an energy-proportional system, almost no power is consumed

when the system is idle and power consumption increases in proportion to the increase in the

activity level. Predictive GreenHDFS relies on server scale-down to conserve energy. Scale-

down, which involves transitioning server components such as the CPU, DRAM, and disks to

an inactive, low power-consuming sleep/standby state during periods of idle utilization, is an

attractive technique to conserve energy. Given the non-energy-proportional nature of some of

the state-of-the-art server components such as hard disks, scale-down is one of the most viable

options for yielding energy-proportionality during idle periods.
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3.4 File and Storage Systems

Majority of the existing file systems treat all the files in the system alike [61, 84, 98, 142] and do

not differentiate between the files. TierFS file system does differentiate between files and uses

multiple storage tiers to enhance the recoverability of the system [20]. However, TierFS systems

doesn’t do any thermal- or energy-management. GreenHDFS, on the other hand, is built on the

observation that all-file-are-not-alike in the cluster, and files differ in their computational jobs

arrival rate, popularity, size, and evolution life spans. GreenHDFS then leverages the knowledge

of the differences in the files to guide its energy conservation policies.

All the existing file systems are purely at the cyber-side and have no awareness of the physical-side

of the cluster. GreenHDFS, on the other hand, is a cyber-physical file system and is fully aware

of the thermal-profile of the servers in the cluster. GreenHDFS leverages its knowledge of the

unevenness in the temperatures of the servers and the differences in the files in its thermal-aware

file placement policies. The thermal-aware file placement allows GreenHDFS to reduce cooling

energy costs and ensure thermal-reliability of the servers in the cluster. None of the other file

systems or storage systems look at thermal or cooling energy management.

Gunda et. al. [64], do data-differentiation between the data sets in the data center. They opt for

an approach whereby they garbage-collect dormant datasets. However, a significant amount of

dormant data is deliberately retained in the system for various business reasons such as regulatory

compliance, historical trend analysis and business continuity and can not just be deleted prior to

the end of its retention period. AutoRaid [145] also does differentiate between the data; however,

only in the context of a single disk-array controller whereby one level uses mirroring and the other

RAID-5.

Existing multi-tiered storage systems leverage different tiers to make trade-offs between cost,

reliability and performance. GreenHDFS has introduced an additional dimension of power and

temperature to the set of the trade-offs. Furthermore, the zones in GreenHDFS are just a logical

abstraction at the file system level unlike physically distinct storage tiers in the hierarchical storage

systems. Movement of the files to different zones and metadata management of the files is much

easier in case of GreenHDFS compared to the hierarchical storage management systems which

typically rely on file stubs or reparse points to do metadata management as they are not integrated

with the file system.
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CHAPTER 4

DATA-CENTRIC COMPUTE ENERGY MANAGEMENT

4.1 Motivation for Scale-Down

There is significant amount of research on increasing energy-efficiency of individual components

of servers such as the processor [44, 47, 69, 88, 105, 127, 128, 138], the storage subsystem [51, 60,

65, 92, 118, 130, 141, 147], the memory system [17, 18, 50, 71, 89, 94, 95, 103, 131, 146] and the

networking equipment [25, 83, 96, 109, 124]. However, in a typical commodity server in a Big

Data analytics cluster, no single server component contributes significantly to the overall power

consumption and hence, an energy-management scheme that encompasses the entire server is

needed.

Energy-proportionality is increasingly becoming an important consideration [28]. In an ideal,

perfectly energy-proportional system, almost no power is consumed when the system is idle and

power consumption increases in proportion to the increase in the activity level. In reality, instead

of consuming negligible power, the server components consume almost 40%-70% [28] of the peak

power during idle utilization. The main culprits are memory, hard disk drives, and networking

system as their dynamic range (i.e., the range between the power draw at peak utilization vs.

idle utilization) is much lower than that of the processor. In fact, processors that allow voltage

and frequency scaling are the most energy-proportional server components. The dynamic range

is approximately 2.0x for memory (DRAM DIMM consumes 3.5-5W at peak utilization and 1.8-

2.5W at idle utilization), 1.2x for disks (Seagate Barracuda ES.2 1TB consumes 11.16W at

peak utilization and 9.29W at idle utilization), and less than 1.2x for networking switches. This

suggests that energy-proportionality cannot be achieved through processor optimizations such as

dynamic voltage and frequency scaling (DVFS) alone, and requires improvements across all server

components.
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Some non-energy-proportional components such as the disks require greater innovation to be

energy-proportional. Disk drives consume significant amount of power simply to keep the platters

spinning, possibly as much as 70% of their total power for high RPM drives [65]. Energy-

proportionality incorporation in disks may require smaller rotational speeds, or smaller platters.

Since, the hardware-level innovaton may take significant time, it is important to explore software-

driven energy-proportionality mechanisms.

Scale-down, that involves transitioning server components such as the processor, memory, and

disks to an inactive, low power-consuming sleep/standby state during periods of idle utilization,

is an attractive technique to conserve energy. Given the non-energy-proportional nature of some

of the state-of-the-art server components, scale-down is also one of the most viable options

for yielding energy-proportionality during idle periods as inactive, sleep power states consume

negligible power compared to idle-mode power states. A typical server consumes only 1%-3% of

peak power in an inactive sleeping power state vs. 40%-70% of peak power in active idle power

state. This behavior can be explained by examining the behavior of components such as disks.

While the disk arms don’t need to move during active idle-mode power state conserving some

power, the disk does keeps its platters spinning which can consume as high as 70% of the peak

power. On the other hand, in the inactive power states such as standby/sleep, the heads are

parked and the spindle is at rest; thereby, consuming negligible power. Thus, scaling-down a server

during idle utilization is a much better option for energy conservation and energy-proportionality

than using active idle-mode power states.

4.2 Scale-Down Challenges

Scale-down cannot be done naively. Energy is expended and transition time penalty is incurred

when the components are transitioned back to an active power state. While inactive sleep/standby

power states of disks are very attractive as they consume negligible power compared to active

idle-mode power state which still consumes significant power, these inactive power states involve

a wake-up latency as high as ten seconds for an inactive-to-active power state transition. Scale-

down can be justified only if the idleness interval meets the criterion illustrated in the following

equations:

The power consumed by a server i with computational load Li,t at time t can be stated as a
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linear function of Li,t [67]:

Pi,t = wi1Li,t + wi2 , (4.1)

Coefficient wi1 is the difference between the maximum power draw (at 100% utilization) and the

static power, and coefficient wi2 gives the static power consumption when the machine is at idle

utilization with no computational load [67].

In any idle period tidle, whereby Li,t is zero, there are two power state options for the servers:

1) scale-down, i.e., transition to low-power consuming inactive power state, 2) remain in active

power state.

Esleep = Psleep · tidle + Ewake (4.2)

Enosleep = (wi2) · tidle (4.3)

The energy expenditure for option 1) is given by Equation 4.2 where, Psleep is the power draw of

the inactive power state, Ewake is the energy expended upon a server wakeup, and Esleep is the

total energy consumed by scaling-down the server for the tidle duration and then, transitioning

the server back to active power state at the end of tidle interval. The energy expenditure for

option 2) is given by Equation 4.3 where, Enosleep is the energy consumed if the server just stays

in the active power mode for the entire tidle duration.

To ensure energy savings, scale-down should be done during an idle period tidle, only if Enosleep−
Esleep >> 0. This happens when tidle meets the time duration requirements illustrated below:

tidle >
Ewake

wi2 − Psleep
(4.4)

An effective scale-down technique mandates the following:

• Sufficient idleness to ensure that energy savings are higher than the energy spent in the

transition as shown in Equation 4.4.
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• Less number of power state transitions as some components (e.g., disks) have limited

number of start/stop cycles (e.g., 50,000) and too frequent transitions may adversely impact

the lifetime of the disks.

• No performance degradation. Disks take significantly longer time to transition from active

to inactive power mode (as high as 10 seconds). Frequent power state transitions will lead

to significant performance degradation. Hence, steps need to be taken to reduce the power

state transitions and also, to amortize the performance penalty of the unavoidable power

state transitions that do need to occur.

• No performance impact of load-unbalancing. Steps need to be taken to ensure that load

concentration on the remaining active state servers does not adversely impact overall per-

formance (including data read and write access performance) of the system.

4.3 Scale-Down Challenges in Big Data Analytics Cluster

There is significant amount of research literature on scale-down [29, 87, 107, 108, 126]. A ma-

jority of these techniques try to scale-down servers by manufacturing idleness by migrating and

consolidating workloads and their corresponding state to fewer machines during periods of low

activity. This can be relatively easy to accomplish when using simple data models, when servers

are mostly stateless (e.g., serving data that resides on a shared NAS or SAN storage system).

When the data resides on a shared networked attached storage (NAS) such as Netapp NAS box or

storage area network (SAN), the data access latency is the same between any server in the cluster

and the storage system; hence, workloads can be moved around servers without any performance

implications.

However, given the massive bandwidth requirements and the sheer amount of the data that

needs to be processed, Big Data analytics clusters have moved away from NAS/SAN model

to completely clustered, commodity storage model that allows direct access path between the

storage servers and the clients [61]. The underlying storage system distributes file chunks and

replicas across the servers for high performance, fine-grained load-balancing and resiliency. With

files distributed across all servers, any server may be participating in the reading, writing, or

computation of a file chunk at any time. Such a data placement complicates scale-down based
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power-management and makes it hard to generate significant periods of idleness in the Big Data

analytics clusters and renders usage of inactive power modes infeasible [91].

Furthermore, Big Data analytics cloud mandates a different compute model which presents a

significant challenge to the existing scale-down techniques. The network bandwidth constraints

of the commodity network switches and the huge data sizes of Big Data, render sending data to

computations infeasible. Data-locality is a really important consideration for high performance

as server-local bandwidth can be 8-20x higher than inter-rack bandwidth in these clusters [68].

To avail high server-local data access bandwidth, computations are sent to the servers where the

data resides [49]. This brings forth challenging performance and energy trade-offs: respecting

data-locality makes workload consolidation very constrained or almost impossible; neglecting

data-locality results in power savings at high performance cost.

Figure 4.1: Racks and servers in the cluster. Jobs 1, 2, and 3 are consolidated on few
servers while the relevant data (marked in same color) for each job resides on other
servers (same or different racks) in the cluster.

Figure 4.1, captures the above-mentioned challenges. In the example in the Figure 4.1, let there

be three incoming Big Data analytics jobs during period of low load. A job consolidation based

scale-down technique consolidates the three jobs on few servers during periods of low load in

the hope of scaling-down rest of the servers for saving energy costs. However, the rest of the

servers are actually hosting the very files chunks which these jobs need to process. And, in the
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worst-case, if the target files of the jobs to be consolidated are really huge, they may even span

the entire cluster, rendering scale-down of the remaining servers infeasible. Furthermore, such a

data-placement-agnostic job consolidation comes at significant performance impact. The servers

on which the jobs have been consolidated, may or may not host the file chunks that these jobs

need to process. This results in either a rack-local or even an inter-rack data access. Inter-

rack bandwidth can be 8-20x times lower than server-local bandwidth in the Big Data analytics

clusters, thereby, resulting in a significant performance degradation.

Recent research on increasing energy-efficiency in GFS and HDFS managed clusters [23, 91]

propose maintaining a primary replica of the data on a small covering subset of nodes that are

guaranteed to be on and which represent the lowest power setting. The remaining replicas are

stored in larger set of secondary nodes which are scaled-down to save energy. In a Big Data

analytics storage model, a file chunk is considered written once all the replicas of the file chunk

have been written to the respective servers. While the primary replica of the chunk can be written

to the covering set of servers without requiring any server wake-ups, the secondary and tertiary

replicas (three-way replication is the norm) may require server wake-ups of the secondary servers

on which these replicas need to be placed. Since, wake-ups have a significant transition latency,

these secondary and tertiary replica writes suffer from degraded performance. Other option is

to offload the secondary and tertiary replica writes to dedicated servers using write-offloading

technique. However, write-offloading technique comes at performance impact caused by queuing

delays on the few write-offloading servers. The reads and writes of the primary replica of files also

suffer from degraded performance because of the increase in queuing delays on the covering set

of servers. In production Big Data analytics, thousands of files are created and written to even at

an hour granularity. Since, covering replica set solution suffers from degraded write-performance

and increased code complexity [24], it is not a good fit for the production clusters. Thus, there

is a need for a new scale-down based energy management technique for Big Data analytics cloud

that delivers energy savings while allowing data-local high performance.

4.4 GreenHDFS

GreenHDFS takes a data-centric, cyber-physical scale-down approach which different from the

state-of-the-art job-centric scale-down approaches. GreenHDFS is based on the observation

that data needs to be a first-class object in energy-management in the Big Data environments.
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Instead of energy-aware consolidation of jobs or replicas as was done earlier, GreenHDFS focuses

on energy-aware consolidation of files to realize sufficient idleness to enable scale-down. On

the cyber-side, GreenHDFS is cognizant that not all-files-are-created-alike and files differ in their

job arrival rates, sizes, popularity, and evolution life spans. On the physical-side, GreenHDFS

is aware that even in a data center with hot- or cold-aisle containment or free-cooling, uneven

server inlet thermal-profile exists because of distance from the cooling system or the vents, hot

air leakage, and varying ability of the cooling system to cool different parts of the data center.

In traditional air-cooled data centers without air containment (hot- and cold-aisle containment

can not always be retrofitted in existing data centers because of space and other architectural

limitations), uneven inlet thermal-profile is further aggravated because of hot air recirculation and

air bypass; due to the complex nature of airflow inside data centers, some of the hot air from the

outlets of the servers recirculates into the inlets of other servers. The recirculated hot air mixes

with the supplied cold air and causes inlets of some of the servers in the data center to experience

a rise in inlet temperature. The higher the inlet temperature of a server, the lower is its cooling-

efficiency (i.e., ability to remove the heat generated). Lower cooling-efficiency compromises the

ability of a server to dissipate the heat generated by the computational load.

Figure 4.2: All the files and servers in the cluster are treated alike in baseline Big Data
analytics cluster with no GreenHDFS deployment.

Files in the cluster can be in different evolution phases: some files may be in their active phase;

whereby, the files are actively being computed upon and accessed, and other files may be in

their dormant phase; whereby, the files are past their active phase and are now lying dormant in
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Figure 4.3: Active and dormant file chunks are inter-mixed across servers. Since all
servers contain some share of active file chunks, servers are rarely idle and any server
can be reading, writing, or computing at any time.

the system without receiving any computations or accesses. State-of-the-art Big Data analytics

clusters such as Hadoop clusters treat the servers and the files in the cluster alike and do not

differentiate between them in their policies and decision making process as shown in the Figure

4.2. The active and dormant file chunks are intermixed on the servers in the cluster as shown

in the Figure 4.3. In this storage model, active file chunks may reside on any server; as a result,

servers are rarely idle as any server can be reading, writing, or computing at at time, rendering

scale-down infeasible.

File- and Server-Differentiation: On the other hand, GreenHDFS is cognizant of the file and

server differences and does differentiate between both the servers and files in its policies and

decisions. GreenHDFS trades cost, performance, temperature, and power by separating cluster

servers and files into logical Active and Inactive zones as shown in Figure 4.4. Active zone

servers are used to host files that are actively being computed upon and the new incoming

files, and the Inactive zone servers are used to host dormant files, i.e., files that are no longer

in their active life span, but, are still being retained in the system for regulatory, compliance,
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disaster recovery, or historical trend analysis reasons. These files have none or very infrequent

computations targeted to them. Our study of a production Big Data analytics Hadoop cluster at

Figure 4.4: GreenHDFS is aware that files and servers in the cluster are not-all-alike
and separates them into thermally- and data-differentiated Active and Inactive zones.

Yahoo! [79] found that 56% of the storage in the cluster was dormant (i.e., was not accessed in

the entire one-month long analysis duration) as shown in Figure 4.5. A majority of this dormant

data needed to exist for regulatory and historical trend analysis purposes and could not just be

deleted [79]. IDC has also pointed out that up to 70% data in the data centers is dormant

in nature and a study at Microsoft also found 50% dormant data in their Big Data analytics

cluster [64]. There has been an increase in the dormant data in the production clusters due

to several government regulations around data retention, compliance regulations, and disaster

recovery concerns.

Since, computations exhibit high data-locality in Big Data analytics frameworks such as Map

Reduce [144], energy-aware file placement translates into energy-aware computation placement.

The computations flow naturally to the files in the Active zone, resulting in maximal computa-

tional load in the Active zone and minimal computational load in the Inactive zone. GreenHDFS
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Figure 4.5: 56% of used storage capacity is dormant in the Yahoo! production hadoop
cluster.

data-differentiation-driven, dormant files consolidation storage model shown in Figure 4.6 results

in a number of servers in the Inactive zone with very low utilization and guaranteed periods of

idleness, making scale-down feasible as scale-down mandates sufficient idleness to amortize the

energy expenditure and performance penalty of power state transitions. The CPU, DRAM and

disks on these servers can then be transitioned to inactive power states resulting in substantial

energy savings.

Thermal-Aware Zone Partitioning: GreenHDFS does zoning in a thermal-aware manner and

assigns the most inherently cooling-inefficient servers in the cluster to the Inactive zone as

Inactive zone hosts dormant files whose low or negligible computational load-profile is a great

fit for the cooling-inefficient servers given their impaired heat dissipation capability. Such a

placement ensures that the cooling-inefficient servers receive negligible computations; as a result,

the cooling-inefficient servers don’t generate much heat, and their exhaust temperature remains

bounded. Thus, a thermal-aware server zone partitioning reduces the thermal hot-spots in the

cluster leading to an overall lower temperature in the cluster which in turn reduces the cooling

energy costs.
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Figure 4.6: Active and dormant file chunks are separated. Dormant files are
consolidated on few servers allocated to the Inactive zone and active file chunks are
spread out across the rest of the servers. In this split storage model, the servers in
the Inactive zone experience significant periods of idleness.

Data-Differentiated Per-Zone Policies: GreenHDFS governs the Active and Inactive zones

with policies most conducive for the class of data residing in the zone. GreenHDFS makes

different energy savings vs. performance trade-offs in the per-zone policies as shown in the Table

4.1. Since, Active zone is used to host active files and newly created files, which may have

strict service level agreement (SLA) requirements, and completion deadlines; performance is of

the greatest importance. GreenHDFS trades-off power savings in interest of higher performance

in the Active zone and no energy management is done in the servers. Majority of the servers

in the cluster are assigned to the Active zone upfront so that the files can be chunked across

as many cluster servers as possible for fine-grained load-balancing and high parallel data access

performance. Since, actively used storage capacity can actually be less than half of the total

used storage capacity as per the studies of these cluster, the active data can enjoy fine-grained

load-balancing even with slightly reduced number of servers.

The Inactive zone consists of dormant files, i.e., files that are no longer in their active life
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span and hence, are not being computed upon. Hence, performance is not as important and

GreenHDFS trades-off performance in interest of higher energy-conservation in the Inactive

zone. GreenHDFS uses aggressive power management policies in the Inactive zone to scale-

down servers. Minority of the servers in the cluster are assigned to the Inactive zone in order

to minimize the impact of load-unbalancing caused by scale-down on active data accesses. In

order to be able to allocate only few servers to the Inactive zone, it is important to make each

server in the Inactive zone storage-heavy to reduce the server footprint of the Inactive zone as

dormant files may actually consume more storage capacity than the active files on these clusters.

GreenHDFS uses twelve disks per server in the Inactive zone vs. four disks in the Active zone.

Table 4.1: Description of the associated striping, power, reliability and data
classification policies in the predictive GreenHDFS zones.

Active zone (SSD) Active zone (HDD) Inactive zone

Storage Type SSD SATA SATA

Number/Capacity of Disks 256GB 4, 1TB 12, 1TB

File Chunking Policy None Performance-
Driven [61]

Energy-Efficiency
Driven,None

Server Power Policy Always-on Always-on Aggressive, Scale-
down

Replication Policy None n-way n-way

Data Classification Small-Sized Files Active and Newly Cre-
ated Files

Dormant Files

Power Transition Penalty None None High

Energy Savings Medium None High

Performance Very High High Low

Incorporation of Wimpy Servers: Since, Inactive zone servers are used to host dormant files

with very low to negligible computational load-profile, and performance requirements, GreenHDFS

uses low cost, low performance and low power processors in the servers in the Inactive zone.

Recently, several low-power processors have been introduced in the market. A class of Intel Atom

introduced in 2010 called Z560 [74] is a single-core processor which consumes only 2.5W (0.01W

when idle), has a clock speed of 2.13GHz, and costs $144. GreenHDFS uses Intel Atom in the

Inactive zone servers. On the other hand, high power, high performance processors such a quad-

core Xeon 5400 are used in the servers in the Active zone as done in the state-of-the-art Big

Data analytics clusters. A quad-core Xeon 5400 consumes 80-150W of power while offering clock

speeds ranging from 1.86-3.50GHz and its costs range from $209.00 - $1493.00 [76]. GreenHDFS
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also differentiates between the zones in the memory allocation based on the class of files residing

on a zone. The Active zone servers are deployed with eight DRAMs for high performance. On

the other hand, GreenHDFS reduces the number of DRAMs from eight to two in the Inactive

zone servers which further aids in reducing power consumption. The low power Inactive zone

servers can still be used for computations in situations where the Active zone servers are not

sufficient to absorb the entire workload such as in periods of heavy, peak demand. Usage of

low-cost, low-power processors significantly lowers the total cost of ownership of the cluster.

Solid State Drive Incorporation: To handle the inherent heterogeneity in the sizes, and

computational jobs arrival rates of the files, GreenHDFS introduces an additional Active zone

layer, called ActiveSSD, which consists of few number of servers with Solid State Drives (SSDs)

instead of Hard Disk Drives (HDDs). SSDs are known to have much higher random read access

rate (IOPs), lower access latency, higher bandwidth, lower power and higher reliability compared

to Hard Disk Drives (HDD) [19]. However, SSDs can not be incorporated in the system in an ad

hoc manner or used naively. SSDs are much more expensive than HDDs and their incorporation

has a direct affect on the total cost of ownership of the cluster. SSDs also suffer from wear-leveling

and hence, can support only limited write cycles. GreenHDFS is cognizant of the limitations and

advantages of the SSDs and has policies in the place that utilize the strengths of the SSDs while

minimizing their limitations. GreenHDFS does total cost of ownership (TCO) analysis to guide

its SSD incorporation by figuring out the number of SSDs that can be incorporated in the cluster

without adversely impacting the TCO.

Energy Proportionality: In the Big Data clusters, the lowest energy-efficiency region corre-

sponds to their most common operating mode, as shown by a six-month average CPU utilization

study done at Google [28]. Per this study, servers operate most of the time between 10%-50% of

their maximum utilization levels. Thus, there is a significant opportunity to consolidate compu-

tational load on the Active zone and push the servers to operate closer to their energy-efficient

range (i.e., 70%-80% of peak utilization). In the Inactive zone, on the other hand, scaling-down

servers aids in deriving energy-proportionality during idle utilization. Since, the power draw in the

inactive power states is very close to zero, by transitioning the servers to inactive power state,

GreenHDFS provides a mechanism to have an energy-proportional behavior in data centers built

with non-energy-proportional components during periods of average load. And, the compute

capacity of the Inactive zone zone can always be harnessed under peak load scenarios by waking

up the sleeping servers.
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The rest of the chapter does a deep-dive into GreenHDFS, its various policies, components,

algorithms, and cyber-physical architecture. Section 4.5.1 describes the zoning algorithm used

to determine the N number of servers to assign to the Inactive zone. The algorithm aims

to maximize the energy savings possible via scale-down subject to performance and capacity

constraints. Next, Section 4.5.2 elaborates the zone partitioning schemes, which figure out the

actual N physical servers to assign to the Inactive zone in a thermal- and performance-aware

manner. The cyber-side monitor, controller, and actuator, energy-aware file management and

placement policies, and per-zone policies and managers are given in Section 4.6. The predictive

modeling in place in GreenHDFS is elaborated in Section 4.6.1. The physical-side monitor,

controller, and actuator are described in Section 4.7. Lastly, the evaluation of the Reactive and

Predictive variants of GreenHDFS is presented in Sections 4.9 and 4.10.

4.4.1 Scale-Down Challenges in GreenHDFS

GreenHDFS data-centric scale-down approach requires consolidation of the dormant files. This

raises additional questions/challenges on top of the scale-down challenges discussed earlier:

• How should dormant files get identified?

• How should truly dormant files get distinguished from files that are simply experiencing a

temporary lull in jobs arrival?

• What are the repercussions of inaccurate dormancy determination?

• Should the dormancy determination be coarse-grained at data-set level or fine-grained at

file-level? What are the advantages and disadvantages of either approaches?

• Is it possible to determine dormancy onset in the files predictively?

• Should thresholds be used in the determination; if yes, what is the sensitivity of the system

to threshold values?

• How should the situation when a dormant file is no longer dormant be handled?

• What support does dormancy determination require from the rest of the system? What is
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the performance repurcussion of this determination?

• How often should the dormant files get moved to the Inactive zone?

• When should the dormant files get moved to the Inactive zone?

• How should the Inactive zone servers be selected to reduce the migration time of the

dormant files?

• What trade-offs are involved in the selection of the Inactive zone servers?

• How should the cluster get split into logical Active and Inactive zones in an energy, and

performance-aware fashion?

Figure 4.7: Cyber-Physical GreenHDFS.
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4.5 Cyber-Physical System

GreenHDFS is designed as a cyber-physical system and consists of a physical-system, and physical-

side and cyber-side controllers, actuators, and monitors as shown in the Figure 4.7. The cyber-

and physical control loops make GreenHDFS a self-adaptive, energy-conserving system. The

physical-system in GreenHDFS comprises of |S| servers in the cluster c and their associated

temperature sensors. Each server i in the cluster has a temperature sensor at its inlet to measure

the temperature T ini,t of the cold air coming into the server, a temperature sensor at its exhaust to

measure the temperature T outi,t of the hot air exhausted from the server, and a sensor to measure

the steady-state temperature of the server Ti,t. And, finally, a temperature sensor measures the

overall temperature T outc,t of the cluster. During the run-time, the physical- and cyber-monitors

collect information from the physical system and send the relevant information to the physical-

and the cyber-controller respectively. The controllers then use the run-time information to guide

their policies and decision making process.

GreenHDFS has an initial bootstrapping phase in which the following two steps are performed:

1) zone partitioning algorithm is used to figure out the optimal N number of servers to assign

to the Inactive zone. The algorithm aims to minimize the energy costs subject to performance

and capacity constraints, and 2) thermal-aware zone partitioning schemes are used to select the

servers for the Inactive and Active zones keeping energy costs, and performance trade-offs in

mind.
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Table 4.2: Table of Notations Used in the Zone Partitioning Algorithm.

Variable Description Units

t Time interval Seconds

Pi,t Power consumption of server i at time t Watts (W)

|S| Total number of servers in the cluster

N Number of servers in the Inactive zone

|S| −N Number of servers in the Active zone

bmax Data access bandwidth in the outer-most hard disk cylinder

zone

Megabytes/Second

(MBs-1)

bavg Average data access bandwidth of the disk Megabytes/Second

(MBs-1)

dactive Disks in Active zone server i

cactive Capacity of the disks in Active zone server i Terabytes (TB)

dinactive Disks in Inactive zone server i

cinactive Capacity of the disks in Inactive zone server i Terabytes (TB)

Umax Maximum storage capacity of the cluster Terabytes (TB)

λ̄overall Average overall jobs arrival rate in the cluster

λ̄GreenHDFS,i Average jobs arrival rate to a server i in the GreenHDFS man-

aged cluster

λ̄baseline,i Average jobs arrival rate to a server i in a cluster with no energy

management

r̄overall Overall number of jobs in the cluster

p̄overall Average parallelism of jobs in the cluster

rsub−job Data size computed upon by a job’s sub-job

tserv,i Job service time of server i

tseek,i Seek time of data access at server i

trot,i Rotation time of data access at server i

ρbaseline,i Utilization of server i in Active zone in GreenHDFS cluster

ρGreenHDFS,i Utilization of server i in Active zone in Baseline cluster

E[tserv,i] Expected service time of a job’s sub-job running on server i

E[tresp,i] Expected response time of a job’s sub-job running on server i

E[Tresp] Expected overall response time of job

r̂ Ratio of active data to overall data in cluster
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4.5.1 Zone Partitioning Algorithm

The zone partitioning algorithm determines the optimal N number of servers to assign to the

Inactive zone. The value is determined in a way that maximizes the energy costs savings while

ensuring that the throughput and response time of the overall system is not impacted. There is

a possibility of some overall performance impact in the Active zone in GreenHDFS because of

the load-unbalancing caused by the scale-down of the Inactive zone servers. Load-unbalancing

may increase queuing delays in the Active zone as it now has lower |S| − N number of servers

instead of |S| servers. While the performance impact is limited as N << |S| and amount of

active data is less than the amount of dormant data, GreenHDFS still takes measures to alleviate

the queuing delays possible in Active zone during data access by reducing the service time of

each data access request in the Active zone.

A study of 5000 Google compute servers, showed that the servers spent most of the time within

the 10% - 50% CPU utilization range [28] as Big Data analytics is a data-intensive class of

workload. Hence, there is no concern of load-unbalancing of the CPUs in GreenHDFS; instead,

there are ample of opportunities to increase the CPU utilization of the servers in the Active zone

without the danger of exceeding the performance-driven, load provisioning guidelines. Hence,

the main focus of GreenHDFS is on reducing the load-unbalancing impact of scale-down on data

accesses.

Modern disks use zoned bit recording (ZBR) whereby the disk cylinders are divided into zones

based on their distance from the center of the disk as shown in the figure 4.8. The outer-most

cylinder zones zone0 and zone1 have many more sectors per track than the inner-most cylinder

zones. This results in a factor of difference in the transfer bandwidth available across zones.

Since, the rotational speed of the disk is the same, more data can be read from the outer cylinder

zones of the disk than from the inner cylinder zones in the same time leading to a much higher

data transfer rate in the outer cylinder zones. The difference in the transfer rate between the inner

and the outer cylinder zones can be greater than two for some of the enterprise disks available

today.

GreenHDFS aims to take advantage of the much higher data transfer bandwidth available on
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Figure 4.8: Cylinder zones in modern disks with zoned bit recording. The outer
cylinder zones have more sectors per track than the inner cylinder zones, resulting in
higher data transfer bandwidth in the outer cylinder zones such as zone0 or zone1.

the outer cylinder zones and places active files, i.e., files that are still being actively computed

upon and have not yet reached the end of their active lifespan Lactive,j on the zone0 (outer-most

cylinder zone) of the disks to avail higher transfer bandwidth. The log processing workloads such

as clickstream processing have a very skewed, news-server-like access pattern whereby the new

incoming files get a much larger share of the daily incoming jobs. GreenHDFS places the new

incoming files on the outer-most cylinder zones as well in addition to the active files. Higher

transfer bandwidth reduces the data transfer time. Now, the file chunks are typically 64MB-

128MB on the production Big Data analytics clusters. The large chunk size is chosen specifically

to amortize the affect of seek and rotational times on the overall disk access time. Thus, the

overall disk access time is predominated by the transfer time; hence, reducing the transfer time

reduces the disk access time.

If the file accesses are heavily skewed to the new and active files, as is the case with the log

processing workloads such as clickstream processing, there is an added performance advantage

of consolidating the active and new incoming files on the outer-most disk cylinders zones. The
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advantage arises from a reduction in the disk seek time as all the data that being accessed is

coalesced on the outer disk tracks. The disk head doesn’t have to seek all over the disk for

reading/writing the data; both reads and writes are fulfilled from the outer disks tracks. And, of

course, there is a power advantage of the reduced seek times as well on the overall disk power

consumption.

Now, the effectiveness of such an active file layout is contingent upon having enough space in

the outer cylinder zones for placing the new incoming files and active files. If the place is not

automatically available, there would be a need to reorganize the files on the disk and move the

older, still active files to the inner disk cylinder zones, so that space is created for hosting the

new files on the outer disk cylinder zone. Such a reorganization may be expensive depending

on the extent of reorganization required. Fortunately, an analysis of the clickstream processing

workload (most popular and important Big Data analytics workload) of a production cluster at

Yahoo! shows that the majority of the used storage capacity has a very short active lifespan

Lactive,j, as shown in the Figure 4.9. Majority of the files are actively computed upon for a short

while and then, they are either deleted or are retained in the system for regulatory or compliance

reasons. Now, GreenHDFS already has a policy File Migration Policy running in the Active zone

which monitors the dormancy of the files, and moves newly dormant files to the Inactive zone as

discussed in Section 4.6.7. Thus, the File Migration Policy will automatically move the files that

are no longer active to the Inactive zone everyday, thereby automatically freeing up space on

the outer disk tracks for the new incoming files. Hence, the files don’t need much reorganization

across the disk cylinder zones in GreenHDFS.
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Figure 4.9: File’s active life span histogram of production real-world Big Data
analytics Hadoop cluster at Yahoo!. Majority of the files and the used storage
capacity have a very short active life span.

4.5.1.1 Feasibility Study

The outer disk cylinder zone, zone0, typically is capable of hosting 25% of the overall disk data

storage capacity. It is very important to do a feasibility study to evaluate if the active and new

incoming files can all be fit together on zone0 or zone1. Assume each server in the Active zone

has dactive number of disks and each disk has a storage capacity cactive. The percentage p of

active data stored in each disk of a server in the Active zone can be estimated by the Equation

4.5 shown below:

p =
r̂ · U

(|S| −N) · cactive · dactive
(4.5)

where U is the total used storage capacity on the cluster, r̂ is the percentage of the currently

active data in the cluster, |S| is the number of servers in the cluster, and N is the number of

the servers in the Inactive zone. If the value of p is low, the active data can easily fit in the

outer-most cylinder zones of the disks.

It is equally important to ensure that the dormant files will indeed fit on the N servers in the

Inactive zone. In the Inactive zone, each server has dinactive number of disks, and each disk
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has a storage capacity cinactive. The dormant files will fit only if pinactive ≤ 1 in the Equation 4.6.

The condition ensures that the Inactive zone servers are able to host the dormant files without

exceeding 100% storage capacity of the Active zone servers.

pinactive =
(1− r̂) · U

N · cinactive · dinactive
(4.6)

Example: Let’s consider the production Big Data analytics Hadoop cluster at Yahoo! which

has been extensively used in the evaluation and analysis of this dissertation. This cluster has

total number of servers |S| = 2600 and used storage capacity U = 5PB. In the baseline case

with no GreenHDFS deployment, all the servers in the cluster store the entire data without any

data-differentiation and N = 0. In the baseline cluster, dactive = 4 and cactive = 1 TB. As per

Equation 4.5, p = 0.48 which means that storage capacity of the disks in the servers is 48%

utilized assuming a uniform file chunks distribution over the servers in the cluster.

Now, we observed that out of 5PB used storage capacity, only 44% of the data in the cluster

was actually being actively accessed, and the remaining 56% of the data was lying dormant

without getting accessed (and, still needed to exist for regulatory or compliance reasons). Thus,

r̂ = 0.44. Now, let GreenHDFS be deployed in this cluster and let 20% of the servers in the

cluster be assigned to the Inactive zone, making N = 520 and the servers assigned to the Active

zone are |S| − N = 2080. GreenHDFS does data-differentiation and now, only the active files

amounting to (r̂ · U) storage capacity are placed on the Active zone’s |S| − N = 2080 servers

and the dormant files amounting to ((1 − r̂) · U) storage capacity are placed on the N = 520

Inactive zone servers. Plugging in these values in Equation 4.5 yields p = 0.26. Thus, the disks

in the Active zone servers are only 26% full with the active data. This data can easily fit on the

outer-most cylinder zones of the disks, hence showing the feasibility of using the outer cylinder

zones of disks with zoned bit recording for active file placement in the cluster.

In the Inactive zone, each server has dinactive = 12 number of disks and each disk has a storage

capacity cinactive = 1TB. Typically, the low-end servers used in the commodity clouds can only

support up to twelve disks and hence, dinactive cannot exceed twelve. Plugging in the values in

Equation 4.6 yields pinactive = 44%. Hence, we see that the Inactive zone disks can easily fit

the dormant files without exceeding storage capacity allocated to them.

GreenHDFS does zone partitioning in a way that ensures performance while resulting in energy
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savings. In Big Data analytics cluster, there are two main performance metrics of the data access:

throughput and response time.

Throughput: The throughput of a cluster is defined as the total data that can be transferred

per second. In case of a baseline cluster with no GreenHDFS deployment, the throughput is given

by the following equation:

|S| · bavg (4.7)

where bavg is the average data transfer rate of the disk. The average is taken over the transfer

rates of the various cylinder zones present in the disk.

In case of GreenHDFS, courtesy of cluster servers’ zone partitioning, the throughput that is

achieved by the placing the active files on the outer cylinder zones of disks on the |S|−N Active

zone servers is given by:

(|S| −N) · bmax (4.8)

where bmax is the data transfer bandwidth for the outer-most cylinder zone in the disks with zoned

bit recording. Both bmax and bavg are available from disk data sheets.

For zone partitioning to not have any impact on the throughput, the throughput of the active

files residing in the Active zone in GreenHDFS should be at least equal to, if not greater than

the throughput of the baseline cluster. Thus:

(|S| −N) · bmax ≥ |S| · bavg (4.9)

Average Response Time: It is important to ensure that the average response time of active

files in a cluster managed by GreenHDFS is at-least the same as the response time in a state-of-

the-art cluster with no GreenHDFS deployment. We used paper by Scheuermann et. al. [121] to

guide our average response time calculation and made changes to the assumptions and definitions

as needed by GreenHDFS.

Assume, λ̄overall is the average overall jobs arrival rate in the cluster in an epoch t. r̄overall is

the average data size of the data to be computed upon by the jobs in the cluster in epoch t and

p̄overall is the average parallelism of the jobs, i.e., the average number of sub-jobs that the jobs

get split into based on the number of chunks in the target files.

With a good predictive File Migration Policy active in GreenHDFS, all the Big Data analytic jobs
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will be targeted only to the files residing in the Active zone. Assuming perfect load balancing

and an uniform file chunk distribution across the servers in the cluster, the jobs arrival rate to

a server i in a set of |S| − N Active zone servers in the cluster, denoted as λGreenHDFS,i is

computed as:

λGreenHDFS,i =
λ̄overall · p̄overall
|S| −N

(4.10)

In case of baseline cluster with no GreenHDFS deployment, the files are distributed across the

|S| servers in the cluster. Hence, the jobs arrival rate to a server i in a set of |S| servers in the

cluster, denoted as λbaseline,i, is computed as:

λbaseline,i =
λ̄overall · p̄overall

|S|
(4.11)

Average sub-job size, r̄sub−job, can be derived as:

r̄sub−job =
r̄overall
p̄overall

(4.12)

In case of Map Reduce based Big Data analytics clusters such as Hadoop clusters, every file is

chunked and replicated across the cluster. The default chunk size of a file is 64MB - 128MB.

A Map Reduce job directed to a file f̃j, spawns Map tasks equal to the number of chunks n̂j in

the file f̃j. In interest of high data-local data access performance, each Map task (i.e., sub-job)

is sent to a server hosting a chunk of the file f̃j. Thus typical value of r̄sub−job, i.e., the data

accessed by a sub-job is the default chunk size of the cluster, i.e., 64MB - 128MB. The value of

p̄overall is equivalent to the average number of chunks in the files in the clusters.

The service time denoted as tserv,i for an individual sub-job to server i is computed as follows:

tserv,i = max (tseek,i) +max (trot,i) + txfer,i (4.13)

where tseek,i and trot,i are the seek and rotation time involved in servicing the request at a server

i. We make a simplifying assumption that the maximum seek time is twice the average seek time
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rotation latency trot,i is the average latency mentioned in the data-sheet of a disk instead of using

distributions to model the seek and rotation time.

The utilization ρbaseline,i of a server in baseline cluster, i.e., a cluster with no GreenHDFS deploy-

ment is given by the following equation:

ρbaseline,i = λbaseline,i · tserv,i (4.14)

The utilization ρGreenHDFS,i of an Active zone server in GreenHDFS cluster is given by the

following equation.

ρGreenHDFS,i = λGreenHDFS,i · tserv,i (4.15)

We assume a M/G/1 queuing model to represent a server and the expected value of the response

time of a sub-job rsub−job denoted as tresp,i can be given by [121]:

The expected value of the sub-job’s response time in case of baseline cluster is given by:

E[tresp,i] = E[tserv,i] + ρbaseline,i · E[tserv,i]
1 +m2

i

2 · (1− ρbaseline,i)
(4.16)

The expected value of the sub-jobs’s response time in case of GreenHDFS cluster is given by:

E[tresp,i] = E[tserv,i] + ρGreenHDFS,i · E[tserv,i]
1 +m2

i

2 · (1− ρGreenHDFS,i)
(4.17)

mi stands for the coefficient of variance of the service time of server i and is computed as follows:

m2
i =

V AR[tserv,i]

E[tserv,i]2
(4.18)

We assume the variance in the tserv,i to be zero as we are assuming fixed and maximum possible

values of seek time and rotational latency. The size of a sub-job is assumed to to be the default

chunk size of 64MB-128MB and hence, the transfer time is also fixed. Thus, mi = 0 in our case.
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The overall response time of the sub-jobs of a Big Data analytics job is the equivalent to the

maximum value of tresp,i seen by the servers on which sub-jobs corresponding to the Big Data

analytic job are running, as the overall response time of a Big Data analytic job is equivalent to

the completion time of the longest running straggler sub-job.

E[Tresp] = maxi (tresp,i) (4.19)

The value of E[Tresp] can be approximated as follows:

E[Tresp] = E[tresp,i] +
√
V AR[tresp,i] ·

√
2 · p̄overall (4.20)

The variance in case of GreenHDFS is calculated as follows

V AR[tresp,GreenHDFS,i] = V AR[tresp,i]+
λGreenHDFS,i · E[(tserv,i)

3]

3 · (1− ρGreenHDFS,i)
+

(λGreenHDFS,i)
2 · E[(tserv,i)

3]

4 · (1− ρGreenHDFS,i)2
(4.21)

V AR[tresp,baseline,i] = V AR[tresp,i]+
λbaseline,i · E[(tserv,i)

3]

3 · (1− ρbaseline,i)
+

(λbaseline,i)
2 · E[(tserv,i)

3]

4 · (1− ρbaseline,i)2
(4.22)

The servers in the Active zone draw power given by Equation 4.23.

Pactive =

|S|−N∑
i=1

Pi (4.23)

We make a simplistic worst-case assumption that all the servers in the Active zone are running

at full utilization and thereby, are drawing peak power. This is the worst-case scenario for any

cluster. In reality, the servers are at a much less utilization and draw much less power than

the peak power. Thus, Pi in the above equation can be substituted by the peak power draw of

the servers in the cluster. Since the servers in the Inactive zone are scaled-down, they don’t

consume any power and all the power consumption in the cluster comes from the Active zone

servers. Increasing N by allocating more servers to the Inactive zone has the potential to save

lot more energy; however, larger the N , lower the throughput and higher the response time of
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the cluster.

To decide on the optimal way to partition a cluster into an Inactive zone consisting of N servers

and an Active zone consisting of |S| − N servers, we seek the N that minimizes the power

consumption in the cluster (i.e., cooling and server power), subject to capacity and performance

constraints as follows:

min
N

= Pc +

|S|−N∑
i=1

Pi (4.24)

subject to:

(|S| −N) · bmax ≥ |S| · bavg (4.25)

(|S| −N) · cactive · dactive ≥ r̂ · Umax (4.26)

N · cinactive · dinactive ≥ (1− r̂) · Umax (4.27)

E[Tresp,GreenHDFS] ≤ E[Tresp,baseline] (4.28)

Where, E[Tresp,GreenHDFS] is given by Equation 4.21, E[Tresp,baseline] is given by Equation 4.22,

and Umax is the maximum storage capacity possible in the cluster. Since, the above objective

function is monotonically increasing in N , the above optimization can be solved easily by trying

out increasing values of N until the constraints are violated.

4.5.2 Zone Partitioning Schemes

The thermal-aware zone partitioning scheme is run during initial bootstrapping phase to perform

the following tasks: 1) rank the cooling-efficiencies of the servers, and 2) partition the servers in

the cluster into cooling-efficiency differentiated server zones. The bootstrapping phase creates

a thermal-profile of the cluster, with all servers kept at same utilization, to identify the inher-

ently cooling-inefficient servers. The bootstrapping phase uses MentorGraphics floVENT [6], a

computational fluid dynamics (CFD) [115] simulator, to simulate the cluster under consideration.

floVENT simulates a cluster with great accuracy including the geometry, layout, and configuration

of the compute equipment. floVENT has been extensively used and validated in several research

papers in the past [29, 107, 126].
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At the conclusion of the simulation, floVENT provides the inlet and the exhaust temperature for

each server and the CRACs in the cluster. The bootstrapping phase then ranks the servers in the

cluster in decreasing order of their inlet temperatures (i.e., cooling-efficiency). It also creates a

per-rack ranking of the inlet temperature (i.e., cooling-efficiency) of the servers in the racks. The

bootstrapping phase needs to be rerun if there are physical changes to the hardware or layout in

the data center. Past research has shown that changes in the physical layout of the data center

can result in significant changes in the air flow in the data center and hence, result in a change

in the thermal-profile of the servers [114].

Figure 4.10, shows a histogram of the range of the inlet temperatures present in a traditional

air-cooled data center. MentorGraphics floVENT was used to simulate the cluster under consid-

eration. There is significant difference in the inlet temperatures of the servers as illustrated in

several other studies of real-world data centers in the past as well.

Figure 4.10: The histogram of the inlet temperatures in a Big Data analytics cluster
with no energy management.

The zone partitioning schemes use the thermal-efficiency ranking to partition the servers in the

cluster into cooling-efficiency differentiated zones. The zone partitioning algorithm covered in

Section 4.5.1 is used to determine the N number of servers to assign to the Inactive zone.

The Inactive zone servers are used to store dormant file class, i.e., file class with very low or

negligible data access-profile (cyber), and thereby low computation-profile, generating low-server

energy, hence requiring low cooling energy. The Inactive zone servers experience significant
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idleness and can be scaled-down. The Active zone servers are used to store the rest of the file

classes with high/medium/low data access-profile, generating high/medium-server energy, and

hence requiring high/medium cooling energy.

GreenHDFS assigns the most inherently cooling-inefficient servers in the cluster to the Inactive

zone. Thus, GreenHDFS ensures that the cooling-inefficient servers receive negligible compu-

tations, don’t generate much heat and their exhaust temperature remain bounded. Such a

thermal-aware data zone partitioning reduces the hot spots in the cluster leading to an overall

lower temperature in the cluster which in turn reduces the cooling energy costs. The rest of the

more cooling-efficient servers are assigned to the Active zone. Since Active zone servers receive

majority of the computational load, they dissipate more heat, and require more cooling to keep

the server temperatures in check. Thus, the cooling-efficient servers are a good fit for the active

files. GreenHDFS uses the following two zone partitioning schemes to split the servers in the

cluster into Inactive and Active zones:

Figure 4.11: The most cooling-inefficient servers cluster-wide are assigned to the
Inactive zone.
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4.5.2.1 Cluster-Level Zone Partitioning

In this scheme, GreenHDFS uses cluster-wide ranking of the cooling-efficiencies of the servers

and assigns the N number of most cooling-inefficient servers in the cluster to the Inactive zone.

Typically the racks in the center rows of the cluster have higher inlet temperatures than the racks

in the outer-most rows as center rows experience more hot air recirculation and air bypass. Thus,

the center racks have a much higher share of cooling-inefficient servers than the outer racks.

With the cluster-wide scheme, the racks in the center rows will have more servers assigned to

the Inactive zone than the outer-most racks as shown in the Figure 4.11. Some of the outer

racks may even not have any servers assigned to the Inactive zone. Let’s consider the impact of

the cluster-wide zone partitioning scheme on cooling energy costs savings, compute energy costs

savings, and performance.

4.5.2.1.1 Cooling Energy Costs The cluster-wide zone partitioning has the most potential

to save cooling energy costs in GreenHDFS. For example, if N is as large as 30%, then with

an inlet temperature distribution as shown in the Figure 4.10, all the servers with temperature

higher than 21 will get assigned to the Inactive zone. Since, Inactive zone is used to host

inactive data with very low computational load, and servers in the Inactive zone are scaled-down

aggressively, this leads to significant alleviation of thermal hot-spots in the cluster. Thermal

hot-spots are the primary cause of high cooling energy costs in the clusters. The servers with

impaired cooling-efficiency are unable to dissipate heat generated by a server’s computational

load effectively. This results in an increase in the server’s temperature. It is important not to

exceed the maximum temperature tolerance of the servers Tmax as hardware failure rates start

increasing with an increase in the temperature beyond Tmax. In interest of thermal-reliability of

the servers, the cooling systems are run at much lower set point temperature Tac to alleviate the

hot-spots. The efficiency of the cooling system goes down with a reduction in Tac resulting in

higher cooling energy costs. If the hot-spots are reduced courtesy of a technique like cluster-wide

zone partitioning, the cooling systems need not be run at very low temperatures. Increasing the

set point temperature of the cooling system increases its operating efficiency, thereby resulting

in even more cooling energy costs savings. However, the cooling energy costs savings may come

with some performance trade-offs as illustrated below.
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4.5.2.1.2 Server Energy Costs The File Placement Manager discussed in Section 4.6.6

keeps some servers in an active power state in the Inactive zone to act as the target for the

dormant files that are getting migrated from the Active zone to the Inactive zone by the File

Migration Policy, while the rest of the servers in the Inactive zone are scaled-down to conserve

energy. These servers are kept in active power state till they are filled to their capacity, and

are then scaled-down. Next set of Inactive zone servers are chosen at that point to host the

next batch of dormant files. In case of the cluster-level partitioning, only one server cluster-wide

needs to be in an active state, thereby, allowing majority of the Inactive zone servers to be

scaled-down, increasing energy savings.

Now, to evaluate the energy costs savings, it is important to consider the number of wake-ups

scaled-down servers in the Inactive zone are subjected to when a file residing on the Inactive

zone is accessed. If such accesses happen soon after the file is moved to the Inactive zone, i.e.,

there is some temporal correlation between the time a file is migrated and the accesses, than

number of server wake-ups are less with cluster-level zone partitioning scheme as the files that

become dormant on the same day most likely reside on the same server.

4.5.2.1.3 Write Performance Big Data analytics framework such as Map Reduce uses rack-

awareness while writing data onto the cluster as intra-rack bandwidth is higher than inter-rack

bandwidth. Two replicas of each chunk are written on servers in the same rack to take advantage

of the intra-rack bandwidth for reduction in the writing time. If a rack (e.g., one of the central

racks), has a large number of servers assigned to the Inactive zone servers, then it would have

less number of servers in the Active zone and thereby, the replication pipeline at the time of the

writes may not be able to find servers on the same rack to write the replica. This may result in

an increase in the write latency.

4.5.2.1.4 File Migration Performance The File Migration Policy discussed in Section

4.6.7.2, utilizes rack-awareness while migrating files from the Active zone to the Inactive zone,

to take advantage of the higher intra-rack network bandwidth compared to the lower inter-rack

network bandwidth; and, aims to migrate dormant files from a Active zone server to a Inactive

zone server residing on the same rack. If there are no servers assigned to the Inactive zone

in some racks, then the File Migration Policy has to resort to inter-rack migration, thus taking

longer to migrate the data.
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Figure 4.12: The most cooling-inefficient servers in every rack are assigned to the
Inactive zone.

4.5.2.2 Rack-Level Zone Partitioning

In this scheme, GreenHDFS uses per-rack cooling-efficiency ranking to assign servers to the

Inactive zone and the Active zone. The N/(|R| ·N), N is the number of servers to be assigned

to the Inactive zone as determined by the zone partitioning algorithm, |R| is the number of

servers in each rack, and N are the number of total racks in the cluster. Hence, in this scheme,

most cooling-inefficient servers per rack are assigned to the Inactive zone, and the rest of the

servers in the rack to the Active zone. This partitioning results in a uniform split of servers per

rack to the zones as shown in the Figure 4.12. Let’s consider the impact of the cluster-wide

zone partitioning scheme on cooling energy costs savings, compute energy costs savings, and

performance.

4.5.2.2.1 Cooling Energy Costs Since, this scheme uses rack-level cooling-efficiency rank-

ing instead of cluster-wide cooling-efficiency ranking, it misses including some of the servers
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that rank high in the cluster-wide cooling-inefficiency ranking in the Inactive zone. Now, these

cooling-inefficient servers get assigned to the Active zone, and have active files stored on them.

When the computational load does happen on the files stored on these cooling-inefficient servers,

these servers aren’t as effective in dissipating the heat generated from load, resulting in a tem-

perature rise in the servers. As a result, thermal hot-spots don’t get alleviated completely in the

data center unlike the cluster-wide zone partitioning scheme and cooling energy costs reduction

may not be as low as that in the cluster-level partitioning scheme.

4.5.2.2.2 Server Energy Costs The File Placement Manager discussed in Section 4.6.6

keeps one server per-rack in the cluster in an active power state in the Inactive zone to act as

the target for the dormant files that are getting migrated from the Active zone to the Inactive

zone by the File Migration Policy. Keeping one server from each rack in an active power state

leads to more number of servers than in case of cluster-wide zone partitioning scheme. In case

of rack-level zone partitioning, N servers need to be in an active state, where N is the number

of racks in the cluster, as opposed to one server in active power state in case of cluster-level

zone partitioning scheme. N can be as high as eighty-six in a cluster with number of servers |S|
= 4000, which is very typical of production Big Data analytics clusters. Since less number of

servers are in a scaled-down state, the server energy costs savings are lower with rack-level zone

partitioning scheme.

Another aspect to consider is the number of server wake-ups that happen when files residing

on the Inactive zone are accessed. If such accesses happen soon after a file is moved to the

Inactive zone, i.e., there is some temporal correlation between the time a file is migrated and the

accesses, than number of server wake-ups are less with cluster-level zone partitioning scheme as

the files that become dormant on the same day most likely reside on the same server. Whereas,

in case of rack-level zone partitioning, incoming, newly dormant files get split across the racks

and hence, resulting in more server wake-ups which in turn reduce the energy savings.

4.5.2.2.3 Write Performance Since, servers are assigned to the Inactive zone from each

rack uniformly in the rack-level zone partitioning scheme, no rack runs into the lack of Active

zone servers issue experienced by cluster-level partitioning. Hence, replication pipeline at the time

of the writes is able to find servers on the same rack to write the replicas at intra-rack bandwidth.

Thus, write performance is not impacted in case of rack-level partitioning.
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4.5.2.2.4 File Migration Performance Only the Inactive zone servers in the same rack are

chosen as the target of the newly dormant files in that rack. Thus, file migration enjoys intra-rack

bandwidth which is higher than the inter-rack bandwidth. The files get migrated faster, thereby

reducing the impact of file migration.

4.6 Cyber-Side

The cyber-side system comprises of a monitor, a controller, and an actuator. The cyber-controller

is the brain of GreenHDFS and takes all energy- and file-management policy decisions. Cyber-

controller gets file system events such as file create, read, and write from the file system clients and

utilization, thermal, and capacity maps from the monitoring service running in the physical-system.

Cyber-controller makes all the major cyber-side data placement and management decisions based

on its own state, models, accumulated insights, and run-time utilization, thermal, and capacity

maps from the physical-system.

The cyber-monitor garners information from the cluster and the gathered information is pig-

gybacked on the heartbeat mechanism which is always in place in large-scale distributed file

systems [84], to ensure that there is no additional performance overhead of monitoring. The

cyber-monitor sends the following information to the cyber-controller:

• Thermal-map which comprises of the server outlet temperatures {T out1 , T out2 , · · · , T out|S| } of

all the servers in the cluster.

• Thermal-map which comprises of the server inlet temperatures {T in1 , T in2 , · · · , T in|S|} of all

the servers in the cluster.

• Thermal-map which comprises of the server temperatures {T1, T2, · · · , T|S|} of all the

servers in the cluster.

• Free storage capacity map which includes the details on the free space {D̂1, D̂2, · · · , D̂|S|}
available on each server in the cluster.

• Utilization map of the processors, and disks of each server: {µcpu1 , µcpu2 , · · · , µcpu|S| }, and

{µdisk1 , µdisk2 , · · · , µdisk|S| }
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• Job count map which comprises of the count of the jobs that were performed on each

server {J1
n,t, J

2
n,t, · · · , JNn,t}

Figure 4.13: Flow of a new file in GreenHDFS.

The controller comprises of several managers at global and per-zone level as shown in the Figure

4.13. At file creation time, the Insight Manager takes as input incoming file’s information such as

its absolute hierarchical path, and any associated user-level hints. If the Insight Manager has any

predictive models stored for the incoming file, then these models are used to make predictions

about the file such as file’s jobs arrival rate, file’s size, and file’s evolution life spans. If the

predictive models don’t exist, Insight Manager checks to see if any hints were given by the user

and then, uses these hints to guide the rest of file-specific policies. If neither hints nor predictive

models are present for the file, GreenHDFS operates in a reactive mode and relies on run-time

information it receives from the cyber-monitor to guide the rest of the policies pertaining to this

incoming file.
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Next, the Zoning Manager decides the most conducive cluster zone for the incoming file based

on the information it receives from the Insight Manager. At this point, based on the cluster

zone decision for the file, the per-zone policies and managers do the rest of the incoming file’s

processing. Each zone is governed by a different set of policies based on the class of files residing

on the zone. The incoming file is subjected to the policies of the zone it is going to be placed upon.

Active zone has strict SLA requirements and hence, performance is of the greatest importance.

GreenHDFS trades-off power savings in interest of higher performance and no energy management

is done in the servers in Active zone. On the other hand, the Inactive zone consists of dormant

files. Since, SLA requirements for Inactive zone are not strict, and the performance in this zone

is not critical, GreenHDFS employs aggressive power management policies in the Inactive zone

and trades-off performance in interest of energy savings.

First, the Chunk Manager decides if the incoming file should be split into chunks for fine-grained

load-balancing across the cluster, and the size and the count of the chunks if the file indeed

needs to split. Then, the Reliability Manager decides the reliability mechanism for the file. Each

zone has a different reliability mechanism based on the class of files stored on it. Next, the

Compression Manager decides the compression mechanism for the incoming file. The decisions

of the Chunk Manager, Reliability Manager, and the Compression Manager are sent to the File

Placement Manager which decides the servers on which the file chunks and replicas should be

placed. Finally, the Data Mover component in the actuator does the actual placement of the

chunks and replicas on the target servers chosen by the controller for the file.

During the run-time, various policies run in the controller which are guided by the run-time

information received from the monitor, insights gleaned, and any predictions or hints from the

Insight Manager. The File Migration Policy runs in the Active zone during periods of low load,

determines the dormancy of the files and moves dormant, i.e., cold files to the Inactive zone.

The advantages of the File Migration Policy are two-fold: 1) leads to higher space-efficiency as

precious storage space is freed up on the Active zone for files which have higher SLA requirements

by moving rarely accessed files out of the servers, and 2) allows significant energy-conservation by

consolidating dormant files on Inactive zone servers. Data-locality is an important consideration

in the Map Reduce framework and computations are co-located with data. Thus, computations

naturally happen on the data residing in the Active zone. This results in significant idleness in

all the components of the servers in the Inactive zone (i.e., CPU, DRAM and Disks), allowing

effective scale-down of these servers.
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Scale-down of a server is initiated by the Server Power Conservation Policy running in the Inactive

zone which keeps track of the activity of the Inactive zone servers. A server is scaled-down if it

has been inactive for a period of time. The File Reversal Policy monitors the accesses to the files

on the scaled-down servers, and if a dormant file starts getting accessess again, the File Reversal

Policy moves that file from the Inactive zone to the Active zone so that the file accesses can

avail high performance of the Active zone. Next, we detail the various managers and policies in

the Active zone.

Table 4.3: Table of Notations Used By Predictive Modelling

Variable Description Units

fj File

λj Arrival rate of computational jobs targeted to a file fj over its active lifespan

Lactive,j File lifespan between the file creation and last read access Days

T Training data set

V Validation data set

C Aggregated data set

X Independent variables

Y Response variables

k Regularization parameter

βi Ridge coefficients

Si Subdirectories in the file’s absolute path

4.6.1 Insights Manager

At file creation time, the Insight Manager takes as input incoming file’s information such as its

absolute hierarchical path, any associated user-level hints, file’s user and owner information, and

file’s size. If the Insight Manager has any predictive models stored for the incoming file, then

these models are used to make predictions about the file such as file’s jobs arrival rate, size, and

evolution life spans. If the predictive models don’t exist, Insight Manager checks to see if any

hints were given by the user and uses these hints to guide the rest of policies. If neither hints nor

predictive models are present for the file, GreenHDFS operates in a reactive mode and relies on

run-time information to guide the rest of the policies pertaining to this incoming file. We detail

the predictive capability in GreenHDFS next.
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To design our predictive scheme, we analyzed one-month of Hadoop Distributed File System

(HDFS) audit logs and metadata checkpoints (fsimages) in a production Hadoop cluster at

Yahoo!. The cluster had 2600 servers, hosted 34 million files in the namespace and the data

set size was 5 petabytes. There were 425 million entries in the HDFS logs and each metadata

checkpoint contained 30-40 million files.

We focused our analysis on the clickstream dataset as that dataset had a tremendous monetization

value and amounted to 60% of the overall cluster data. A clickstream shows when and where a

person came in to a web site, all the pages viewed, and the time spent on each page. Clickstream

processing is extremely valuable in today’s ecommerce corporate world. Clickstream analysis

is used to predict whether a customer is likely to purchase from an e-commerce website [41],

to improve customer satisfaction with the website and in effective content delivery (e.g., right

bandwidth, resolution, etc.) and to assess the effectiveness of advertising on a web page or site.

Internet services companies such as Facebook, Google, Twitter, LinkedIn, and Yahoo! [34] rely

on clickstream processing [34, 52, 133] to calculate the web-based advertising revenues (source

of majority of their income), and to derive user interest models and predictions. Huge logs of

clickstreams are continuously collected and stored in flat files on the web servers. These logs are

daily copied over to Map Reduce clusters and Map Reduce is used to compute various statistics

and derive business insights from the data given the sheer amount of data involved [4]. Every

day 60-90TB uncompressed raw log data is loaded into Hadoop at Facebook [135], 100s of GB

log data is loaded at Orbitz [123], and at Europe’s largest ad targeting company [72].

At Yahoo!, daily, several terabytes worth of incoming clickstream log data is stored in HDFS in

a time-differentiated (one subdirectory in the path contains the daily timestamp), well-defined

hierarchical file system directory structure. In order to make sense of the data, it is summarized

by hours, days and weeks. HDFS directory structure is organized hierarchically by date to reflect

this requirement. Daily, a fixed pipeline of production applications (e.g., advertising revenue

calculation, machine learning to predict user interests, or data mining to learn trends and user

behavior) is run to process, and to derive aggregate analysis from the logs. The aggregated

information is again stored in a time-differentiated, well-defined hierarchical directory structure.

Each file system directory is created for a specific data feed (for certain consumer applications)

and all the files in the directory are used for the same use cases, and thus have the same file

attributes. Also the data directory structure is relatively static, and data feeds (files) are regularly

loaded/removed without changing the directory structure. The individual directories only differ in

the timestamp information embedded in the directory path and rest of the path remains same. For
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example, let there by a predefined directory to store the clicks that happen to an advertisement

on date 08-20-2012 be denoted by /data/sds/08202012/clicks/. The directory path to store the

clicks on date 08-21-2012 will be denoted by /data/sds/08212012/clicks/ in this example.

Files in such production Big Data analytics cloud are mainly used as containers for the input data

that needs to be computed upon, aggregated data analytics output, and configuration information

of the computational jobs. The files are only accessed by the computational jobs that are invoked

on the files in a predefined manner and not by ad hoc users. We observe that the file attributes are

very strongly, and statistically associated with the hierarchical directory structure in which the files

are organized. This strong correlation between the directory hierarchy and file attributes is to be

expected in a well-laid out and partitioned name space in log processing production environments

[37,72]. Prior research has also indicated presence of statistical correlation between the filenames

and file properties [55]. The presence of significant correlation between the hierarchical directory

structure and file attributes leads us to design a predictor that takes the file path as an input and

predicts file attributes based on the subdirectories in the file path.

The predictor component of GreenHDFS uses supervised machine learning on training data to

learn the association between the hierarchical directory structure that the files are organized in

and the file attributes of relevance to thermal-aware file placement, migration, and replication;

namely, file’s active lifespan, file’s job arrival rate and file’s size. The predictive models are used

at the time of the file creation to predict file attributes and hence guide GreenHDFS’s predictive

policies. Next, we go over the supervised learning technique chosen by us to come up with the

predictive models in GreenHDFS.

4.6.1.1 Predictive Analysis

To figure out the statistical correlation between the directory hierarchies and file attributes, Green-

HDFS uses Ridge Regression [119], a variant of Multiple Linear Regression. Multiple Regression

is a form of a supervised learning with input X (i.e., independent variables) and a response Y

(i.e., dependent variable). The goal is to learn the correlation (regression) between X and Y as

shown by Equations 4.29 and 4.30.
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Figure 4.14: Predictive module in GreenHDFS.

E(Y |X(X1, X2, ..., Xp)) = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε (4.29)

Usually, β is given by:

β = [(XT ∗X)]−1 ∗XT ∗ Y (4.30)

However, if input values X1,.. Xp are highly correlated, we get large errors/variance in coefficient

β estimation. Ridge Regression is a variant of Multiple Linear Regression whose goal is to

circumvent the problem of predictor’s collinearity. An extra parameter is introduced in the model

called the ridge regularization parameter k. If k is too small, Ridge Regression cannot fight
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collinearity efficiently. If k is too large, the bias of β becomes too large. Therefore, there is an

optimal value for k, which cannot be calculated accurately from the data only and has to be

estimated by a series of trials and errors, usually resorting to cross-validation. Mathematically,

the estimate of the β in Ridge Regression is given by:

βridge = [(XT ∗X + k ∗ I)]−1 ∗XT ∗ Y (4.31)

Where X is the design matrix, XT is its transpose, k is a non-negative constant called the ridge

regularization parameter, I is the identity matrix, and Y is the response vector.

Based on our observation that there is a strong correlation between the directory hierarchy in

which a file is organized and the file’s attributes, we treat subdirectories in the training data set,

denoted as T , as independent input variables X. Since, we aim to predict three file attributes:

file’s active lifespan Lactive,j, file’s size and file’s job arrival rate λj, we treat these three attributes

as the response variable Y individually. First, we create an Array S of all the subdirectories

present in training data set T by decomposing each absolute file path in T into its subdirectory

components as shown in Algorithm 1. We ignore all the subdirectories which contain a timestamp

in any form and replace the timestamp with series of asterisks. We make abstractions based on

numerals, so any two directories differentiated only by timestamps are not differentiated in the

feature representation. We also ignore the actual filename from the file path as majority of

the files are simply named as part00, part01, cdots, part0N in these clusters and hence, don’t

add any value. Each subdirectory is then referred to by its index in Array S. We then create

input Matrix X of dimensions (nxm), where n=number of file entries in T and m=number of

subdirectories in Array S. Every file in the training data is represented as a binary feature vector

where the index of any subdirectory present in the file path is marked as 1, and its absence is

marked as 0. The binary vectors representing all the files in the training set are then inserted into

the Matrix X. For example, if T contains two files, /S1/S2/S3/foo1.txt, /S1/S2/S4/foo2.txt,

then S = {/S1, /S1/S2, /S1/S2/S3, /S1/S2/S4}, foo1.txt will be represented as {1, 1, 1, 0} and

foo2.txt as {1, 1, 0, 1}.

Ridge regression then learns the correlation between the independent variables X (i.e., subdirec-

tories) and each of the response variables Y (file’s active lifespan Lactive,j, file’s size and file’s

job arrival rate λj) individually using Equation (4.31) during the training run and creates three

separate predictive models for each of the three response variables. At a new file fj’s creation
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time, the response variable (file’s active lifespan Lactive,j, file’s size and file’s job arrival rate

λj) for a new file is calculated as the sum of the coefficients corresponding to the independent

variables (i.e., subdirectories) that are present in the file’s absolute path as shown in Algorithm

2.

Algorithm 1 Predictor Training

{numerate all subdirectories in Training Data Set T}
{For each file in T}

1: for i = 1 to n do
2: Decompose file path into subdirectories components S1, ..., Sp
3: Exclude all the Subdirectories containing time stamp information
4: S ∪ {S1, ..., Sp}
5: end for
{For each file in T}

6: for i = 1 to n do
7: Decompose file path into subdirectories components S1, ..., Sp
8: Represent file as vector F of size = size of S
9: for j = 1 to p do

10: if Sj ∈ S then
11: F .indexOf(S, Sj) = 1
12: end if
13: Insert F into Matrix X
14: Insert value of response variable (file’s active lifespan Lactive,j, file’s size sj, and file’s

job arrival rate λj) from T into Matrix Y
15: end for
16: end for
{Figure out ridge regularization parameter k’s value.}

17: while mean squared error > expectation do
18: Run validation round with the validation data set V
19: Solve Equation 4.31 for Regression coefficients βridge

20: Calculate predicted value of response variable using Equation 4.29
{Choose ridge regularization parameter k’s value by minimizing the mean squared error
between the actual value and predicted value of the response variable}

21: end while
22: Save βridge for future predictions
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Algorithm 2 Prediction

{At every new file creation time}
1: Decompose file path into subdirectories components S1, ..., Sp
2: For each response variable, file’s active lifespan Lactive,j, file’s size sj, and file’s job arrival

rate λj
3: for j = 1 to 3 do
4: Lookup regression coefficient from βridge for each subdirectory component
5: Calculate predicted value of response variable using Equation 4.29
6: end for

4.6.1.2 Training Data Preparation

We prepare the training data using one-month of HDFS audit logs and three-months of HDFS

metadata checkpoints called fsimages of the clickstream dataset in the production Hadoop cluster

at Yahoo!.

To accurately account for the file lifespan, we handle the following cases: (a) Filename reuse.

We append a timestamp to each “file create” to accurately track the audit log entries following

the file create entry in the audit log, (b) File renames. We use an unique id per file to accurately

track its lifetime across create, rename and delete, (c) Renames and deletes at higher level in

the path hierarchy are translated to leaf-level renames and deletes for our analysis, (d) HDFS

logs do not have file size information and hence, we do a join of the dataset found in the HDFS

logs and namespace checkpoint to get the file size information, (e) We use the creation time

information from the metadata checkpoints for the files that were created earlier than the period

of observation and (f) We use the last access time information from the metadata checkpoints

for the files that were created close to the end of the observation period. We find that one-

month look-back and look-ahead of the fsimages from the dates of observation were sufficient in

accurately determining the file lifespans.

We wrote a pipeline of Pig [8] scripts to process the logs and the fsimages given the sheer size

of the logs. The pipeline yields in an aggregated form the filename, file’s active lifespan Lactive,j,

file’s size and file’s job arrival rate λj for the files that were seen in the audit logs during the

one-month long observation period. We then use the aggregated data set C for training and

validation.
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4.6.1.3 Training and Validation

The generalization ability of a predictor is best judged by using data outside of the training set.

This data is called the validation set and the hypothesis that is most accurate on the validation set

is the best one [22]. We split the aggregated data set C discussed above in Section 4.6.1.2, into

two distinct subsets called the training data set T and validation data set V, in which T ∩V = 0.

The training data set T had 20% of the records in C and the validation data set V had 80% of

the records in C. We then calculate the mean squared error between the actual value of the file

attribute (as present in an aggregated form on a per-file basis in the data sets T and V ) and the

predicted value in the cross-validation phase and choose the value of the regularization parameter

that minimizes the mean squared error. The aggregated values of file’s active lifespan Lactive,j,

file’s size fj and file’s job arrival rate λj in T help populate Y and allow for the calculation of

βridge as shown in Equation 4.31.

4.6.1.4 Retraining

The training run needs to be repeated any time there is a substantial change in either the

applications running on the data set or in the data set itself. New training data needs to be

generated from the latest audit logs and Algorithm 1 needs to be rerun on the new training

data set. The dataset that we considered is slow to change as each application change requires

significant quality control before getting deployed on the production system given the associated

monetary considerations. Hence, we envisage repeating the training only every 3-4 months.

Another indicator of the need for retraining is an increase in the number of accesses to the

Inactive zone. Such an increase signifies growing inaccuracy in the lifespan predictor and hence,

calls out for retraining.

4.6.1.5 Discussion

Predictive models are very workload- and dataset-specific. Same feature sets won’t work across

datasets and the feature sets that are relevant to a particular dataset need to be identified.

GreenHDFS is not married to the predictive models generated for the clickstream dataset and
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the predictive models in the Insight Manager can be replaced by the models that make sense for

the dataset in question.

Predictive capability only works when the dataset and workload has some degree of predictability.

If the dataset and workload are purely used in an ad hoc manner, the predictability is very low.

For example, research Big Data analytics clusters are used in a purely ad hoc manner by the

researchers and files are computed upon in a totally random fashion. Such a dataset can not be

predicted with good accuracy atall.

4.6.2 Zoning Manager

The Zoning Manager decides the most conducive zone for the incoming new file. Zoning Manager

is aware that the Active and Inactive zones’ policies make different performance and energy

savings trades-offs. Active zone trades-off energy-savings in interest of high performance and

hence, is the right match for files with strict service level agreements and deadlines which require

performance guarantees. Inactive zone trades-off performance in interest of energy savings and

is a better match for files that do no have strict server level agreements or else, don’t require

performance guarantees. File Migration Policy running in Active zone does keep track of the

changing performance needs and evolution life spans of the files and moves files from Active

zone to the Inactive zone everyday if they no longer need high data access performance or else

have become dormant. Now, performance needs, popularity, or jobs arrival rate of the files may

either reduce over time or may be low to begin with. If the later category files can be identified

upfront and placed pro actively on the Inactive zone, such a placement reduces the amount of

data that needs to be moved by the File Migration Policy, and provides proactive cooling and

compute energy savings.

Zoning Manager can operate in three modes: reactive, hint-driven and predictive. If no predictive

models or hints exist for the incoming file, Zoning Manager places the file on the Active zone by

default. If the user has provided a hint about the file suggesting very low job arrival rate (e.g.,

file is of the backup or archival nature), or that the file is not subject to any strict service level

agreements or deadlines, the file is placed in the Inactive zone. Since, computations on these

files can tolerate low performance, they can be placed on the Inactive zone without any worries

about the adverse performance impact. If the hint suggests heavy jobs arrival rate or strict service
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level agreements, the file is placed in the Active zone.

If predictive models do exist for the new incoming file, Insight Manager uses the predictive data

models to predict file’s jobs arrival rate, size, and evolution life spans. The Zoning Manager

decides the zone assignment of the file based on the predicted values of file’s jobs arrival rate and

size. Files with very low predicted jobs arrival rate are marked as candidates for the aggressively

power-managed Inactive zone. Rest of the files are marked as candidates for one of the Active

zones. The prediction of the file size assists GreenHDFS in further fine-tuning the zone selection

between the Active zone and the ActiveSSD zone as illustrated below. Such predictive zone

assignment proactively yields high performance, more cooling energy savings, and reduces need

for file migrations.

The specialized distributed file systems for Big Data analytics such as GFS and HDFS are designed

to support large files (100MB or larger) [61, 84]. However, we observed significant heterogeneity

in file sizes and popularity (heat) in the production Big Data analytics Hadoop cluster at Yahoo!

as shown in Figure 4.15. Out of the 34 million files hosted in the cluster, 39% of files are smaller

than 1K. Presence of small files has been noted in several other Big Data analytics clusters such

as those at Google and Facebook. The small files are unavoidable as the aggregated results of

the Big Data analytics jobs, which are again stored back on the cluster, may not always be big

in size. In addition, files such as configuration files do tend to be small in size. This observation

raises performance and file placement concerns as intermixing small files with large files is known

to impact the service times of the small files and their access performance. A small file access

may have to wait for a large file access which is queued ahead (head-of-line-blocking effect).

Under heavy load, whereby, queuing delays dominate response time, such an intermix can have

significant performance repercussion [90].

GreenHDFS places only small-sized and read-only files in ActiveSSD zone as it is aware that

SSDs have limited write cycles and storage capacity. This separation of small files from large files

further helps improve small files’ performance on the cluster. Such predictive zone placement

implicitly yields (proactive) performance guarantees for the small files.
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4.6.3 Chunk Manager

4.6.3.1 Active Zone

Active zone contains files that are actively being computed upon and the Big Data analytics

jobs running on these files typically have strict service level agreements and deadlines, and hence,

require strong performance guarantees. Given, the data-intensive nature of these jobs, high

performance of parallel data access is crucial for overall job completion times. Hence, the active

files are chunked into 64 - 128 MB sized n̂j number of chunks and distributed across the servers

in the Active zone for fine-grained load-balancing, and high parallel data access.

4.6.3.2 Inactive Zone

Inactive zone trades-off performance in interest of high energy savings. Now, the longer the

servers are scaled-down, the higher the energy savings. Long periods of scale-down can be

achieved by reducing the need to wake-up the scale-down servers. Reducing server wake-ups is

also crucial for server hardware reliability as some components such as the disks have limited

start/stop cycles. Keeping this rationale in mind and recognizing the low performance needs and

infrequency of data accesses to the Inactive zone; GreenHDFS does not chunk the files in the

Inactive zone and a file is placed in entirety on a server. Such a placement ensures that only one

server is sufficient to absorb the file and hence, only one server needs to be in an active power

state. Had the file been chunked, n̂j number of servers would need to be in an active power

state to absorb the incoming file. The non-chunked placement also helps at the time when a file

in the Inactive zone is accessed again for some reason. Only one server hosting the file needs

to be woken up in this case. Instead, had the file been chunked and if the number of chunks

n̂j was almost equivalent to the number of servers N in the Inactive zone–a highly probable

scenario given the huge sizes of some of the files in the cluster–the entire Inactive zone would

need to be woken up to process the file access. Thus, not chunking the files in the Inactive zone

helps elongate the idleness period, allowing longer period of scale-down and increasing energy

savings. Now, if a file residing in the Inactive zone does need to get accessed in the future for

things like historical trend analysis, the file access will incur degraded performance courtesy of not

load-balancing the file across servers. GreenHDFS uses File Reversal Policy covered in Section
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4.6.9 to handle this scenario.
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Figure 4.15: File Size Distribution.

4.6.4 Reliability Manager

4.6.4.1 Active Zone

Big Data analytics clusters are build on top of commodity hardware where failure is a norm.

Hence, fault-tolerance and resilience are of utmost importance. For file resiliency and fault-

tolerance, three-way replication is the norm in the production Big Data analytics cluster and

Active zone does the same to ensure resiliency. Replication serves another purpose also as

it allows load-balancing of the performance hot spots in the cluster; thereby, results in better

performance.

Now, performance-driven replication is done in two ways in GreenHDFS: predictive and reactive.

In the reactive case, the GreenHDFS keeps track of the jobs targeted to the files in the cluster.

The files that are getting high share of jobs are deemed hot by the reactive system and are then,

replicated across the cluster to alleviate performance hot spots created by such hot files. In

case predictive models are available for the incoming file, instead of relying on the administrator
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or the user to define the replication factor, or relying on reactive replication techniques [136],

GreenHDFS decides the replication factor for a file proactively at the time of file creation based

on the file’s predicted heat. GreenHDFS is based on the belief that the true definition of a file’s

heat from the perspective of replication is given by the ratio of total number of jobs to a file

and the file’s hot lifespan Lactive,j. The ratio helps distinguish between files that receive a large

number of jobs in a short lifespan, from long-living files that accumulate a large number of job

count over their lifetime; however, receive only few jobs on a daily basis. A file with a high heat
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Figure 4.16: File heat (jobs/Lactive,j) distribution in a production Big Data analytics
cluster at Yahoo!, where Lactive,j is in days.

is proactively replicated with a higher replication factor proportionate to the file’s heat. Such

proactive replication results in upfront performance guarantees by proactively making sure that

the performance hot spots don’t arise in the first-place. Now, such performance-driven replication

may turn into a real storage capacity hog if the hot files are very large in size. Fortunately, as

shown in Figure 4.16, the good thing is that the really hot files are small-sized; hence, the

additional replicas will not adversely affect the used capacity in the cluster. However, for a

performance-driven replication scheme to not result in using too much storage capacity, it is

equally important to reclaim the replicas once the files are no longer receiving as many jobs and

are no longer as hot. In the cluster under analysis and evaluation, the active life span of the files,

Lactive,j is of short duration and hence, it is more important to garbage collect the replicas at the

end of Lactive,j. GreenHDFS automatically garbage collects the replicas of the files at the end

of their predicted Lactive,j by keeping track of the predicted value of Lactive,j. This results in a
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proactive and self-adaptive replication and load-balancing.

4.6.4.2 Inactive Zone

Inactive zone can either use three-way replication which is the norm for providing fault-tolerance

and resilience or RAID-6. RAID-6 has a better fault-tolerance than RAID-5 and can tolerate

simultaneous failure of two disks. Performance of RAID-6 is slightly lower than RAID-5 overall;

however, performance is not a concern in the Inactive zone in the first place. The storage

overhead of RAID-6 is a factor of 1.2 as opposed to a factor of 3 with three-way replication.

Reducing the storage requirement of the Inactive zone servers aids in reducing the server footprint

of the Inactive, which is important in allowing a higher number of servers to get allocated to

the Active zone for high data access performance.

GreenHDFS uses software-based RAID-6 for multiple reasons: a) Cost, hardware-based RAID

controllers are expensive and add to the total cost of ownership of a data center. On the other

hand, there is zero-capital cost involved in software-based RAID, b) Higher performance as the

RAID parity computations will happen in the host CPU and given the multi-core CPU trend in

servers, speed of computation is bound to be better than that of a RAID controller. c) Easily

available RAID-6 is already supported in Linux and hence, there is no need to write software from

scratch.

4.6.5 Compression Manager

Files are typically compressed and then placed on the Big Data analytics clusters because of

the sheer size of the majority of the files. Since, the files in the Inactive zone are computed

upon very infrequently, it doesn’t need a very high decompression throughput. In addition, the

compression throughput also doesn’t need to be high as the files are placed on the Inactive zone

during periods of low load by the File Migration Policy and hence, are outside of the critical

data access path. Hence, the most important characteristic for a compression algorithm in the

Inactive zone is the compression ratio of a compression algorithm. Higher compression ratio

translates into higher space-efficiency in the Inactive zone and further, helps reduce its server

footprint. The lower the server footprint of the Inactive zone, higher can be the server footprint
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of the Active zone–something, very important for ensuring high throughput and performance.

Following compression algorithms were used in the analysis with varying levels of compression [14]:

• LZO (compression levels 1, 3, 6, 7, 8, 9)

• GZIP (compression levels 1, 3, 4, 5, 6, 9)

• BZIP (compression levels 1, 3, 5, 7, 9)

• LZMA (compression levels 1, 2, 3, 5, 7, 9)

The results of experiments with compression algorithms on representative data samples from pro-

duction hadoop cluster at Yahoo! are shown in Table 4.4. The compression phase consisted of

reading the raw data in the dataset, and writing the compressed data to the disk. The decom-

pression phase involved reading the compressed data from the disk and writing the decompressed

data to /dev/null. As shown in Table 4.4 the compression and decompression throughput of lzma

Table 4.4: Comparison of Compression Algorithms

algorithm ratio comp(mb/s) decomp(mb/s)

lzo.1 3.37 29.18 168.15

lzo.3 3.38 28.95 166.45

lzo.6 3.38 29 166.03

lzo.7 4.31 6.81 157.01

lzo.8 4.33 4.6 198.38

gzip.3 4.3 24.46 87.14

gzip.4 4.7 20.04 87.67

gzip.5 4.9 18.16 91.58

gzip.6 4.99 18.34 94.18

gzip.9 5.05 14.47 94.72

bzip.1 4.81 4.73 20.77

bzip.3 5.77 4.35 22.49

bzip.5 6.2 3.94 22.61

bzip.7 6.48 3.6 21.04

bzip.9 6.68 3.34 19.96

lzma.1 5.89 7.17 32.65

lzma.2 6.65 3.42 36.22

lzma.3 7.47 1.1 38.86

lzma.5 8.16 0.57 38.16

lzma.7 8.76 0.44 38.37

lzma.9 9.49 0.27 38.61
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algorithm at compression level 9 (lzma.9) is the lowest; however, the compression ratio of lzma.9

is the highest. Hence, GreenHDFS opts for lzma.9 in compressing the data in the Inactive zone

to enhance the storage-efficiency of the Inactive zone and further, reduce the server footprint

of the Inactive zone.

4.6.6 File Placement Manager

The File Placement Manager tackles the problem of placing the files on the servers in the cluster.

The File Placement Manager are guided by very different policies in the Active and the Inactive

zones as illustrated below:

4.6.6.1 Active Zone

GreenHDFS divides the incoming file into multiple file chunks and then places these chunks into

many servers distributed across the Active zone for fine-grained load-balancing and high parallel

data access performance. The File Placement Manager in the Active zone maps the file chunks

and replicas to the servers using a mapping function π which is described next.

Let fkj = set of replicas of chunk k of file j, 1 ≤ k ≤ n̂j, 1 ≤ j ≤ |Z| where |Z| is the number

of files in the cluster and n̂j is the number of chunks into which file j is divided. fkj = {fkj,1,

fkj,2, fkj,3}, where fkj,n are the three replicas of the file chunk. Denote f̃j = {f 1
j , f

2
j , · · · , f

n̂j

j } to

be the set of all chunks of file j and Z = {f̃1, f̃2, · · · , ˜f|Z|} to be the set of all the file chunks in

the cluster.

Let ckj,i be the replica of chunk k of file j assigned to server i. Let Cj,i be the set of replicas of

file j’s chunks assigned to server i, i.e., Cj,i = c1j,i ∪ c2j,i ∪ · · · ∪ c
nj,i

j,i , where nj,i is the number

of file f̃j’s chunks assigned to server i. Let C̃i be the set of chunk replicas of different files

assigned to server i. C̃i is equal to a set of the set of file chunks assigned to server i, i.e., C̃i =

C1,i ∪C2,i ∪ · · · ∪CNi,i, where Ni is the number of the files whose chunks are assigned to server

i. Let C̈ = {C̃1, C̃2, · · · , C̃N̈}, where N̈ = number of servers in the cluster with chunks assigned

to them. N̈ is usually equal to the total number of the servers S in the cluster.
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The mapping function π is defined as π : Z → C̈ × S which takes the set of all file chunks Z as

its input and produces an ordered set C̈ as output. S is the set of servers in the cluster, |S| is

the number of servers in the cluster, S = {S1, S2, · · · , S|S|} or S = {1, 2, · · · , |S|}.

The Active zone’s File Placement Manager uses a thermal-aware variant of the mapping function

π. The thermal-aware, proactive file placement of GreenHDFS allows more uniform thermal-

profile, lower overall cluster temperature, and thereby, lower cooling costs as is discussed in detail

in Chapter 5.

4.6.6.2 Inactive Zone

The Inactive zone’s File Placement Manager is driven by a goal to maximize the energy savings.

It seeks to place a file f̃j in its entirety, onto a server i in the Inactive zone. By default, the

servers in Inactive zone are in an inactive power state. A server is woken up when either new

file needs to be placed on it or when a file already residing on the server is accessed. The server

then stays on till the Server Power Conserver policy kicks in and transitions the server to inactive

power state. SAM tries to avoid powering-on a server and maximizes the use of the existing

powered-on servers in its server allocation decisions in interest of maximizing the energy savings.

GreenHDFS uses an in-order placement policy. A data structure maintains a sorted list of all

the server IDs and the first server in the data structure is chosen as a target for the dormant

files being moved by the File Migration Policy. This server is filled completely to its capacity

and is then scaled-down. At this point, just prior to the File Migration Policy run, next server

in the sorted list is woken-up and is used as the target for the dormant data. In the cluster-level

zone partitioning scheme covered in Section 4.5.2.1, the in-order placement and sorted list are

maintained on a cluster-wide basis, and in the rack-level zone partitioning scheme covered in

Section 4.5.2.2, the in-order placement and sorted list are maintained on a per-rack basis. There

is a temporal locality in the accesses and jobs that happen on the files, and the files that enter

the dormant evolution phase at the same time, typically receive future accesses at the same time.

Putting the files that get dormant on the same day on the same server, limits any future accesses

to these files to one server and hence, significantly cuts down on the server wake-ups needed. This

results in higher energy costs savings as it allows servers to enjoy longer periods of scale-down.
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4.6.7 File Migration Policy

The File Migration Policy runs in the Active zone during periods of low load and migrates

dormant files from the Active zone to the Inactive zone. The advantages of this policy are

two-fold: 1) leads to higher space-efficiency as space is freed up on the Active zone for files

which have higher SLA requirements by moving rarely accessed files out of the servers in these

zones, and 2) allows significant energy-conservation. Data-locality is an important consideration

in the Map Reduce framework and computations are co-located with data. Thus, computations

naturally happen on the data residing in the Active zone. This results in significant idleness in

all the components of the servers in the Inactive zone (i.e., CPU, DRAM and Disks), allowing

effective scale-down of these servers. The policy comes in two flavors: 1) predictive - if the

workload running on GreenHDFS is predictable, and GreenHDFS has predictive models generated

for the workload, predictive version of policy is used which is guided by the predictions generated

by the Insight Manager in conjunction with some run-time information, and 2) reactive - if the

workload is not predictable at all, GreenHDFS relies on insights gleaned at run-time to guide the

policy.

4.6.7.1 Reactive File Migration Policy

Files in the cluster can be in different evolution phases: some files may be in their active phase;

whereby, the files are actively being computed upon and accessed, and other files may be in their

dormant phase; whereby, the files are past their active phase and are now lying dormant in the

system without receiving any computations or accesses. The File Migration Policy runs in the

Active zone, monitors the dormancy of the files as shown in Algorithm 3 and moves dormant,

i.e., cold files to the Inactive zone. The cyber-controller keeps track of the last access time of all

the files in the cluster and if the last access time of a file is greater than the threshold value tFMP ,

the file is deemed to have transitioned into a dormant evolution phase, is classified as a dormant

file, and is moved to the Inactive zone. The metadata information of the file is removed from

the Active zone and is added to the Inactive zone. The value of threshold tFMP is workload

dependent and requires an analysis of the evolution life spans of the files in the workload.

A good File Migration Policy should result in maximal energy savings, minimal data oscillations

between GreenHDFS zones, maximal and fast active space reclamation, and minimal performance

97



Algorithm 3 File Migration Policy

{For every file j in Active zone}
for j = 1 to n do
tdormancy,j ⇐ tcurrent − tlastaccess,j
if tdormancy,j ≥ tFMP then
{File j is added to the Inactive zone}
{Inactive zone} ⇐ {Inactive zone} ∪ {j}
{File j is removed from the Active zone}
{Active zone} ⇐ {Active zone} / {j}

end if
end for

degradation. Minimization of the accesses to the Inactive zone files results in maximal energy

savings and minimal performance impact. The more accurate the policy is in determining truly

dormant files, less are the number of jobs/accesses to the files residing in the Inactive zone.

Reduction in the accesses to the Inactive zone increases the periods of idleness in the Inactive

zone servers, allowing them to be scaled-down for a longer period of time, resulting in higher

energy savings. The accuracy of the policy directly depends on the choice of the policy threshold

tFMP which should be chosen in a way that minimizes the number of accesses to the files residing

in the Inactive zone while maximizing the movement of the dormant files to the Inactive zone.

Maximizing the movement of the dormant files to the Inactive zone is important for the success

of active file allocation on the outer disk cylinder zones of disks with zoned bit recording in Active

zone as covered in the Section 4.5.1. The faster the files are moved out of the Active zone upon

entering their dormant evolution phase, the higher is the space left on the outer disk cylinder

zones for hosting new incoming files and active files. Low (i.e., aggressive) value of tFMP results

in an ultra-greedy selection of files as potential candidates for migration to the Inactive zone.

While there are several advantages of an aggressive tFMP such as higher space-savings in the

Active zone, there are disadvantages as well. If files have intermittent periods of dormancy, the

files may incorrectly get labeled as dormant, and get moved to the Inactive zone as illustrated

in the example in Figure 4.17. At time t=5, the difference between the last access time and

the current time is greater than the threshold tFMP ’s value for the file shown in the example in

Figure 4.17. The Algorithm 3 incorrectly labels this file as a dormant file at time t=5 as it has no

way to foretell the future, or to realize that the file is still in its active life span, is just enjoying a

brief period of dormancy, and is soon going to get accessed again. Based on the dormant verdict

of Algorithm 3, File Migration Policy moves the file to the Inactive zone at t=5. Shortly after

its move to the Inactive zone, this file starts receiving file accesses again. Now, an access to a
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Figure 4.17: Illustration of the importance of threshold tFMP ’s selection.

file in the Inactive zone may result in server wake-up of the server hosting the file, which comes

with an energy expenditure and a performance penalty as some components such as the disks

take as high as ten seconds to transition from inactive-to-active power state. The file access

will suffer an additional performance degradation courtesy of not chunking a file in the Inactive

zone; placing a file on its entirety on a server doesn’t allow parallel inter-file access to the file,

resulting in low data access performance. Also, the access to the file in the Inactive zone lowers

the server energy costs savings as it results in a server wake-up.

A higher value of tFMP results in a higher accuracy in determining the truly dormant files. Hence,

the number of file reversals, server wake ups, and associated performance degradation decreases

as the threshold is increased in duration. On the other hand, higher value of tFMP means that

files will be chosen as candidates for migration only after they have been lying dormant in the

system for a long period of time. This would be an overkill for files with very short Lactive,j

(hotness lifespan) as such files will unnecessarily lie dormant in the system, occupying precious

Active zone capacity for a longer period of time. If less number of dormant files are moved out

of the Active zone, lesser space is left on the outer disk cylinder zones for hosting new incoming

files. Less available space in the outermost cylinder zones complicates Active zone’s active and

new file layout covered in Section 4.5.1. If the dormant files don’t get moved to the Inactive

zone automatically by the File Migration Policy, file reorganization will need to take place in the
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outer disk cylinder zone to create space for the new incoming files. GreenHDFS makes every

attempt to prevent file reorganization of the active files.

4.6.7.2 Predictive File Migration Policy

A good energy-aware file migration policy in GreenHDFS should result in maximal energy savings,

maximal movement of dormant data to the Inactive zone, and minimal performance degradation.

Minimization of the accesses to the files on the Inactive zone servers translates into longer periods

of idleness and few server wake ups resulting in high energy savings, and reduces the performance

impact of the energy management. Thus, policy decisions need to be made in such a way that

they minimize the number of accesses to the files residing in the Inactive zone.

Figure 4.18: Stages in a File’s Evolution.

A file goes through several stages in its lifetime as shown in Figure 4.18: 1) file creation is the

time when the file is created and is the only time (other than file appends) that the file has data

written to it, 2) active period during which the file is frequently computed upon and thereby,

frequently accessed, 3) dormant period during which the file is not computed upon and thereby, is

rarely accessed, and 4) deletion at which point the file’s life time gets over and the file is deleted

from the system. Lactive,j metric is defined as the lifespan between the file’s creation and it’s last

computational job. This metric is used to determine the active profile of each file. Ldormant ,j
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metric is defined as the lifespan between the file’s last job and it’s deletion. This metric helps

in determining the dormancy profile of the files as this is the period for which files are dormant

in the system. The longer the dormancy period, higher the suitability of the file for migration to

the Inactive zone.

File migration can be done in a very fine-grained, and per-file basis if the lifespans of the various

stages in the evolution of a file can be predicted at the time of the file creation. A per-file,

finely-tuned file migration policy that can predict the Lactive,j of file and proactively migrate the

file to the Inactive zone at the end of the Lactive,j will result in a much higher accuracy in

determining the truly cold (i.e., dormant) files and thus reduces the accesses to the files that

have been migrated to the Inactive zone. Furthermore, by moving a file to the Inactive zone on

the same day the file enters its dormancy evolution phase, allows fast reclamation of the storage

space in the outer cylinder zones, leaving more space available for the new incoming and active

files.

There are typically two classes of dormant files on the production clusters: 1) files that need to

be stored for some retention period because of compliance or regulatory reasons, and 2) files that

are not subject to compliance regulations and are deleted soon after their hotness period is over.

There is little value in moving the second class of dormant files that get deleted soon after their

Lactive,j is over to the Inactive zone. Ldormant ,j is useful to consider here as it gives an idea of

the dormancy lifespan of a file. A file with a very short Ldormant ,j (e.g., 1 day) is not a viable

candidate for migration and should be ignored.

First of all, predictive models are generated using Algorithm 1 as shown in Section 4.6.1.1.

Algorithm 2 is then used to predict the Lactive,j and Ldormant ,j of a new file at the file creation

time. The Migrationtime (in days) for a file is computed using the predicted value of Lactive,j

and a pointer to the file is inserted in a data structure called MigrateInfo as shown in Algorithm 4.

MigrateInfo maintains a list of files indexed by their Migrationtime. Every day, the File Migration

Policy runs at periods of low load and enumerates all the files that have a Migrationtime value

corresponding to the current day. These files are migrated to the Inactive zone as shown in

Algorithm 5. A file with Ldormant ,j of less than two days is not considered a viable candidate for

migration and is ignored in the migration process.

Summarizing, there are several advantages to the predictive, per-file granularity file migration

policy in comparison to the reactive file migration policy: 1) high accuracy in identifying truly

dormant files and considerably reducing accesses to the Inactive zone. This in turn results in:
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Algorithm 4 Migration Time Calculation

{At every new file j’s creation, the file’s Lactive,j and Ldormant ,j are predicted using Algorithm
2 and anticipated tmigrate of the file is calculated based on the predicted value of Lactive,j and
inserted into cluster-wide MigrateInfo data structure.}
if Ldormant ,j > 2 then
tmigrate,j = tcurrent + Lactive,j + 1
INSERT (tmigrate, j) INTO MigrateInfo

end if

Algorithm 5 Predictive File Migration Policy

{At policy run-time, lookup MigrateInfo which is populated by Algorithm 4 at every new file
creation.}
{Migration List} = Lookup(MigrateInfo, tcurrent)
{For every file j in Migration List which has tmigrate == tcurrent}
for j = 1 to n do
{File is migrated to the Inactive zone}
{Inactive zone} ⇐ {Inactive zone} ∪ {j}
{File is removed from the Active zone}
{Active zone} ⇐ {Active zone} / {j}

end for

a) higher amount of idleness in the Inactive zone leading to higher energy savings, b) none

or significantly reduced performance impact (caused by accesses to the Inactive zone), and

c) higher reclamation of the hot space given the fine-grained migration of dormant files which

is very important for the feasibility of the high performance active data placement covered in

Section 4.5.1; 2) higher scalability because instead of enumerating the entire file name space for

identifying dormant files, GreenHDFS just needs to look at the MigrateInfo data structure for

the list of migration file candidates on the day of the policy run. The candidate migration files

on any day are a very small fraction of the total name space, and 3) low runtime overhead as

there is no need to record the last access time of the files.

4.6.8 Server Power Conserver Policy

The Server Power Conserver Policy runs in the Inactive zone and determines the servers which

can be transitioned into a power saving standby/sleep mode in the Inactive zone. As discussed

in Section 2.1.5, power management of any one component is no longer sufficient in commodity
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servers and a server-wide energy management approach needs to be used. GreenHDFS leverages

energy cost savings at the entire server granularity (CPU, Disks, and DRAM) by scaling-down the

servers in the Inactive zone. The cyber-monitor keeps track of the jobs running and file accesses

to all the servers in the Inactive zone. If a server hasn’t been received any jobs or accesses in

the last threshold tSPC number of days, the server is scaled-down by the Server Power Conserver

Policy as shown in Algorithm 6.

A high value of tSPC increases the number of the days the servers in the Inactive zone remain

in active power state and hence, lowers the energy savings. On the other hand, a high value

of tSPC helps amortize power state transition latency in case of Reactive GreenHDFS. If the

Reactive GreenHDFS is inaccurate in its dormancy determination of a file as illustrated in the

example in Figure 4.17, the file gets accesses soon after it is moved to the Inactive zone. With

a high value of tSPC , it is possible that the server hosting the file has still not been transitioned

to an inactive state, obviating the need to do a power state transition which results in improved

performance of the accesses to the Inactive zone. Thus, a trade-off needs to be made between

energy-conservation and data access performance in the selection of the value for tSPC in Reactive

GreenHDFS. No such trade-off needs to be made in case of Predictive GreenHDFS given its high

accuracy in dormancy determination and tSPC can be as low as one day.

A scaled-down server is transitioned back automatically to an active power state upon the receipt

of the triggering events: 1) a file placed on the server needs to be accessed, 2) bit rot integrity

checker needs to run on the disks of the server ensure there is no data corruption, 3) file needs

to be deleted from the server, and 4) compute capacity of the server needs to be tapped if the

load on the system is higher than the compute capacity of the Active zone servers (e.g., peak

load has arrived).

The scale-down mechanism for each server component is discussed next:

4.6.8.1 Disks

Disk drives consume significant amount of power simply to keep the platters spinning, possibly as

much as 70% of their total power for high RPM drives [65]. GreenHDFS uses either the standby

or the sleep power states of the disks while scaling a server down; both these states put the

spindle at rest and thereby, consume almost negligible power compared to the idle power state
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Figure 4.19: Triggering events leading to Power State Transitions in the Inactive zone

whereby the platters are still kept spinning.

The disk drive enters standby power state when the host sends a standby command. If the host

has set a standby timer, the drive can also enter standby mode automatically after the drive has

been inactive for a specifiable length of time. In standby mode, the drive buffer is enabled, the

heads are parked and the spindle is at rest. The drive accepts all commands and returns to active

mode any time disk access is necessary.

The drive enters sleep power state after receiving a sleep command from the host. In sleep power

state, the drive buffer is disabled, the heads are parked and the spindle is at rest. The drive leaves

sleep mode after it receives a hard reset or soft reset from the host. After receiving a reset, the

drive exits sleep mode and enters standby mode with all current translation parameters intact.

4.6.8.2 Processor

Advanced Configuration and Power Interface (ACPI) is an open industry standard for doing OS-

level power management. GreenHDFS uses “Sleep” state such as S3 state defined by the ACPI

standard to transition a processor to a sleep power state. In case S3 state is unavailable for a
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processor, clock gating can provide substantial energy savings. For example, Intel’s Xeon 5400-

series processor’s power requirements drop from 80W to 16W upon executing a halt instruction.

From this state, resuming execution requires only a nano-second delay. The Intel Atom Z5xx

series processor has sleep state C4 whereby the processor maintains its context, phase-locked

loop (PLL), and all the internal clocks are stopped. In addition, Intel Atom also supports deep

and deeper sleep states which are capable of saving even more power such as the C6 state. The

inactive-to-active transition latency is ten microseconds for C4 state and 100 microseconds for

the C6 state.

4.6.8.3 DRAM

DRAM is very power-hungry when active. Several recent DRAM specifications feature an op-

erating mode, called self-refresh, where the DRAM is isolated from the memory controller and

autonomously refreshes DRAM content. In this mode, the memory bus clock and PLLs are

disabled, as is most of the DRAM interface circuitry. Self-refresh saves more than an order of

magnitude of power. For example, a DRAM DIMM consumes only 0.2 watts of power during

self-refresh as opposed to consuming 3.5-5 watts in active power state. Transitions into and out

of self-refresh can be completed in less than a microsecond.

4.6.8.4 Network

GreenHDFS requires that it should be able to automatically wake-up servers when triggering

events shown in Figure 4.19 do happen. To that effect, GreenHDFS requires that the network

interface card (NIC) should be able to wake the system upon arrival of a special network packet.

Existing NICs already provide support for Wake-on-LAN to perform this function and consume

only 400mW while in this mode. GreenHDFS uses Wake-on-LAN in the NICs to send a magic

packet to transition a server back to an active power state if a file residing on the Inactive zone

needs to be accessed. GreenHDFS also wakes up a server occasionally if bit rot checker needs to

run, or files need to be deleted on the servers in the Inactive zone.
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Algorithm 6 Server Power Conserver Policy

{For every server i in Inactive zone}
for i = 1 to n do
tdormancy,i ⇐ tcurrent - tlastaccess,i
if tdormancy,i ≥ tSPC then
i ⇐ INACTIVE POWER STATE

end if
end for

4.6.9 File Reversal Policy

The File Reversal Policy runs in the Inactive zone and ensures that the QoS, bandwidth and

response time of files that becomes popular again after a period of dormancy is not impacted. As

discussed earlier, the Chunk Manager for the Inactive zone doesn’t split a file into chunks and a

file is placed in its entirety on a server. Since, the Big Data analytics jobs require superior inter-file

data access parallelism, the performance of a job targeted to a file residing on the Inactive zone

significantly goes down in absence of file chunking and striping across servers. The File Reversal

Policy monitors the accesses to the files residing on the Inactive zone and if the number of

accesses to a file that is residing in the Inactive zone becomes higher than the threshold tFRP ,

the file is moved back to the Active zone as shown in Algorithm 7 in interest of performance.

The file is then chunked and placed across the servers in the Active zone for fine-grained load-

balancing and high inter-file parallelism in congruence with the high-performance policies in the

Active zone.

Algorithm 7 File Reversal Policy

{For every file j in Inactive zone}
for j = 1 to n do

if num accessesj ≥ tFRP then
{File j is added to the Active Zone}
{Active zone} ⇐ {Active zone} ∪ {j}
{File j is removed from the InActive Zone}
{Inactive zone} ⇐ {Inactive zone} / {j}

end if
end for

A higher value of tFRP ensures that files are accurately classified as hot-again files before they

are moved back to the Active zone from the Inactive zone. This reduces data oscillations in the

system and unnecessary file reversals. However, a higher value of tFRP increases the performance
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impact on the response time which is inherent till the file resides in the Inactive zone.

4.7 Physical-Side

The physical-side in the cyber-physical GreenHDFS consists of a monitor, controller, and an

actuator. The physical-monitor sends the following information to the physical-controller:

• Overall cluster temperature T outc

• Thermal-map which comprises of the server outlet temperatures {T out1 , T out2 , · · · , T out|S| } of

all the servers in the cluster.

• Thermal-map which comprises of the server inlet temperatures {T in1 , T in2 , · · · , T in|S|} of all

the servers in the cluster.

The efficiency of the cooling unit, i.e., the computer room air conditioner (CRAC) is characterized

by its coefficient of performance (COP). COP is defined as the ratio of the amount of heat Q

removed by the cooling device to the energy W consumed by the cooling device. Thus, work

required to remove heat is inversely proportional to the COP.

The cooling power consumption is calculated as shown below [114]:

Pc,t =

cair · fac ·
(
T outc,t − Tac

)
COP

, (4.32)

where, cair is the heat capacity constant, and fac is the flow rate of the cooling unit. T outc is the

temperature of the hot exhausted air that needs to be cooled by the CRAC, and Tac is the set

point temperature of the cold air supplied by the CRAC. A typical COP model obtained from a

Liebert CRAC unit [29]:

COP (Tout) = 0.0068 · (Tac)2 + 0.0008 · Tac + 0.458; (4.33)

The physical-actuator controls the cooling unit’s air supply temperature Tac according to the

overall temperature T outc observed in the physical-system. If the overall temperature T outc in the
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physical-system has cooled down below a threshold temperature, the physical-actuator increases

Tac while ensuring that the inlet temperatures of the servers remain below the redline temperature

(as that would pose a risk to the reliability). Increasing Tac increases the efficiency of the cooling

unit and results in even lower cooling energy costs. On the other hand, the physical-actuator

reduces Tac if the overall temperature of the cluster becomes high again for any reason.

4.8 Yahoo! Production Hadoop Cluster Analysis

We analyzed one month of Hadoop Distributed File System (HDFS) audit logs and namespace

checkpoints in Big Data analytics Hadoop cluster at Yahoo! to understand the characteristics

(e.g., evolution life spans, sizes, jobs arrival rate, access patterns, and popularity) of the Big Data

stored in the cluster. The cluster had 2600 servers, hosted 34 million files in the namespace, and

had a data set size of 5 Petabytes. HDFS maintains the metadata i.e., the inode data (file size,

last access time, last modified time, file name, user, and owner information) and the list of chunks

belonging to each file in the master server’s (NameNode) memory in a structure called fsimage.

The persistent record of the fsimage is called a checkpoint and is typically taken once daily for

the cluster.

In addition, HDFS has the ability to log all file system requests, which is required for auditing

purposes in enterprises. The audit logging is implemented using log4j and once enabled, logs

every HDFS event in the NameNode’s log [144]. The file system operations logged by HDFS

in the audit logs are “Open”, “Create”, “Rename”, “Delete”, “SetReplication”, “SetOwner”,

“SetPermission”, and “MkDir”. The current implementation of HDFS doesn’t support appends

and the only writes to a file happen during file creation as part of the “Create” call. The files

follow the write-once ready-many (WORM) pattern. The reads to a file happen as part of the

“Open” call.

We use the above-mentioned checkpoint and HDFS logs for our analysis. There are 425 million

entries in the HDFS logs and each namespace checkpoint contains 30-40 million files. The cluster

namespace is divided into top-level directories, whereby each top-level directory handles different

set of workloads, applications, and datasets. We consider four main directories and refer to them

as: d, p, u, and m in our analysis instead of referring them by their real names. The total number

of unique files that are seen in the HDFS logs in the one-month duration are 70 million (d-1.8
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million, p-30 million, u-23 million, and m-2 million).

The directory d comprises entirely of the clickstream dataset which is the most important dataset

in the cluster. Yahoo! [34] relies on clickstream processing [34, 52, 133], an example of Big Data

analytics, to calculate the web-based advertising revenues (source of majority of their income),

and to derive user interest models and predictions just like other Internet services companies

such as Google, Facebook, Twitter, LinkedIn, and Facebook. Huge logs of clickstreams are

continuously collected at the web servers and are copied over to the Hadoop production clusters

daily. Map Reduce based applications are then used to compute various statistics and derive

business insights from the data. The amount of the data that needs to be processed, makes

clickstream processing a classic example of Big Data analytics.

The logs and the metadata checkpoints are huge in size and we used a large-scale research Hadoop

cluster at Yahoo! extensively for our analysis. We wrote the analysis scripts in PIG [8]. One of

the main goals of the study was to identify the evolution of the files in the cluster. To accurately

understand the life spans and lifetime of the files in the cluster, we consider several file evolution

cases in our analysis as shown below:

• Files created before the analysis period and which were not read or deleted subsequently

at all. We classify these files as long-living dormant files.

• Files created before the analysis period which were read during the analysis period.

• Files created before the analysis period which were both read and deleted during the analysis

period.

• Files created during the analysis period which were not read or deleted during the analysis

period.

• Files created during the analysis period which were not read during the analysis period, but

were deleted.

• Files created during the analysis period which were read and deleted during the analysis

period.

To further accurately account for the files life spans, lifetime and to figure out complete set of

information about the files, we handled the following cases: (a) filename reuse - we appended a
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timestamp to each file create to accurately track the audit log entries following the file create

entry in the audit log; (b) file renames - we used an unique id per file to accurately track its

lifetime across create, rename and delete; (c) renames and deletes can happen at a much higher

directory level than at an individual file-level. Thus, renames and deletes at higher level in the

path hierarchy had to be translated to leaf-level renames and deletes for accurate determination

of the lifetime of the files; (d) HDFS logs do not have file size information and, hence, we did a

join of the dataset found in the HDFS audit logs and the namespace checkpoint to get the file

size information.

4.8.1 File Lifespan Analysis of the Yahoo! Hadoop Cluster

A file goes to several stages in its lifetime in the Big Data analytics cluster: 1) file creation during

which the file’s chunks and replicas are written across the servers in the cluster, 2) active period

during which the file is frequently computed upon and thereby, accessed, 3) dormant period

during which file is no longer being computed upon or accessed and is awaiting its deletion. The

file can retained in the cluster for long retention periods if it is subject to compliance, regulatory,

or disaster recovery constraints, and 4) deletion when the file is deleted, and its storage space and

metadata is reclaimed. We introduced and considered various life span metrics in our analysis to

characterize a file’s evolution. A study of the various life span distributions helps in deciding the

energy-management policy thresholds that need to be in place in GreenHDFS.

• Lcfr ,j metric is defined as the file life span between the file creation and first computational

job directed to the file. This metric is used to find the clustering of the computational jobs

around the file creation.

• Lactive,j metric is defined as the file life span between creation and last computational job

received by the file. This metric is used to determine the active profile of the files.

• Ldormant ,j metric is defined as the file life span between last computational job directed to

the file and file deletion. This metric helps in determine the dormancy profile of the files

as this is the period for which files are dormant in the system.

• Lflr ,j metric is defined as the file life span between first computational job and last com-

putational job directed to the file. This metric helps in determining another dimension of
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the active profile of the files.

• Llifetime,j. This metric helps in determining the lifetime of the file between its creation and

its deletion.

4.8.1.1 Lcfr ,j

The Lcfr ,j distribution sheds light on the clustering of the computational jobs with the file creation.

As shown in Figure 4.20, 99% of the files have a Lcfr ,j of less than two days, i.e., majority of the

files get their first computational job within two days of their creation. The Big Data analytics

jobs are data-intensive in nature and require high data access performance. Since files receive

computational jobs soon after their creation, it is important to place the files upfront on the

cluster in a manner that allows high write and read data access performance.

Figure 4.20: Lcfr ,j CDF as a percentage of total file count and total used capacity.
99% of files in directory d and 98% of files in directory p are accessed for the first
time less than two days of their creation.

4.8.1.2 Lactive,j

Figure 4.21 show the distribution of the active life span, Lactive,j in the cluster, which sheds light

on the duration of the active phase of the files. In directory d, 80% of files are actively computed
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upon for less than eight days and 90% of the files amounting to 94.62% storage, are active for

less than twenty four days. The active life span Lactive,j of 95% of the files amounting to 96.51%

storage in the directory p is less than three days and the Lactive,j of the 100% of files in directory

m is as short as two days. In directory u, 98% of files amounting to 98% of storage have Lactive,j

of less than one day. Thus, majority of the files in the cluster have a short active life span, i.e,

they are actively computed upon only for short period of time. The directory d has files with

longer active life span than the other directories.

An analysis of the distribution of the active life span, Lactive,j in the cluster is important to guide

the File Migration Policy ’s threshold tFMP . tFMP needs to be chosen in a way that it allows

in maximal energy savings, minimal data oscillations between GreenHDFS zones, maximal and

fast active space reclamation, and minimal performance degradation. The value of the threshold

tFMP should also be chosen in way that is representative of a majority of the files in the dataset.

For example, in directory p a small value of threshold tFMP of two days may also work well.

Since, 95% of the files have an active life span of less than three days, the intermittent dormancy

that any of these files can experience is less than two days. Thus an aggressively low threshold

value of two won’t result in false dormancy determination of the files; thereby, won’t result in

. The advantage of low threshold value is that it allows fast reclamation of the precious active

storage space; thereby, allowing placement of active files on the outer disk cynlinder zones for

high transfer bandwidth (as discussed in Section 4.5.1). In directories m and u, the threshold

tFMP can be even lower in value. However, Lactive,j can not be used in a stand-alone manner

to decide the threshold values and it is important to consider the dormant life span Ldormant ,j in

conjunction as illustrated in the next section.
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Figure 4.21: Active life span, Lactive,j CDF distribution as percentage of total file count
and total used storage capacity in the four main top-level directories in the Yahoo!
poduction cluster. Lactive,j characterizes the life span for which files are actively being
computed upon.

4.8.1.3 Ldormant ,j

Files in the cluster enter a dormant phase once their active phase gets over. Ldormant ,j indicates

the time for which a file stays in a dormant state in the system, i.e., without getting accessed

or computed upon, prior to getting deleted. Files are retained in dormant state for various

reasons such as compliance, government regulations around file retentions, and disaster recovery

requirements. The longer the dormancy period, higher is the suitability of the file for migration

to the Inactive zone. Figure 4.22 shows the distribution of Ldormant ,j in the cluster. In directory

d, 90% of files are dormant beyond one day and 80% of files, amounting to 80.1% of storage

exist in dormant state past twenty days. In directory p, only 25% files are dormant beyond one

day and only 20% of the files remain dormant in the system beyond ten days. In directory m,

only 0.02% files are dormant for more than one day and in directory u, 20% of files amounting

to 28.6% of storage are dormant beyond ten days.

The dormant life span Ldormant ,j needs to be considered in conjuction with the active life span

Lactive,j in determination of the File Migration Policy ’s threshold tFMP . For directories p, and

u, only 25% of the files are dormant beyond one day. A low threshold tFMP ’s value will result

in unnecessary movement of files to the Inactive zone as these files will get due for deletion
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right after getting migrated to the Inactive zone. On the other hand, given the short active life

span Lactive,j in these directories, high value of tFMP won’t do justice to space-efficiency in the

Inactive zone as discussed in Section 4.6.7.1. High value of tFMP will leave files longer in the

Active zone even though the files are already in their dormant life span. A fine-tuned migration of

the files right at the end of their active life span is the most conducive for using high-performance

active file layouts such as using outer cylinder zones for higher transfer bandwidth. Now, such a

scheme is only viable when dormant files are migrated as soon as possible, leaving available space

for the newly active and new incoming files on the outer cylinder zones.

The dormant life span Ldormant ,j needs to be considered to find true migration suitability of a

file. For example, given the extremely short dormancy period of the files in the directory m, there

is no point in exercising the File Migration Policy on directory m as these files are going to get

deleted shortly anyways. File migration makes sense only for 75% of the files in case of directory

p as the rest of the files have a very short dormant life span. Directory d stands to gain the most

from the file migrations as it has a large number of files with long dormant life span.

Figure 4.22: Ldormant ,j CDF distribution as percentage of total file count and total used
storage capacity in the top-level directories in the Yahoo! production cluster.
Ldormant ,j characterizes the dormancy life span of the files and is indicative of the time
a file stays in a dormant state in the cluster.
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4.8.1.4 File Lifetime Analysis

Knowledge of the FileLifetime further assists in the migration file candidate selection and needs

to be accounted for in addition to the Ldormant ,j and Lactive,j metrices covered earlier. As shown

in Figure 4.23, directory p only has 23% files that live beyond twenty days and 67% of the files

are deleted within one day of their creation. On the other hand, 80% of files in directory d live

for more than thirty days and 80% of the files have an active life span of less than eight days.

Thus, directory d is a very good candidate for invoking the File Migration Policy.

Figure 4.23: File’s lifetime CDF distribution as percentage of total file count and total
used storage capacity in the top-level directories in the Yahoo! production cluster.
File’s lifetime is the span between file creation and deletion.

4.8.2 Dormancy Characterization of the Files

The HDFS audit log analysis gives information about the files that are accessed in the one-month

long observation duration. The files that are not accessed during this duration are not even

present in the audit logs. Now, there are many more files in the cluster than the ones that show

up in the log. To do a more comprehensive analysis, we analyzed the namespace checkpoints in

addition to the audit logs for file dormancy characterization. In this Section, we show the file

count and the storage capacity used by the long-living dormant files. The long-living dormant

files are defined as the files that are created prior to the start of the observation period and are
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not accessed during the one-month period of observation at all. Only directories d, p, and u are

considered in the analysis as m doesn’t have any long-living dormant files. As shown in Figure

4.33, in case of directory d directory, 13% of the total file count in the cluster which amounts

to 33% of total used capacity is dormant. In case of directory p, 37% of the total file count in

the cluster which amounts to 16% of total used capacity is dormant. Overall, 63.16% of total

file count and 56.23% of total used capacity is in its dormant evolution phase in the system.

Such long-living dormant files present significant opportunity to conserve energy in GreenHDFS.

In addition to the long-living dormant files, there were other dormant files as well which were

created towards the beginning of the observation period and were not accessed subsequently at

all.

Figure 4.24: File size and file count percentage of long-living dormant files. The
long-living dormant files are defined as the files that are created prior to the start of
the observation period of one-month and are not accessed during the period of
observation at all.

4.9 GreenHDFS Reactive Zoning Evaluation

In this section, we first present our experimental platform and methodology, followed by a de-

scription of the workloads used and our experimental results. Our goal is to answer five high-level

sets of questions:

• How much energy is GreenHDFS able to conserve compared to a baseline HDFS with no
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energy management?

• What is the penalty of energy management on the average response time?

• What is the sensitivity of the various policy thresholds used in GreenHDFS on the energy

savings results?

• How many power state transitions does a server go through in average in the Inactive

zone?

• What is the number of accesses that happen to the files in the Inactive zone, the days

servers are in an active power state, and the number of migrations and reversals observed

in the system?

The following evaluation sections answer these questions, beginning with a description of our

methodology, and the trace workloads we use as inputs to the experiments.

4.9.1 Evaluation Methodology

We evaluated GreenHDFS using a trace-driven simulator. The simulator was driven by real-world

HDFS traces generated by a production Hadoop cluster at Yahoo!. The cluster had 2600 servers,

hosted 34 million files in the namespace and the data set size was 6PB.

We focus our evaluation on the largest (amounts to 60% of the total used capacity) and most

important log-processing (clickstream) dataset in the Yahoo! Hadoop production cluster (4PB

out of the 6PB total used capacity). Since, we were evaluating only with 60% of the used capacity

of the original cluster, we assumed a cluster with just 60% of the 2600 servers assigned to it.

The total number of unique files that were seen in the HDFS traces dataset in the one-month

duration were 0.9 million. In our experiments, we compared GreenHDFS to the baseline case

(HDFS without energy management). The baseline results gave us the upper bound for energy

consumption and the lower bound for average response time.

Simulation Platform: We used models for the power levels, power state transitions times, and

access times of the disk, processor, and the DRAM in the simulator. The GreenHDFS simulator

was implemented in Java and MySQL distribution 5.1.41 and executed using Java 2 SDK, version
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1.6.0-17. The GreenHDFS simulator uses models for the power levels, power state transitions

times and access times of the Seagate Barracuda ES.2 1TB disk [9], Intel X25-E 64GB SSD [129],

NIC [10], Intel Xeon X5400 CPU [75], power supply unit [117] and the DRAM [104]. Table 4.6

lists the various power, latency, and transition times used in the Simulator.

Table 4.5: Power and power-on penalties used in Simulator

Component Active Power (W) Idle Power (W) Sleep Power (W) Power-up time

CPU (Quad core,

Intel Xeon X5400

[75])

80-150 12.0-20.0 3.4 30 us

DRAM DIMM

[104]

3.5-5 1.8-2.5 0.2 1 us

NIC [10] 0.7 0.3 0.3 NA

SATA HDD (Sea-

gate Barracuda

ES.2 1TB [9])

11.16 9.29 0.99 10 sec

PSU [117] 50-60 25-35 0.5 300 us

Active zone server

(2 CPU, 8 DRAM

DIMM, 4 1TB

HDD)

445.34 132.46 13.16

Inactive zone

server (2 CPU, 8

DRAM DIMM, 12

1TB HDD)

534.62 206.78 21.08

4.9.2 Energy-Conservation

In this section, we show the energy savings made possible by GreenHDFS, compared to baseline,

in one-month by doing power management of the clickstream dataset. The cost of electricity is

assumed to be $0.063/KWh to be consistent with the electricity rates in California. Figure 4.25

shows a 24% reduction in energy costs of a 1560 server cluster with 80% capacity utilization. At

Yahoo!, an upwards of 38000 servers are deployed across the Big Data analytics Hadoop clusters.

Extrapolating, $2.1 million can be saved in the energy costs if GreenHDFS technique is applied
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to all the Hadoop clusters at Yahoo!. Energy costs savings from scaled-down servers is further

compounded by the cooling energy costs savings. For every watt of power consumed by the

compute infrastructure, a modern data center expends another one-half to one watt to power the

cooling infrastructure [113].

Figure 4.25: Energy costs savings with GreenHDFS in one-month by doing data-centric
power management for the clickstream data set in the production Yahoo! cluster.

4.9.3 Storage-Efficiency

The File Migration Policy in GreenHDFS moves dormant files from the Active zone and consoli-

dates them on the Inactive zone. While, the primary goal of the policy is to enable data-centric

scale-down, it also aids in freeing up valuable storage capacity in the Active zone. The additional

free storage space can be used for a variety of purposes such as high-performance layout of the

active files as covered in 4.5.1 that depends on file migration to free up space on the outer disk

cylinder zones of zoned bit recording disks for the placement on the new files, and aggressive

replication of the high popularity active files for better load-balancing and alleviation of perfor-

mance hot spots. Figure 4.26 shows the storage space used in the Active zone with different

thresholds tFMP of the File Migration Policy. In the baseline case, the average storage capacity

utilization of the 1560 servers deployed in the cluster is higher than GreenHDFS which just has

1170 servers out of the 1560 servers deployed in the Active zone. More aggressive, i.e., lower

the policy threshold tFMP , more space is available in the Active zone as more files get migrated

out to the Inactive zone daily.
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Figure 4.26: Used storage capacity in the Active zone with different File Migration
Policy’s threshold tFMP values. GreenHDFS substantially increases the free space in
the Active zone by migrating dormant data to the Inactive zone.

Figure 4.27: Storage capacity and number of servers used in the Inactive zone to store
dormant files with different File Migration Policy’s threshold tFMP values.

4.9.4 File Migrations

It is important to evaluate the amount of data that would need to get migrated everyday by the

File Migration Policy to understand the advantages and repurcussions of the same. The Figure

4.28 shows the total number and storage size of the files which are migrated to the Inactive

zone daily with a File Migration Policy ’s threshold tFMP value of ten days. Every day, on average

6.38TB worth of data and 28.9 thousand files are migrated to the Inactive zone. Since, we
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have assumed storage-heavy servers in the Inactive zone where each server has 12, 1TB disks,

assuming 80MB/sec of disk bandwidth, 6.38TB data can be absorbed in less than 2 hours by

one server. The File Migration Policy is run during off-peak hours to minimize any performance

impact.

Figure 4.28: The number and total size of the files migrated daily to the Inactive zone
with tFMP value of ten days.

4.9.5 Impact of Power Management on Response Time

It is very important to understand the performance impact of energy management. In Green-

HDFS, an access to a file residing on the Active zone server gets the same performance as the

baseline cluster. However, an access to a file residing on the Inactive zone may suffer perfor-

mance degradation in two ways: 1) if the file resides on a server that has been scaled-down, the

server would need to be transitioned back into an active power state. Transitioning components

such as disks can take an upwards of ten seconds and thereby, result in significant performance

degradation, and 2) the files are not chunked in interest of energy savings in the Inactive zone

and hence, can not enjoy high inter-file data access bandwidth which is possible when file is

chunked across the servers in the cluster. Figure 4.29 shows the impact on the average response

time. 97.8% of the total read requests are not impacted by the power management. Impact is

seen only by 2.1% of the reads. One main reason for the quite low performance impact is that

the clickstream workload has a news-server-like access pattern. Files are predominately accessed

and computed upon right after their creation. As the file ages, the accesses go down. With a less
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aggressive, i.e., higher value of File Migration Policy ’s threshold tFMP (e.g., 15, 20 days), impact

on the response time reduces much further. A higher value of threshold tFMP results in higher

accuracy in determining the truly dormant files and is less susceptible to intermittent periods of

dormancy in the file’s active life span. As a result, once the files are deemed dormant and are

moved to the Inactive zone, they receive much less (if any) accesses. Since, all the performance

degradation stems from an access to the Inactive zone, cutting down the accesses cuts down

the performance impact.

Figure 4.29: Performance Analysis: Impact on average response time because of
power management with a tFMP value of 10 Days.

4.9.6 Sensitivity Analysis

We tried different values of the thresholds for the File Migration policy and the Server Power

Conserver policy to understand the sensitivity of these thresholds on storage-efficiency, energy-

conservation and number of power state transitions.

tFMP : We found that the energy costs are minimally sensitive to the tFMP threshold value.

As shown in Figure 4.25, the overall energy cost savings varied minimally when the tFMP was

changed to 5, 10, 15 and 20 days.

The performance impact is minimally sensitive to the tFMP value as well as shown in the Figure

4.30. This behavior can be explained by the observation that majority of the data in the production
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Hadoop cluster at Yahoo! has a news-server-like access pattern. This implies that once data is

deemed cold, there is low probability of data getting accessed again.

The Figure 4.30 shows the total number of migrations of the files which were deemed dormant by

the file migration policy and the reversals of the moved files in case they were later accessed by

a client in the one-month simulation run. There were more instances (40,170, i.e., 4% of overall

file count) of file reversals with the most aggressive tFMP of 5 days. With less aggressive tFMP

of 15 days, the number of reversals in the system went down to 6,548 (i.e., 0.7% of file count).

The experiments were done with a tFRP value of 1. The number of file reversals are substantially

reduced by increasing the tFRP value. With a tFRP value of 10, zero reversals happen in the

system.

Figure 4.30: Number of migrations/reversals in GreenHDFS with different values of
the tFMP threshold.

The storage-efficiency is sensitive to the value of the tFMP threshold as shown in Figure 4.31.

An increase in the tFMP value results in less efficient capacity utilization of the Active zones.

Higher value of tFMP threshold signifies that files will be chosen as candidates for migration only

after they have been dormant in the system for a longer period of time. This would be an overkill

for files with very short Lactive,j as they will unnecessarily lie dormant in the system, occupying

precious Active zone capacity for a longer period of time.
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Figure 4.31: Sensitivity Analysis: Sensitivity of used capacity per zone to the File
Migration Policy’s threshold tFMP .

tSCP : As Figure 4.32 illustrates, increasing the tSCP value, minimally increases the number of the

days the servers in the Inactive zone remain ON and hence, minimally lowers the energy savings.

On the other hand, increasing the tSCP value results in a reduction in the power state transitions

which improves the performance of the accesses to the Inactive zone. Thus, a trade-off needs

to be made between energy-conservation and data access performance.

Figure 4.32: Sensitivity Analysis: Sensitivity of the number of power state transitions
to the Server Power Conserver Policy’s threshold tSCP .

Summary on Sensitivity Analysis: From the above evaluation, it is clear that a trade-off needs
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to be made in choosing the right thresholds in GreenHDFS based on an enterprise’s needs. If

Active zone space is at a premium, more aggressive tFMP needs to be used. This can be done

without impacting the energy-conservation that can be derived in GreenHDFS.

4.9.7 Number of Server Power Transitions

It is important to limit the power state transitions incurred by servers as some server components

such as disks have limited start/stop cycles. Too many power state transitions can significantly

impact the hardware reliability. The Figure 4.33 shows the number of power state transitions

incurred by the servers in the Inactive zone. We only show those servers in the Inactive zone

that either received newly cold data or had data accesses targeted to them in the one-month

simulation run. The maximum number of power state transitions incurred by a server in a one-

month simulation run is just 11 times and only 1 server out of the 390 servers provisioned in the

Inactive zone exhibited this behavior. Most of the disks are designed for a maximum service life

time of five years and can tolerate up to 50,000 start/stop cycles. Given the very small number

of transitions incurred by a server in the Inactive zone in a year, GreenHDFS has no risk of

exceeding the start/stop cycles during the service life time of the disks.

Figure 4.33: Inactive zone Behavior: Number of power state transitions of servers in
the Inactive zone with tFMP of ten days.
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Figure 4.34: Days servers in Inactive zone are in active power state during the
one-month simulation run. The servers in the Inactive zone are scaled-down by the
server power conservation policy and are transitioned back to active power state with
triggering events specified in Section 4.6.8.

4.10 GreenHDFS Predictive Zoning Evaluation

In this section, we evaluate the predictive capability of GreenHDFS and the predictive variants of

the File Migration, Zone Placement, and Replication policies. We first present our experimental

platform and methodology, and then we give our experimental results. Our goal is to answer

high-level sets of questions:

• How does Predictive GreenHDFS compare with Reactive GreenHDFS in energy costs sav-

ings?

• How many data accesses happen to the files residing in the Inactive zone?

• How does Predictive GreenHDFS compare with Reactive GreenHDFS in performance impact

of energy management?

• How accurate are the predictions?

• What is the storage utilization in Predictive GreenHDFS compared to the Reactive Green-

HDFS?
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• How many file migrations and reversals happen in Predictive GreenHDFS compared to

Reactive GreenHDFS?

4.10.1 Methodology

To measure the accuracy of the prediction model, it is important to evaluate the prediction

model on a test dataset which is different from the training and the validation dataset discussed

in Section 4.6.1.3. Our test dataset comprises of the HDFS traces from the month following the

month used for creating aggregates for the training and the validation datasets. To be consistent

with the data analysis and predictor training, we focus our evaluation on the largest (amounts to

60% of the total used capacity) and most important log-processing (clickstream) dataset in the

Yahoo! Hadoop production cluster.
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Table 4.6: Power and power-on penalties used in Simulator

Component Active Power (W) Idle Power (W) Sleep Power (W) Power-up time

CPU (Quad core,

Intel Xeon X5400

[75])

80-150 12.0-20.0 3.4 30 us

DRAM DIMM

[104]

3.5-5 1.8-2.5 0.2 1 us

NIC [10] 0.7 0.3 0.3 NA

SATA HDD (Sea-

gate Barracuda

ES.2 1TB [9])

11.16 9.29 0.99 10 sec

PSU [117] 50-60 25-35 0.5 300 us

Active zone

(SSD) [129]

Server (2 CPU,

8 DRAM DIMM,

256GB SSD)

411.1W 132.46 13.16

Active zone

Server (2 CPU, 8

DRAM DIMM, 4

1TB HDD)

445.34 132.46 13.16

Inactive zone

Server (2 CPU, 8

DRAM DIMM, 12

1TB HDD)

534.62 206.78 21.08

The GreenHDFS simulator uses models for the power levels, power state transitions times and

access times of the Seagate Barracuda ES.2 1TB disk [9], Intel X25-E 64GB SSD [129], NIC [10],

Intel Xeon X5400 CPU [75], power supply unit [117] and the DRAM [104] in the simulator and

is implemented in Java and MySQL distribution 5.1.41 and executed using Java 2 SDK, version

1.6.0-17. The predictor module uses the JAMA-1.0.2 matrix library.

We use 60% (i.e.,1560) of the total 2600 cluster nodes in our analysis to be consistent with

the test dataset. The simulator assumes 50 servers in the SSD-based ActiveSSD Zone, 1120

servers in the SATA-based Active zone and 390 servers in the Inactive zone. We assumed
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SSD bandwidth of 250MB/sec and latency of 75 microseconds, and SATA HDD bandwidth of

105MB/s and latency of 12.66 milliseconds. The Predictive GreenHDFS simulator incorporates

the predictor component with its predictive models and predictive data management policies.

The simulator uses the same file chunking policy and three-way replication of the file chunks as

is done in the Hadoop Distributed File System (HDFS) in the Active zone. The Inactive zone

also does three-way replication of the file chunks just like HDFS.

In our experiments, we compare Predictive GreenHDFS to the Reactive GreenHDFS [79]. We

use three values of policy thresholds ranging from low (5 days) to high (15 days) in the Reactive

GreenHDFS as each threshold makes a different energy-performance-storage efficiency trade-

off. To ensure best performance (i.e., least performance degradation associated with the energy

management) in the Reactive GreenHDFS, we move a file back to the Active zone if the file

is accessed even once while it is on the Inactive zone. We cover the evaluation results in the

following sections.

4.10.2 Energy-Conservation

In this section, we discuss the energy savings made possible by Predictive GreenHDFS, in com-

parison to the Reactive GreenHDFS. The cost of electricity is assumed to be $0.063/KWh. We

run the Predictive and Reactive simulators with the one-month long traces and determine the

energy costs incurred by the servers in the Inactive zone. As shown in Figure 4.35, we find that

predictive GreenHDFS is able to cut down on the energy costs in the Inactive zone compared

to all threshold values in Reactive GreenHDFS.
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Figure 4.35: Comparison of normalized energy costs of the Inactive zone servers in
Predictive GreenHDFS vs. Reactive GreenHDFS with different threshold values (in
days)

GreenHDFS keeps a set of three servers in an active power state in the Inactive zone at any point

in time to consume the files deemed as cold by the predictive File Migration policy. Once, these

servers have been filled to their usable storage capacity, they become candidates for scale-down

and a new set of three servers are chosen for the incoming cold data. Server Power Conserver

policy in GreenHDFS transitions the servers in the Inactive zone to inactive power state if the

cold files residing on these servers haven’t been accessed in a day. In the future, any access to

a file residing on a sleeping server in the Inactive zone results in a server wakeup via Wake-on-

LAN capability. Thus, frequent accesses to the files residing on the Inactive zone run the risk

of reducing energy savings.

Predictive GreenHDFS cuts down on the accesses to the files in the Inactive zone, as shown in

Figure 4.37(b) courtesy of its predictive file migration policy. On the other hand, the Reactive

GreenHDFS is not able to foretell the future accurately and hence, results in file accesses to the

Inactive zone, thereby resulting in lower energy savings.
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4.10.3 Overall Performance

An access to a file residing on a server in the Inactive zone may suffer performance degradation

in two ways: 1) if the file resides on a server that has been scaled-down, the server will need to

be woken up, thereby incurring a significant server wakeup time penalty courtesy of components

such as the hard disk drives (In the sleep mode, the drive heads are parked away from the drive

platters (unloaded), and the platters are completely spun down, resulting in negligible power

consumption. However, bringing drive back can take as long as 10 seconds.), 2) in interest of

aggressive energy savings, GreenHDFS doesn’t chunk files in the Inactive zone and places a

file in its entirety on a server. This ensures that a future access to the file only results in one

server wakeup as opposed to waking up all the servers containing the file’s chunks. However,

such a non-parallel data policy does result in a degradation in the average response time of the

file accesses to the Inactive zone. We logged the response time of each file access during the

simulator run for this experiment. As shown in the Figure 4.37, predictive GreenHDFS results in

significantly, 40% lower average response time than the best performing Reactive GreenHDFS as

it is effective in cutting down all the accesses to the Inactive zone.
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Figure 4.36: Number of accesses to the Inactive zone in Predictive vs. Reactive
GreenHDFS.
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Figure 4.37: Comparison of normalized average response time of Predictive
GreenHDFS vs. Reactive GreenHDFS with different threshold values.
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Figure 4.38: File migrations in Predictive vs. Reactive GreenHDFS with different
threshold values.

4.10.4 Active zone Free Space

In this section, we show the amount of the hot storage space made available in the Active zone

by moving cold files to the Inactive zone. As shown in Figure 4.40, predictive GreenHDFS

results in significant increase in the hot space available in the Active zone by moving cold files in
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a proactive and fine-tuned manner at the end of the files’ hotness lifespan to the Inactive zone

as shown in Figure 4.40. The extra capacity available in the Active zone can be used for storing

more hot data and also allows more space for more performance-driven file replication.
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Figure 4.39: Space used in Active zone in Predictive vs. Reactive GreenHDFS with
different threshold values.
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Figure 4.40: Space used in the Inactive zone in Predictive vs. Reactive GreenHDFS
with different threshold values.
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4.10.5 Accuracy of Prediction

We computed the root mean squared error (RMSE) between the predicted file attribute values

during the evaluation run and the aggregated, actual value of the file attributes to evaluate the

accuracy of the predictors. We got an RMSE of 1.870 in the prediction of the file size which

range from few bytes to several terabytes in the dataset. The RMSE for the lifespan predictor

was 0.4 where the dataset values ranged from 0 to 29+ days. The RMSE for the number of

accesses to the files was 0.204 where the number of accesses ranged from 0 to few thousands.

Instead of going after 100% prediction accuracy, we chose to ensure that there was no cost

associated with the mispredictions. For example, prediction of file size is used in an advisory

fashion only in our zone placement algorithm covered in Section 4.6.2. Hence, the algorithm

is not sensitive to the RMSE of 1.870 and there is no need to make the prediction any more

accurate.

The real measure of a predictive model’s effectiveness is its performance on unseen samples. Our

results indicate the presence of significant predictability and correlation between the filenames in

dataset and the file attributes of the resident files.

4.10.6 Summary

We compared Predictive GreenHDFS with three threshold values (5 (aggressive), 10 and 15 (least

aggressive) days) of the file migration policy in Reactive GreenHDFS. In Reactive GreenHDFS,

policy threshold of 5 days aggressively moves data to the Inactive zone, thereby resulting in

highest free storage space savings in the Active zone compared to other policy thresholds. How-

ever, the aggressive policy results in the highest number of accesses to the Inactive zone thereby

decreasing energy savings and increasing average response time performance degradation of the

file accesses compared to other thresholds. The least aggressive reactive policy threshold (15

days) results in the least number of accesses to the Inactive zone and hence, increases the

energy savings while reducing performance degradation. However, it results in leaving cold data

in the Active zone for much longer time and hence, results in least amount of free storage space

savings. Predictive GreenHDFS results in higher energy savings, less performance degradation

and higher free storage space savings in the Active zone than all flavors of Reactive GreenHDFS
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courtesy of its predictive, finely-tuned, per-file file migration policy.

4.10.7 Thermal-Aware Zoning

In this section, we evaluate the cooling energy costs savings possible with thermal-aware zone

partitioning feature of GreenHDFS. GreenHDFS does zoning in a thermal-aware manner and

assigns the most inherently cooling-inefficient servers in the cluster to the Inactive zone as

Inactive zone hosts dormant files whose low or negligible computational load-profile is a great

fit for the cooling-inefficient servers given their impaired heat dissipation capability. Such a

placement ensures that the cooling-inefficient servers receive negligible computations; as a result,

the cooling-inefficient servers don’t generate much heat, and their exhaust temperature remains

bounded. The servers in the Inactive zone experience sufficient idleness because of the dormant

class of files hosted by the zone, and can be effectively scaled-down. In this section, we evaluate

and isolate the contribution of various features of GreenHDFS towards saving cooling energy

costs. The high-level questions that we attempt to answer are:

• How does thermal-aware zone partitioning compare with non-thermal-aware zone partition-

ing in saving cooling energy costs? In case of non-thermal-aware zone partitioning, servers

are randomly allocated to the Inactive and Active zone. On the other hand, servers

are allocated in a cooling-efficiency differentiated manner in case of thermal-aware zone

partitioning.

• How much does scale-down of Inactive zone servers contribute to cooling energy costs

savings?

• Which zone partitioning scheme is more effective in saving cooling energy costs: rack-level

zone partitioning or cluster-level zone partitioning?

• Can thermal-aware file placement save cooling energy costs on its own without thermal-

aware zoning? How much additional savings can be realized upon combining both the

techniques?
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Table 4.7: Evaluation Configurations

Configuration Options Explanation
HDFS Baseline. Cluster without GreenHDFS deployment, i.e., with no

energy- or thermal-management

RR GreenHDFS uses thermal-aware rack-aware zone partitioning
covered in Section 4.5.2.2 to create thermal-aware Active and
Inactive zones. GreenHDFS does file migration, and server
scale-down. There is no thermal-aware fine-grained file place-
ment done in Active zone in this scenario.

RR 10 10% cluster servers allocated to Inactive zone and 90% to
Active zone.

RR 20 20% cluster servers allocated to Inactive zone and 80% to
Active zone.

RR 30 30% cluster servers allocated to Inactive zone and 70% to
Active zone.

CR GreenHDFS uses cluster-level zone partitioning as covered in
Section 4.5.2.1 to create thermal-aware Active and Inactive
zones . GreenHDFS does file migration, and server scale-down.
There is no thermal-aware fine-grained file placement done in
Active zone in this scenario.

CR 10 10% cluster servers allocated to Inactive zone and 90% to
Active zone.

CR 20 20% cluster servers allocated to Inactive zone and 80% to
Active zone.

CR 30 30% cluster servers allocated to Inactive zone and 70% to
Active zone.

NSD Same as GreenHDFS CR 30, but doesn’t do any server scale-
down in the Inactive zone

TPDOnly CR 30 Same as GreenHDFS CR 30. In addition, thermal-aware fine-
grained file placement is done in the Active zone as covered in
Section 5.3.2.2.

TPDOnly GreenHDFS doesn’t divide the cluster into zones, and doesn’t do
any file migration or server scale-down. GreenHDFS only does
thermal-aware, predictive, fine-grained data placement cluster-
wide.
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To simulate a Big Data analytics cluster we use Mentor Graphic’s floVENT, a computational

fluid dynamics (CFD) simulator [6]. floVENT has been extensively used and validated in several

research papers in the past [29,107,126]. The cluster under evaluation has 4 rows of 14 industry

standard 47U racks arranged in cold- and hot-aisle layout [132]. Each rack contains 46, 1U servers

for a total of 2576 servers. The cold air is supplied by CRACs with supply temperature Tac fixed

at 15oC.

Figure 4.41: The cooling energy costs with non-thermal-aware and thermal-aware
variant of GreenHDFS normalized to baseline HDFS.

4.10.7.1 Thermal-Aware Vs. Non-Thermal-Aware GreenHDFS Zoning

In this section, we compare a non-thermal-aware variant of GreenHDFS in which Inactive zone

servers are chosen randomly from the cluster without any thermal-awareness. In the thermal-

aware variant of GreenHDFS, servers in the cluster are ranked by their cooling-efficiencies (i.e.,

inlet temperatures) and the most cooling-efficient servers are allocated to the Inactive zone

and the rest of the cooling-efficient servers are assigned to the Active zone. As shown in the

Figure 4.41, higher cooling energy costs savings are realized by doing thermal-aware zoning in

GreenHDFS than by doing non-thermal-aware zoning. The thermal-profile of the servers becomes

more uniform and lower, and thermal hot-spots reduce further courtesy of a reduction in hot air

recirculation with thermal-aware zoning compared to non-thermal-aware zoning; thereby, resulting

in higher cooling energy costs savings.
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Figure 4.42: The cooling energy costs with thermal-aware GreenHDFS with and
without scaling-down the Inactive zone normalized to baseline. GreenHDFS has
cluster-level zone partitioning activated and a varying percentage of servers are
scaled-down.

4.10.7.2 Scale-Down vs. Not Scaled-Down

In this section, we evaluate the effect of scale-down of the Inactive zone servers on cooling

energy costs savings. We use cluster-level zone partitioning and employ different scale-down

factors ranging from 10%-30%. As shown in the Figure 4.42, more cooling energy costs savings

can be realized by scaling-down the Inactive zone servers and scale-down allows an additional

7%-15% in cooling energy costs. GreenHDFS is capable of saving both server and cooling energy

costs even if as low as 10% servers in the cluster are assigned to the Inactive zone. As shown

in Figure 4.42, even 10% scale-down factor is capable of saving 9%-12% of cooling energy costs.
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Figure 4.43: Normalized cooling costs with respect to baseline HDFS of the rack-level
and cluster-level zone partitioning schemes in GreenHDFS.

4.10.7.3 Thermal-Aware Zone Partitioning Schemes

Next, we compare the cooling energy costs reduction possible in GreenHDFS with different zone

partitioning schemes covered in Sections 4.5.2.1 and 4.5.2.2. As shown in Figure 4.43, the cooling

costs reduction is very similar in rack-level zone partitioning and cluster-level zone partitioning.

Since, rack-Level zone partitioning has performance advantages over cluster-Level zone Parti-

tioning with respect to file migration and file writes; it can be used without any cooling costs

trade-offs. However, the compute (i.e. server) operating energy costs are higher in case of rack-

level zone partitioning compared to cluster-level zone partitioning; hence, a trade-off between

performance, and compute energy costs savings need to be made in deciding which scheme to

use.

4.10.7.4 Thermal-Aware Zoning Combined with Thermal-Aware File Placement

In this section, GreenHDFS does thermal-aware file placement in addition to thermal-aware zon-

ing. As shown in the Figure 4.43, GreenHDFS realizes much higher cooling energy costs savings

by doing thermal-aware file placement in the Active zone in addition to thermal-aware zoning.

We also compare a variant of GreenHDFS TPDOnly which doesn’t do any file migration, zon-
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ing, or scale-down and only does predictive, thermal-aware file placement covered in the Section

5.3.2.2 in the entire cluster. TPDOnly is capable of cutting down cooling energy costs by 29%

which is commendable and very encouraging as TPDOnly doesn’t do any scale-down. Sometimes,

enterprises are vary of scaling-down their servers and for such enterprises, TPDOnly will work

well. Thermal-aware file placement used in conjunction with thermal-aware zoning as represented

by TPDOnly CR 30 realizes even high cooling energy costs savings of 47%. If scale-down is

permissible, a combination of thermal-aware file placement and thermal-aware zoning should be

used to achieve high cooling energy costs savings.

4.10.7.5 Additional Cooling Energy Costs Savings

Both Thermal-aware file placement and thermal-aware zoning/scale-down result in a reduction

in the temperature of the exhausted air entering the inlet of the computer room air conditioner

(CRAC); hence, CRACs can be operated at a higher set point temperature Tac. Increase in Tac

increases the efficiency (COP) of the CRAC allowing it to remove more heat with less work and

thus, reduces cooling energy costs. For example, operating the CRACs at 5oC higher supply

temperature of 20oC increases COP from 5 to 6, resulting in additional cooling costs savings.

Thus, the cooling energy costs savings shown in the earlier sections will actually be higher once

increase in the CRAC’s efficiency is incorporated.

140



Table 4.8: Table of Notations Used Total Cost of Ownership Analysis

Variable Description Units

Da Data center amortization per month $/Watts

Dc Data center capex $

Dp Data center amortization period Years

Di Data center interest per month $/Watts

IAnnual Annual interest rate

y Loan years Years

Sa Server amortization per month $/Watts

Sc Server capex $

Sp Server amortization period Years

Si Server interest per month $/Watts

Slifetime Server life time Years

Pi Power consumption of server i Watts

Ppeak,i Peak power consumption of server i Watts

Pmonth,i Power consumption of server i per month Watts

R Average power to peak power ratio

PUEoverhead PUE overhead $/Watts

PUE Power usage effectiveness

TCO3−year Total cost of ownership $

E Electricity cost per Kilowatt Hour $

4.11 Total Cost of Ownership Analysis

Total cost of ownership (TCO) of a data center has two main components [68]. Capex refers to the

investments that are made upfront and then, are depreciated over a period of time. Expenses such

as the cost of purchase of the data center land, building construction, and hardware acquistion

fall under the capex category of expenses. Opex refers to the recurring costs of the data center

such as operating energy costs, equipment and data center maintainence costs, and salaries of

the data center personnel. Some of the costs such as operating energy costs depend on the

geographic location of the data center as the underlying electricity rates, property values, and

personnel costs differ by region.
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TCO = data center depreciation + data center opex + server depreciation + server opex

4.11.1 Assumptions

Our calculations are based on the total cost of ownership analysis done by Barroso et. al. [68],

and we make the following assumptions in our total cost of ownership analysis similar to the total

cost of ownership analysis done at Google [11]:

• The interest rate is 12%, and servers are financed with a 3-year interest-only loan.

• The cost of data center construction is $15/W amortized over 12 years.

• Datacenter opex is $0.04/W per month.

• Server lifetime is 3 years, and server repair and maintenance is 5% of capex per year.

• The server’s average power draw is 75% of peak power.

• PUE value is 2.

Power Usage Effectiveness (PUE) is used as an indicator of the energy-efficiency of data centers

and is the ratio of the total building power to the IT power (i.e., power consumed by the actual

computing equipment such as servers, network, and storage). For example, a data center with a

PUE of 2.0 uses one watt of additional power for every watt used to power the IT equipment.

Majority of the data centers still have a high PUE of 1.8 as per a 2011 survey of 500 data

centers [2], and cooling system’s power overhead is the major culprit behind the high PUE

values. Hence, a rounded-off PUE value of 2 is used in the analysis. The total cost of analysis is

based on the energy rates in California as maximum number of data centers in United States are

based in California [12, 13].

The following equations help calculate the total cost of ownership of the data center. The

notations used in the equations are given in Table 4.8.

Da = (Dc/Dp)/12 (4.34)
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Di = (Da · IAnnual)/y (4.35)

Sa = ((Sc/Slifetime))/12)/Pi (4.36)

Si = (Sa · IAnnual)/y (4.37)

Pmonth,i = (R · ElectricityRate · 24 · 30)/1000 (4.38)

PUEOverhead = Pmonth,i · (PUE − 1) (4.39)

TCO3−year = (Da + Di + Sa + Si + Pmonth,i + PUEOverhead) · Ppeak,i · 3 (4.40)

4.11.2 Baseline TCO Analysis

We first do a total cost of ownership analysis of a baseline Big Data analytics cluster (i.e., cluster

with no GreenHDFS deployment). In the baseline case, we assume that each server in the cluster

has two quad core, Intel Xeon X5400 CPU, eight DRAM DIMM, and four Seagate Barracuda

ES.2 1TB Hard Drives. The acquisition cost of the baseline server is assumed to be $2000. Table

4.9 shows the per-component breakdown of the server power consumption of the baseline server.

Table 4.10 gives a breakdown of the storage costs and Table 4.11 gives a breakdown of the server

costs used in the analysis. No energy management is performed in the cluster and the servers are

in an active power state all the time.
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Table 4.9: Server Power Breakdown

Component Active Power (W) Idle Power (W) Sleep Power (W)

Xeon CPU (Quad core, Intel
Xeon X5400)

80-150 12.0-20.0 3.4

Atom CPU (Singe core, Intel
Atom Z560)

2.5 0.01

DRAM DIMM 3.5-5 1.8-2.5 0.2

NIC 0.7 0.3 0.3

SATA HDD (Seagate Bar-
racuda ES.2 1TB )

11.16 9.29 0.99

SSD (Intel X25-E 64GB) 2.6 0.06 NA

PSU 50-60 25-35 0.5

Baseline server (2 Xeon CPU, 8
DRAM DIMM, 4 1TB HDD)

445.3 132.46 13.16

ActiveSSD server (2 Xeon
CPU, 8 DRAM DIMM, 256GB
SSD)

411.1 95.54 9.44

ActiveHDD-4 server (2 Xeon
CPU, 8 DRAM DIMM, 4 1TB
HDD)

445.3 132.46 13.16

ActiveHDD-8 server (2 Xeon
CPU, 8 DRAM DIMM, 8 1TB
HDD)

490.0 169.62 17.12

InactiveXeon-12 server (2 Xeon
CPU, 8 DRAM DIMM, 12 1TB
HDD)

534.6 206.78 21.08

InactiveAtom-12 server (1
Atom CPU, 2 DRAM DIMM,
12 1TB HDD)

207.12 151.79 13.09

4.11.3 GreenHDFS TCO Analysis

In this section, we do a total cost of ownership analysis of a Big Data analytics cluster managed

by GreenHDFS. We assume a hybrid cluster whereby the servers differ in their storage quantity,

storage type and hence, server price. We consider five server types in the total cost of ownership

calculations:

• ActiveSSD: ActiveSSD zone server with 256GB solid state drive (SSD), two quad core

Intel Xeon X5400 CPU, and eight DRAM DIMM. To come up with the server price, we

add the price differential of the storage to the baseline server price of $2000 with four 1TB
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Table 4.10: Storage Costs

Characteristics Unit SATA SSD

Storage Seagate Barracuda ES.2 1TB Intel X25-E 64GB

Capacity TB 1 0.064

Price / GB $ / GB 0.12 12

Table 4.11: Server Costs

Characteristic ActiveSSD ActiveHDD-4 ActiveHDD-8 InactiveXeon-12 InactiveAtom-12

Storage (TB) 0.256 4 8 12 12

Total Power (W) 411.1 445.3 490.0 534.6 207.12

Cost ($) $ 4,592 $ 2,000 $ 2,480 $ 2,960 $ 1,539

disks. Assuming a price of SSD equal to $12/GB, 256GB of SSD increase the server price

to $4592.

• ActiveHDD-4: Active zone server with four Seagate Barracuda ES.2 1TB Hard Drives,

two quad core Intel Xeon X5400 CPU, eight DRAM DIMM, and costs $2000 to acquire.

The hardware configuration and acquisition cost of the server is the same as that of the

baseline cluster server.

• ActiveHDD-8: Active zone server with eight Seagate Barracuda ES.2 1TB Hard Drives,

two quad core Intel Xeon X5400 CPU, eight DRAM DIMM, and costs $2,480 to acquire.

To come up with the server’s acquisition cost, we add the price differential of the additional

storage (four SATA disks) to the ActiveHDD-4 server price of $2000. Assuming, a price of

$0.12/GB, additional four 1TB disks increase server price to $2,480.

• InactiveXeon-12: Inactive zone server with twelve Seagate Barracuda ES.2 1TB Hard

Drives, two quad core Intel Xeon X5400 CPU, and eight DRAM DIMM. To come up with

the Inactive zone server price, we add the price differential of the additional storage (eight

SATA disks) to the Active zone server price of $2000. Assuming, a price of $0.12/GB,

additional eight 1TB disks increase server price to $2,960.

• InactiveAtom-12: In this flavor of GreenHDFS, servers in Inactive zone have one low-

power, low-performance Atom Z560 CPU instead of high-power, high-performance two

quad core Intel Xeon X5400 CPU and have two DRAMs instead of eight DRAMs. Using

cheaper Atom processor instead of Xeon processor brings the server acquisition cost down
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to $1539.

Table 4.12 gives a breakdown of the server’s 3-yr total cost of ownership TCO3yr value for various

server options listed above. The equations and the assumptions used in the analysis are presented

in Section 4.11.1.

Next, to understand the total cost of ownership savings resulting with the scale-down of the

servers in GreenHDFS, we need to calculate the 3-yr total cost of ownership of a server when the

server is in a scaled-down power state. We refer to the 3-yr TCO in the scaled-down state as

3-yr TCO3yr,SD. In the scaled-down state, the only component that doesn’t factor in the server’s

total cost of ownership is the server operating energy cost.

3-yr energy cost of a server, denoted by Costs3−yr is calculated as follows:

Costs3−yr = 3 · 8760 · E · Pi/1000 · PUE (4.41)

Next, we introduce a metric called ETCORatio. ETCORatio is defined as the ratio of server’

3-year energy costs to server’s 3-year total cost of ownership. ETCORatio sheds light on the

contribution of the server’s operating energy costs on the total cost of ownership of the server. In

California, ETCORatio is 30% with PUE value of 2. This means that in California, TCO3yr,SD

is 70% of the normal total cost of ownership. We refer to the ratio of the scaled-down total cost

of ownership to the normal total cost of ownership as SNSRatio.

We considered various GreenHDFS configurations in this section as described below:

• 7030 n: 70% of servers in the cluster were allocated to the Active zone and 30% to the

Inactive zone. The Active zone servers are in the ActiveHDD-4 configuration and the

Inactive zone servers are in the InactiveXeon-12 configuration. n% of the servers in the

Inactive zone are in a scaled-down state at any point in time. n ranges from 10% to

100%.

• 8020 n: 80% of servers in the cluster were allocated to the Active zone and 20% to the

Inactive zone. The Active zone servers are in the ActiveHDD-4 configuration and the

Inactive zone servers are in the InactiveXeon-12 configuration. Where, n% of the servers

in the Inactive zone are in a scaled-down state at any point in time and n ranges from

10% to 100%.

146



Figure 4.44: TCO Savings with GreenHDFS configurations and for various percentages
of scaled-down server TCO with respect to non-scaled-down server TCO
(SNSRatio). In California, SNSRatio is 70% for PUE values of 2. SNSRatio of 70%
with 7030 95 configuration yields 3-year TCO savings of $22.3 million compared to
baseline cluster with no GreenHDFS deployment.

Figures 4.44 and 4.45 show the TCO savings that can be observed by scaling down an increasing

percentage of servers in the Inactive zone. We have assumed the total number of servers

across the Hadoop clusters to be 38000. This is the number of servers deployed across all the

production Hadoop clusters at Yahoo!. There can be significant variation in the ratio of the

total cost of ownership of a scaled-down server vs. a non-scaled-down total cost of ownership

of a server (SNSRatio). Hence, we plotted total cost of ownership savings for various values

of the SNSRatio for a server. If the scaled-down total cost of ownership is 80% or above of

the non-scaled-down total cost of ownership, zoning will not result in any total cost of ownership

savings. Scaled-down total cost of ownership values lower than 80% of non-scaled-down total

cost of ownership result in significant savings. For example, in California, scaled-down total

cost of ownership is 70% of the non-scaled-down total cost of ownership. In previous work on

GreenHDFS, we found that > 90% of the servers are in a scaled-down state at any point in time.

As shown in the Figure 4.44, 7030 95 configuration’s 70% SNSRatio curve shows a saving

of approximately $6 million in 3-yr total cost of ownership. Figure 4.45 shows the total cost

of ownership savings in the 8020 configuration. 8020 95 configuration’s 70% SNSRatio curve

shows a saving of approximately $4 million in 3-yr total cost of ownership.

Figure 4.46 shows the total cost of ownership savings that can be observed by scaling down an

increasing percentage of servers in the Inactive zone with servers in InactiveAtom configuration,
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Figure 4.45: TCO Savings for various GreenHDFS configurations and for various
percentages of scaled-down server TCO with respect to non-scaled-down server TCO
(SNSRatio). In California, SNSRatio is 70% for PUE values of 2. SNSRatio of 70%
with 8020 95 configuration yields 3-year TCO savings of $20.7 million compared to
baseline cluster with no GreenHDFS deployment.

i.e., using low-cost, low-power Intel Atom processor instead of expensive, high-power Intel Xeon

processors. We have assumed the total number of servers across the Hadoop clusters to be

38000.

Server costs are increasingly going down and energy costs are either equal to or more than the

initial acquisition costs of the servers. In that scenario, the scaled-down TCO will be an even

smaller percentage of the non-scaled-down TCO. GreenHDFS will result in even higher TCO

savings in that scenario.

4.11.4 To Zone or Not to Zone

In this section we compare GreenHDFS with different baseline cluster configurations whereby

only 80% of the servers with slightly higher storage are allocated in the cluster instead of 100%

servers, dormant data is either stored in the cluster itself or on an external cloud, and finally,

during peak loads, cloud-bursting to an external cloud is used to take care of the excess load. On

the other hand, GreenHDFS uses the in-house Inactive zone servers for consolidating and storing

the dormant data. The Inactive zone servers are scaled-down during average load conditions,
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Figure 4.46: TCO Savings using low-power, low-cost Atom processor in Inactive zone.
In California, SNSRatio is 70% for PUE values of 2. SNSRatio of 70% with 7030 95
configuration yields 3-year TCO savings of $68.7 million compared to baseline cluster
with no GreenHDFS deployment. SNSRatio of 70% with 8020 95 configuration
yields 3-year TCO savings of $51.6 million compared to baseline cluster with no
GreenHDFS deployment.

and are woken up during peak load scenario. 20% of the cluster servers are assigned to the

Inactive zone.

• 80 SATA4: In this option, only 80% servers of the baseline cluster are allocated to the

cluster. All the servers in the cluster are assumed to be in the ActiveHDD-4 configuration.

• 80 SATA8 Burst OnDemand: In this option, servers in the cluster have a higher number

of eight 1TB SATA drives each to allow higher amount of overall storage capacity in the

cluster as in the ActiveHDD-8 configuration, and the dormant data is stored in the cluster

itself. The peak loads are handled by bursting to an external cloud. The compute capacity

on the external cloud is obtained on-demand. The cost of buying compute capacity on-

demand is lower compared to buying reserved compute capacity; however, availability at all

times is not guaranteed.

• 80 SATA8 Burst Reserved: In this option, servers in the cluster have a higher number

of eight 1TB SATA drives each as in the ActiveHDD-8 configuration, the dormant data is

stored in the cluster itself. The peak loads are handled by bursting to an external cloud.

The compute capacity on the external cloud is kept reserved year-around to ensure that

there is no dearth of computational power when the peak loads do occur. However, the cost
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of buying reserved compute capacity is higher as shown in the Amazon’s EC2 pricing [5].

• GreenHDFS Atom: In this flavor of GreenHDFS, servers in Inactive zone have one

low-power, low-performance Atom Z560 CPU instead of high-power, high-performance two

quad core Intel Xeon X5400 CPU and have two DRAMs instead of eight DRAMs as in

the InactiveAtom-12 configuration. During average load, these servers are scaled-down and

during peak load, the Inactive are woken up and their compute capacity is used to handle

the additional load. Thereby, there is no need to do cloud-bursting to an external cloud

during peak loads.

• GreenHDFS Xeon: This flavor of GreenHDFS has the same hardware configuration and

server total cost of ownership as covered in Section 4.11.3. During average load, these

servers are scaled-down and during peak load, the Inactive are woken up and their compute

capacity is used to handle the additional load. Thereby, there is no need to do cloud-bursting

to an external cloud during peak loads.

As shown in Figure 4.47, the TCO costs with GreenHDFS are lower than even the clusters with

only 80% servers. The TCO costs of GreenHDFS Atom are lower than GreenHDFS Xeon, making

it the most cost-efficient solution. In addition, GreenHDFS also supports higher overall storage

capacity than baseline cluster as shown in the the Figure 4.48.
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Table 4.12: TCO Calculation per Server

ActiveSSD ActiveHDD-4 ActiveHDD-8 InactiveXeon-12 InactiveAtom-12

cost of
electricity
($/kWh)

$0.106 $0.106 $0.106 $0.106 $0.106

interest rate 12% 12% 12% 12% 12%

DC capex
($/W)

15 15 15 15 15

DC amor-
tization
period
(years)

12 12 12 12 12

DC opex
($/kW/mo)

$0.04 $0.04 $0.04 $0.04 $0.04

PUE 2 2 2 2 2

server capex $4,592 $2,000 $2,480 $2,960 $2,960

server life-
time (years)

2 2 2 2 2

server W 411.1 445.34 490.0 534.62 207.12

server opex 5% 5% 5% 5%

server avg
power rel-
ative to
peak

75% 75% 75% 75% 75%

$/W per
month

DC amorti-
zation

$0.104 $0.104 $0.104 $0.104 $0.104

DC interest $0.093 $0.093 $0.093 $0.093 $0.093

DC opex $0.040 $0.040 $0.040 $0.040 $0.040

server amor-
tization

$0.465 $0.187 $0.141 $0.231 $0.206

server inter-
est

$0.091 $0.037 $0.028 $0.045 $0.040

server opex $0.023 $0.009 $0.007 $0.012 $0.010

server power $0.057 $0.057 $0.057 $0.057 $0.057

PUE over-
head

$0.057 $0.057 $0.057 $0.057 $0.057

total $0.738 $0.507 $0.526 $0.543 $0.608

3-yr TCO $10,917 $8,121 $9,284 $10,446 $4,536
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Figure 4.47: 3-yr TCO savings normalized to the GreenHDFS Atom TCO.
GreenHDFS Atom TCO is lower than even cluster configurations with only 80%
servers allocated.

Figure 4.48: Normalized total storage capacity in the cluster with baseline and
GreenHDFS Big Data analytics cluster.
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CHAPTER 5

DATA-CENTRIC COOLING ENERGY MANAGEMENT

GreenHDFS takes a data-centric, cyber-physical energy management approach to reduce cooling

energy costs in the Big Data analytics clouds. On the physical-side, GreenHDFS is cognizant

of the uneven thermal-profile in data centers due to complex airflow patterns and varying ability

of the cooling system to cool different parts of the data center. On the cyber-side, GreenHDFS

is cognizant of the fact that files in the cluster differ in their computational job arrival rates,

file sizes, and evolution life spans. GreenHDFS combines its data-semantics knowledge on the

cyber-side with the thermal-profile knowledge of the cluster on the physical-side to do proactive

cyber-side thermal-aware file placement.

In this chapter, in Section 5.1 we provide the motivation for thermal-aware file placement with the

help of an illustrative example and analysis of a real-world Big Data analytics cluster. In Section

5.3.2.2, we present the various thermal-aware file placement heuristics in place in GreenHDFS. In

Section 4.6.1, we present an in-depth look at the predictive modeling in GreenHDFS. In Section

5.4, we present the evaluation results of the various thermal-aware file placement heuristics.

5.1 Thermal-Aware File Placement Motivation

In this section, we present the motivation behind GreenHDFS’s thermal-aware file placement. We

start with the thermal and power model of the cluster to provide background to the motivation

discussion.
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5.1.1 Thermal and Power Model

A server i in the cluster can be modeled as a heat source (i.e., CPU, Disk, DRAM, Network),

where T ini,t is the inlet temperature, T outi,t is the outlet temperature, and Ti,t is the temperature of

server i at time t. The power Pi,t consumed by a server i with computational load Li,t at time t

can be stated as a linear function of Li,t [67]:

Pi,t = wi1 · Li,t + wi2 , (5.1)

where wi1 and wi2 are coefficients expressed in joules/sec units. Coefficient wi1 is the difference

between the peak power consumption and the static power consumption (i.e., when the server

is at idle utilization with no computational load), and coefficient wi2 gives the static power

consumption. We assume a homogeneous cluster in this paper, whereby all servers have the

exact same hardware. Hence, the values of wi1 and wi2 are the same for each server.

At steady state, the temperature of a server i, Ti,t is a function of the inlet temperature T ini,t and

the power Pi,t [93]:

Ti,t = T ini,t + ci · Pi,t (5.2)

where, constant ci expressed in kelvin.sec/joules units, is a factor of server’s heat exchange rate,

it’s air flow, and heat capacity density of the air. In a data center with free-cooling or with hot- and

cold-aisle air containment, the difference in the inlet temperatures of the servers is predominantly

dependent on the distance of the server from the vents or the cooling unit. In traditional data

centers without containment or economization, hot air recirculation and air bypass result in a

higher difference in inlet temperatures. We assume T ini,t to be known empirically for each server.

Thus, temperature Ti,t can be modeled as a linear function of Li,t, i.e.

Ti,t = T ini,t + ci · (wi1 · Li,t + wi2) (5.3)

It is important to ensure that a server i’s temperature Ti,t remains less than Tmax at all times t,

where Tmax is the reliability driven upper-bound on the temperature that can be tolerated by a
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server as specified in its data sheet; exceeding Tmax results in higher hardware failure rates.

At steady-state, the temperature of the hot air exhausted from the server i’s outlet, T outi,t is a

function of the power Pi,t being consumed at server i at load Li,t, the temperature of the server

Ti,t, and the heat exchange rate of the server i, θi expressed in joules/kelvin.secs units as shown

below:

T outi,t = Ti,t −
Pi,t
θi

(5.4)

The hot air exhausted by the servers in the cluster enters the cooling subsystem which then cools

the hot air to a temperature Tac which is the air supply temperature set point of the cooling

subsystem. The cooling power consumption is proportional to the heat removed by the cooling

subsystem, which is proportional to the difference in the temperature T outc,t of the hot exhausted

air entering the cooling subsystem and the temperature Tac. The cooling power consumption is

given by:

Pc,t =

cair · fac ·
(
T outc,t − Tac

)
COP

, (5.5)

where, cair is the heat capacity constant, fac is the flow rate of the cooling unit, and |S| is the

number of servers in the cluster. The efficiency of cooling unit is characterized by its coefficient

of performance (COP) defined as the ratio of the amount of heat removed by the cooling device

and the work required to do so.

5.1.2 File Model

Big Data analytics frameworks, such as Map Reduce, comprise of a distributed file system un-

derneath, which distributes the file chunks and their replicas across the cluster for fine-grained

load-balancing and high parallel data access performance. Each file chunk is typically 64-128 MB

in size [61, 84] and is replicated three-ways for resiliency and fault-tolerance.

Let fkj = set of three replicas of chunk k of file j, 1 ≤ k ≤ n̂j, 1 ≤ j ≤ |Z|, where |Z| is the

number of files in the cluster and n̂j is the number of chunks into which file j is divided. Denote

f̃j = {f 1
j , f

2
j , · · · , f

n̂j

j } to be the set of all chunks of file j and Z = {f̃1, f̃2, · · · , ˜f|Z|} to be the
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set of all the file chunks in the cluster.

Let ckj,i be the replica of chunk k of file j assigned to server i. Let Cj,i be the set of file j’s chunk

replicas assigned to server i, i.e., Cj,i = c1j,i∪ c2j,i∪ · · · ∪ c
nj,i

j,i , where nj,i is the number of file f̃j’s

chunk replicas assigned to server i. Let C̃i be the set of chunk replicas of different files assigned

to server i. C̃i is equal to a set of the set of file chunk replicas assigned to server i, i.e., C̃i =

C1,i ∪C2,i ∪ · · · ∪CNi,i, where Ni is the number of the files whose chunks are assigned to server

i.

Let C̈ = {C̃1, C̃2, · · · , C̃|S|}. S is the set of servers in the cluster, |S| is the number of servers in

the cluster, and S = {1, 2, · · · , |S|}. The file placement function π is defined as π : Z → C̈ ×S
which takes the set of all file chunks Z as its input and produces an ordered set C̈ as output.

5.1.3 Importance of Thermal-Aware File Placement with Big Data

A typical Big Data analytics job targeted to a file f̃j is split into multiple sub-jobs equivalent to

the number of chunks n̂j of the file. Each sub-job is sent to the server hosting its target file

chunk in interest of data-locality. Let J̃k,j(t) be the computational job load to a chunk ckj,i at

a time interval t. The cumulative computational load Li,t on a server i is a result of the load

arising from the sub-jobs targeted to the various file chunks stored on the server i, which in turn

depends directly on the placement function π : Z → C̈, π(fkj ) = ckj,i ∈ C̃i, C̃i ⊂ C̈, i ∈ S. Hence

we have:

Li,t(π(Z), t) = Li,t(C̃i, t) =

Ni∑
j=1

nj,i∑
k=1

J̃k,j(t) (5.6)

The compute energy costs in Equation (5.1) and cooling energy costs in Equation (5.5) depend

directly on the computational load Li,t, which in turn depends directly on the file placement

π. This brings to light the importance of thermal-aware file placement π. To ensure no adverse

impact to the performance, cooling energy management techniques for Big Data analytics clusters

need to treat data as a first-class object in computing, Files need to be placed first in the cluster

in a thermal- and energy-aware manner so that the computational jobs can then automatically

enjoy cooling energy costs savings and high data-local performance by following files placed in a

thermal-efficient manner.

156



Figure 5.1: Thermal-aware file placement challenge.

5.1.4 Challenges

A naive way to do the thermal-aware file placement is to place an incoming file f̃j on the server i

with the lowest temperature at that time instant. However, this naive file placement may result

in a much higher thermal-profile than anticipated and may even result in a server exceeding Tmax.

In the example illustrated in Figure 5.1, let there be two servers S1 and S2 in the cluster. At file

f3’s arrival at t = 1, server S2’s temperature T2,t=1 is lower than server S1’s temperature T1,t=1

and the naive file placement chooses server S2 as the destination for file f3. However, S2 is a bad

choice for f3. The cumulative load of files f3 and f2 (f2 is already resident on the server S2),

results in a very high computational load on S2 at t=5. As a result, S2’s temperature exceeds

Tmax, impacting thermal-reliability of S2 and contributing to higher cooling energy costs.

On the contrary, f3 is a much better fit for S1 as f3’s load-profile is complementary to f1’s load-

profile. The cumulative load-profile of f3 and f1 is lower and doesn’t result in S2 exceeding Tmax

at any point in time. Thus, there is a need for more sophisticated and predictive thermal-aware
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file placement algorithms and heuristics that can somehow glean information about the “future”

computational load profile of an incoming file and the “future” thermal-profile of the servers in

the cluster and then place the file “now” on the most thermally-conducive server in the “future”.

Thermal-aware file placement is very challenging and raises several hard questions:

• Is it even possible to have an optimal solution for thermal-aware file placement or else, is

there a need to rely on approximate algorithms?

• How and what aspects of the computation job-profile of the file should be predicted to gain

futuristic knowledge to guide the file placement?

• How should the files be placed on servers in a way that ensures that the cumulative com-

putational load of the files results in a thermal- and cooling-efficient temperature-profile of

the server?

• Will the technique ensure thermal reliability and lower thermal-profile in new data centers

with air- or water-side economization and aisle containment?

• Will the technique reduce cooling energy costs in traditional data centers without air con-

tainment or economizer modes?

• How sensitive is the technique to cluster parameters such as file size skew, delta in inlet

thermal-profile, utilization, file creation rate and sampling rate?

Figure 5.2: File creates at hour, and daily granularity in production real-world Big
Data analytics cluster at Yahoo!.
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Figure 5.3: 3-D scatter plot of file average job rate/min, file life span, and file size in
the production Big Data analytics cluster at Yahoo!. Majority of the files have small
life spans and smaller sizes. The job rates are higher at the beginning of a file’s life
span.

5.1.5 Importance in Production Systems

There are two possibilities for doing thermal-aware file placement: 1) at the creation time of the

file itself, and 2) in the middle of file’s lifetime in response to a triggering thermal-event. Figure

5.2 shows the box plot of file creates happening in a real-world Big Data analytics cluster at

Yahoo!; significant number of files are created even at an hour granularity. Figures 5.3 and 5.4

show that files in the same cluster have a higher job rate towards the beginning of their lifetime

and the jobs start arriving to majority of the files soon after the file’s creation. Hence, to ensure

lower cooling costs and to not overheat servers beyond their reliability limit from the very onset of

a file’s creation, it is important to do thermal- and energy-aware file placement π : Z → C̈ × S

of files in Z, where Z is the unordered incoming file (chunk) set, C̈ is ordered file (chunk) set

and S is the server set, in the Big Data environment at the time of file creation itself.
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Figure 5.4: CDF of the percentage of total file count and ratio of jobs received on the
first day of a file’s life time vs. total number of jobs received by the file in the
production Big Data analytics cluster at Yahoo!. 70% of the files receive more than
90% of the total jobs on the first day itself.

5.1.6 Asymmetric Load Tolerance of Servers

It is important to ensure that a server i’s temperature Ti,t remains less than Tmax at all times t,

where Tmax is the reliability driven upper-bound on the temperature that can be tolerated by a

server as specified in its data sheet. Every server i has an upper-bound value Lmax ,i which is the

maximum load that can be subjected to a server i without exceeding the red-line temperature

Tmax. Lmax ,i of a server i can be determined by setting Ti,t to Tmax in Equation 5.3 as shown

below:

Lmax ,i =

Tmax−T i
in

ci
− wi2

wi1
(5.7)

In Equation 5.7, assuming a homogenous cluster, values of wi1 , wi2 and ci will be same for all

the servers in the cluster. However, since the inlet temperature T ini,t is different for all the servers,

Lmax ,i is different for each server i. Differences in T ini,t are ubiquitous across data centers. Even in

the new data centers which have hot- and cold-aisle containment, inlet temperature differences

do arise because of air leakage from the containment, and distance of the servers from the cooling

system. In traditionally cooled data centers, the inlet temperatures have a much higher difference

because of hot air recirculation and air bypass. Thus, the servers in the cluster can not be loaded

equally in interest of thermal-reliability, and there is a need for asymmetric thermal-aware file

placement as illustrated in the Figure 5.5.
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Figure 5.5: The Servers in the cluster vary in inlet temperatures T ini (i.e.,
cooling-efficiencies) resulting in a variation in their load tolerance Lmax ,i. Exceeding
Lmax ,i may result in exceeding the reliability upper-bound Tmax of the temperature
that can be tolerated by the servers. The dotted line in the figure shows the
variations in the Lmax ,i Values of the servers.

5.2 Problem Statement

We seek a file placement function π∗ that minimizes the cooling power consumption Pc,t of the

data center and total compute power consumption Pi,t of the S servers in the data center over

time. We assume there exists at least one placement π∗ that satisfies Equation (5.8).

arg

min
π

 T∑
t=1

Pc,t +

|S|∑
i=1

wi1Li,t(π) + wi2

 (5.8)

s.t.

Li,t(π) ≤ Lmax ,i ∀i, t, (5.9)

where |S| is the number of servers in the cluster, TP = [1, 2, · · · , T ] is the overall life time of

the cluster for which the optimal value of placement π∗ is to be determined, and Lmax ,i is the

maximum load that can be subjected to a server i without exceeding the red-line temperature

Tmax as discussed in Section 5.1.6.

The problem of optimally placing a collection of files in a cluster can be decomposed into two

subproblems. Let J̃j(t) be the function giving the computational load on a given file at a time
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interval t. The first subproblem relates to the prediction of each file’s future computational load

profile J̃j(t). The second subproblem relates to the actual optimal placement of files in the

cluster subject to energy costs, temperature and capacity constraints of the cluster servers, given

knowledge of each file’s future computation job profile J̃j(t). The first problem can be formulated

as a machine learning problem and we will see several proposed solutions later in this section for

estimating the J̃j(t) function. Given such a J̃j(t), let’s now focus on the second file placement

subproblem, i.e., finding optimal π function. Unfortunately, file placement problem is known to

be NP-Hard [53]. The computational complexity of an idealized thermal-aware file placement

problem suggests the need for an approximation algorithm to solve the general problem.

In Big Data analytics clusters, the number of servers |S| can be as high as 4000-10,000 and

number of files |Z| can be 30-60 millions. Big Data analytics clusters are also very dynamic in

nature and a huge number of files are created even at a minute granularity. The pseudo-polynomial

dynamic-programming solutions would be computationally expensive in this environment as some

of them require O(|Z|LTmax,i) time for each server. One can use approximation strategies like

relaxing the file placement problem into a linear programming problem by allowing files to first

be ‘fractionally’ assigned to different servers, followed by some rounding rule to recover a proper

assignment. As seen above, one can come up with fairly complex approximation schemes. But

in the context of the design and implementation of a robust file system, algorithmic simplicity

is usually preferred. In that spirit, we use simple heuristics for thermal-aware file placement in

GreenHDFS.

5.3 GreenHDFS Thermal-Aware File Placement Heuristics

GreenHDFS represents each file f̃j in the Big Data analytics cloud as a tuple f̃j = {Lactive,j,

λj(t), JT,j, Jf,j, sj}, where, Lactive,j is the active lifespan in the evolution of a file in days, λj(t)

represents the arrival rate of the computational jobs targeted to file f̃j at time interval t, JT,j is

the total number of computational jobs received by file f̃j during its lifetime, Jf,j is the number

of computational jobs received by a file on the first day of its creation and sj is the file size. The

servers in the cluster are assumed to be placed in racks and each server i is represented as tuple

= {Ri,Ni}, where Ri is the rack number of the server i and Ni is the server number of the

server i in the rack Ri. GreenHDFS’s monitoring service collects thermal-map at regular time

intervals which comprises of the server temperatures {T1,t, T2,t, · · · , TN,t} of all the servers in the
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cluster.

5.3.1 Prediction of Computational Load

To solve the first subproblem in Section 5.2, i.e., prediction of each file’s future computational

load profile J̃j(t), we analyzed clickstream processing workload (most important Big Data ana-

lytics workload for Internet services companies) at Yahoo!, and observed that there is a strong

correlation between the directory hierarchy in which a file is organized and the file’s attributes

such as file’s size, jobs arrival rate, and active life span. Based on this observation, GreenHDFS

generates predictive data models by using supervised learning on historical information present

in the file system traces and meta data images as discussed in Section 4.6.1. Section 4.6.1 also

details all aspects of the predictor such as training, testing, accuracy of predictions, and evalua-

tion with real-world traces from production cluster [81]. To figure out the statistical correlation

between the directory hierarchies and file attributes, predictor uses ridge regression which is a

form of a supervised learning with input X (i.e., independent variables) and a response Y (i.e.,

dependent/response variable). The goal is to learn the correlation (regression) between X and Y.

Each file in the training set R is represented as a binary vector {0, 1, · · · , 1}, where each subdi-

rectory in the training set is represented as an index in the vector and presence/absence of the

subdirectory in the file path is denoted by 0/1. The binary vectors are the independent variables

and file’s Lactive,j, λj(t), JT,j, Jf,j are the dependent/response variables. The predicted values of

the response variables are determined at file creation time using the stored ridge coefficients and

are used by thermal-aware file placement heuristics.

Now, predicting the exact function J̃j(t) for each and every file in the cluster is simply not feasible

both in terms of predictor complexity and accuracy. GreenHDFS aims to find predictive, simple,

and yet accurate approximation for the function J̃j(t). In the Big Data analytics environment,

each job translates into one sub-job per file chunk of the file f̃j. The computational load J̃j(t)

at time interval t contributed by a file chunk ckj,i of file f̃j residing on server i can be given by

λj(t) · l, where l is the average computational job duration. The job duration includes the cpu

computation time, and disk data access time. Since these jobs are data-intensive in nature, the

overall job time is dominated by the disk access time, which in-turn is dominated by the transfer

time. GreenHDFS uses the following two ways to approximate a file’s job arrival rate λj(t).
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Figure 5.6: Cumulative predictive job profile of a server with files F1 and F2 stored in
it.

5.3.1.1 Constant Rate

In this set of heuristics, λj(t) is approximated by a constant rate across its entire active life span

Lactive,j and by 0 at the end of the active life span Lactive,j as shown in Figure 5.6. The constant

rate is either average λavg,j, median λmed ,j, or maximum λmax ,j jobs arrival rate at different time

granularities minute/hour/day. The statistical job rates are calculated only for those intervals

in the file’s active life span that do receive jobs. The intervals that don’t receive any jobs are

ignored in the calculation; accounting for intervals that don’t receive any jobs leads to an almost

negligible average and median job arrival rate value which doesn’t approximate the computation

job profile well and is not conducive to the thermal management of the servers.

• AvgJRMin: In this heuristic, a file’s computation job-profile λj(t) is approximated by a

fixed value given by the file’s average λavg,j per-minute jobs arrival rate during the file’s

entire active life span Lactive,j.

• AvgJRHr: In this heuristic, a file’s computation job-profile λj(t) is approximated by the
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file’s average λavg,j per-hour jobs arrival rate during the file’s entire active life span Lactive,j.

• AvgJRDay: In this heuristic, a file’s computation job-profile λj(t) is approximated by the

file’s average λavg,j per-day jobs arrival rate.

• MedJRMin: In this heuristic, a file’s computation job-profile λj(t) is approximated by the

file’s median λmed ,j per-minute job arrival rate.

• MedJRHr: In this heuristic, a file’s computation job-profile λj(t) is approximated by the

file’s median λmed ,j per-hour job arrival rate.

• MedJRDay: In this heuristic, a file’s computation job-profile λj(t) is approximated by the

file’s median λmed ,j per-day jobs arrival rate.

• MaxJRMin: In this heuristic, a file’s computation job-profile is approximated by the file’s

maximum λmax ,j per-minute jobs arrival rate.

• MaxJRHr: In this heuristic, a file’s computation job-profile is approximated by the file’s

maximum λmax ,j per-hour jobs arrival rate.

• MaxJRDay: In this heuristic, a file’s computation job-profile is approximated by the file’s

maximum λmax ,j per-day jobs arrival rate.

• JobsLS: In this case, GreenHDFS calculates a file’s approximate jobs arrival rate by dividing

the predicted value of the total number of jobs Jtot ,j observed by a file in its lifetime by its

predicted active life span Lactive,j value. The calculated jobs arrival rate is then used in the

algorithm 8 to guide GreenHDFS’s thermal-aware file placement. This heuristic works well

if the files have a uniform jobs arrival rate during their lifetime. However, if the files have a

skew in the jobs arrival rates on certain day (e.g., more jobs soon after file creation), then

this heuristic doesn’t perform as well.

Choice of the statistical value of jobs arrival rate involves thermal-reliability vs. efficient server

file allocation trade-offs and requires a study of the standard deviation in a file’s jobs arrival

rate. Approximating each file f̃j’s jobs arrival rate λj(t) with λmax ,j ensures that even when the

computational load on the files is at its highest, the temperature Ti,t of a server i won’t exceed

beyond its reliability upper-bound Tmax. Thus, choosing λmax ,j to approximate files’ jobs arrival

rate is the most reliable approximation method for ensuring thermal-reliability. However, λmax ,j
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over-approximates a file’s jobs arrival rate, and can be constraining in file placement. If each

server i were to be represented as a bin of capacity Lmax ,i, the server bin may get full sooner if

each file was represented by the high value of λmax ,j.

If the standard deviation in the files’ job arrival rate is low, using the average jobs arrival rate,

λavg,j gives a better thermal-reliability vs. efficient server file allocation trade-off. For example,

in the evaluation data set, majority of the files have very low standard deviation in their observed

jobs arrival rate at per-minute granularity. Hence, λavg,j at a per-minute granularity turns out to

be a very good approximation for the per-minute jobs arrival rate for the dataset. If the standard

deviation of files’ job arrival rates is high, then using λavg,j as the approximation may again lead

to thermal-reliability vs. efficient server file allocation trade-offs as λavg,j is affected by the high

value of the outliers. In such a scenario, using λmed ,j works better for efficient file allocation to

the server bins as it is less sensitive to the high outliers. However, the thermal-reliability may get

compromised when the outliers do happen during the run-time. The efficient server file allocation

consideration is less of an issue if the active life span Lactive,j of the files are small and more of

an issue if the files have long active life spans.

5.3.1.2 Variable Rate

In this case, GreenHDFS roughly fits λj(t) to a linear curve λj(t) = m·t+v, where v is the number

of jobs received by the file on the first day of its creation, denoted as Jf,j and m = Jf,j/Lactive,j

in units of jobs/days. The job arrival rate of a file on a particular day is calculated as the value

of λj(t) corresponding to that day. The daily change in the job arrival rate is reflected in the

cumulative predicted load Lpi,t value, maintained by GreenHDFS, for every server that is hosting

chunks of the file f̃j. Decaying the predicted job rates is much more realistic than assuming a

constant job arrival rate every day, especially in the case of news-server-like job pattern which is

typical in the log-processing workloads, one of the biggest use cases of Big Data analytics. This

approximation works for almost 70% of the files in the real-world evaluation data set as they

receive 90% or more of their share of jobs in the first day of their existence.
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5.3.2 Thermal-Aware File Placement Heuristics

GreenHDFS solves the second subproblem in Section 5.2 by using thermal-aware file placement

heuristics. GreenHDFS thermal-aware file placement heuristics are classified in three ways: pre-

dictive, non-predictive, and hybrid. The predictive heuristics rely on predicted partial information

about the file’s anticipated computational job profile. Non-predictive heuristics assume no future

knowledge about the incoming files and only use run-time information about the servers in the

cluster to guide file placement. Hybrid heuristics use a combination of predicted and run-time

information about the servers in the cluster in their thermal-aware file placement decision making

process. In the next sections, we detail the various thermal-aware file placement heuristics in

place in GreenHDFS.

5.3.2.1 Predictive Heuristics

At the time of a new file f̃j’s creation, T ∗ uses the predictive models to predict Lactive,j, and

λj(t), to provide as input to the thermal-aware file placement illustrated in Algorithm 8 which

places the file chunks and their replicas on the cluster in a thermal-aware manner. T ∗ aims to

place the first and second replica of a file chunk fkj on different servers on the same rack and the

third replica on a different rack for fault-tolerance similar to Hadoop or Google clusters [61, 84].

For every file chunk fkj , as illustrated in Algorithm 8, for the placement of the first replica, T ∗

orders the servers in the cluster in an ascending order of Lei,t = Lpi,t + λj(t) · l, where Lei,t is the

expected load on server i in the interval t if file’s chunk fkj were to be placed on it, and Lpi,t is the

predicted cumulative load on the server in time interval t as shown in Equation 5.6. Please note

that Lpi,t is different from the actual run-time load on the servers, and is T ∗’s approximation of

the predicted future load on servers. T ∗ updates Lpi,t value for each server in the cluster whenever

a new file arrives or a file becomes dormant. T ∗ then further orders the servers in ascending order

of their expected temperatures T ei,t = Ti,t−1 + T ej,t; where, T ej,t is the estimated temperature rise

caused by the placement of the chunk on the server and Ti,t−1 is the run-time temperature of the

server in the last monitoring interval. It is important to use the temperature as the second-level

server ordering to reduce the sensitivity of the heuristic to system variables.

T ∗ then picks one of the top-most server from the ordered list of servers whose Lei,t < Lmax ,i,

T ei,t < Tmax , and that has enough free capacity D̂j,t−1 available to host the incoming file chunk
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ckj,i. Lmax ,i is the maximum load that can be tolerated by a server i without exceeding the

reliability upper-bound of the temperature Tmax as given by Equation 5.7. The Lmax ,i and Tmax

checks in step 10 of Algorithm 8 are important to ensure thermal-reliability. The first replica of

the chunk is placed on the server and the server’s predicted cumulative load Lpi,t is updated by

adding the predicted load of ckj,i, which is given by λj(t) · l and its free capacity is decremented

by the size of the file chunk. For the placement of the second replica of chunk fkj , T ∗ restricts

the selection scope of the suitable server to the rack hosting the first replica and repeats steps 3

till 20 in Algorithm 8. For the third replica placement, T ∗ excludes the rack hosting the first and

the second replica from its search scope. The rest of the server selection steps remain the same.

Every server chosen in Algorithm 8, keeps track of the predicted active life span Lactive,j of the

file f̃j. At the end of Lactive,j, the predicted load of the chunk ckj,i given by λj(t) · l is decremented

from value of the hosting server’s predicted cumulative load Lpi,t maintained by T ∗. Subsequently,

when a job arrives to a file f̃j, for each file chunk, T ∗ finds the lowest temperature server hosting a

replica of the chunk for the placement of the sub-job meant for that chunk as shown in Algothirm

9.
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Algorithm 8 Thermal-Aware File Placement
Input: Lactive,j , λj(t), n̂j , l, sj

{For all the entire life time TP of the cluster}
{At every new file f̃j creation time}
{For each file chunk fkj }

1: for k = 1 to n̂j do

{For the placement of the first replica of chunk fkj }
{For each server i in the cluster}

2: n̈ = |S|
3: for i = 1 to n̈ do

4: Lei,t ← Lpi,t + λj(t) · l
5: T ei,t ← Ti,t−1 + T pj,t
6: end for

7: Sort servers in ascending order of expected load Lei,t

8: Further sort servers in ascending order of expected temperature T ei,t

9: for i = 1 to n̈ do

10: if Lei,t < Lmax ,i then

11: if T ei,t < Tmax then

12: if D̂i,t > sj/n̂j then

13: Place chunk fkj ’s first replica on server i

14: Lpi,t ← Lpi,t + λj(t) · l
15: D̂i,t ← D̂i,t−1 − sj/n̂j
16: break

17: end if

18: end if

19: end if

20: end for

{For the placement of the second replica of chunk fkj }
{For each server i in the same rack as server hosting first replica}

21: Repeat steps 3 till 20 with a different value of n̈ = |R| − 1

{For the placement of the third replica of chunk fkj }
{For each server i in racks different from rack hosting first and second replicas}

22: Repeat steps 3 till 20 with a different value of n̈ = |S| − |R|
23: end for
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Algorithm 9 Thermal-Aware Sub-Job Placement

{At arrival of a job targeted to file f̃j}
{For each file chunk fkj }

1: for k = 1 to n̂j do

{Find all servers hosting a replica of chunk fkj }
2: for r = 1 to 3 do

3: Lookup servers containing ckj,i in its chunk set Cj,i

4: end for

5: Sort servers hosting chunk fkj ’s replicas in ascending order of their run-time temperature

Ti,t−1 observed in the time interval t− 1.

6: Select server with lowest Ti,t−1 to host sub-job for chunk ckj,i
7: Send sub-job to the selected server

8: end for

5.3.2.2 Hybrid Heuristics

In the next set of predictive thermal-aware file placement heuristics, GreenHDFS uses predic-

tions in conjunction with run-time knowledge about the cluster in form of the thermal-map and

job-count map. The job-count map {J1
n,t, J

2
n,t, · · · , JNn,t} is collected by the cyber-monitor and

comprises of the number of the jobs that were targeted to each server in the last monitoring

time interval. The thermal-map is collected by the GreenHDFS’s monitor component detailed in

Section 4.6 comprises of the server outlet temperatures {T out1 , T out2 , · · · , T outN } of all the servers

in the cluster. At the time of file creation, in the Algorithm 8, the servers are ordered both by

the run-time information and predicted information.

• Pred Temp JobCount The servers are ordered first by their value Lei,t as shown in the

Algorithm 8 and are then additionally ordered by the server temperatures present in the

thermal-map and the job counts present in the job-count map.

• Pred Temp The servers are ordered first by their value Lei,t shown in the Algorithm 8 and

are then additionally ordered by the server temperatures present in the thermal-map.

• Pred JobCount Temp The servers are ordered first by their Lei,t as shown in the Algorithm

8 and are then additionally ordered by the job counts present in the job-count map and
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server temperatures present in the thermal-map.

• Temp Pred In this heuristic, the servers are first ordered by the temperatures presented

by the thermal-map and then, by the value Lei,t as shown in the algorithm 8.

• Pred JobCount The servers are ordered first by the value of Lei,t as shown in the Algorithm

8 and are then additionally ordered by the server job counts present in the job-count map.

These hybrid schemes are semi-sensitive to the sample rate of the monitoring service which collects

the run-time information from the physical system. When the run-time information is used as the

second-level of ordering, the sensitivity to the sample rate decreases significantly and the benefits

of the hybrid schemes increases.

5.3.2.3 Non-Predictive Heuristics

The non-predictive thermal-aware file placement heuristics don’t use predictions in making the

file placement decision. Instead they rely on the following run-time information about the servers

in the cluster collected by GreenHDFS’s monitors.

• Thermal-map which comprises of the exhaust temperatures {T out1 , T out2 , · · · , T outN } of all

the servers in the cluster.

• Thermal-map which comprises of the inlet temperatures {T in1 , T in2 , · · · , T inN } of all the

servers in the cluster.

• Free storage capacity map which includes the details on the free space available on each

server in the cluster

There are two flavors of the non-predictive heuristics:

• NonPredInlet We use T ini,t to get a total order on the servers at the time of file placement

and select the n servers with the lowest inlet temperatures T ini,t to store the chunks and

replicas of an incoming file f̃j.

• NonPredOutlet GreenHDFS also employs a naive non-predictive, greedy heuristic whereby

it orders the servers in ascending order of their run-time outlet temperature Ti,t. GreenHDFS
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selects n servers with the lowest temperatures Ti,t to store the chunks and replicas of an

incoming file f̃j. The evaluation results illustrate why this naive heuristic doesn’t work well.

• NonPredRandom This heuristic was implemented simply to provide a basis for the evalu-

ation. In this case, GreenHDFS just places the incoming file’s chunks and replicas randomly

over the cluster without any thermal considerations, predictions, or run-time awareness.
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Algorithm 10 Data-Placement-Agnostic Thermal-Aware Job Placement.

{At arrival of new job directed to file f̃j}
1: Compute number of chunks n̂j in file f̃j

2: Find set N of n̂j number of servers which have the lowest run-time temperature Ti,j, where

|N | = n̂j and N ∈ S
{For each chunk fkj of f̃j, see if any of N servers are either server-local or rack-local to a

server hosting a replica of the chunk fkj }
3: for k = 1 to n̂j do

4: Lookup set R servers hosting a replica ckreplica,j,i of fkj chunk where with |R|= 3 is the

replication factor of file f̃j

5: for r = 1 to |R| do

6: if r ∈ N then

{Server-Local Access}
7: Send sub-job for file chunk fkj to server r

8: r.insertJobQueue(ckreplica,j,i)

9: Break, process next chunk

10: end if

11: end for

{If none of the servers in N are server-local to any of the file chunks, see if the servers in

N are atleast rack-local to any of the file chunks.}
12: {NR} = {RN1 ,RN2 , · · · ,RN|NR|}
13: for r = 1 to |R| do

{Check if r’s rack is same as the racks of any of the servers N}
14: if Rr ∈ NR then

{Rack-Local Access}
15: Send sub-job for file chunk fkj to server r

16: r.insertJobQueue(fkj )

17: Break, process next chunk

18: end if

19: end for

{N servers are neither server-local nor rack-local to any of the servers hosting a replica

ckreplica,j,i of chunk fkj . Need to perform non-rack-local data access}
20: end for
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5.3.3 Data-Placement-Agnostic Thermal-Aware Job Placement

In this section, we discuss the implementation of data-agnostic, thermal-aware job placement

technique which is based on the state-of-the-art cooling reduction techniques and thermal-aware

replica selection technique to help us evaluate GreenHDFS’s efficacy compared to state-of-the-art

approaches. In both these implementations, unlike the thermal-aware placement of GreenHDFS,

the files are placed in the cluster in an energy- and thermal-agnostic manner as done in baseline

HDFS (v20). The energy- and thermal-awareness is exhibited only at the time of job arrival in

these techniques.

5.3.3.1 Thermal-aware Job Placement

In this heuristic, hence referred to as StateOfArt Job, at a analytic job’s arrival targeted to a

file f̃j with n̂j chunks, n̂j number of N servers with the lowest run-time temperatures Ti,t are

selected for the placement of the sub-jobs as shown in the Algorithm 10.

First, for every chunk fkj in f̃j, an attempt is made to see if any of the N servers host either

this chunk or its replica locally. If the file chunk or its replica is found on any of the N servers,

the sub-job meant for the chunk is added to the server’s job queue to take advantage of high

server-local performance.

If none of the N servers contain the chunk or its replica, an attempt is made to see if any of

these servers are rack-local to the servers hosting the chunk or its replicas. If a rack-local server

is found, the rack-local server in N is allocated the sub-job targeted to the chunk.

If the N servers are neither rack-local nor server-local to any of the servers hosting the chunk

or its replicas, the sub-job for the chunk is placed on one of the N servers and the data is

accessed using inter-rack bandwidth from the closest server hosting a replica of the chunk. In

this case, the overall job completion time is impacted by the latency of the non-rack-local access

of this one block. In addition to the performance impact of non-rack-local data access, there

is also an additional power cost. The N servers consume energy in computation which is a

combination of the CPU and DRAM energy consumption. In addition, there is a network related

power consumption for reading the data non-locally over the network from another server. The

server hosting the data also incurs power consumption in network outbound traffic, disk accesses,
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as well as in some DRAM and CPU utilization.

5.3.3.2 Thermal-Aware Replica Selection

In this heuristic, hence referred to as StateOfArt Replica, at a job’s arrival targeted to a file

with n chunks, for each chunk in the file, servers with the least temperature T iout amongst the

servers hosting a replica of that chunk are chosen for running the sub-job relevant to the chunk.

Since, these servers have the chunks needed for the computation, the data access is server-local

and hence, the performance is high. However, the thermal-aware choice of the servers per chunk

is limited to the replication factor in the cluster which is typically 3 in the production clusters. It

is possible that none of the three servers hosting the chunk’s replicas have a low value of run-time

temperature T iout. Some of them may even have a very high run-time temperature.

Figure 5.7: The Cyber-Physical Loop in GreenHDFS.
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5.4 GreenHDFS Thermal-Aware Data Placement Evaluation

In this section, we first present our experimental platform and methodology, followed by a de-

scription of the workloads used and our experimental results. Our goal is to answer the following

set of high-level questions:

• How does GreenHDFS’s predictive thermal-aware file placement compare with state-of-the-

art data-agnostic thermal-aware job placement?

• How does predictive thermal-aware file placement compare with non-predictive thermal-

aware file placement and random, non-thermal-aware file placement?

• How sensitive are the file placement schemes to variables such as sampling rate of the

monitoring service, file creation rate, job duration, delta in cooling-efficiencies of the servers,

or file size skew?

We compare the above techniques on five important dimensions: 1) thermal-reliability, 2) cooling

energy costs reduction, 3) load-balancing, 4) storage capacity-balancing, and 5) performance.

5.4.1 Traces

We evaluate with one-month long real-world Big Data analytics file system traces generated by a

production (2600 servers, 34 million files, 5 petabytes) cluster at Yahoo!. We focus our analysis

on the biggest (60% of the used storage capacity) and most important data set (clickstream) in

the production cluster. Internet services companies such as Facebook, Google, and Yahoo! [34]

rely on clickstream processing [52], an example of log processing (one of the most important use

cases of Big Data analytics), to calculate the web-based advertising revenues, and derive user

interest models and predictions. For this, daily huge web logs are analyzed in the production

environments [135]. The files in the data set have significant skew in sizes, job arrival rates, and

evolution life spans. Out of the 34 million files hosted in the cluster, 39% of files are smaller than

1K (similar presence of small files has been noted in other Big Data analytics clusters), 73% of

files had an active life span Lactive,j of one day, and the statistical job arrival rates vary across

files with some files receiving many more jobs than the others.
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5.4.2 Platforms

5.4.2.1 floVENT

To simulate a Big Data analytics cluster we use Mentor Graphic’s floVENT, a computational

fluid dynamics (CFD) simulator [6]. floVENT has been extensively used and validated in several

research papers in the past [29,107,126]. The cluster under evaluation has 4 rows of 14 industry

standard 47U racks arranged in cold- and hot-aisle layout [132]. Each rack contains 46, 1U servers

for a total of 2576 servers. The cold air is supplied by CRACs with supply temperature Tac fixed at

15oC. To determine the inlet temperatures of all the servers in the cluster, a floVENT simulation

with all the servers in the cluster at idle utilization is performed. The inlet temperatures observed

in the floVENT simulation are then used by the GreenHDFS simulator. The power consumption of

each server in the cluster in the floVENT simulation of GreenHDFS is directed by the GreenHDFS

simulator detailed next.

5.4.2.2 GreenHDFS

The simulator assumes same number and layout of servers as the floVENT simulation. At the

time of file creation, the files are divided into 64 MB chunks and are replicated three-way. Using

a simulator is critical in understanding the affect of various combination and order of parameters

on the heuristics. The simulator implements all predictive and non-predictive thermal-aware file

placement heuristics covered in Section 5.3.2.2.

5.4.3 GreenHDFS vs. State-of-the-Art

In this section, we compare cooling costs, performance, and thermal-profile of the cluster with

GreenHDFS’s predictive thermal-aware file placement vs. state-of-the-art, data-placement-agnostic

thermal-aware job placement.
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Figure 5.8: Maximum temperature observed by servers in the cluster.

5.4.3.1 Thermal-Profile

Maximum temperatures experienced by the servers throw light on the thermal-reliability efficacy

of an energy management technique. Lower the maximum temperatures observed, higher is

the thermal-reliability assurance of the technique. Figure 5.8 shows the maximum temperature

experienced by each of the 2576 servers in the cluster during the one-month simulation run. The

monitoring service’s sampling rate is assumed to fine-grained which results in lower thermal-profile

for the thermal-aware job placement technique. Still, maximum temperatures observed by the

servers are much lower with GreenHDFS’s thermal-aware file placement than with thermal-aware

job placement. Figure 5.12 compares the temperature snapshot of the servers in the cluster at

the same time instant during the simulation run with fine-grained and coarse-grained sampling

rates for the two schemes. Predictive thermal-aware file placement in GreenHDFS results in lower

and more uniform temperature than thermal-aware job placement. Predictive thermal-aware file

placement is not sensitive to the sampling rate of the monitoring service and fares almost the

same with fine- and coarse-grained sampling, whereas thermal-aware job placement fares much

better with fine-grained sampling rate. The thermal-profile of data-agnostic thermal-aware job

placement technique is also sensitive to the delta in the cooling-efficiencies of the servers in the

cluster, and the job durations. On the other hand, the predictive thermal-aware file placement is

minimally sensitive to the job durations, or delta in cooling-efficiencies.

Predictive thermal-aware file placement results in a reduction in the temperature T outc,t of the
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Figure 5.9: Temperature snapshot per server with different sampling rate of monitoring

service.

exhausted air in the cluster, and hence air conditioner (CRAC) can be operated at a higher set

point temperature Tac. Increase in Tac increases the efficiency (COP) of the CRAC allowing it to

remove more heat with less work and thus, reduces cooling energy costs. For example, operating

the CRACs at 5oC higher supply temperature of 20oC increases COP from 5 to 6, resulting in

additional cooling costs savings.
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Figure 5.10: Normalized performance and cooling energy costs.

5.4.3.2 Cooling Energy Costs

Figure 5.11, shows the normalized cooling energy costs during the one-month simulation run.

Since, the thermal-profile is sensitive to various system parameters in case of thermal-aware job

placement, we compare with the best-case cooling energy costs savings possible with thermal-

aware job placement. The predictive thermal-aware file placement saves 42% cooling energy costs

vs. 18% in case of thermal-aware job placement.

5.4.3.3 Performance

As shown in Figure 5.10, GreenHDFS has 9x times lower average response time than the thermal-

aware job placement. In case of data-placement-agnostic thermal-aware job placement technique,

the sub-jobs of the incoming job are placed on the servers with the lowest run-time temperatures.

These servers may not all have the data relevant to the computation resident on them, requiring

high latency rack-local or inter-rack data access, which results in degraded performance. The

overall response time of a job is equivalent to the maximum completion time of its sub-jobs;

even one straggler sub-job can increase the response time. In case of data-placement-agnostic

thermal-aware job placement technique, presence of a large number of stragglers results in much
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Figure 5.11: Snapshot of jobs received per server at a time instant.

lower overall performance. On the other hand, GreenHDFS is fully data-placement-aware and

doesn’t suffer performance impact.

Next, we look at load-balancing of the jobs under the two schemes. As shown in Figure 5.11,

jobs are uniformly distributed in case of GreenHDFS, whereas, jobs are more skewed towards

some servers in case of thermal-aware job placement. Thus, GreenHDFS achieves better job

load-balancing than state-of-the-art thermal-aware job placement technique, and fares better in

yet another aspect of performance. At higher loads, GreenHDFS does show a skew towards the

cooling-efficient servers as they have higher load tolerance Lmax ,i values.
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5.4.4 Predictive Thermal-Aware File Placement Heuristics

In constant rate heuristics, using statistical value of maximum job arrival rate per minute λmax,j

as an approximation results in the lowest values of the maximum temperature ever observed by

a server during the 30-day simulation run. However, using λmax,j is an over-approximation and

results in server bins getting artificially over-packed, which leads to an occasional inability to find

servers for the incoming file at high cluster utilization. Overall, approximation of file’s job arrival

rate using average job arrival rate per minute λavg,j works best. It allows cooling costs savings,

thermal-reliability, efficient server bin packing, load-balancing, and storage capacity balancing

and is not sensitive to job durations, sampling rate of the monitoring service, file size skew, and

file creation rate. Statistical analysis of the data set further confirms the results as the standard

deviation in the job arrival rates at a minute granularity is low for majority of the files. Please

note that λavg,j is not a true average and is calculated only for the minutes with non-zero jobs.

Variable rate heuristic is advantageous when files are active for longer periods of time. Majority

of the files in the data set have a short active lifespan Lactive,j of less than a day, thereby limiting

the advantage of variable rate heuristic.

Figure 5.12: Temperature snapshot per server with different sampling rate of monitoring

service.
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5.4.5 Predictive vs. Non-Predictive Heuristics

The non-predictive heuristics are very sensitive to job durations, sampling rate of the monitoring

service, file size skew, file creation arrival rate and inter-arrival time, and the delta in the cooling-

efficiencies of the servers. If the job durations are short, the sampling rate is very fine-grained, and

delta in servers’ cooling-efficiencies is high, non-predictive thermal-aware file placement results

in a better (i.e., more uniform and lower thermal-profile) than even predictive thermal-aware file

placement as shown in Figure 5.12.

Non-predictive scheme greedily fills servers with lower run-time temperatures with the incoming

files. If the job durations are very short and the sampling rate is coarse-grained, the last interval

reading of the temperature sensors by the monitoring service is not an accurate representation of

the actual run-time temperatures. If the delta in the cooling-efficiencies of the servers is high, the

most cooling-efficient servers tend to be lowest temperature servers in the last monitoring interval.

Given, the significant skew in the file sizes in the evaluation dataset, a lot of new files get placed

on the most cooling-efficient servers, resulting in a load- and storage-unbalance. Unfortunately,

such a greedy placement can increase the temperature of these servers to very high values when

computational jobs are directed to the files residing on these servers resulting in a thermally-

unreliable system. A very fine-grained sampling rate of the monitoring service helps make the

technique much less sensitive to system variables. However, in Big Data analytics clusters such as

Hadoop cluster, the master server is a single entity and gets overwhelmed processing heartbeats

from 4000+ worker servers if heartbeats are sent at a very fine time-granularity. Thus, non-

predictive techniques can not be used in an ad hoc manner and need careful understanding of

the workload and dataset characteristics.

5.4.6 GreenHDFS vs. Random File Placement

In this section we compare the best-performing GreenHDFS predictive thermal-aware file place-

ment scheme with random, non-thermal-aware file placement. Figures 5.13 and 5.14 show the

thermal contour plots at different planes in the cluster with random, non-thermal-aware file place-

ment and with predictive thermal-aware file placement in GreenHDFS respectively. The Green-

HDFS thermal profiles are much more uniform and have lower temperatures than the random

placement thermal plots. The maximum temperatures experienced by the servers with random
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Figure 5.13: Thermal contour plots of the servers and maximum temperatures observed in

the cluster with random, non-thermal-aware file placement

Figure 5.14: Thermal contour plots of the servers in the cluster managed by GreenHDFS.

file placement, as shown in Figure 5.13, are higher than GreenHDFS, leading to thermal-reliability

concern under high load. Load-balancing of jobs is more uniform with predictive technique than

with random placement. Thus, an informed, predictive placement is much better than a random

placement for reducing cooling energy costs and for thermal-reliability assurance. Good features

of random placement are that it is not sensitive to system variables such as sampling rate and

observes data-locality just like the predictive technique.

5.4.7 Discussion

Free-cooling or air- and water-side economization (i.e., use outside air or natural water resources

to cool the data center) is gaining popularity as it can result in significant cooling energy costs

184



Figure 5.15: Maximum temperatures observed in the cluster with random, non-thermal-aware

file placement

savings [110]. There is also a drive towards increasing the cooling set point of the cooling systems

to make them more efficient [27]. If the ambient temperature of the outside air or the cooling set

point temperature is high, the inlet temperatures of the servers get high which reduces their ability

to dissipate computational heat, resulting in an increase in server temperatures. The servers are

rated to operate safely only with a certain temperature range, beyond which the failure rates

increase. GreenHDFS considers the differences in the thermal-reliability-driven load-tolerance

upper-bound of the servers in its predictive thermal-aware file placement and places file chunks

in a manner that ensures that temperatures of servers don’t exceed Tmax. Thus, by ensuring

thermal-reliability at all times and by lowering the overall temperature of the servers, GreenHDFS

enables data centers to enjoy energy-saving economizer mode for longer periods of time and also

enables an increase in the cooling set point.

There are a substantial number of data centers that still rely fully on traditional air-conditioning.

These data centers can not always be retrofitted with the economizer modes or hot- and cold-aisle

air containment as incorporation of the economizer and air containment may require space for

ductwork, and heat exchangers which may not be available in the data center. Existing data

centers may also not be favorably located geographically; air-side economization is more viable

in geographic locations where ambient air temperatures are low for most part of the year and

humidity is in the tolerable range. GreenHDFS provides a software-based approach to enhance

the cooling-efficiency of such traditional data centers as it lowers the overall temperature in the

cluster, makes the thermal-profile much more uniform, and reduces hot air recirculation, resulting
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in lowered cooling energy costs.
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Table 5.1: Table of Notations Used in the Thermal-Aware File Placement.

Variable Description Units

t Time interval Seconds

i A server in the cluster

Ti,t Temperature of server i at time t Kelvin (K)

T ini,t Server i’s inlet temperature Kelvin (K)

T iout Server i’s exhaust temperature Kelvin (K)

π File chunks to servers mapping function

Pi,t Power consumption of server i in t Watts (W)

Li,t Computational Load of Server i in t

Tmax Reliability driven upper-bound on the temperature that can be
tolerated by a server as specified in the data sheet

Kelvin (K)

ci Factor of server i’s heat exchange rate, it’s air flow, and heat
capacity density of the air

Kelvin.Second/Joule (Ks/J)

wi1 Power coefficient of server i Joules/Second (J/s)

wi2 Power coefficient of server i Joules/Second (J/s)

Tac Air supply set point temperature of the air conditioner Kelvin (K)

Pc,t Cooling power consumed in cluster at t

cair Heat capacity constant Joules/Kelvin.meter3 (J/Km3

fac Flow rate of the cooling unit Meter3/Second (m3/s)

|S| Total number of the servers in the cluster

|Z| Total number of the files in the cluster

|R| Total number of servers in a rack

Lmax,i Maximum load that can be subjected to a server i without
exceeding Tmax

ρi Average utilization of server i

l Average job duration Seconds

Ptotal Overall compute and cooling power Watts (W)

J in,t Job count in the last monitoring interval at server i

D̂i, t Free storage capacity in the last monitoring interval at server i

θi Heat exchange rate of server i Joules/Kelvin.Second (J/Ks)
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Table 5.2: Table of Notations Used in the Thermal-Aware File Placement.

Variable Description Units

f̃j A file in the cluster

fkj Chunk k of file f̃j
n̂j Number of chunks in file f̃j
f̃j Set of all chunks of file f̃j
ckj,i Chunk k of file f̃j assigned to server i

Cj,i Set of file f̃j ’s chunks assigned to server i

nj,i Number of file f̃j ’s chunks assigned to server i

C̃i Set of chunks of different files assigned to server i

Lactive,j File life span between the file creation and the last job received
by the file f̃j

Days

JT,j Total number of computational jobs targeted to a file f̃j over
its active lifespan Lactive,j

λavg,j Average arrival rate of computational jobs targeted to a file f̃j
λmed,j Median arrival rate of computational jobs targeted to a file f̃j
λmax,j Maximum arrival rate of computational jobs targeted to a file

f̃j
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CHAPTER 6

CONCLUSION

State-of-the-art energy management techniques rely on thermal- and energy-aware job placement,

migration, or consolidation to garner energy costs savings. These techniques are not applicable

in the Big Data analytics environment as they are inherently data-placement-agnostic in nature;

thereby, provide energy savings at significant performance impact in the Big Data environment.

GreenHDFS is based on the observation that data needs to be a first-class object in energy-

management in the Big Data environments to allow high performance, given the data-intensive

nature of Big Data analytics. GreenHDFS takes a novel data-centric, cyber-physical approach

to reduce cooling and compute energy costs. On the cyber-side, GreenHDFS is aware of the

differences in the data-semantics (i.e., computation job profile, job rates, and life spans) of

the Big Data placed in the compute cloud. On the physical-side, GreenHDFS is cognizant

of the uneven thermal-profile in the data centers. Armed with this cyber-physical knowledge,

and coupled with its insights, predictive data models, and run-time information GreenHDFS

does proactive, cyber-physical, thermal- and energy-aware file placement and scale-down, which

implicitly results in thermal- and energy-aware job placement in the Big Data Analytics cloud

compute model. GreenHDFS aims to reduce server operating and cooling energy costs, enhance

energy-proportionality, and ensure thermal-reliability of the servers in the Big Data analytics

cluster without impacting performance. The energy management is done purely at the storage

management layer, keeping the file system interfaces to the Big Data analytics applications the

same. Thus, Big Data analytics applications can take advantage of energy costs savings without

requiring any code rewrite. The next sections summarize the findings, lessons learnt, and the

future work of GreenHDFS.
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6.1 Data-Centric Compute Energy Management

GreenHDFS takes a data-centric, cyber-physical scale-down approach to reduce server operating

energy costs. Instead of energy-aware consolidation of jobs or replicas as was done earlier,

GreenHDFS focuses on energy-aware consolidation of files to realize sufficient idleness to enable

scale-down. On the cyber-side, GreenHDFS is cognizant that all-files-are-not-alike on the cluster.

For example, files in the cluster can be in different evolution phases: some files may be in their

active phase; whereby, the files are actively being computed upon and accessed, and other files

may be in their dormant phase; whereby, the files are past their active phase and are now just lying

dormant in the system without receiving any computations or accesses for regulatory, compliance,

disaster recovery, or .

On the physical-side, GreenHDFS is aware that even in a data center with free-cooling, econo-

mization, or air containment, uneven server inlet thermal-profile exists because of distance from

and varying ability of the cooling system to cool different parts of the data center. In traditional

air-cooled data centers, uneven thermal-profile is further aggravated because of hot air recircula-

tion and air bypass. The higher the inlet temperature of a server, the lower is its cooling-efficiency

(i.e., ability to remove the heat generated). Lower cooling-efficiency compromises the ability of a

server to dissipate the heat generated by the computational load, resulting in higher server tem-

peratures. Such thermal hot-spots are the main cause of high cooling energy costs as the cooling

system needs to run at lower supply set point temperature to alleviate the thermal hot-spots.

Running cooling system at lower temperature reduces its efficiency, further increasing the cooling

energy costs.

Storage and compute models of Big Data analytics present several scale-down challenges. The

underlying storage system distributes file chunks and replicas across the servers for higher per-

formance, load-balancing and resiliency. Any server may be participating in the reading, writing,

or computation of a file chunk at any time. Such a data placement makes it hard to generate

significant periods of idleness in the Big Data analytics clusters and renders usage of inactive

power modes infeasible [91]. GreenHDFS is able to achieve significant periods of idleness in the

very same environment by recognizing that all-the-files-are-not-alike, and that files are in varying

stages of their evolution lifespans in the cluster. Some files are in their active lifespan, i.e., are

being actively computed upon and accessed, while other files are past their active lifespan and are

now simply lying dormant in the system without receiving any computational jobs or accesses.

Our study of a production Big Data analytics Hadoop cluster at Yahoo! [79] found that 56%
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of the storage in the cluster was in a dormant state (i.e., was not accessed at all in the entire

one-month long analysis duration). A majority of the dormant data needs to exist for regulatory,

compliance, and historical trend analysis purposes and cannot just be deleted [79]. An IDC study

found that almost 70% of the data in the data centers is actually dormant in nature.

Based on its cyber-physical awareness, GreenHDFS separates cluster servers and files into logical

Active and Inactive zones in a cost-, performance-, temperature-, and power-differentiated

manner. Active zone servers are used to host new, incoming files and files that are actively being

computed upon; on the other hand, GreenHDFS identifies, separates, and consolidates dormant

files, i.e., files that are past their active lifespan and now, have either none or very infrequent

computations targeted to them, on the Inactive zone servers. Since computations follow data

to capitalize on high server-local data access performance, a majority of the computations get

directed to Active zone, allowing significant idleness in the Inactive zone servers, which can

then be scaled-down.

GreenHDFS assigns the most inherently cooling-inefficient servers in the cluster to the Inactive

zone. The dormant files are best suited for the cooling-inefficient servers as these servers have

low load tolerance Lmax,i values as discussed in Section 5.1.6. Lmax,i is the maximum load that

can be tolerated by a server without exceeding the reliability-driven temperature upper-bound

Tmax defined in the server’s data sheet. Lmax,i is inversely proportional to the inlet temperature

of a server, and since cooling-inefficient servers have high inlet temperatures, they have lower

load tolerance. By placing dormant files on these servers, GreenHDFS ensures that the cooling-

inefficient servers receive negligible computations, don’t generate much heat, and as a result,

their exhaust temperature remain bounded. Such a thermal-aware data zone partitioning reduces

the thermal hot-spots in the cluster leading to overall even and lower server temperatures in the

cluster which in turn reduces the cooling energy costs in addition to reducing server energy costs.

Big Data analytics is data-intensive in nature and hinges on high data access performance. Hence,

cluster zone partitioning in GreenHDFS is done in an energy- and performance-aware manner.

GreenHDFS uses zone partitioning optimization algorithm detailed in Section 4.5.1 to determine

the optimal number of servers to be assigned to the Inactive zone subject to performance (i.e.,

throughput and response time) and capacity constraints. Evaluation results with real-world Big

Data analytics data set show that 18%-33% of the servers in the 2600 server evaluation cluster

can be allocated to the Inactive zone without any transfer bandwidth or average response time

degradation. Once the number of servers to assign to Inactive zone is decided, GreenHDFS does
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either cluster-level or rack-level thermal-aware zone partitioning of the servers between the two

zones. Cluster- and rack-level schemes make different energy savings and performance trade-offs

as discussed in Section 4.5.2.

GreenHDFS takes benefit of zoned bit recording (ZBR) commonplace in today’s hard disks to

place active files on the outer hard disk cylinder zones which have higher transfer bandwidth

than the inner hard disk cylinder zones. Such a placement reduces the service time of the data

accesses, and hence, alleviates the load-unbalancing caused by scale-down. We did a feasibility

study of such high performance file layout with the clickstream dataset and realized that Active

zone server disks get only 26% full with the active and new incoming files. The low storage

capacity requirements and short active life spans of the active files noticed in the clickstream

dataset in the Big Data analytics cluster at Yahoo! makes high performance layout of the active

files on the outer disk cylinder zones feasible. Since, clickstream processing is the most important

use-case of Big Data analytics and is prevalent across Internet services companies, the feasibility

study can be extrapolated to work across companies.

GreenHDFS’s data-centric scale-down approach hinges on accurate determination of dormancy of

the files as both premature and late classification of the dormancy of the files have different reper-

cussions. A File Migration Policy running in GreenHDFS performs file dormancy determination

in two ways: reactive and predictive. Reactive GreenHDFS covered in Section 4.6.7.1 relies on

insights gleaned reactively from the observed access patterns of the files to drive its energy-aware

file policies and file dormancy determination. Predictive GreenHDFS covered in Section 4.6.7.2

uses predictive models which it builds from supervised machine learning of historical traces to

predict file attributes to guide file placement and determine file’s dormancy in a proactive and

finely-tuned manner instead of relying on one-size-fits-all file policies. The File Migration Policy

not only aids in scale-down, but also results in much more available storage capacity in the Active

zone which can be used for better active file layout, and more aggressive replication for obviating

performance hot-spots.

There are several advantages of using a Predictive variant of GreenHDFS as opposed to using a

Reactive variant of GreenHDFS:

• Higher accuracy in identifying truly dormant files. As a result, files are moved to the

Inactive zone only when they have truly become dormant and are not just observing a lull

in their jobs arrival rate. Accurate dormancy determination significantly reduces accesses

to the files residing on the Inactive zone which in turn results in:
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– Higher amount of idleness in the Inactive zone leading to longer periods of scale-down

resulting in higher energy savings.

– Reduced performance impact courtesy of reduced accesses to the Inactive zone. Ac-

cesses to the Inactive zone files in GreenHDFS may suffer performance degradation

because of two reasons: 1) they may require an inactive-to-active power state transi-

tion of the scaled-down server resulting in a transition penalty as high as ten seconds,

and 2) files are laid out in a performance-sacrificing, high energy saving manner in

the Inactive zone.

– Timely reclamation of the storage space in the Active zone servers given the fine-

grained migration of dormant files, which is very important for the feasibility of high

performance active file placement on the outermost cylinder zones of the disks covered

in Section 4.5.1

• Higher scalability as instead of enumerating the entire file name space for identifying dor-

mant files, GreenHDFS now just needs to look at its data structures for the list of migration

file candidates on the day of the policy run. The candidate migration files on any day are

a very small fraction of the total name space.

• Lower runtime overhead as there is no need to record the last access time of the files.

GreenHDFS predictive models, as detailed in Section 4.6.1, are meant for the clickstream pro-

cessing, an example of log processing, which is one of the most important use cases of Big

Data analytics and has significant business value. Internet services companies such as Facebook,

Google, Twitter, LinkedIn, and Yahoo! [34] rely on clickstream processing [34, 52, 133] of huge

web logs daily to calculate the web-based advertising revenues (source of a majority of their

income), and to derive user interest models and predictions.

GreenHDFS is not tied to a particular predictive modeling technique as different workloads and

datasets has different feature sets, and hence, need to be trained differently in order to generate

predictive models. In the case of clickstream processing, there is correlation between the hier-

archical file path of a file and its attributes, hence using subdirectories in the file path as the

feature set works well. Other datasets may not have any correlation between the file path and

instead may display correlation between file’s meta data such as file’s owner, and file’s attributes.

The clickstream workload falls in the category of predictable workloads and hence, quite accurate

193



predictive models can be generated for such a workload. On the other hand, there are several

datasets/workloads that are not be predictable at all and an attempt to figure out predictive mod-

els for such datasets/workloads may be futile. An example of unpredictable workload/dataset is

a research dataset which may get accessed in a totally ad hoc manner at anytime and hence, is

not a good candidate for predictive capability.

Predictive GreenHDFS results in higher energy costs savings, storage-efficiency, and performance

than Reactive GreenHDFS; however, making predictive capability work for different workloads is

an involved process. While Reactive GreenHDFS allows lower energy costs savings, performance,

and storage-efficiency than Predictive GreenHDFS, Reactive GreenHDFS can work across multiple

workloads as long as its policy thresholds are chosen judiciously. And, Reactive GreenHDFS

performs almost as well as Predictive GreenHDFS with news-server-like-access pattern workloads.

In the news-server-like workloads, a majority of the computational jobs on the files happen soon

after the files’ creation and the jobs go down in number as the files age. With such workloads,

once a file is deemed dormant and is migrated to the Inactive zone, the chances of it getting

accessed again in the future are low. This results in less server wake ups leading to higher energy

cost savings, and lower performance impact. A majority of the log processing workloads such

as clickstream processing, and multimedia workloads such as videos-on-demand, and movies-on-

demand have a news-server-like access pattern and are a very good fit for Reactive GreenHDFS.

Reactive GreenHDFS does result in energy savings and storage space savings even with non-news-

server-like access patterns as long as there is a definite skew in the access patterns of the files,

their popularity, and life spans. GreenHDFS is also a great fit for archival, disaster recovery and

backup data which is common even in the context of Big Data Analytics.

In the Big Data clusters, the lowest energy-efficiency region corresponds to their most common

operating mode, as shown by a six-month average CPU utilization study done at Google [28].

Per this study, servers operate most of the time between 10%-50% of their maximum utilization

levels. Thus, there is a significant opportunity to consolidate computational load on the Active

zone and push the servers to operate closer to their energy-efficient range (i.e., 70%-80% of

peak utilization). In the Inactive zone, on the other hand, scaling-down servers aids in deriving

energy-proportionality during idle utilization. Since the power draw in the inactive power states

is very close to zero, by transitioning the servers to inactive power state, GreenHDFS provides

a mechanism to have an energy-proportional behavior in data centers built with non-energy-

proportional components during periods of average load. And, the compute capacity of the

Inactive zone can always be harnessed under peak load scenarios by waking up the sleeping
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servers.

Summary: There are several advantages of GreenHDFS’s data-centric, data-classification-driven

cluster zone partitioning:

• Allows scale-down even in the Big Data analytics environment which presents signifi-

cant scale-down challenges courtesy of its different storage, compute, and network model;

thereby, resulting in server operating energy costs savings.

• Big Data analytics cloud mandates a different compute model whereby, Data-locality is a

really important consideration for high performance of computational jobs. Existing research

is job-centric in nature and attempts to consolidate jobs on few servers during periods of

low load so that the rest of the servers can be scaled-down. This brings forth challenging

performance and energy trade-offs: respecting data-locality makes workload consolidation

very constrained or almost impossible; ignoring data-locality results in power savings at

high performance cost. GreenHDFS’s data-centric energy management approach does not

involve any such energy savings and performance trade-offs and computations always enjoy

data-local high performance.

• Results in few power state transitions which is very important as frequent inactive-to-active

power state transitions can impact hardware reliability; server components such as disks

only have limited start/stop cycles.

• Allows thermal hot-spots reduction courtesy of its thermal-aware zone partitioning (Section

4.5.2) resulting in lower cooling energy costs in addition to lower server operating energy

costs.

• Ensures high read and write data access performance to active and new incoming files.

Big Data analytics is a data-intensive application in nature and hinges on high read access

performance. Write performance is equally important as significant number of files are

written daily and read right afterwards. GreenHDFS results in high data access performance

as it uses: 1) zoned bit recording aware active file placement on outer disk cylinder zones

which have higher transfer bandwidth than the inner disk cylinder zones (Section 4.5.1), 2)

separation of small and large files (Section 4.6.2), 3) performance-aware zone partitioning

(Section 4.5.2), and 4) proactive replication of high heat files (Section 4.6.4).

• Ensures long periods of idleness in the Inactive zone servers by curtailing the need to
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access data on the scaled-down servers courtesy of its energy-aware Inactive zone chunking

(Section 4.6.3), and file placement (Section 4.6.6) policies. This allows scale-down of the

servers for long durations, resulting in server operating energy costs savings and lower

performance impact.

• Allows a software-based method to achieve energy-proportionality even with non-energy-

proportional components such as disks, network, and memory.

6.2 Data-Centric Cooling Energy Management

The surge in Big Data analytics cloud data centers brings in its wake burgeoning cooling energy

costs. And, the impact is not just monetary, but also environmental given the significant water

usage and carbon dioxide emissions involved. A majority of the existing research on run-time

reduction of cooling energy costs relies on thermal-aware job placement/migration to reduce

the cooling energy costs. These techniques face challenging performance and energy trade-offs

in the Big Data analytics environment where data-locality is mandated for high performance:

respecting data-locality in thermal-aware job placement constrains placement only to the servers

that host the data resulting in lower cooling energy savings; neglecting data-locality results in

cooling energy savings at performance cost.

GreenHDFS takes a different data-centric, cyber-physical cooling energy management approach

which is fully data-placement-aware and doesn’t involve energy savings and performance trade-

offs. GreenHDFS is aware that the cooling and server power consumption depends on the load

on the servers, and since jobs follow the files’ chunks, the load on a server is directly dependent

on the way the files’ chunks are distributed across the servers. Thus, file distribution directly

affects the load distribution in the cluster. In GreenHDFS, files are placed first in the cluster

in a thermal- and energy-aware manner so that the computational jobs can then automatically

enjoy energy costs savings in addition to high data-local performance by following files placed in

a proactive, thermal- and energy-efficient manner.

Now, thermal-aware file placement can not be done in a naive fashion as discussed in Section

5.1.4 and there is a need for more sophisticated and predictive thermal-aware file placement

algorithms and heuristics that can somehow glean information about the “future” computational
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load profile of an incoming file and the “future” thermal-profile of the servers in the cluster and

then place the file “now” on the most thermally-conducive server in the “future”. The problem

of optimally placing a collection of files in an informed, thermal-aware manner on a cluster can

be decomposed into two subproblems.

The first subproblem relates to the prediction of each file’s future computational load profile.

GreenHDFS uses supervised machine learning on historical traces to predict the file’s computa-

tional load profile. Since predicting the exact profile for each and every file in the cluster is simply

not feasible both in terms of predictor complexity and accuracy, GreenHDFS uses predictive,

simple, and yet accurate approximation for the computational load profile as discussed in Section

5.3.1. The choice of the approximation involves thermal-reliability, and efficient server packing

trade-offs and requires a study of the statistical properties of the dataset. For the evaluation

clickstream dataset at Yahoo!, average jobs arrival rate at per-minute granularity turned out

to be a very good approximation as the standard deviation in the observed jobs arrival rate at

different time intervals in the life time of the files was low.

The second subproblem relates to the actual optimal placement of files in the cluster subject

to energy costs, temperature and capacity constraints of the cluster servers, given knowledge

of each file’s future computation job profile. Unfortunately, file placement problem is known to

be NP-Hard [53]. The computational complexity of an idealized thermal-aware file placement

problem suggest the need for an approximation algorithm to solve the general problem and one

can come up with fairly complex approximation schemes. But in the context of the design and

implementation of a robust file system, algorithmic simplicity is usually preferred. In that spirit,

GreenHDFS uses heuristics for thermal-aware file placement.

Two variants of thermal-aware file placement heuristics, predictive and non-predictive are explored

and compared with non-thermal-aware random file placement and data-agnostic thermal-aware

job placement. Predictive file placement heuristic uses a combination of predicted and run-time

cluster information to guide its thermal placement as elaborated in Section 5.3.2.2. The non-

predictive heuristics rely only on run-time information from the cluster to guide thermal-aware

file placement as discussed in Section 5.3.2.3.

Predictive heuristic works better than other heuristics in all dimensions: cooling costs savings,

thermal-reliability, load-balancing, and storage utilization. Predictive thermal-aware file placement

obviates the need to do reactive, thermal-reliability driven migration of load or files by ensuring

that the files are placed upfront in such a manner that at no point in time, temperature of a server
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exceeds its reliability-driven temperature upper-bound. Predictive heuristics are not sensitive to

system and dataset parameters such as file size skew, job durations, delta in inlet temperatures

of the servers, and file creation rate.

With the right combination of system variables, non-predictive technique can result in as good

a behavior as predictive technique; however, it is very sensitive to monitoring service’s sampling

rate, file size skew, server utilization, and delta in cooling-efficiencies of the servers. If the

sampling rate is fine-grained, the sensitivity of the non-predictive heuristic to other dataset and

cluster parameters reduces significantly and the non-predictive heuristic starts showing the same

advantages predictive scheme. Now, in the typical Big Data analytics clusters such as Hadoop

or Google Map Reduce clusters, the master server is a single entity. In the case of GreenHDFS,

master server is where the cyber-controller is incorporated. If the other servers start sending

information to the master at a very fine-grained level, the master may get overwhelmed and may

not be able to fulfill its main responsibilities such as that of answering metadata queries in a

timely fashion.

Both the non-predictive and predictive thermal-aware file placement techniques require analysis

of the dataset and an understanding of the cluster parameters. The predictive technique requires

analysis to determine the predictability of the dataset and the associated workload. If the dataset

is found to be predictable, as was the case with the evaluation dataset, relevant representative

feature sets and supervised machine learning method need to be identified. The accuracy of

predictions, retraining requirements, and costs of prediction need to be evaluated. In case of

non-predictive technique, dataset analysis needs to be done from sensitivity angle. For example,

if the dataset doesn’t have a file skew and all the files are uniformly big, non-predictive technique

will fare well and it can be used as is.

Summarizing, if the workload is predictable, predictive thermal-aware file placement should be

used given its various benefits. If a workload is not predictive, but does have cluster and dataset

characteristics that are conducive to the non-predictive technique, it is better to use the non-

predictive technique instead of random, non-thermal-aware file placement technique as discussed

and evaluated in the Section 5.4.

While several companies such as Microsoft, Google, and Yahoo! have announced new data

centers that rely only on free-cooling or air- and water-side economization, there are a substantial

number of traditional data centers that still rely on air- or liquid-cooling either entirely or in-

part coupled with economization. The existing data centers may not be located in economizer
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friendly geographic locations and can not always be retrofitted with the economizer modes as

incorporation of the economizer may require space for ductwork, and addition of heat exchangers

which may not be available in the data center. Power usage effectiveness (PUE) is the ratio of

the total building power to the IT power. A majority of the data centers still have a high PUE

of 1.8 as per a 2011 survey of 500 data centers [2]. The high PUE is because of the power

overheads such as 42% overhead of the CRAC and the chiller. GreenHDFS aids in reducing the

thermal hot-spots significantly courtesy of its thermal-aware zone partitioning whereby cooling-

inefficient servers are reserved for dormant files. Thermal hot-spots are the number one cause of

high cooling energy costs in the traditionally cooled data centers that can not be retrofitted with

air containment techniques. Alleviation of the thermal hot-spots reduces cooling energy costs

significantly. GreenHDFS also makes it possible to raise the cooling set point temperature of the

cooling system which increases the efficiency of the cooling system; thereby, further reducing the

cooling costs.

The cooling energy costs of the data centers can be significantly cut down if the data center

is capable of supporting economizer mode and can operate for extended periods of time in the

economizer mode. The cooling-efficacy in the economizer mode depends on the temperature and

the quality of the outside air. If the ambient temperature of the air is high in the economizer

mode, the inlet temperatures of the servers may get high, thereby reducing their cooling-efficiency

and resulting in a temperature rise of the servers. Now, the servers can safely operate only within

their rated, allowable temperature range. For example, the operating temperature of Dell Blade

is 50oF − 95oF , IBM Blade is 50oF − 95oF , and NetAppStorage is 50oF − 104oF . If the server

temperature goes out of the allowable range, failure rates increase. Usage of economizer mode

for extended hours and an increase in the set point of the cooling system hinge on the system’s

ability to ensure thermal-reliability. GreenHDFS thermal-aware file placement is done in a manner

that ensures that servers remain within their thermally-reliable temperature range. GreenHDFS

is cognizant of the differences in the load tolerance of each server and places files on the servers

accordingly as discussed in the Section 5.1.6. GreenHDFS results in much lower thermal-profile

compared with random, non-thermal-aware file placement or the state-of-the-art thermal-aware

job placement techniques even when all the techniques are subjected to the same load. Thus,

GreenHDFS thermal-aware file placement enables the usage of free-cooling and economization

modes for longer periods of time resulting in cooling energy costs savings.
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6.3 Evaluation Results

Evaluation results with one-month long real-world traces from production Big Data Analytics

cluster show up to a 59% reduction in the cooling energy costs, up to 26% reduction in the

compute energy costs, a 9x better average response time than thermal-aware job placement

techniques which are inherently data-placement agnostic in nature, more uniform thermal-profile,

thermal-reliability assurance, and lower overall temperature in the cluster. Data needs to be a

first-class object in Big Data Analytics and GreenHDFS’s evaluation results show that its data-

centric energy management approach is a step in the right direction. GreenHDFS also throws

light on the importance of historical trace analysis (a Big Data analytics problem in itself given

the humongous size of the traces) to guide the data-placement and energy-management policies

in the Big Data analytics cluster. There is a wealth of information about the files’ access patterns,

jobs arrival rates, evolution life spans, and sizes hidden in the system traces that can be leveraged

for higher energy costs savings and performance.

6.4 Future Work

GreenHDFS allows overall energy costs savings, ensures thermal-reliability, provides a software-

based mechanism for incorporation of energy-proportionality with non-energy-proportional com-

ponents in a self-adaptive and automated manner while allowing high data access performance.

GreenHDFS can be extended in a variety of ways in the future to provide even higher energy

costs savings. GreenHDFS circle of influence can also be expanded to include a wider variety of

Big Data analytics workloads and datasets.

In its current version, GreenHDFS doesn’t do any power management in the Active zone. Active

zone hosts active files and the computational jobs targeted to these files may have strict service

level agreements and completion deadlines; thereby, requiring performance guarantees. Power

management in the Active zone needs to be done in a manner that doesn’t degrade perfor-

mance. A variety of active-mode power management schemes such as dynamic voltage and

frequency scaling (DVFS) for processors, multi-speed disks that are capable of operating in dif-

ferent rotational speeds for storage, and energy-aware caching and data layouts for the memory

can be applied to the Active zone servers to further save on server operating energy costs.
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GreenHDFS uses statistical distributions to approximate computational load-profile of the files

in its thermal-aware file placement which is geared towards reducing cooling energy costs and

ensuring thermal-reliability of the servers. More sophisticated distributions can be considered to

represent files’ jobs arrival rate in the thermal-aware file placement, which could result in even

higher cooling energy costs savings by providing a more accurate match between the incoming

file’s computational load-profile and anticipated thermal-profile of the servers.

In addition to the Reactive and Predictive mode of operation in which the onus is on GreenHDFS

to learn about files’ relevant attributes, GreenHDFS may also work very well with user-provided

hints and, such an hints-based approach can be further explored in the future. If the user is aware

of the active life span of the file and its expected heat, and supplies the same as hints, GreenHDFS

can override its own insights about the file and utilize the user-provided hints in its various policies

such as file migration, and zone placement. However, hints-based approach will require careful

analysis as one of the downsides of a purely hints based system centers around fairness. While

several checks-and-bounds can be put in place, a user may still provide a fallacious hint that

his/her file has very high heat; such a file will get special treatment in GreenHDFS and enjoy

high performance. On the other hand, the insightful reactive and predictive modes in GreenHDFS

are unbiased by user hints as they rely on self-generated insights and are inherently fairer. Also,

hints-based system won’t work well in workloads whereby the files are fed into the system by

applications. For example, in the case of clickstream processing, daily thousands of web logs are

copied over to the cluster directly from web servers and there is no user in the middle in this

scenario to provide file-level hints. Given the large number of files created everyday, user-driven

hints at a fine-grained per-file granularity are not even feasible. In such scenarios, GreenHDFS’s

capability to self-generate file insights becomes very important, and hints may need to be used

in conjunction with self-generated file insights.

In the dissertation, GreenHDFS has been evaluated with real-world traces from Big Data analytics

clickstream processing workload, which is one of the most important workload in the Internet

services companies because of the monetary and business value. In the future, it would be

worthwhile to expand GreenHDFS’s scope to other Big Data analytics workloads and evaluate its

efficacy with different workloads and datasets. The scope expansion requires an in-depth analysis

of the dataset characteristics such as its evolution lifespans, sizes, job patterns, and jobs arrival

rates to throw light on the behavior of the underlying files. An analysis of the predictability of the

dataset/workload is also required. If the dataset/workload is found to be predictable, generation

of predictive models and identification of relevant feature sets needs to happen.
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memory caching for improved energy consumption. IEEE Trans. Comput. 56, 11 (Nov.
2007), 1441–1455.

[19] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M.,
and Panigrahy, R. Design tradeoffs for ssd performance. In ATC’08: USENIX Annual
Technical Conference.

[20] Aguilera, M. K., Keeton, K., and Merchant, A. Improving recoverability in
multi-tier storage systems. In 37th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN) (2007).
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