
c© 2012 by Duo Zhang. All rights reserved.

INTEGRATIVE TEXT MINING AND MANAGEMENT
IN MULTIDIMENSIONAL TEXT DATABASES

BY

DUO ZHANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Associate Professor ChengXiang Zhai, Chair & Director of Research
Professor Jiawei Han
Associate Professor Kevin C. Chang
Principal Scientist, Ashok N. Srivastava, NASA Ames Research Center

Abstract

As the text information grows explosively in today’s multidimensional text databases, managing

and mining this kind of databases is now playing an extremely important role in every domain.

Different from traditional text mining tasks that target at single data sets, a text management

system for a multidimensional database requires its text mining functions performed in different

contexts specified by the structured dimensions, and the system should well support OLAP (online

analytical processing) of the text information. This is a big challenge for most existing text mining

techniques because of the efficiency and the scalability issues. On the other hand, the huge amount

of text information in such databases also provides us an opportunity of acquiring new knowledge

out of it, which could be super beneficial.

In this thesis, I identified three major types of functions that a text management system should

support in order to analyze multidimensional text databases: (1) effective and efficient digestion:

the system should support users to digest the text information in an OLAP environment based

on domain knowledge; (2) flexible exploration: the system should allow users to flexibly explore

the text information based on ad hoc information needs; (3) discovery analysis: the system should

effectively analyze the text data with consideration of the associated non-textual data and mine

knowledge underlying the text information. All of these functions are integrative analysis of the

structured data and the unstructured text data within a multidimensional text database.

I proposed and studied different novel models and infrastructures to support all the above

functions. First, I proposed a novel model called Topic Cube which combines the OLAP technology

for traditional data warehouses with probabilistic topic modeling approaches for text mining. Given

a topic hierarchy based on domain knowledge, a topic cube mines semantic topics accordingly

and organizes the text information along with the topic hierarchy so that domain experts can

quickly digest the text information in different granularity of topics and within different context.

ii

Second, a novel infrastructure MiTexCube is proposed to flexibly support various kinds of online

explorations, such as summarizing the content of text cells or comparing the content of documents

across multiple text cells. The text content in a MiTexCube is stored as a compact representation

called micro-clusters which make the online processing very efficient. Third, aiming at a special

type of discovery analysis, comparative analysis on different text fields, I proposed a probabilistic

topic mapping (PTM) model for mining two parallel text fields to discover latent topics and their

associations. The model can be directly applied on multidimensional text databases with two

parallel text fields. For multidimensional text databases with only one text field, the structured

data can align two subsets of the data and form a parallel document collection so that meaningful

knowledge can be mined by the proposed model.

Extensive experiments on multiple real world multidimensional text databases show that the

proposed Topic Cube, MiTexCube, and PTM are all effective and efficient for digesting, exploring

and analyzing multidimensional text databases. Since these techniques are all general, they can be

applied to any multidimensional text databases in different application domains.

iii

To my parents for all their love.

iv

Acknowledgments

First and foremost, I wish to express my deepest gratitude to my advisor, Professor ChengXiang

Zhai. Without his continuous guidance, support, and encouragement, this thesis would not have

been possible. It’s Cheng who brought me to the world of text mining research, taught me how

to identify high impact research problems, and showed me how to conduct solid research. His

keen insight, great passion, and rigorous attitude towards research deeply influenced me. Besides

research, his personality and teaching philosophy also set up a great example of being an advisor

for me. I enjoyed every discussion with him in the past five years. It’s my great pleasure to work

with him during my doctoral study.

I would like to thank all the other thesis committee members, Professor Jiawei Han, Professor

Kevin C. Chang, and Dr. Ashok N. Srivastava, for their generous time, commitment, and their

constructive suggestions on my thesis. Special thanks to Professor Jiawei Han for his long-term

collaboration and support through my whole Ph.D. study in UIUC. Special thanks to Professor

Kevin C. Chang for all his suggestions and for him attending my prelim exam in the midnight when

he was visiting Singapore. Special thanks to Dr. Ashok N. Srivastava for his critical feedback and

insightful comments on my thesis to make it solid.

I have been blessed to receive much help from many collaborators, colleagues, and friends. I

would like to thank the members of the TIMan Group for all their valuable suggestions and help,

especially, Tao Tao, Xuehua Shen, Jing Jiang, Xu Ling, Qiaozhu Mei, Xuanhui Wang, Bin Tan,

Yue Lu, Alexander Kotov, V.G. Vinod Vydiswaran, Yuanhua Lv, Hyun Duk Kim, Hongning Wang,

Mingjie Qian, Kurtis Wang, and Jing Zou. I would also like to thank many other members of the

DAIS Group, especially, Hong Cheng, Deng Cai, Tao Cheng, Tianyi Wu, Jing Gao, Yizhou Sun,

Peixiang Zhao, Xin Jin, Bo Zhao, Rui Li, Mianwei Zhou, Chi Wang, Ming Ji, and Quanquan Gu.

I had so much fun and happy memories with their accompany.

v

Lastly but most importantly, I’m grateful to my parents for their endless and unreserved love,

who have been encouraging and supporting me all the time. To them I dedicate this thesis.

This thesis was supported in part by NASA grants NNX08AC35A and NRA-NNH10ZDA001N;

the U.S. National Science Foundation grants IIS-0842769, IIS-0713571, IIS-0905215, IIS-0713581,

and CNS-1028381; and U.S. Air Force Office of Scientific Research MURI award FA9550-08-1-0265.

vi

Table of Contents

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1

Chapter 2 Related Work . 7
2.1 Online Analytical Processing . 7
2.2 Probabilistic Topic Modeling . 7
2.3 Document Clustering . 9
2.4 Other Related Work . 9

2.4.1 OLAP for Text Analysis . 9
2.4.2 Question and Answering . 10

Chapter 3 Topic Modeling for OLAP on Multidimensional Text Databases . . . 12
3.1 Introduction . 12
3.2 Topic Cube as an Extension of Data Cube . 17

3.2.1 Standard Data Cube and OLAP . 17
3.2.2 Overview of Topic Cube . 18
3.2.3 Definition of Topic Cube . 20

3.3 Construction of Topic Cube . 22
3.3.1 Probabilistic Latent Semantic Analysis (PLSA) 23
3.3.2 Materialization . 25
3.3.3 Saving Storage Cost . 31

3.4 Experiments . 33
3.4.1 Data Set . 33
3.4.2 Efficiency Comparison . 34
3.4.3 Topic Comparison in Different Context . 36
3.4.4 Topic Coverage in Different Context . 37
3.4.5 Shaping Factor Analysis . 39
3.4.6 Accuracy of Categorization . 41

3.5 Conclusions and Future Work . 41

Chapter 4 MicroTextCluster Cube for Online Analysis of Text Cells 43
4.1 Introduction . 44
4.2 MicroTextCluster Cube . 48

4.2.1 Definition of MiTexCube . 48

vii

4.2.2 Progressive Materialization . 51
4.2.3 Update a MiTexCube . 55

4.3 Online Analysis of Text Cells . 57
4.3.1 Standard (Neutral) Cell Summarization . 57
4.3.2 Query-Specific Cell Summarization . 59
4.3.3 Common Topic Comparison . 60

4.4 Experimental Results . 61
4.4.1 Data Sets . 61
4.4.2 Evaluation of Progressive Materialization . 62
4.4.3 Evaluation of Representative Analysis Tasks 63

4.5 Conclusions and Future Work . 70

Chapter 5 Probabilistic Topic Mapping Model for Mining Parallel Text Fields . 71
5.1 Introduction . 72
5.2 Problem Formulation . 74

5.2.1 Generating a Parallel Document Collection from an MDT Database 76
5.3 Probabilistic Topic Mapping . 77

5.3.1 Model Description . 77
5.3.2 Parameter Estimation . 80
5.3.3 Incorporating Prior Knowledge into PTM . 81

5.4 Experiments . 83
5.4.1 Data Set . 83
5.4.2 Sample Topic Mapping Results . 84
5.4.3 Quantitative Evaluation of PTM . 86
5.4.4 Efficiency Analysis . 91

5.5 Conclusions and Future Work . 94

Chapter 6 Conclusions . 96
6.1 Summary . 96
6.2 Future Work . 98

References . 100

viii

List of Tables

1.1 An example of multidimensional text database in ASRS 2
1.2 An example of multidimensional text database from Camera Producers 2

3.1 Outline of Aggregation along Standard Dimensions 27
3.2 Outline of Aggregation along the Topic Dimension 28
3.3 The Number of Documents in Each Base Cell . 33
3.4 Comparison of Starting Points in Different Strategies 37
3.5 Examples and Keyword Lists of Shaping Factors . 39

4.1 An Example of a MiTexCube . 45
4.2 An example of the materialization of a MiTexCube 50
4.3 An example of subcell selection . 51
4.4 A theoretical study of materialization . 53
4.5 Number of distinct values in each dimension of ASRS 61
4.6 Number of distinct values in each dimension of DBLP 61
4.7 Quality Comparison for Standard Cell Summarization 66
4.8 Quality Comparison for Topic-biased Cell Summarization 68

5.1 Examples of Ticket Data . 74
5.2 Examples of Medical Data . 74
5.3 Word distributions of topics mined from PTM in ticket data 84

ix

List of Figures

1.1 Thesis Overview: Three Major Components . 4

3.1 Hierarchical Topic Tree for Anomaly Event . 13
3.2 Star Schema of a Topic cube . 20
3.3 An example of a Topic Cube . 21
3.4 Example Cells in a Topic Cube . 21
3.5 Hierarchical Topic Tree used in the Experiments . 34
3.6 Efficiency Comparison of Different Strategies . 36
3.7 Application of Topic Cube in ASRS . 37
3.8 Topic Coverage Comparison among Different Contexts 38
3.9 Shaper Analysis in Different Context . 40
3.10 Comparison of Categorization Accuracy . 42

4.1 Illustration of micro-clusters and their uses for summarization. 46
4.2 Star Schema of a MiTexCube . 51
4.3 Materialization of a MiTexCube . 54
4.4 Storage Estimation with Different Number of Documents in ASRS 63
4.5 Storage Estimation with Different Number of Dimensions in ASRS 64
4.6 Storage Estimation with Different Number of Documents in DBLP 65
4.7 Efficiency Comparison between GS-Base and GS-MC 65
4.8 Efficiency Comparison between QS-Base and QS-MC 68
4.9 Common Topic Comparison . 69

5.1 An Illustration of Mining Topic Mapping . 76
5.2 Graphical Model for PTM . 79
5.3 Graphical Model for APTM . 83
5.4 Word distributions and topic mapping learned from PTM on medical data (Ks =

20,Kt = 40) . 86
5.5 Word distributions and topic mapping learned from PTM on medical data (Ks =

40,Kt = 20) . 87
5.6 Word distributions and topic mapping learned from APTM on medical data where

K = 20 . 88
5.7 Effectiveness of PTM in improving difficult cases for document matching 90
5.8 Efficiency Analysis with Different Corpus Size . 92
5.9 Efficiency Analysis with Different Topics . 93
5.10 Scale up analysis of PTM model . 95

x

6.1 Topic Cube Function in EventCube System . 98

xi

Chapter 1

Introduction

In this information age, text data in multidimensional databases has grown explosively and has

been a tremendously valuable data source for every domain, e.g. business domain, aviation safety

research, and medical care. Since in general, it is desirable to analyze text data together with non-

textual data, it is necessary to efficiently and effectively manage multidimensional text databases

so that useful knowledge can be mined for all kinds of applications.

A MultiDimensional Text database (MDT database) is generally made up of structured di-

mensions and one or several text dimensions. Structured dimensions usually contain structured

values, such as time and location, which can be viewed as the context for text of each record. A

text dimension contains one or many documents which are regarded as the “content measure” of

each record in an MDT database.

In Table 1.1, we show an example of the MDT database in ASRS [2], which is the world’s

largest repository of safety information provided by aviation’s frontline personnel. The database

has both structured data (e.g., time, airport, and light condition) and unstructured text data such

as narratives about anomalous events written by pilots or flight attendants as illustrated in the

table. A text narrative usually contains hundreds of words.

Another example from business domain is shown in Table 1.2. Besides the structure dimensions,

there are two parallel text fields in the database. In the first text field, each record contains a set

of reviews from customers in a month. In the second text field, it contains some internal business

responses and solutions according to the customer feedback.

Mining such MDT databases is extremely useful for today’s business intelligence and knowledge

management. As a specific example, imagine how a product manager would like to analyze an MDT

database and how text mining functions could assist her to achieve the goal. First, the product

manager would like to digest how the customers comment or complain about different aspects of

1

Table 1.1: An example of multidimensional text database in ASRS
ACN Time Airport · · · Light Narrative
101285 199901 MSP · · · Daylight ...The COMMENT ON RADIO DISCIPLINE...
101286 199901 CKB · · · Night ...SHOULDN’T THE TWR CTLR TELL ME...
101291 199902 LAX · · · Dawn ...WHEN ACFT SLOWED FOR APCH SPDS...

Table 1.2: An example of multidimensional text database from Camera Producers
Product Time Location · · · Review Response

Camera 50D 2009.1 Chicago · · · Customer Reviews Internal Business Responses
Camera 70D 2009.1 New York City · · · Customer Reviews Internal Business Responses
Camera 5D 2009.2 Seattle · · · Customer Reviews Internal Business Responses

a particular product during last month, e.g. the weight of Camera 50D, the color choices, and etc.

An ideal text mining function should summarize all the customer reviews from last month into

different aspects according to the product’s specification, so that the manager can quickly digest

all the information within minutes instead of spending hours on reading thousands of reviews to

get the idea. Also, providing some representative reviews for each aspect summary would be very

helpful. Second, the product manager may want to further explore the reviews, not necessarily

according to the product’s specification. For example, she may want to cluster the reviews into

different groups and read representative reviews from each group. She may also have a specific

query in her mind, e.g. a competitor camera, and want to know how customers compare these two

products. All these explorations will help her better understanding customer’s opinions. Next, the

product manager would also like to do a comparative analysis on the two text fields, i.e. “Reviews”

and “Responses”, find out what are the general business solutions for different types of customer

complaints, and then response to new customer feedback. Similar examples can also be found in

aviation research domain. For example, with ASRS database, a researcher may want to digest the

mentions of anomaly events according to specified categories, explore all the pilot reports based

on some specific queries, and propose possible solutions to an anomaly event based on previous

solutions if available.

All these text mining functions are very attractive and promising. However, many challenges

remain to be solved for the current techniques in order to effectively and efficiently support all these

functions. First, all these online analysis tasks of the MDT databases require high efficiency of

the text mining techniques, and the function should be carried out online for any context specified

2

by the structured data. However, many data mining algorithms are inefficient if directly applied

to process large amounts of data. For example, even the simplest clustering algorithm would take

too much time to be practical for online analysis of a large number of text documents. Second, to

support flexible exploration of the text data, an infrastructure should be designed general enough to

support different types of text mining functions efficiently. However, there are not many this kind

of infrastructures existing in literature, and most of them are designed for very specific purposes.

Third, there is a lack of general techniques for performing comparative analysis of text data in

the context of non-textual data. For example, it is unclear about how to simultaneously mine

two parallel text fields with different granularities of topics based on demands and find out the

underlining correlations among them, which is very crucial for comparative analysis on two text

fields.

My thesis work addresses these three challenges, where I proposed and studied different new

general algorithms and models to support the desired functions for analyzing MDT databases.

An overview of the thesis is shown in Figure 1.1. The work can be divided into three synergistic

major components, and each of them supports digestion, exploration, and analysis in an MDT

database, respectively. As shown in the figure, the digestion function is supported by the Topic

Cube model [59, 62], which combines traditional OLAP techniques [5, 12, 23] with topic modeling

approach [26, 9] in text mining. The focus of the work is the efficiency and offline materialization

strategies. MiTexCube [60, 61] is a novel infrastructure that aims at exploring MDT databases

efficiently online. The focus of the infrastructure is efficiency and flexibility so that different kinds

of text mining applications can be built based on it. Finally, a Probabilistic Topic Mapping (PTM)

model [58] is proposed for comparative analysis on two parallel text fields. The focus of this study

is the quality of the mined knowledge and the scalability of the proposed model.

Information Digestion with Topic Cube

An important technology to exploit today’s data warehouses is the Online Analytical Processing

(OLAP) technology [5, 12, 23], which enables flexible interactive analysis of multidimensional data

in different granularities. Therefore, it’s desirable to use OLAP alike technologies to digest infor-

mation in an MDT database. However, traditional OLAP technologies, though capable of dealing

3

Topic Cube

MiTexCube PTM

MDT
Database

Digestion

Exploration Analysis

Figure 1.1: Thesis Overview: Three Major Components

with structured data, would face many challenges for analyzing unstructured text data. On the

other hand, probabilistic topic modeling methods [26, 9] have been successfully applied in various

text mining applications. Given prior knowledge about the categories of semantic topics embedded

in the data, topic modeling approach is able to summarize the text documents according to the

specified categories. Therefore, I proposed a novel model called topic cube which combines these

two powerful techniques together to support the digestion function for MDT databases. I first

formally defined a topic cube model, and described its star schema, the queries it supports, and

the operations that can be done in a topic cube. Then, I solved a major challenge in materializing

a topic cube, i.e. the offline computation efficiency. I studied several different strategies to materi-

alize a topic cube and compared them with baseline methods. Experimental results on a real data

set shows the advantages of the proposed strategies. Also, several applications that help digesting

the text information are studied in the experiments, such as topic keywords comparison in different

contexts and topic coverage comparison among different topics.

4

Information Exploration with MiTexCube

While a topic cube is capable of supporting content digestion in an MDT database, the flexibility of

the model is limited because all the text documents are analyzed according to some specified topic

categories. In many scenarios, however, users always have ad hoc information needs, which means

pre-computing a set of semantic topics is not suitable anymore. For example, a user may want

to explore the text documents by clustering them into different number of clusters. Or, she may

type a short query and want to find out both relevant and representative documents for the query.

Most current text mining techniques, however, are not efficient enough to support all these kinds

of processing online, especially when the number of documents becomes very large. To solve both

the flexibility and efficiency challenges, I defined a new infrastructure called Micro-Text-Cluster

Cube (MiTexCube in short) which pre-computes similar documents into micro-clusters offline, and

carries out online analysis based on these micro-cluster units. In the thesis, I first formally defined

a MiTexCube infrastructure as well as its star schema. Then, I studied an efficient materialization

algorithm for constructing a MiTexCube which flexibly balances the time-quality tradeoff for online

applications and tries to save the disk cost as much as possible. An efficient updating algorithm

for MiTexCube is also discussed. In the experiments, I examined three different online applications

based on MiTexCube in terms of both efficiency and effectiveness, which showed the flexibility and

efficiency advantage of using a MiTexCube infrastructure.

Comparative Analysis with PTM

Topic Cube and MiTexCube provide general support for users to digest and explore text data in

a multidimensional database. However, to better support decision making, it is often necessary to

go beyond supporting digestion and exploration to further support analysis of latent patterns in

the database. To this end, in the third part of my thesis, I developed a novel Probabilistic Topic

Mapping (PTM) model for discovering and comparing latent topical patterns embedded in text

data. The PTM model can be applied to perform comparative analysis of two parallel text fields in

an MDT database to extract topics from each field and discover their associations. MDT databases

with multiple comparable text fields exist in many domains. For example, in business domain an

5

MDT may have “Problem” and “Solution” as two parallel text fields, while in medical care domain

“Symptom” and “Treatment” always appear as parallel fields. Comparative analyses on these text

fields would discover very valuable knowledge, e.g. possible business solutions to a certain type

of problems or possible treatments for a certain kind of symptoms. Usually, there are different

numbers of “Problem Topics” and “Solution Methods” in the two text fields. Thus, how to mine

these two sets of topics (or methods) as well as their correlations are pretty challenging. In addition,

a model which could scale well and work for millions of records is very much desirable. To address

this need, I proposed this PTM model which can simultaneously mine two sets of topics from two

parallel text fields and also capture the mappings between them. Experimental results show that

PTM can effectively discover meaningful topics and the discovered topic mappings can be used

to improve text matching when there is a vocabulary gap, demonstrating the effectiveness of the

PTM model. We also implemented PTM with MapReduce on a large Hadoop cluster and tested its

scalability on millions of records. The evaluation results show that the parallel implementation of

PTM can scale up to process 3 millions of records within minutes on 200 mappers and 5 reducers.

The main contribution of this thesis is to systematically advance the state-of-the-art technology

in analyzing multidimensional text databases, particularly in developing novel, general models and

algorithms for supporting three types of information analysis functions, namely digestion, explo-

ration, and analysis. All the algorithms are general and thus can be applied to any multidimensional

text databases in any application domain.

The rest of the thesis is organized as follow: in Chapter 2, I will review related work in literature.

In Chapter 3, 4, and 5, I will present our approaches for digestion (Topic Cube), exploration

(MiTexCube), and analysis (PTM) in an MDT database. I will summarize my thesis and discuss

possible future work in Chapter 6.

6

Chapter 2

Related Work

In this chapter, we will review related work in literature. The three major areas closely related to

the thesis work are: (1) OnLine Analytical Processing (OLAP), (2) probabilistic topic modeling,

and (3) document clustering. In particular, the first part of the thesis is a novel way to combine

OLAP with probabilistic topic modeling; the second part is a novel infrastructure that leverages

clustering to support efficient summarization of text data; and the third part is an extension of

existing topic models for analyzing text in multidimensional text databases. Below we will briefly

review the major work in each of these related areas.

2.1 Online Analytical Processing

Data warehouses are widely used in today’s business market for organizing and analyzing large

amounts of data. An important technology to exploit data warehouses is the OnLine Analyti-

cal Processing (OLAP) technology [5, 12, 23], which enables flexible interactive analysis of mul-

tidimensional data in different granularities. It has been widely applied to many different do-

mains [22, 33, 50]. OLAP on data warehouses is mainly supported through data cubes [13, 14].

However, most of these work are not designed for supporting unstructured text data, which is the

major difference from the first and the second part of this thesis.

2.2 Probabilistic Topic Modeling

Since the two fundamental work in Probabilistic Topic Modeling [26, 9] are published, a number of

topic models have been extensively studied in recent years [7, 9, 26, 37] and have been successfully

applied to a large range of text mining problems, such as hierarchical topic modeling [25, 8], opinion

mining [51], information retrieval [53], social network analysis [34], spatiotemporal text mining [36],

7

sentiment analysis [35], and multi-stream bursty pattern finding [52]. All of these work showed

that probabilistic topic models are very useful for analyzing latent topics in text data, and they

are among the most effective text mining techniques. However, all the work in this line mostly

focus on pure text data. The Topic Cube model studied in this thesis combines probabilistic topic

modeling approach with OLAP technology to enable effective mining of both structured data and

unstructured text data within a unified framework, which can be regarded as a novel application

of such models to support OLAP on multidimensional text databases.

Besides the probabilistic topic models reviewed above, the most relevant work to the third

part of this thesis focus on topic modeling on correlated text corpus, including authors and pub-

lications [48], citation documents [40], web pages and tags [43, 64], and poly-lingual corpus [39].

In [48], an author-topic model is proposed to model the words in a multi-author paper as the result

of a mixture of each authors’ topic mixture. The work [40] models documents and their citations

by taking advantages of the link structures among documents and giving a better estimation of

the embedded topics. The work [43, 64] study semantic topics on Web pages by correlating the

content of web pages and their tags. Poly-lingual topic modeling in [39] aligns the documents that

are loosely equivalent to each other but written in different languages.

To the best of our knowledge, no previous work has addressed the problem of mining parallel

document collections to discover latent topic mappings. The main difference between the third

part of this thesis, i.e. the proposed PTM model, and these existing topic models is that our model

mines different sets of topics from two different but correlated document collections and at the

same time analyze the mappings between these two sets of topics, while previous efforts either

mine one set of topics from the publications with authors [48] or focus on mining one set of topics

from one single corpus (with citation structure) [40]. [43], [64] and the bilingual study in [39] are

similar to a special case of our model, i.e., the Alignment PTM, where we set the same number of

topics for both source and target documents and let those topics have one-to-one correspondence.

However, without imposing the one-to-one mapping constraint, PTM is more general. In addition,

in all these works, a pair of correlated documents always have the same semantic content and share

the same set of topics. But for parallel document collections in many domains like IT service and

medical domain, we are more interested in revealing different sets of topics from the source set and

8

target set as well as how topics in one set are mapped to those in the other.

2.3 Document Clustering

Document clustering is also a well studied problem in text mining area. Numerous previous work

have been done in this research area [24]. The materialization strategy used for materializing the

MiTexCube in the second part of this thesis is inspired by the BIRCH algorithm described in [63],

but the purpose of using micro-clusters is quite different. In MiTexCube we build micro-clusters in

an OLAP environment, and the micro-clusters are used as coarse representations of the content of

each local text cell. We do not maintain a global Clustering Feature tree as BIRCH does.

2.4 Other Related Work

Besides the three major related research areas discussed above, several other work are also relevant

to the three components of this thesis.

2.4.1 OLAP for Text Analysis

In literature, there are some previous studies which have attempted to analyze text data in a

relational database and support OLAP for text analysis. These studies can be grouped into four

categories, depending on how they treat the text data.

Text as fact: In this kind of approaches, the text data is regarded as a fact of the data records.

When a user queries the database, the fact of the text data, e.g. term frequency, will be returned.

BlogScope [6], which is an analysis and visualization tool for blogosphere, belongs to this category.

One feature of BlogScope is to depict the trend of a keyword. This is done by counting relevant blog

posts in each time slot according to the input keyword and then drawing a curve of counts along

the time axis. However, such an approach cannot support OLAP operations such as drill-down

and roll-up on the text dimension, which the proposed topic cube would support. It’s also different

from those text mining functions that MiTexCube supports.

Text as character field: A major representative work in this group is [54], where the text

data is treated as a character field. Given a keyword query, the records which have the most

9

relevant text in the field will be returned as results. For example, the following query (Loca-

tion=“Columbus”, keyword=“LCD”) will fetch those records with location equal to “Columbus”

and text field containing “LCD”. This essentially extends the query capability of a relational

database to support search over a text field. However, this approach cannot support OLAP on the

text dimension either.

Text as categorical data: In this category, two similar work to ours are BIW [16] and

Polyanalyst [4]. Both of them use classification methods to classify documents into categories

and attach documents with class labels. Such category labels would allow a user to drill-down or

roll-up along the category dimension, thus achieving OLAP on text. However, in [16], only high-

level function descriptions are given with no algorithms given to efficiently support such OLAP

operations on text dimension. Moreover in both work, the notion of cube is still the traditional data

cube. Our topic cube differs from these two systems in that we integrate text mining (specifically

topic modeling) more tightly with OLAP by extending the traditional data cube to cover topic

dimension and support text content measures, which leads to a new cube model (i.e., topic cube),

and it does not need any training data.

Text as component of OLAP There are also some related work using OLAP technology to

explore unstructured text data in a multidimensional text database. In [46], the authors proposed

a combination of keyword search and OLAP technique in order to efficiently explore the content

of a multidimensional text database. The basic idea is to use OLAP technology to explore the

search results from a keyword query, where some dynamic dimensions are constructed by extracting

frequent and relevant phrases from the text data. In [32], a model called text cube is proposed, in

which IR measures of terms are used to summarize the text data in a cell. Both of these work are

different from Topic Cube in the way of digesting text information, and they are also different from

MiTexCube which is a general infrastructure designed to support different online analysis efficiently.

2.4.2 Question and Answering

Another related research area to the third part of this thesis is Question-Answering (QA), and most

related work can be found in TREC [19]. QA tasks are spread across different applications such as

online forums [17], FAQ retrieval [47, 18], and email summarization [45]. In [55], the authors studied

10

using word-to-word translation probabilities to improve the retrieval models for QA archives. This

is similar to one application of PTM for matching the source and target document. However, the

difference is that our PTM learns “topic-to-topic” translation probabilities instead of word-to-word

translations. In sum, while most of these studies aim at finding or constructing related answers to

questions, our work focuses on analyzing semantic topics embedded in source and target corpus,

as well as the mappings between these topics, and the mining results of our models can be used to

enhance QA tasks.

11

Chapter 3

Topic Modeling for OLAP on
Multidimensional Text Databases

Data warehouses are widely used in today’s business market for organizing and analyzing large

amounts of data. The Online Analytical Processing (OLAP) technology enables flexible interactive

analysis of multidimensional data in different granularities, which is mainly supported through

data cubes. As unstructured text data grows quickly in multidimensional text databases (MDT

databases), it is more and more important to go beyond the traditional OLAP on structured data

to also tap into the huge amounts of text data available to us for data analysis and knowledge

discovery. In this Chapter, I propose a novel model called Topic Cube, which combines traditional

OLAP technology for data warehousing with probabilistic topic modeling approach for text mining

in order to support analysis in MDT databases. A Topic Cube adds a topic dimension to the

tradition data cube which allows users to digest text information within a MDT database from

different granularities of topics.

3.1 Introduction

As argued convincingly in [16], simultaneous analysis of both structured data and unstructured

text data is needed in order to fully take advantage of all the knowledge in all the data, and

will mutually enhance each other in terms of knowledge discovery, thus bringing more values to

business. Unfortunately, traditional data cubes, though capable of dealing with structured data,

would face challenges for analyzing unstructured text data.

As a specific example, consider ASRS [2], which is the world’s largest repository of safety

information provided by aviation’s frontline personnel. The database has both structured data

(e.g., time, airport, and light condition) and text data such as narratives about an anomalous

event written by a pilot or flight attendant as illustrated in Table 1.1. A text narrative usually

12

contains hundreds of words.

This repository contains valuable information about aviation safety and is a main resource for

analyzing causes of recurring anomalous aviation events. Since causal factors do not explicitly

exist in the structured data part of the repository, but are buried in many narrative text fields,

it is crucial to support an analyst to mine such data flexibly with both OLAP and text content

analysis in an integrative manner. Unfortunately, the current data cube and OLAP techniques can

only provide limited support for such integrative analysis. In particular, although they can easily

support drill-down and roll-up on structured attributes dimensions such as “time” and “location”,

they cannot support an analyst to drill-down and roll-up on the text dimension according to some

meaningful topic hierarchy defined for the analysis task (i.e. anomalous event analysis), such as

the one illustrated in Figure 3.1.

In the tree shown in Figure 3.1, the root represents the aggregation of all the topics (each repre-

senting an anomalous event). The second level contains some general anomaly types defined in [1],

such as “Anomaly Altitude Deviation” and “Anomaly Maintenance Problem.” A child topic node

represents a specialized event type of the event type of its parent node. For example, “Undershoot”

and “Overshoot” are two special anomaly events of “Anomaly Altitude Deviation.”

ALL

Anomaly Altitude Deviation …… Anomaly Maintenance Problem …… Anomaly Inflight Encounter

Undershoot …… Overshoot Improper

Documentation
Improper

Maintenance
Birds Turbulence…… ……

Figure 3.1: Hierarchical Topic Tree for Anomaly Event

Being able to drill-down and roll-up along such a hierarchy would be extremely useful for causal

factor analysis of anomalous events. Unfortunately, with today’s OLAP techniques, the analyst

cannot easily do this. Imagine that an analyst is interested in analyzing altitude deviation problems

of flights in Los Angeles in 1999. With the traditional data cube, the analyst can only pose a query

such as (Time=“1999”,Location=“LA”) and obtain a large set of text narratives, which would have

to be further analyzed with separate text mining tools.

13

Even if the data warehouse can support keyword queries on the text field, it still would not

help the analyst that much. Specifically, the analyst can now pose a more constrained query

(Time=“1999”,Location=“LA”, Keyword=“altitude deviation”), which would give the ana-

lyst a smaller set of more relevant text narratives (i.e., those matching the keywords “altitude

deviation”) to work with. However, the analyst would still need to use a separate text mining tool

to further analyze the text information to understand causes of this anomaly. Moreover, exact

keyword matching would also likely miss many relevant text narratives that are about deviation

problems but do not contain or match the keywords “altitude” and “deviation” exactly; for ex-

ample, a more specific word such as “overshooting” may have been used in a narrative about an

altitude deviation problem.

A more powerful OLAP system should ideally integrate text mining more tightly with the

traditional cube and OLAP, and allow the analyst to drill-down and roll-up on the text di-

mension along a specified topic hierarchy in exactly the same way as he/she could on the loca-

tion dimension. For example, it would be very helpful if the analyst can use a similar query

(Time=“1999”,Location=“LA”, Topic=“altitude deviation”) to obtain all the relevant narra-

tives to this topic (including those that do not necessarily match exactly the words “altitude” and

“deviation”), and then drill down into the lower-level categories such as “overshooting” and “un-

dershooting” according to the hierarchy (and roll-up again) to change the view of the content of

the text narrative data. Note that although the query has a similar form to that with the keyword

query mentioned above, its intended semantics is different: “altitude deviation” is a topic taken

from the hierarchy specified by the analyst, which is meant to match all the narratives covering

this topic including those that may not match the keywords “altitude” and “deviation.”

Furthermore, the analyst would also need to digest the content of all the narratives in the

cube cell corresponding to each topic category and compare the content across different cells that

correspond to interesting context variations. For example, at the level of “altitude deviation”, it

would be desirable to provide a summary of the content of all the narratives matching this topic,

and when we drill-down to “overshooting”, it would also be desirable to allow the analyst to easily

obtain a summary of the narratives corresponding to the specific subcategory of “overshooting

deviation.” With such summaries, the analyst would be able to compare the content of narratives

14

about the encountering problem across different locations in 1999. Such a summary can be regarded

as a content measure of the text in a cell.

This example illustrates that in order to integrate text analysis seamlessly into OLAP, we need

to support the following functions:

Topic dimension hierarchy: We need to map text documents semantically to an arbitrary

topic hierarchy specified by an analyst so that the analyst can drill-down and roll-up on the text

dimension (i.e., adding text dimension to OLAP). Note that we do not always have training data

(i.e., documents with known topic labels) for learning. Thus we must be able to perform this

mapping without training data.

Text content measure: We need to summarize the content of text documents in a data cell

(i.e., computing content measure on text). Since different applications may prefer different forms

of summaries, we need to be able to represent the content in a general way that can accommodate

many different ways to further customize a summary according to the application needs.

Efficient materialization: We need to materialize cubes with text content measures efficiently.

Although there has been some previous work on text database analysis [11, 29] and integrating

text analysis with OLAP [28, 41], to the best of our knowledge, no previous work has proposed

a specific solution to extend OLAP to support all these functions mentioned above. The closest

previous work is the IBM work [16], where the authors proposed some high-level ideas for leveraging

existing text mining algorithms to integrate text mining with OLAP. However, in their work, the

cubes are still traditional data cubes, thus the integration is loose and text mining is in nature

external to OLAP. Moreover, the issue of materializing cubes to efficiently handle text dimension

has not be addressed.

In this thesis, we propose a new cube data model called topic cube to support the two key

components of OLAP on text dimension (i.e., topic dimension hierarchy and text content measure)

with a unified probabilistic framework. Our idea is to leverage probabilistic topic modeling [26, 9],

which is a principled method for text mining, and combine it with OLAP. Indeed, PLSA and similar

topic models have recently been very successfully applied to a large range of text mining problems.

They are among the most effective text mining techniques. We propose Topic Cube to combine

them with OLAP to enable effective mining of both structured data and unstructured text within

15

a unified framework.

Specifically, we will extend the traditional cube to incorporate the probabilistic latent semantic

analysis (PLSA) model [26] so that a data cube would carry parameters of a probabilistic model

that can indicate the text content of the cell. Our assumption is that we can use a probability

distribution over words to model a topic in text. For example, a distribution may assign high

probabilities to words such as “encounter”, “turbulence”, “height”, “air”, and it would intuitively

capture the theme “encountering turbulence” in the aviation report domain. We assume all the

documents in a cell to be word samples drawn from a mixture of many such topic distributions, and

can thus estimate these hidden topic models by fitting the mixture model to the documents. These

topic distributions can thus serve as content measures of text documents. In order to respect the

topic hierarchy specified by the analyst and enable drill-down and roll-up on the text dimension, we

further structure such distribution-based content measures based on the topic hierarchy specified by

an analyst by using the concept hierarchy to impose a prior (preference) on the word distributions

characterizing each topic, so that each word distribution would correspond to precisely one topic in

the hierarchy. This way, we will learn word distributions characterizing each topic in the hierarchy.

Once we have a distributional representation of each topic, we can easily map any set of documents

to the topic hierarchy.

Note that topic cube supports the first two functions in a quite general way. First, when mapping

documents into a topic hierarchy, the model could work with just some keyword description of each

topic but no training data. Our experiment results show that this is feasible. If we do have training

data available, the model can also easily use it to enrich our prior; indeed, if we have many training

data and impose an infinitely strong prior, we essentially perform supervised text categorization

with a generative model. Second, a multinomial word distribution serves well as a content measure.

Such a model (often called unigram language model) has been shown to outperform the traditional

vector space models in information retrieval [42, 57], and can be further exploited to generate more

informative summaries if needed. For example, in [38], such a unigram language model has been

successfully used to generate a sentence-based impact summary of scientific literature. In general,

we may further use these word distributions to generate informative phrases [37] or comparative

summaries for comparing content across different contexts [35]. Thus topic cube has potentially

16

many interesting applications.

Computing and materializing such a topic cube in a brute force way is time-consuming. So to

better support the third function, we propose a heuristic algorithm to leverage estimated models

for “component cells” to speed up the estimation of the model for a combined cell. Estimation

of parameters is done with an iterative EM algorithm. Its efficiency highly depends on where

to start in the parameter space. Our idea for speeding it up can be described as follows: We

would start with the smallest cells to be materialized, and use PLSA to mine all the topics in the

hierarchical topic tree from these cells, level by level. We then work on larger cells by leveraging

the estimated parameters for the small cells as a more efficient starting point. We call this step as

aggregation along the standard dimensions. In addition, when we mine the topics in the hierarchial

tree from cells, we can also leverage the estimated parameters for topics in the lower level to

estimate the parameters for topics in the higher level. We call this step as aggregation along the

topic dimension. Our experiment results show that the proposed strategy, including both these

two kinds of aggregations, can indeed speed up the estimation algorithm significantly.

3.2 Topic Cube as an Extension of Data Cube

The idea of topic cube is to extend the standard data cube by adding a topic hierarchy and

probabilistic content measures of text so that we can perform OLAP on the text dimension in the

same way as we perform OLAP on structured data. In order to understand this idea, it is necessary

to understand some basic concepts about data cube and OLAP. So before we introduce topic cube

in detail, we give a brief introduction to these concepts.

3.2.1 Standard Data Cube and OLAP

A data cube is a multidimensional data model. It has three components as input: a base table,

dimensional hierarchies, and measures. A base table is a relational table in a database. A dimen-

sional hierarchy gives a tree structure of values in a column field of the base table so that we can

define aggregation in a meaningful way. A measure is a fact of the data.

Roll-up and drill-down are two typical operations in OLAP. Roll-up would “climb up” on a

dimensional hierarchy to merge cells, while drill-down does the opposite and split cells. Other

17

OLAP operations include slice, dice, pivot, etc.

Two kinds of OLAP queries are supported in a data cube: point query and subcube query. A

point query seeks a cell by specifying the values of some dimensions, while a range query would

return a set of cells satisfying the query.

3.2.2 Overview of Topic Cube

A topic cube is constructed based on a multidimensional text database (MTD), which we define as a

multi-dimensional database with text fields. An example of such a database is shown in Table 1.1.

We may distinguish a text dimension (denoted by TD) from a standard (i.e., non-text) dimension

(denoted by SD) in a multidimensional text database.

Another component used to construct a topic cube is a hierarchical topic tree. A hierarchical

topic tree defines a set of hierarchically organized topics that users are mostly interested in, which

are presumably also what we want to mine from the text. A sample hierarchical topic tree is

shown in Fig. 3.1. In a hierarchical topic tree, each node represents a topic, and its child nodes

represent the sub-topics under this super topic. Formally, the topics are placed in several levels

L1, L2, . . . , Lm. Each level contains ki topics, i.e. Li = (T1, . . . , Tki).

Given a multidimensional text database and a hierarchical topic tree, the main idea of a topic

cube is to use the hierarchical topic tree as the hierarchy for the text dimension so that a user

can drill-down and roll-up along this hierarchy to explore the content of the text documents in

the database. In order to achieve this, we would need to (1) map all the text documents to topics

specified in the tree and (2) compute a measure of the content of the text documents falling into

each cell.

As will be explained in detail later, we can solve both problems simultaneously with a proba-

bilistic topic model called probabilistic latent semantics analysis (PLSA) [26]. Specifically, given

any set of text documents, we can fit the PLSA model to these documents to obtain a set of latent

topics in text, each represented by a word distribution (also called a unigram language model).

These word distributions can serve as the basis of the “content measure” of text.

Since a basic assumption we make is that the analyst would be most interested in viewing the

text data from the perspective of the specified hierarchical topic tree, we would also like these word

18

distributions corresponding well to the topics defined in the tree. Note that an analyst will be

potentially interested in multiple levels of granularity of topics, thus we also would like our content

measure to have “multiple resolutions”, corresponding to the multiple levels of topics in the tree.

Formally, for each level Li, if the tree has defined ki topics, we would like the PLSA to compute

precisely ki word distributions, each characterizing one of these ki topics. We will denote these

word distributions as θj , for j = 1, ..., ki, and p(w|θj) is the probability of word w according to

distribution θj . Intuitively, the distribution θj reflects the content of the text documents when

“viewed” from the perspective of the j-th topic at level Li.

We achieve this goal of aligning a topic to a word distribution in PLSA by using keyword

descriptions of the topics in the tree to define a prior on the word distribution parameters in PLSA

so that all these parameters will be biased toward capturing the topics in the tree. We estimate

PLSA for each level of topics separately so as to obtain a multi-resolution view of the content.

This established correspondence between a topic and a word distribution in PLSA has another

immediate benefit, which is to help us map the text documents into topics in the tree because

the word distribution for each topic can serve as a model for the documents that cover the topic.

Actually, after estimating parameters in PLSA we also obtain another set of parameters that

indicate to what extent each document covers each topic. It is denoted as p(θj |d), which means the

probability that document d covers topic θj . Thus we can easily predict which topic is the dominant

topic in the set of documents by aggregating the coverage of a topic over all the documents in the

set. That is, with p(θj |d), we can also compute the topic distribution in a cell of documents C

as p(θj |C) = 1
|C|

∑
d∈C p(θj |d) (we assume p(d) are equal for all d ∈ C). While θj is the primary

content measure which we will store in each cell, we will also store p(θj |d) as an auxiliary measure

to support other ways of aggregating and summarizing text content.

Thus essentially, our idea is to define a topic cube as an extension of a standard data cube by

adding (1) a hierarchical topic tree as a topic dimension for the text field and (2) a set of probabilistic

distributions as the content measure of text documents in the hierarchical topic dimension. We

now give a systematic definition of the topic cube.

19

3.2.3 Definition of Topic Cube

Definition 3.2.1 A topic cube is constructed based on a text database D and a hierarchical topic

tree H. It not only has dimensions directly defined in the standard dimensions SD in the database

D, but it also has a topic dimension which is corresponding to the hierarchical topic tree. Drill-down

and roll-up along this topic dimension will allow users to view the data from different granularities

of topics. The primary measure stored in a cell of a topic cube consists of a word distribution

characterizing the content of text documents constrained by values on both the topic dimension and

the standard dimensions (contexts).

The star schema of a topic cube for the ASRS example is given in Fig. 3.2. The dimension

table for the topic dimension is built based on the hierarchical topic tree. Two kinds of measures

are stored in a topic cube cell, namely word distribution of a topic p(wi|topic) and topic coverage

by documents p(topic|dj).

Time_key

Location_key

Environment_key

Topic_key

{wi: p(wi|topic)}

{dj: p(topic|dj)}

Time_key

Day

Month

Year

Location_key

City

State

Country

Time

Location

Environment_key

Light

Environment

Measures

Topic_key

Lower level topic

Higher level topic

Topic

Fact table

Figure 3.2: Star Schema of a Topic cube

Fig. 3.3 shows an example of a topic cube which is built based on ASRS data. The “Time” and

“Location” dimensions are defined in the standard dimensions in the ASRS text database, and the

topic dimension is added from the hierarchical tree shown in Fig. 3.1. For example, the left cuboid

in Fig. 3.3 shows us word distributions of some finer topics like “overshoot” at “LAX” in “Jan. 99”,

while the right cuboid shows us word distributions of some coarse topics like “Deviation” at “LA”

in “1999”. In Fig. 3.4, it shows two example cells of a topic cube (with only word distribution

20

Jan.98
Feb.99

Jan.99

Feb.98

LAX SJC MIA AUS

overshoot

undershoot

birds

turbulence

Location

Topic

CA FL TX

Location

1998

1999

Deviation

Encounter

Topic

drill-down roll-up

Figure 3.3: An example of a Topic Cube

measure) constructed from ASRS. The meaning of the first record is that the top words of aircraft

equipment problem occurred in flights during January 1999 are (engine 0.104, pressure 0.029, oil

0.023, checklist 0.022, hydraulic 0.020, ...). So when an expert gets the result from the topic cube,

she will soon know what are the main problems of equipments during January 1999, which shows

the power of a topic cube.

Time Anomaly Event Word Distribution

1999.01 equipment
engine 0.104, pressure 0.029, oil 0.023,

checklist 0.022, hydraulic 0.020, ...

1999.01
ground

encounters

tug 0.059, park 0.031, pushback 0.031, ramp

0.029, brake 0.027, taxi 0.026, tow 0.023, ...

Figure 3.4: Example Cells in a Topic Cube

Query

A topic cube supports the following query: (a1, a2, . . . , am, t). Here, ai represents the value of the

i-th dimension and t represents the value of the topic dimension. Both ai and t could be a specific

value, a character “?”, or a character “*”. For example, in Fig. 3.3, a query (“LAX”, “Jan. 99”,

t=“turbulence”) will return the word distribution of topic “turbulence” at “LAX” in “Jan. 99”,

while a query (“LAX”, “Jan. 99”, t=“?”) will return the word distribution of all the topics at

“LAX” in “Jan. 99”. If t is specified as a “*”, e.g. (“LAX”, “Jan. 99”, t=“*”), a topic cube will

only return all the documents belong to (Location=“LAX”) and (Time=“Jan. 99”).

21

Operations

A topic cube not only allows users to carry out traditional OLAP operations on the standard

dimensions, but also allows users to do the same kinds of operations on the topic dimension. The

roll-up and drill-down operations along the topic dimension will allow users to view the data in

different levels (granularities) of topics in the hierarchical topic tree. Roll-up corresponds to change

the view from a lower level to a higher level in the tree, and drill-down is the opposite. For example,

in Fig. 3.3, an operation:

Roll-up on Anomaly Event (from Level 2 to Level 1)

will change the view of topic cube from finer topics like “turbulence” and “overshoot” to coarser

topics like “Encounter” and “Deviation”. The operation:

Drill-down on Anomaly Event (from Level 1 to Level 2)

just does the opposite change.

3.3 Construction of Topic Cube

To construct a topic cube, we first construct a general data cube (we call it GDC from now on)

based on the standard dimensions in the multidimensional text database D. In each cell of this

cube, it stores a set of documents aggregated from the text dimension. Then, from the set of

documents in each cell, we mine word distributions of topics defined in the hierarchical topic tree

level by level. Next, we split each cell into K =
∑m
i=1 ki cells. Here, ki is the number of topics in

level i. Each of these new cells corresponds to one topic and stores its word distribution (primary

measure) and the topic coverage probabilities (auxiliary measure). At last, a topic dimension is

added to the data cube which allows users to view the data by selecting topics.

For example, to obtain a topic cube shown in Fig. 3.3, we first construct a data cube which has

only two dimensions “Time” and “Location”. Each cell in this data cube stores a set of documents.

For example, in cell (“LAX”, “Jan. 99”), it stores the documents belonging to all the records in the

database which “Location” field is “LAX” and “Time” field is “Jan. 99”. Then, for the second level

of the hierarchical topic tree in Fig. 3.1, we mine topics, such as “turbulence”, “bird”, “overshoot”,

22

and “undershoot”, from the document set. For the first level of the hierarchical topic tree, we mine

topics such as “Encounter” and “Deviation” from the document set. Next, we split the original cell,

say (“LAX”, “Jan. 99”), into K cells, e.g. (“LAX”, “Jan. 99”, “turbulence”), (“LAX”, “Jan. 99”,

“Deviation”) and etc. Here, K is the total number of topics defined in the hierarchical topic tree.

At last, we add a topic dimension to the original data cube, and a topic cube is constructed.

Since a major component in our algorithm for constructing topic cube is the estimation of the

PLSA model, we first give a brief introduction to this model before discussing the exact algorithm

for constructing topic cube in detail.

3.3.1 Probabilistic Latent Semantic Analysis (PLSA)

Probabilistic topic models are generative models of text with latent variables representing topics

(more precisely subtopics) buried in text. When using a topic model for text mining, we generally

would fit a model to the text data to be analyzed and estimate all the parameters. These parameters

would usually include a set of word distributions corresponding to latent topics, thus allowing us

to discover and characterize hidden topics in text.

Most topic models proposed so far are based on two representative basic models: probabilistic

latent semantic analysis (PLSA) [26] and latent Dirichlet allocation (LDA) [9]. While in principle

both PLSA and LDA can be incorporated into OLAP with our ideas, we have chosen PLSA because

its estimation can be done much more efficiently than for LDA. Below we give a brief introduction

to PLSA.

Basic PLSA

The basic PLSA [26] is a finite mixture model with k multinomial component models. Each word

in a document is assumed to be a sample from this mixture model. Formally, suppose we use θi to

denote a multinomial distribution capturing the i-th topic, and p(w|θi) is the probability of word

w given by θi. Let Θ = {θ1, θ2, . . . , θk} be the set of all k topics. The log likelihood of a collection

of text C is:

L(C|Λ) ∝
∑
d∈C

∑
w∈V

c(w, d) log
k∑
j=1

p(θj |d)p(w|θj) (3.1)

23

where V is the vocabulary set of all words, c(w, d) is the count of word w in document d, and Λ is

the parameter set composed of {p(θj |d), p(w|θj)}d,w,j .

Given a collection, we may estimate PLSA using the maximum likelihood (ML) estimator by

choosing the parameters to maximize the likelihood function above. The ML estimator can be

computed using the Expectation-Maximization (EM) algorithm [21]. The EM algorithm is a hill-

climbing algorithm, and guaranteed to find a local maximum of the likelihood function. It finds

this solution through iteratively improving an initial guess of parameter values using the following

updating formulas (alternating between the E-step and M-step):

E-step:

p(zd,w = j) =
p(n)(θj |d)p(n)(w|θj)∑k

j′=1 p
(n)(θj′ |d)p(n)(w|θj′)

(3.2)

M-step:

p(n+1)(θj |d) =

∑
w c(w, d)p(zd,w = j)∑

j′
∑
w c(w, d)p(zd,w = j′)

(3.3)

p(n+1)(w|θj) =

∑
d c(w, d)p(zd,w = j)∑

w′
∑
d c(w

′, d)p(zd,w′ = j)
(3.4)

In the E-step, we compute the probability of a hidden variable zd,w, indicating which topic has

been used to generate word w in d, which is calculated based on the current generation of parameter

values. In the M-step, we would use the information obtained from the E-step to re-estimate (i.e.,

update) our parameters. It can be shown that the M-step always increases the likelihood function

value, meaning that the next generation of parameter values would be better than the current one

[21].

This updating process continues until the likelihood function converges to a local maximum

point which gives us the ML estimate of the model parameters. Since the EM algorithm can only

find a local maximum, its result is clearly affected by the choice of the initial values of parameters

that it starts with. If the starting point of parameter values is already close to the maximum

point, the algorithm would converge quickly. As we will discuss in detail later, we will leverage

this property to speed up the process of materializing topic cube. Naturally, when a model has

multiple local maxima (as in the case of PLSA), we generally need to run the algorithm multiple

times, each time with a different starting point, and finally use the one with the highest likelihood.

24

PLSA Aligned to a Specified Topic Hierarchy

Directly applying PLSA model on a data set, we can extract k word distributions {p(w|θi)}i=1,...,k,

characterizing k topics. Intuitively these distributions capture word co-occurrences in the data, but

the co-occurrence patterns captured do not necessarily correspond to the topics in our hierarchical

topic tree. A key idea in our application of PLSA to construct topic cube is to align the discovered

topics with the topics specified in the tree through defining a prior with the topic tree and using

Bayesian estimation instead of the maximum likelihood estimator which solely listens to the data.

Specifically, we could define a conjugate Dirichlet prior and use the MAP (Maximum A Pos-

teriori) estimator to estimate the parameters [49]. We would first define a prior word distribution

p′(w|θj) based on the keyword description of the corresponding topic in the tree; for example, we

may define it based on the relative frequency of each keyword in the description. We assume that

it is quite easy for an analyst to give at least a few keywords to describe each topic. We then

define a Dirichlet prior based on this distribution to essentially “force” θj to assign a reasonably

high probability to words that have high probability according to our prior, i.e., the keywords used

by the analyst to specify this topic would all tend to high probabilities according to θj , which

further bias the distribution to attract other words co-occurring with them, achieving the purpose

of extracting the content about this topic from text.

3.3.2 Materialization

As described in Section 3.3, to fully materialize a topic cube, we need to mine topics for each cell

in the original data cube. As discussed earlier, we use the PLSA model as our topic modeling

method. Suppose there are d standard dimensions in the text database D, each dimension has

Li levels (i = 1, . . . , d), and each level has n
(l)
i values (i = 1, . . . , d; l = 1, . . . , Li). Then, we have

totally (
∑L1
l=1 n

(l)
1)×· · ·× (

∑Ld
l=1 n

(l)
d) cells need to mine if we want to fully materialize a topic cube.

One baseline strategy of materialization is an exhaustive method which computes the topics cell

by cell. However, this method is not efficient for the following reasons:

1. For each cell in GDC, the PLSA model uses EM algorithm to calculate the parameters of

topic models. This is an iterative method, and it always needs hundreds of iterations before

converge.

25

2. For each cell in GDC, the PLSA model has the local maximum problem. To avoid this problem

and find the global maximization, it always starts from a number of different random points

and selects the best one.

3. The number of cells in GDC could be huge.

On the other hand, based on the difficulty of aggregation, measures in a data cube can be classified

into three categories: distributive, algebraic, and holistic [14]. As the measure in a topic cube is

the word distributions of topics got from PLSA, we can easily see that it is a holistic measure.

Therefore, there is no simple solution for us to aggregate measures from sub cells to super cells in

a topic.

To overcome this problem, we propose to use a heuristic method, which is in a bottom-up

manner, to materialize a topic cube more efficiently. On the other hand, it is also possible to

materialize a topic cube by a top-down approach, if we prefer super or large cells rather than

specific or small cells. In the following part of this section, we will first discuss two heuristic

aggregation algorithms in the bottom-up strategy, which are the main approach we are using in

our current study. Then, we will discuss a little bit about the top-down approach and compare it

with the heuristic aggregation approach used in the bottom-up strategy.

Heuristic Materialization in Bottom-Up Strategy

The bottom-up strategy constructs a topic cube by first computing topics in small sub cells and then

aggregate them to compute topics in large super cells. Our heuristic materialization algorithm con-

tains two kinds of aggregations: aggregation along the standard dimensions and aggregation along

the topic dimension. Either of these two aggregations can be used independently to materialize

a topic cube. On the other hand, these two kinds of aggregations can also be applied together

to further speed up the materialization. In this section, we first describe these two aggregations

separately, and then we will discuss how to combine these two aggregations to materialize a topic

cube in the next section.

The idea of aggregation along the standard dimensions is: when the heuristic method mines

topics from documents of one cell in GDC, it computes the topics by first aggregating the word

distributions of topics in its sub cells as a starting point and then using EM algorithm from this

26

starting point to get the local maximum result. In this way, the EM algorithm converges very

quickly, and we do not need to restart the EM algorithm in several different random points. The

outline of the heuristic aggregation along standard dimensions is shown in Table 3.1.

Table 3.1: Outline of Aggregation along Standard Dimensions
Suppose a topic cube has three standard dimensions A, B, C and a topic di-
mension T . The hierarchical topic tree H has n levels and each level Li has ki
topics.
Step 1.
Build a general data cube GDC based on the standard dimensions, and each
cell stores the corresponding document set.
Step 2.
· For each cell (a, b, c) in the base cuboid and a document set Sabc associated
with it
· For each level Li in H, where i is from 1 to n− 1
· Estimate PLSA to mine ki topics from the document set Sabc using the

exhaustive method
Step 3.
· For each cell (a, b) in cuboid AB and a document set Sab associated with it
· For each level Li in H, where i is from 1 to n− 1
· Estimate PLSA to mine ki topics from Sab by aggregating the same level

of topics in all sub cells (a, b, cj) of (a, b) in base cuboid
· Do similar aggregation in cuboid BC and CA
Step 4.
· Calculate topics for cells in cuboid A,B,C by aggregating from cuboid
AB,BC,CA

Basically, in the first step of our algorithm, we construct a general data cube GDC based on the

standard dimensions. Then in step 2, for each cell in the base cuboid, we use exhaustive method

(starting EM algorithm from several random points and selecting the best local maximization)

to mine topics from its associated document set level by level. In step 3 and step 4, we use our

heuristic aggregation method to mine topics from cells in higher level cuboid. For example, when

mining topics from cell (a, b) in GDC, we aggregate all the same level topics from its sub cells

(a, b, cj)∀cj in the base cuboid.

Specifically, suppose ca is a cell in GDC and is aggregated from a set of sub cells {c1, . . . , cm},

so that Sca =
⋃m
i=1 Sci , where Sc is the document set associated with the cell Sc. For each level

Li in the hierarchical topic tree, we have got word distribution {pci(w|θ
(Li)
1), . . . , pci(w|θ

(Li)
ki

)} for

each sub cell ci, and we are going to mine topics {θ(Li)
1 , θ

(Li)
2 , . . . , θ

(Li)
ki
} from Sca . The idea of the

heuristic method is when we apply EM algorithm for mining topics from Sca , we start from a good

starting point, which is aggregated from word distributions of topics in its sub cells. The benefit

27

of a good starting point is that it can save the time for EM algorithm to converge and also save it

from starting with several different random points.

The aggregation formulas are as follows:

p(0)
ca (w|θ(Li)

j) =

∑
ci

∑
d∈Sci

c(w, d)p(zd,w = j)∑
w′

∑
ci

∑
d∈Sci

c(w′, d)p(zd,w′ = j)
(3.5)

p(0)
ca (θ

(Li)
j |d) = pci(θ

(Li)
j |d), if d ∈ Sci (3.6)

Intuitively, we simply pool together the expected counts of a word from each sub cell to get an

overall count of the word for a topic distribution. An initial distribution estimated in this way can

be expected to be closer to the optimal distribution than a randomly picked initial distribution.

Similarly, the idea of aggregation along the topic dimension is: for each cell in GDC, when we

mine topics level by level in the hierarchical topic tree (from bottom to up), it computes the topics

in the higher level of the hierarchical topic tree by first aggregating the word distributions of the

topics in the lower level. The purpose is also trying to find a good starting point to run the EM

algorithm so that it can converges quickly. The outline of the heuristic aggregation along the topic

dimension can be described in Table 3.2.

Table 3.2: Outline of Aggregation along the Topic Dimension
Suppose a topic cube has several standard dimensions and a topic dimension
T . The hierarchical topic tree H has n levels and each level Li has ki topics.
Step 1.
Build a general data cube GDC based on the standard dimensions, and each
cell stores the corresponding document set.
Step 2.
· For each cell in GDC and a document set S associated with it
· Estimate PLSA to mine kn−1 topics in the lowest level Ln−1 from the

document set S using exhaustive method
Step 3.
· For each cell in GDC and a document set S associated with it
· For each level Li in H, where i is from n− 2 to 1
· Estimate PLSA to mine ki topics from the document set S by heuristic

aggregating the topics mined in level Li+1

After constructing a general data cube GDC based on the standard dimensions, we can use

the heuristic aggregation along the topic dimension to mine a hierarchy of topics for each cell. For

the topics in the lowest level, we just use PLSA to mine them from scratch. Then, we can mine

topics in a higher level in the hierarchical topic tree by aggregating from the lower level topics.

28

Specifically, suppose one cell c has a set of documents S associated with it, and we have got word

distributions for topics {θ(L+1)
1 , θ

(L+1)
2 , . . . , θ

(L+1)
kL+1

} in level L + 1. Now we want to calculate the

word distributions for topics {θ(L)
1 , θ

(L)
2 , . . . , θ

(L)
kL
} in level L. Here, each topic in level L has some

subtopics (children nodes) in level L+ 1, i.e.:

Children(θ
(L)
i) = {θ(L+1)

si , θ
(L+1)
si+1 , . . . , θ(L+1)

ei },∀1 ≤ i ≤ kL,

where
kL⋃
i=1

{θ(L+1)
si , . . . , θ(L+1)

ei } = {θ(L+1)
1 , . . . , θ

(L+1)
kL+1

}

To get a good starting point to run the EM algorithm for estimating parameters, we can use

the following formulas:

p
(0)
c (w|θ(L)

i) =

∑
j′∈{θ(L+1)

si
,...,θ

(L+1)
ei

}

∑
d∈S c(w,d)p(zd,w=j′)∑

w′
∑

j′∈{θ(L+1)
si

,...,θ
(L+1)
ei

}

∑
d∈S c(w

′,d)p(zd,w′=j′)

p(0)
c (θ

(L)
i |d) =

∑
j′∈{θ(L+1)

si
,...,θ

(L+1)
ei

}

p(θj′ |d), ∀d ∈ S (3.7)

The intuition is similar: we pool together the expected counts of a word from each sub topic

to get an overall count of the word for calculating their super topic’s word distribution. After the

initial distribution is calculated, we can run the EM algorithm until it converges, and it’s expected

to be quicker than a random initialization.

As described above, the two kinds of heuristic aggregations can be used independently to speed

up the materialization of a topic cube. In fact, these two aggregations can be combined together

to further improve the efficiency of materializing a topic cube. According to the order of the two

aggregations in their combination, the combination strategy can have two forms:

(1) First aggregating along the topic dimension and then aggregating along the standard di-

mensions: For each cell in the base cuboid of a general data cube GDC, we exhaustively mined

the topics in the lowest level of the hierarchical topic tree using PLSA. Then, we aggregate along

the topic dimension and get all the topics for cells in the base cuboid. After that, we can use the

heuristic aggregation along the standard dimensions to materialize all the other cells to construct

a topic cube. This combination can be illustrated by Table 3.1 where we change Step 2 into ”using

the aggregation along the topic dimension to mine topics for each cell in the base cuboid”.

29

(2) First aggregating along the standard dimensions and then aggregating along the topic

dimension: For each cell in the base cuboid of a general data cube GDC, we exhaustively mined

the topics in the lowest level of the hierarchical topic tree using PLSA. Then, we aggregate along

the standard dimensions and get the lowest level topics for all the cells. After that, for each cell

we can use the aggregation along the topic dimension to mine all the other level topics in the

hierarchial topic tree. This combination can be illustrated by Table 3.2 where we change Step 2

into ”using the aggregation along the standard dimensions to mine the lowest level topics for each

cell in GDC ”.

The common part of these two different combinations is that they both need to use PLSA

to exhaustively mine the topics in the lowest level of the hierarchical topic tree for all the cells

in the base cuboid of GDC. After that, they will go along different directions. One interesting

advantage of the second combination is that it can be used for materializing a topic cube in a

parallel way. Specifically, after we get the lowest level topics for each cell in GDC, we can carry out

the aggregation along the topic dimension for each cell in GDC independently. Therefore, Step 3

in Table 3.2 can be done in parallel.

Partial Materialization in Top-Down Strategy

Another possible strategy to materialize a topic cube is to compute it in a top-down manner.

Specifically, this strategy first mine all the topics in the hierarchical tree from the largest cell (also

called apex cell) in GDC. Then, when it computes the topics in the sub cells of the apex cell, it

uses the computed word distributions of topics in the apex cell as starting points and mine topics

in the sub cells individually. After the sub cells of the apex cell is materialized, it will compute

the sub sub cells of the apex cell, and the word distributions of topics in their super cells will be

used as starting points. This process will be continued iteratively until the whole topic cube is

materialized. For example, if we want to materialize a topic cube as shown in Fig. 3.3 in a top-down

strategy, we first mine all the topics in the apex cell of GDC, which is (Location=“*”, Time=“*”).

Then, we use the word distribution of the mined topics as starting points to mine topics in its

sub cells, like (Location=“CA”, Time=“*”) and (Location=“*”, Time=“1999”). After that, we

can use the word distribution of topics in a new computed cell, like (Location=“CA”, Time=“*”),

30

as the starting points to mine topics in its sub cells, like (Location=“CA”, Time=“1999”) and

(Location=“CA”, Time=“1998”). Note that if we do not use the word distribution of topics in a

super cell as starting points when mining topics in sub cells, this strategy becomes an exhaustive

top-down materialization method.

Compared with the bottom-up strategy, the advantage of the top-down strategy is: the mate-

rialization of a topic cube starts from the largest cell rather than the smallest cells in GDC. In this

sense, we can stop materializing a topic cube at a certain level of cuboid in GDC if we believe that

the current cuboid is too specific to be mined. This is reasonable because of two facts. First, when

a cell is very specific, the number of documents contained in this cell will be small, which means this

cell does not need to be mined or can be mined online. Second, in most cases users are interested in

analyzing large and general cells in a cube rather than very specific cells. For example, suppose we

have more than 20 standard dimensions in a GDC. When a user inputs a query (a1, a2, . . . , a20, t),

she may only specify a small number of ai’s value, and all the other dimensions will be set as “*”.

Indeed, it is always difficult for users to specify the values of all the dimensions in a data cube.

Therefore, in a top-down strategy, not all the cells in GDC need to be materialized. This can also

save a lot of disk cost of a topic cube.

On the other hand, the disadvantage of the top-down strategy is: to use the word distributions

of topics in a super cell as the starting points when mining topics in its sub cells is not a good

choice. Since a super cell is always made of a number of sub cells, the topics embedded in the

documents of one single sub cell could be very different from the super cell. For example, if one

sub cell A contains much smaller number of documents than its super cell, the topics mined in

this super cell are mostly affected by its other sub cells, and the word distributions of these topics

seems to be the same as a random point for sub cell A. But in the heuristic aggregations of the

bottom-up strategy, the starting point (e.g. calculated by Eq. 3.6) during estimating the topics in

a super cell is a weighted combination of topics in all the sub cells, which is much more meaningful.

3.3.3 Saving Storage Cost

One critical issue about topic cube is its storage. As discussed in Section 3.3.2, for a topic cube

with d standard dimensions, we have totally (
∑L1
l=1 n

(l)
1)× · · · × (

∑Ld
l=1 n

(l)
d) cells in GDC. If there

31

are N topic nodes in the hierarchical topic tree and the vocabulary size is V , then we need at least

store (
∑L1
l=1 n

(l)
1) × · · · × (

∑Ld
l=1 n

(l)
d) × N × V values for the word distribution measure. This is a

huge storage cost because both the number of cells and the size of the vocabulary are large in most

cases.

There are three possible strategies to solve the storage problem. One is to reduce the storage

by only storing the top k words for each topic. This method is reasonable, because in a word

distribution of one topic, the top words always have the most information of a topic and can

be used to represent the meaning of the topic. Although the cost of this method is the loss of

information for topics, this strategy really saves the disk space a lot. For example, generally we

always have ten thousands of words in our vocabulary. If we only store the top 10 words of each

topic in the topic cube instead of storing all the words, then it will save thousands of times in disk

space. The efficiency of this method is studied in our experiment part.

Another possible strategy is to use a general term to replace a set of words or phrases so

that the size of the vocabulary will be compressed. For example, when we talk about an engine

problem, words or phrases like “high temperature, noise, left engine, right engine” always appear.

So it motivates us to use a general term “engine-problem” to replace all those correlated words

or phrases. Such a replacement is meaningful especially when an expert only cares about general

causes of an aviation anomaly instead of the details. But the disadvantage of this method is that

it loses much detailed information, so there is a trade off between the storage and the precision of

the information we need.

The third possible strategy is that instead of storing topics in all the levels in the hierarchical

topic tree, we can select some levels of topics to store. For example, we can only store the topics

in the odd levels or the topics in the even levels. The intuition is: suppose one topic’s parent topic

node has a word w at the top of its word distribution and at the same time its child topic node

also has the same word w at the top of its word distribution, then it is highly probably that this

topic also has word w at the top of its word distribution. In other words, for a specific topic, we

can use the word distribution in both its parent topic and child topic to quickly induce its own

word distribution. For another example, based on users’ query history, we can also select those top

popular topics to store, which means we only store the word distribution of mostly queried topics

32

for each cell. For those non-frequently queried topics, they may be just asked for a few times and

within some specified cells, e.g. cells with a specified time period or a specified location. For these

cases, we can just calculate the topics online and store the word distribution for these specified

cells. By this strategy, it can help us to save a lot of disk spaces.

3.4 Experiments

In this section, we present our evaluation of the topic cube model. First, we compare the compu-

tation efficiency of our heuristic method with a baseline method which materializes a topic cube

exhaustively cell by cell. Next, we are going to show several usages of topic cube to demonstrate

its power.

3.4.1 Data Set

The data set we used in our experiment is downloaded from the ASRS database [2]. Three fields

of the database are used as our standard dimensions, namely Time {1998, 1999}, Location {CA,

TX, FL}, and Environment {Night, Daylight}. We use A, B, C to represent them respectively.

Therefore, in the first step the constructed general data cube GDC has 12 cells in the base cuboid

ABC, 16 cells in cuboids {AB, BC, CA}, and 7 cells in cuboids {A, B, C}. The summarization of

the number of documents in each base cell is shown in Table 3.3.

Table 3.3: The Number of Documents in Each Base Cell
CA TX FL

1998 Daylight 456 306 266
1998 Night 107 64 62
1999 Daylight 493 367 321
1999 Night 136 87 68

Three levels of hierarchical topic tree is used in our experiment, 6 topics in the first level and

16 topics in the second level, which is shown in Fig. 3.5. In real applications, the prior knowledge

of each topic can be given by domain experts. For our experiments, we first collect a large number

of aviation safety report data (also from ASRS database), and then manually check documents

related to each anomaly event, and select top k (k < 10) most representative words of each topic

as its prior.

33

Level 0 ALL

Level 1
Equipment

Problem
Altitude Deviation Conflict

Ground

Incursion

In-Flight

Encounter

Maintain

Problem

Level 2
Critical,

Less Severe

Crossing Restriction

Not Meet,

Excursion From

Assigned Altitude,

Overshoot, Undershoot

Airborne,

Ground,

NMAC*

Landing Without

Clearance,

Runway

Turbulence,

VFR* in IMC*,

Weather

Improper

Documentation,

Improper

Maintenance

?: NMAC-Near Midair Collision, VFR-Visual Flight Rules, IMC-
Instrument Meteorological Conditions

Figure 3.5: Hierarchical Topic Tree used in the Experiments

3.4.2 Efficiency Comparison

In this section, we evaluate the efficiency of the two kinds of heuristic aggregation we proposed in

Section 3.3.2 separately. For each aggregation method, we compare three strategies of constructing

a topic cube. (1) Heuristic aggregation method we proposed, either aggregation along the topic

dimension or aggregation along the standard dimensions, and we use Agg to represent it. (2) An

approximation method which only stores top k words in the word distribution of each topic, and we

use App to represent it. The purpose of this method is to test the storage-saving strategy proposed

in Section 3.3.3. For example, in the aggregation along standard dimensions when calculating

topics from a document set in one cell, we use the same formula as in Agg to combine the word

distributions of topics, with only top k words, in its sub cells and get a good starting point.

Then, we initialize the EM algorithm with this starting point and continue it until convergence.

Similarly, in the aggregation along the topic dimension, we also use only the top k words in the

lower level topics to aggregate a starting point when we estimate the topics in the higher level. In

our experiment, we set the constant k equal to 10. (3) The third strategy is the baseline of our

method, which initializes the EM algorithm with random points, and we use Rdm to represent it.

As stated before, the exhaustive method to materialize a topic cube runs EM algorithm by starting

from several different random points and then select the best local maximum point. Obviously,

if the exhaustive method runs EM algorithm M times, its time cost will be M times of the Agg

method. The reason is every run of EM algorithm in Rdm has the same computation complexity

as the Agg method. Therefore, it’s no doubt that the heuristic aggregation method is faster than

the exhaustive method. So, in our experiment, we use the average performance and best run of

34

the random method to compare the efficiency with the Agg method. The average performance is

calculated by running the EM algorithm fromM random points and then averaging the performance

of these runs. The best run is the one which converges to the best local optimum point (highest

log likelihood) among these M runs.

To measure the efficiency of these strategies, we look at how long it takes for these strategies

to get to the same closeness to the global optimum point. Here, we assume that the convergence

point of the best run of the M runs is the global optimum point. The experimental results are

shown in Fig. 3.6. The upper three graphs show the efficiency comparison among the different

strategies using aggregation along the standard dimensions, and the topics we computed in these

three graphs are the 16 topics in the lowest level of the hierarchical topic tree in Figure 3.5. Each

graph represents the result in one level of cuboid in the GDC cube, and we use one representative

cell to show the comparison. The experiment on other cells have similar performance and can lead

to the same conclusion. Similarly, the lower three graphs show the efficiency comparison using

aggregation along the topic dimension, and the topics we computed are the 6 topics in the second

level of the hierarchical topic tree.

In the graph, Best Rdm represents the best run among those M random runs in the third

strategy, and Avg Rdm represents the average performance of the M runs. The abscissa axis

represents how close one point is to the global optimum point. For example, the value “0.24” on

the axis means one point’s log likelihood is 0.24% smaller than the log likelihood of the global

optimum point. The vertical axis is the time measured in seconds. So a point in the plane means

how much time a method needs to get to a certain closeness to the global optimum point. We can

conclude that in all three cells, the proposed heuristic methods perform more efficiently than the

baseline method, and this advantage of the heuristic aggregation is not affected by the scale of the

document set. An interesting discovery is that the App method performs comparably with the Agg

method, and in some cases it is even more stabler than Agg. For example, in Fig. 3.6 (b) and (c),

although the Agg method starts from a better point than App, after reaching a certain point, the

Agg method seems to be “trapped” and needs longer time than App to get further close to the

optimum point.

Table 3.4 shows the log likelihood of the starting points of the three strategies. Here, the log

35

0.24 0.23 0.22 0.21 0.2 0.19 0.18 0.17 0.16 0.15 0.14

10

20

30

40

50

60

70

80

90

Closeness to Global Optimum Point(%)

S
ec

on
ds

Agg
App
Best Rdm
Avg Rdm

0.5 0.46 0.42 0.38 0.35 0.31 0.27 0.23 0.2 0.16
0

20

40

60

80

100

120

140

160

180

Closeness to Global Optimum Point(%)

S
ec

on
ds

Agg
App
Best Rdm
Avg Rdm

0.3 0.28 0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12

50

100

150

200

250

300

350

400

450

Closeness to Global Optimum Point(%)

S
ec

on
ds

Agg
App
Best Rdm
Avg Rdm

(a) Cell=(1999, CA, *) (b) Cell=(1999, *, *) (c) Cell=(*, *, *)

with 629 documents with 1472 documents with 2733 documents

Using aggregation along the standard dimensions

0.25 0.24 0.23 0.22 0.21 0.2 0.19 0.18 0.18 0.17

10

20

30

40

50

60

70

80

Closeness to Global Optimum Point(%)

S
ec

on
ds

Agg
App
Best Rdm
Avg Rdm

0.95 0.91 0.86 0.82 0.77 0.73 0.68 0.63 0.59 0.54 0.5 0.45
10

15

20

25

30

35

40

45

50

Closeness to Global Optimum Point(%)

S
ec

on
ds

Agg
App
Best Rdm
Avg Rdm

0.93 0.88 0.83 0.79 0.74 0.69 0.64 0.6 0.55 0.5 0.45
0

10

20

30

40

50

60

70

Closeness to Global Optimum Point(%)

S
ec

on
ds

Agg
App
Best Rdm
Avg Rdm

(d) Cell=(1999, CA, *) (e) Cell=(1999, *, *) (f) Cell=(*, *, *)

with 629 documents with 1472 documents with 2733 documents

Using aggregation along the topic dimension

Figure 3.6: Efficiency Comparison of Different Strategies

likelihood of the objective function is calculated by Eq. (3.1). This value indicates how likely the

documents are generated by topic models, so it is the larger the better. In all the cells, both Agg

and App strategies (in both two kinds of aggregations) have higher value than the average value

of the Rdm strategy. This also assists our conclusion that the proposed heuristic methods are

much easier to get to the optimum point than starting from a random point, thus need less time

to converge.

3.4.3 Topic Comparison in Different Context

One major application of a topic cube is to allow users explore and analyze topics in different

contexts. Here, we regard all the standard dimensions as contexts for topics. Fig. 3.7 shows four

cells in the topic cube constructed on our experiment data. The column of “Environment” can

be viewed as the context of the topic dimension “Anomaly Event”. Comparing the same topic in

different contexts will discover some interesting knowledge. For example, from the figure we can

36

Table 3.4: Comparison of Starting Points in Different Strategies
Aggregation along the Standard Dimensions

Strategy (1999, CA, *) (1999, *, *) (*, *, *)

Agg -501098 -1079750 -2081270

App -517922 -1102810 -2117920

Avg Rdm -528778 -1125987 -2165459

Best Rdm -528765 -1125970 -2165440

Aggregation along the Topic Dimension

Strategy (1999, CA, *) (1999, *, *) (*, *, *)

Agg -521376 -1111400 -2135910

App -524781 -1116220 -2144730

Avg Rdm -528796 -1126046 -2165551

Best Rdm -528785 -1126040 -2165510

see that the “landing without clearance” anomaly event has more emphasis on the words “light”,

“ils”(instrument landing system), and “beacon” in the context of “night” than in the context of

“daylight”. This tells experts of safety issues that these factors are most important for landing

and are mentioned a lot by pilots. On the other hand, the anomaly event “altitude deviation:

overshoot” is not affected too much by the environment light, because the word distribution in

these two contexts are quite similar.

Environment Anomaly Event Word Distribution

daylight
landing without

clearance

tower 0.075, pattern 0.061, final 0.060,

runway 0.052, land 0.051, downwind 0.039

night
landing without

clearance

tower 0.035, runway 0.027, light 0.026, lit

0.014, ils 0.014, beacon 0.013

daylight
altitude deviation:

overshoot

altitude 0.116, level 0.029, 10000 0.028, f

0.028, o 0.024, altimeter 0.023

night
altitude deviation:

overshoot

altitude 0.073, set 0.029, altimeter 0.022,

level 0.022, 11000 0.018, climb 0.015

Figure 3.7: Application of Topic Cube in ASRS

3.4.4 Topic Coverage in Different Context

Topic coverage analysis is another function of a topic cube. As described above, one family of

parameters in PLSA, {p(θ|d)}, is stored as an auxiliary measure in a topic cube. The meaning of

these parameters is the topic coverage over each document. With this family of parameters, we

can analyze the topic coverage in different context. For example, given a context (Location=“LA”,

37

Time=“1999”), we can calculate the coverage or proportion of one topic t by the average of p(t|di)

over all the document di in the corresponding cell in GDC. From another point of view, the

coverage of one topic also reflects the severity of this anomaly event.

Fig. 3.8 shows the topic coverage analysis on our experiment data set. Fig. 3.8(a) is the topic

coverage over different places and Fig. 3.8(b) is the topic coverage over different environment. With

this kind of analysis, we can easily find out answers to the questions like: what is the most sever

anomaly among all the flights in California state? What kind of anomaly is more likely to happen

during night rather than daylight? For example, Fig. 3.8 helps us reveal some very interesting facts.

Flights in Texas have more “turbulence” problems than in California and Florida, while Florida has

the most sever “Encounter: Airborne” problem among these three places. And there is no evident

difference of the coverage of anomalies like “Improper documentation” between night and daylight.

This indicates that these kinds of anomalies are not correlated with environment factors very much.

On the other hand, anomaly “Landing without clearance” obviously has a strong correlation with

the environment.

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00%

Critical

Less Severe

Crossing Restriction Not Meet

Excursion From Assigned Altitude

Overshoot

Undershoot

Airborne

Ground

NMAC

Landing without clearance

Runway

Turbulence

VFR in IMC

Weather

Improper Documentation

Improper Maintenance

FL

TX

CA

(a) Place Comparison

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%

Critical

Less Severe

Crossing Restriction Not Meet

Excursion From Assigned Altitude

Overshoot

Undershoot

Airborne

Ground

NMAC

Landing without clearance

Runway

Turbulence

VFR in IMC

Weather

Improper Documentation

Improper Maintenance

Daylight

Night

(b) Environment Comparison

Figure 3.8: Topic Coverage Comparison among Different Contexts

38

3.4.5 Shaping Factor Analysis

Analyzing the shaping factors of human performance during flights plays an important role in

aviation safety research. In pilot reports, the reporters tend to describe their physical factors,

attitude, pressure, proficiency, preoccupation, and etc. So it’s necessary to analyze all these factors

and their correlations with anomalies during flight. With a topic cube, we can quantitatively

evaluate the correlations between the anomaly events and the shaping factors of human performance

in different context. Table 3.5 shows five different shaping factors as well as some examples and

keywords of them.

Table 3.5: Examples and Keyword Lists of Shaping Factors
Shaping Factors Example Keyword List
Preoccupation My attention was divided inappropriately. distraction, attention,

busy, emergency, realize,
focus, declare

Communication Environ-
ment

We were unable to hear because traffic
alert and collision avoidance system was
very loud

communication, clear-
ance, radio, frequency,
hear, unreadable, wait

Familiarity Both pilots were unfamiliar with the air-
port

unfamiliar, new, before,
line, familiar, inexperi-
enced, time

Physical Environment This occurred because of the intense glare
of the sun

weather, snow, cloud,
wind, condition, ice,
visibility

Physical Factors I allowed fatigue and stress to cloud my
judgment

fatigue, leg, hours, night,
day, tire, rest

The keyword lists are extracted as follows: a human annotator is hired to annotate 1333 incident

reports with 14 different shapers, where each report can be labeled with one or more shapers. Given

the labeled reports, an algorithm [56] is used to compute the information gain of each unigram for

each shaper. The top-k highest scored unigrams are selected as the keyword list for each shaper1.

To quantitatively evaluate the correlation between a shaper S and an anomaly event A in a specific

context C, we first find the word distribution in the cell specified by A and C in a topic cube.

Then, the correlation value is calculated as the sum over all the keywords in S based on their

probabilities in the word distribution.

Figure 3.9 shows some examples of shaping factor analysis in different context with a topic

cube. The x-axis in each graph represents different anomaly events, and the y-axis represents the

1We would like to thank Professor Vincent Ng from UT Dallas for providing us the keyword lists of shapers.

39

correlation between shaping factors and anomaly events (since the correlation is calculated as the

sum over the probabilities of keywords of a shaper given the anomaly events, the value is relatively

small as shown in the figure). From these graphs, we can find that ”Physical Environment” is the

main cause for anomaly events ”Weather” and ”VFR in IMC”, no matter what the context is.

This is reasonable from our common sense. On the other hand, if we compare the difference of

the correlations among different contexts, we can also find some interesting things. For example,

the shaping factor ”Physical factors” causes more anomaly during night rather than daylight. The

shaping factor ”Communication Environment” causes the ”Landing without clearance” anomaly

event much more in Texas than in Florida, which suggests that airports or aircrafts in Texas may

consider to improve their communication environment.

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

Communication Environment

Physical Environment

Familiarity

Physical Factors

Preoccupation

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

Communication Environment

Physical Environment

Familiarity

Physical Factors

Preoccupation

(a) Texas (b) Florida

Shaper Analysis in Different Places

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

Communication Environment

Physical Environment

Familiarity

Physical Factors

Preoccupation
0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

Communication Environment

Physical Environment

Familiarity

Physical Factors

Preoccupation

(c) Night (d) Daylight

Shaper Analysis in Different Environment

Figure 3.9: Shaper Analysis in Different Context

40

3.4.6 Accuracy of Categorization

In this experiment, we test how accurate the topic modeling method is for document catego-

rization. Since we only have our prior for each topic without training examples in our data

set, we do not compare our method with supervised classification. Instead, we use the follow-

ing method as our baseline. First, we use the prior of each topic to create a language model

ζj for each topic j. Then, we create a document language model ζd for each document after

Dirichlet smoothing: p(w|ζd) = c(w,d)+µp(w|C)
|d|+µ , where c(w, d) is the count of word w in document

d and p(w|C) = c(w,C)/|V | is the collection background model. Finally, we can use the nega-

tive KL-divergence [30] function to measure the similarity between a document d and a topic j:

S = −D(ζj ||ζd) =
∑
w p(w|ζj) log p(w|ζd)

p(w|ζj) . If one document d has a similarity score S higher than a

threshold δ with a topic j, then it is classified into that topic. One the other hand, when we use

the word distribution measure in a topic cube for categorization, we use the word distribution θj

of topic j as its language model, and then compute the negative KL-divergence between θj and ζd

to compute the similarity score of each topic j and document d.

Our experiment is conducted on the whole data set, and use the first level of topics in Fig. 3.5

as the target categories, i.e. we classify the documents into 6 categories. The gold answer we use

is the “Anomaly Event” labels in ASRS data, which is tagged by pilots. Then we get the following

recall-precision curves by changing the value of the threshold δ. As shown in Fig. 3.10, we can see

that the curve of PLSA is above the baseline method. This means that PLSA would get better

categorization result if we only have prior knowledge about topics.

3.5 Conclusions and Future Work

OLAP is a powerful technique for mining structured data, while probabilistic topic models are

among the most effective techniques for mining topics in text and analyzing their patterns. In this

study, we proposed a new data model (i.e., Topic Cube) to combine OLAP and topic models so that

we can extend OLAP to the text dimension which allows an analyst to flexibly explore the content

in text documents together with other standard dimensions in a multidimensional text database.

Technically, we extended the standard data cube in two ways: (1) adopt a hierarchical topic tree

41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

on

Baseline
PLSA

Figure 3.10: Comparison of Categorization Accuracy

to define a topic dimension for exploring text information, and (2) store word distributions as the

primary content measure (and topic coverage probabilities as auxiliary measure) of text information.

All these probabilities can be computed simultaneously through estimating a probabilistic latent

semantic analysis model based on the text data in a cell. To efficiently materialize topic cube,

we propose two kinds of heuristic aggregations which leverage previously estimated models in

component cells or lower level topics to choose a good starting point for estimating the model for a

merged large cell or higher level topics. Experimental results show that the heuristic aggregations

are effective and topic cube can be used for many different applications.

Our work is only the first step in combining OLAP with text mining based on topic models, and

there are many interesting directions for further study. First, it is necessary to further explore other

possible strategies to materialize a topic cube efficiently, e.g. the top-down strategy discussed in

Section 3.3.2. Second, it would be interesting to explore more application tasks to take advantage

of the rich intermediate results of text analysis provide by a topic cube, and compare the topic

cube with a baseline method, where OLAP on structured data and text mining are done separately,

to verify its effectiveness in supporting an application task. Finally, our work only represents one

way to combine OLAP and topic models. It should be very interesting to explore other ways to

integrate these two kinds of effective, yet quite different mining techniques.

42

Chapter 4

MicroTextCluster Cube for Online
Analysis of Text Cells

As large amount of unstructured text becomes available in multidimensional text databases, it is

increasingly important to support efficient online analysis of text data. While a search engine is

useful to satisfy a user’s ad hoc information needs, allowing a user to retrieve relevant documents

through a keyword query, it is inadequate for analysis of bulky text information, which is necessary

in many online applications. For example, while it is easy for a user to find documents discussing

opinions about iPhone in a review database based on a search engine, it is hard to compare

opinions expressed in different time periods or by different user groups. In contrast, if we can

manage text data together with structured data with attributes such as time and user groups

in a multidimensional database, we would be able to flexibly explore text data corresponding to

different combinations of time and user groups and compare opinions across different contexts.

As discussed in last Chapter, a topic cube is capable of supporting content digestion in an MDT

database. However, the flexibility of the model is limited because all the text documents are

analyzed according to some specified topic categories. In many scenarios, when users have ad hoc

information needs, pre-computing a set of semantic topics is not suitable anymore. In this Chapter,

I propose and study a novel infrastructure called MiTexCube. In a MiTexCube, each text cell is

materialized by micro-clusters which are grouped from similar documents offline. The purpose of

building such a MiTexCube is to accelerate online analysis of text information by taking advantage

of the micro-cluster units, which is way faster than calculations based on document units. I will

use three different online applications to demonstrate the benefits of constructing a MiTexCube.

43

4.1 Introduction

Still consider the MDT database in ASRS as shown in Table 1.1. In many applications, we need

to analyze the text information in such a multidimensional text database with consideration of

structured data in the standard dimensions. To support such analysis in a general way, it has been

proposed in recent work to construct a Text Cube [32] or a Topic Cube [59], which would enable

an analyst to flexibly explore and analyze text cells, which are groups of text data corresponding

to certain constraints on the standard dimensions.

Many interesting online analysis tasks can be done on top of text cells. For example, an expert

may be interested in the major anomalous events within a specific context. So she forms a query

like (Time=“1999”, Location=“LA”) and tries to digest the content of all the narratives associated

with these specified time and location values. A desirable system would return a summary of

the content in the specific text cell (e.g. clusters of documents with major content words in each

cluster or a small set of representative documents) so that the expert does not need to read all

the documents. In another scenario, the expert may be interested in a particular topic within a

text cell, e.g. the anomalous events related to “altitude deviation” at “LA” during “1999”. In this

case, a set of documents, generated as a summary for a text cell given a query topic, should ideally

be both relevant to the topic and representative in covering most content of the text data in the

cell (many duplicates in selected documents will cause the summary cover only partial content of

a text cell). Furthermore, the expert may also be interested in comparing the content of multiple

cells, e.g. a group of cells with different locations, and it would be desirable for the system to

generate a comparison of the content covered by all these returned cells to reveal some common

topics discussed within these cells and the different coverage of these common topics in each cell.

Similar application scenarios can also be found in many other domains such as product review

analysis, IT service ticket investigation, and disease symptom diagnosis.

Since all these analysis tasks need to be done efficiently online, how to develop a general infras-

tructure to support all these tasks efficiently is a very interesting and challenging research question.

Intuitively, we want to do as much offline pre-computing as possible to minimize the cost of online

computation. However, there are two major technical challenges in implementing this general idea:

(1) Many analysis tasks cannot be pre-specified in advance, making it impossible to pre-compute all

44

Table 4.1: An Example of a MiTexCube
Cell Doc ID Content Micro-Text-Clusters

(Time=1999, Location=TX)
d1 . . . due to stronger than forecasted winds and

weather going . . . (weather 2.5, wind 1.2, . . .), 3
d2 . . . I think that the weather, headwinds, shrink-

ing dewpoint/temperature contributed to the
fuel emergency . . .

d3 . . . After an hour, the weather had not much
improved. We were in the clear for a bit and
then hit another cloud bank . . .

d4 . . . so that if we saw the ARPT, we could land
. . .

(land 2.1, rule 0.9, . . .), 2

d5 . . . we were in class G and the IFR rules tell us
to land . . .

the answers or even partial answers. For example, query-specific summarization can only be done

after seeing the query, thus a naive solution of computing and storing summaries of all the cells

offline is simply not feasible. Indeed, it is a significant challenge to factor out the computation that

can be done offline. (2) Different analysis tasks need different computations (e.g., summarization

and topic comparison have different needs). It is unclear how to provide a general support for

many such tasks to enable efficient online processing.

One possible solution to the two challenges is to build a global Clustering Feature (CF) tree as

proposed in [63]. In this approach, all the documents in the multidimensional text database can be

first clustered into a global CF tree offline. Then, online analysis can take advantage of the clusters

stored in the CF tree to reduce the computational cost. However, such a global CF tree is not

suitable for an OLAP scenario, because in an OLAP text analysis task we mainly focus on local

contents of a text cube. When we change the context and do text analysis in different text cells, the

rigid global clustering structure cannot serve well in various local cells, since the clustering results

of documents in a local text cell could be very different from their clustering results in a global

CF tree. For example, if we cluster all the reviews in a commercial text database, the global CF

tree may cluster reviews based on different brands of products. But when we do OLAP analysis

in a text cell of a certain location, the reviews within that text cell may be clustered according to

different time periods. Similarly, if we do OLAP analysis in a text cell of a certain time period,

the reviews may also be clustered according to different locations. So a global clustering structure

based on brands is not suitable for analysis in different local text cells.

The recent work on Text Cube [32] proposed methods for analyzing a text cube by materializing

45

each text cell with vectors of documents. This approach can support several different analysis tasks,

but it does not scale up well; indeed even a simple clustering analysis of the documents within one

text cell is still expensive, especially when the number of documents is large.

In this study, we propose a new general infrastructure called MicroTextCluster Cube to organize

text content in a multi-dimensional text database so as to support a variety of online text analysis

tasks efficiently. To solve the two major challenges above, our key idea is to represent text contents

of each local cell in a “compressed” way which can retain the essential semantic information in

text, so that online operations can be supported efficiently by performing them on the compressed

representation rather than the original representation.

Specifically, we cluster documents in each cell into micro-clusters which serve as a compact,

though coarse, representation of the content in the cell. The set of documents in a micro-cluster

can be regarded as a big “pseudo-document” with a compact representation. Since the number

of micro-clusters in each cell is usually much smaller than the number of individual documents, it

allows us to dynamically analyze any text cell (e.g., clustering documents in a text cell) much more

quickly based on the micro-clusters in the cell. Intuitively, the online computation effort is reduced

substantially by offline micro-clustering of similar documents, as shown in Figure 4.1, where we

see that online clustering can be done based on micro-clusters instead of the original documents.

Since a common characteristic in many analysis tasks is that they focus more on the characteristics

of groups of documents rather than the concrete content of each individual document, the micro-

cluster model essentially captures and leverages this kind of redundant information to achieve a

concise representation that enables many online analysis tasks to be done efficiently.

(a) Original Docs (b) Micro-clusters (c) Online Analysis

Figure 4.1: Illustration of micro-clusters and their uses for summarization.

46

We materialize a MiTexCube with a progressive strategy, which aims at both saving the disk

cost of a MiTexCube and supporting efficient analysis of a large set of documents in a high level

or large text cell with flexible tradeoff between efficiency and quality of analysis. Basically, one

cell is materialized with micro-clusters only when the number of micro-clusters aggregated from its

sub cells is too large to perform efficient online operation. In that case, the cell is materialized by

re-clustering those micro-clusters in its sub cells into a small set of larger micro-clusters. During

online analysis, we can either use the micro-clusters within the target cell or we can use more finer

granularity micro-clusters aggregated from its sub cells if time cost is affordable. In an extreme

case, we can also use single-document micro-clusters as the analysis units. Therefore, our approach

makes it possible to control the efficiency-quality tradeoff through adjusting the resolutions of

micro-clusters, and accommodate the different needs of different analysis tasks.

We also propose an algorithm to well maintain a MiTexCube when there are updates in the mul-

tidimensional text database, e.g. inserting new or deleting old documents. This is very important

because these kinds of updates are very common in a data warehouse environment. Specifically,

we use the Davies-Bouldin Index [20] to monitor the quality of micro-clusters within each text

cell. When there are some updates in a text cell, we first simply update the corresponding micro-

clusters based on the update in its sub cells. If the quality of the updated micro-clusters is below

a threshold, then we need to recalculate the micro-clusters within the text cell as well as its super

cells. Otherwise, we just keep the current updated micro-clusters. In this way, we can update a

MiTexCube very efficiently while still maintaining high quality micro-clusters in it.

We represent each micro-cluster by a centroid vector of weighted terms, associated with certain

statistics such as the size of the micro-cluster (i.e., the number of documents inside the micro-

cluster). Note that how to represent micro-clusters and how to form micro-clusters offline is quite

flexible, as long as they can effectively compress the content of text cells in a reasonable way. We

use weighted term vectors to represent micro-clusters and use k-means algorithm to form micro-

clusters.

As a general infrastructure for representing text information in text cells in a compressed way,

the micro-cluster text cube can potentially support many online analysis tasks efficiently. As

case studies, we propose methods to leverage MiTexCube to support three common analysis tasks:

47

query-independent summarization, query-dependent summarization, and comparative analysis of

text cells. We evaluate the proposed model and methods with the NASA:ASRS (Aviation Safety

Report System) database and the DBLP [3] dataset. Experimental results show that (i) the pro-

posed MiTexCube can be materialized efficiently with the proposed materialization algorithm with

reasonable overhead in space, and (ii) the proposed cube structure can efficiently support summa-

rization and comparative analysis of text cells, outperforming baseline methods that directly work

on the documents in each cell without using micro-clusters, and it enables flexible tradeoff between

efficiency and quality of analysis.

4.2 MicroTextCluster Cube

The main idea of MiTexCube is to speed up online analysis of text cells by doing as much prepro-

cessing as possible during offline stage. Specifically, we preprocess the documents by generating a

good number of micro-clusters to “compress” similar documents. These micro-clusters are materi-

alized and stored in selected text cells. Since these micro-clusters can roughly represent the original

documents, in the online stage, we can mostly work on the micro-clusters to carry out analysis of

text cells quickly.

4.2.1 Definition of MiTexCube

Conceptually, MiTexCube extends a simple model, Document Cube. We thus first introduce the

concept of document cube defined on a multidimensional text database.

Definition 4.2.1 Document Cube: A document cube is a data cube built based on the standard

dimensions of a multidimensional text database. The measure stored in each cell is a document set

which is the union of the documents (records in the database) aggregated from its subcells.

In general, a multidimensional text database is made of two parts: standard fields and a text

field. The standard fields correspond to the attributes in a structured database (e.g., time, loca-

tion) and can be viewed as the context of the associated text documents. Thus conceptually, the

Document Cube allows us to naturally partition all the documents in the text field according to

the combinations of values in the standard fields. Unfortunately, it is not feasible to store all the

48

document lists in cells. For example, in the apex cuboid, we need to store all the documents in its

document list, which would be too expensive space-wise. Thus the measure in a document cube is

only a “conceptual measure”; in practice, when a user inputs a query, a document cube would use

the value(s) specified on the standard fields to fetch all the matching records in the database and

return the union of the corresponding documents as the measure of the cell.

MiTexCube essentially extends Document Cube by storing an additional measure that captures

all the micro-clusters in a cell.

Definition 4.2.2 MiTexCluster: A micro text cluster (or MiTexCluster) is a coherent cluster of

text documents that serves as a compressed representation of document content. These clusters are

called micro-clusters because compared with the size of the corresponding cell that they represent,

their sizes are relatively small, which ensures that the micro-clusters serve well as an approximation

of the content in a cell for the purpose of analysis.

Definition 4.2.3 MiTexCube: A MiTexCube is a data model that extends a document cube to

support efficient online analysis of text cells. Two kinds of measures are stored in cells of a MiTex-

Cube. One is a document set aggregated from the base cells, which is the same as in a document

cube. The other is either the statistics of a set of micro-clusters or a set of subcells from which the

documents in the current cell can be efficiently computed based on aggregation.

One important thing to be noted in Definition 4.2.3 is that information about micro-clusters

(i.e., “content measures”) is stored in two different ways. We define the MiTexCube in this way

in order to save the disk storage as much as possible. To better explain the idea behind this, we

use an example to show the correspondence between cells and their measures in Table 4.2. From

this table, we can see that there are mainly two types of cells. One is materialized with concrete

micro-clusters, and we call this type of cells concrete cells. Examples of concrete cells are C71

and C100. In their measures, we store five micro-clusters for each of them. Each micro-cluster

contains its mean vector and the size of the cluster. In our study, each document is represented by

a vector of weighted terms, and the weight for each term is the TF-IDF value of this term within

the document [44]:

~d = (cd(w1) ∗ idfw1 , cd(w2) ∗ idfw2 , . . . , cd(wV) ∗ idfwV)

49

Table 4.2: An example of the materialization of a MiTexCube
Cell ID Type Measure Size

C1 non-concrete {d1} 1

C2 non-concrete {d2} 1

.

C70 non-concrete {C1, C2, . . . , C10} 10

C71 concrete {mean1, 20} . . . {mean5, 30} 5

.

C99 non-concrete {C70, C71, . . . , C76} 56

C100 concrete {mean1, 35} . . . {mean5, 32} 5

.

where cd(wi) is the term frequency of word wi in document d and idfwi is the inverse document

frequency (IDF) of word wi in the whole document set in the database. The mean vector of a

micro-cluster is also a vector of weighted terms, and the weight for each term is the average weight

for this term over all the documents that belong to this micro-cluster:

mean(mci) =
1

|mci|
∑
d∈mci

~d.

The other type of cells is materialized with a list of subcells, from which we can easily aggregate

the micro-clusters in these subcells to form a set of micro-clusters for the current cell at the time of

online processing. We call this type of cells non-concrete cells. For example, C99 is a non-concrete

cell. Its measure contains a set of subcells, i.e., {C70, C71, . . . , C76}. If we need to cluster the

documents in cell C99, we would fetch the micro-clusters contained in {C70, C71, . . . , C76}, and use

them for clustering. In general, in order to save disk space, we would choose to not materialize a cell

such as C99 as long as we can efficiently carry out analysis based on the micro-clusters contained

in its subcells. However, had it been too expensive to do online analysis of the micro-clusters in

{C70, C71, . . . , C76}, we would have further grouped these micro-clusters into larger micro-clusters

and store them in the cell C99, which would make it a concrete cell rather than a non-concrete cell.

In practice, storing the complete cell list in a non-concrete cell is still costly. Thus, we use a

dimension and its level to indicate which set of subcells we should use for aggregation. For example,

in Table 4.3, a cell (ID=“laptop”, Time=“*”, Location=“*”) can be either aggregated from sub-

cells like {ID=“laptop”, Time=“1st Quarter”, Location=“*”} or from subcells like {ID=“laptop”,

50

Table 4.3: An example of subcell selection
Cell ID Subcell Set Selection

(laptop, *, *)

(laptop, 1st Quarter, *)

{Time, Quarter Level}(laptop, 2nd Quarter, *)
(laptop, 3rd Quarter, *)
(laptop, 4th Quarter, *)

(laptop, Jan., *)

{Time, Month Level}(laptop, Feb., *)
. . .

(laptop, Dec., *)
(laptop, *, CA)

{Place, State Level}(laptop, *, TX)
. . .

(laptop, *, WA)

Time_key

Location_key

Environment_key

{Doc_id}

{mean
i
size

i
}

or

sub-cell list

Time_key

Day

Month

Year

Location_key

City

State

Country

Time

Location

Environment_key

Light

Environment

Measure 2

Fact table

Measure 1

Figure 4.2: Star Schema of a MiTexCube

Time=“*”, Location=“TX”}. So we use “{Time, Quarter Level}” or “{Place, State Level}” as a

compact representation of the corresponding list of subcells. In the next section, we will discuss

the criteria for choosing the dimension for aggregation.

The star schema of a MiTexCube is shown in Figure 4.2. In the schema, if we ignore Measure

2, it would become the star schema of a document cube. As we discussed above, Measure 1 in this

schema is just a conceptual measure.

4.2.2 Progressive Materialization

Materialization of a MiTexCube means we need to precompute the micro-clusters offline and store

the micro-clusters in the MiTexCube. A good materialization is important because (1) with suffi-

cient materialization, the online analysis can be done efficiently; (2) the overhead of materialization

should be reasonable.

51

Parameter Setting

There are two important parameters to be set for materializing a MiTexCube. One is the total

number of micro-clusters K in each cell. A larger K will result in finer granularity of micro-clusters,

so the result of online processing like clustering will be closer to that of clustering documents directly

at the price of slower online processing. On the other hand, a smaller K will result in larger micro-

clusters of documents in each cell, which can speed up online processing at the price of achieving

coarser approximation of the content and not being able to summarize a cell at a finer granularity

level of topics. Also, a small K will save the space cost of a MiTexCube and decrease the number

of concrete cells. Thus there is an inherent tradeoff here among approximation accuracy, time

efficiency of online summarization, and the space overhead for materializing a MiTexCube given

different settings of K. So this parameter can be empirically set according to specific application

needs. For example, in an application where users always want to summarize the content of a text

cell into less than 10 groups, the parameter K could be set around 100 because 100 micro-clusters

should be a good enough approximation (compared to document based clustering) for clustering

the content into 10 groups, and storing 100 micro-clusters in each concrete cell is still affordable

for the space.

The other important parameter is the total number of micro-clusters M that we can deal with

efficiently for online processing. This parameter also controls the tradeoff between time efficiency

and space overhead. If M is small, then the number of cells needed to be materialized will be

large, thus more disk storage would be needed. On the other hand, if M is large, then the online

processing will be more time consuming, but we would be able to save more space since the

number of cells to be materialized would be smaller. Thus M provides a flexible way to control

this tradeoff. Empirically, we optimize the value of M based on whether we can efficiently process

M micro-clusters online. For example, if a machine can cluster at most 10000 micro-clusters into

10 groups within one minute during online processing, then we can set M as large as 10000.

An Example of the Overhead Estimation

The space overhead of the proposed materialization algorithm for MiTexCube is directly related to

the number of concrete cells that we end up having since the overhead on the non-concrete cells is

52

Table 4.4: A theoretical study of materialization
Cuboid Level Cells docs per cell micro-clusters per cell

0 1 V N K ∗ V
1 V ∗N V N−1 K

.

N − 5 V N−5 ∗ C5
N V 5 K

N − 4 V N−4 ∗ C4
N V 4 K ∗ V

N − 3 V N−3 ∗ C3
N V 3 K

N − 2 V N−2 ∗ C2
N V 2 V 2

N − 1 V N−1 ∗N V V

N V N 1 1

insignificant. To better understand the space overhead, we perform some theoretical analysis using

a simple example case.

Suppose we have a multidimensional text database with N standard dimensions, and without

loss of generality, we assume N is an even number here. We further assume that each dimension

has only one level, and each level has V values. In such a case, if we construct a document cube

based on this database, we will have totally (V + 1)N text cells. Suppose for each base cell we have

exactly one document in it, and in total we have V N documents in the database. Now, assume that

the values of K and M satisfy the following conditions K ∗ V < M < K ∗ V 2 and V 2 < M < V 3.

Then, the materialization result is shown in Table 4.4. We can see that only cells in cuboid levels

N − 3, N − 5, . . ., 1 need to be materialized. So the number of fully materialized cells is less than

(V+1)N+(V−1)N

2 , which means that roughly speaking, only 50% cells are materialized. Similarly, if

K ∗ V 2 < M < K ∗ V 3, then the number of fully materialized cells will be less than 33%. In the

experiment section, we will present an empirical comparison of the number of concrete cells in a

MiTexCube with different parameter settings.

Materialization Algorithm

Once the two parameters K and M are set, our algorithm for materializing a MiTexCube works in

a bottom-up manner to progressively process each cell. The process is illustrated in Figure 4.3.

Specifically, we would start materializing the cube from the base cells, each of which contains

only one document. As we aggregate a set of base cells into the next level of cube (i.e., cuboid

ABCD, ABDE, etc..), we would test the number of documents in each cell. If the number is larger

than the threshold M , we would group this set of documents into K micro-clusters, and store these

53

(a1, b1, c1, d1, e1) (a1, b1, c1, d1, e50)(a1, b1, c1, d2, e1)

(a1, b1, c1, d2, e35)

(a1, b1, c1, d1, *) (a1, b1, c1, d2, *)

{D, Level1}(a1, b1, c1, *, *)

(a1, b1, *, *, *)

……

……

……

…… …… ……

Figure 4.3: Materialization of a MiTexCube

micro-clusters as measures, as illustrated in cell (a1, b1, c1, d1, ∗). Based on these micro-clusters, we

can further aggregate into the next level of the cube (cuboid ABC, ABD, etc.). If the number of

micro-clusters aggregated into one cell is no larger than the threshold M , we would only need to

store a sub-cell list represented by the aggregation dimension and the level of this dimension, from

which we will be able to aggregate the micro-clusters from the subcells, e.g., cell (a1, b1, c1, ∗, ∗), thus

saving the space needed to store the complete list of subcells. As shown in Table 4.3 and discussed

in the previous section, there are several possibilities to aggregate subcells into a super cell. In our

algorithm, we choose to store the dimension from which the subcells of the super cell would give

the least number of micro-clusters; the rationale is to delay the need for re-clustering as much as

we can, thus also saving more space. As we reach the next level of cube (i.e., cuboid AB, BC, etc.),

we first calculate the number of micro-clusters in each cell. For example, in cell (a1, b1, ∗, ∗, ∗), the

micro-clusters are aggregated from cell (a1, b1, c1, ∗, ∗), etc.Since cell (a1, b1, c1, ∗, ∗) is non-concrete,

the micro-clusters aggregated from this cell are actually from its own subcells. Assuming that, at

this time, the number of micro-clusters in cell (a1, b1, ∗, ∗, ∗) is larger than the threshold M , we

thus group these small micro-clusters into K larger micro-clusters, as shown in the figure.

54

In general, to group micro-clusters from subcells into larger micro-clusters, we may use any

clustering algorithm. In our experiments, we use a k-means based algorithm to group those micro-

clusters based on their means. One advantage of k-means is that we can stop at any iteration to

obtain clustering results, and thus can flexibly trade off time with quality of clusters. For each

small micro-cluster we have the mean and size of it. Therefore, we can use these statistics to

calculate the statistics of the new micro-clusters. For example, suppose we group micro-clusters

mc1,mc2, ...,mcl into a bigger micro-cluster. The mean of the new micro-cluster can be computed

as ∑l
i=1mean(mci) ∗ size(mci)∑l

i=1 size(mci)
, (4.1)

and the size of the new micro-cluster is

l∑
i=1

size(mci) (4.2)

The pseudo code of the materialization algorithm using k-means clustering is given in Algo-

rithm 1. Here, variable minmc is used to store the minimum number of micro-clusters aggregated

into the current cell. Variables mindimension and minlevel are used to store the corresponding di-

mension and level. Variable nummc on line 8 represents the number of micro-clusters aggregated

from subcells in the current dimension and level.

4.2.3 Update a MiTexCube

When there is any update in the multidimensional text database, we also need to update the

MiTexCube infrastructure accordingly. Since we want to make the whole update process efficient,

especially when the update of the database is small, we do not want to re-cluster a lot when

updating the MiTexCube. Therefore, we propose an efficient updating algorithm which saves the

efforts of re-clustering micro-clusters as long as the quality of the updated micro-clusters are still

good.

Specifically, we associate each text cell with a quality measure which monitors how good its

micro-clusters are. We adopt the Davies-Bouldin Index (DBI) proposed in [20] as the quality

measure. Suppose we have totally K micro-clusters in a text cell, DBI is a cluster separation

55

Algorithm 1: Pseudo Code for MiTexCube Materialization

Input: A multidimensional text database with n standard fields and one text field
Output: Materialized MiTexCube
for cuboid in Base Cuboid to Apex Cuboid do1

foreach cell in current cuboid do2

minmc = ∞;3

mindimension = null;4

minlevel = null;5

foreach aggregation dimension in current cell do6

foreach level in this dimension do7

Calculate nummc in subcells aggregated from current dimension and level;8

if nummc < minmc then9

minmc = nummc;10

mindimension = current dimension;11

minlevel = current level;12

end13

end14

end15

if minmc > M then16

Regroup these micro-clusters into K larger micro-clusters, and store the mean17

and size of each new micro-cluster;
else18

Store the mindimension and minlevel as measures;19

end20

end21

end22

measure which is defined as:

DBI =
1

K

K∑
i=1

max
j:j 6=i

Si + Sj
Mi,j

where Si is a measure of scatter within cluster i, i.e. the average distance between each point within

cluster i and the centroid of cluster i, and Mi,j is a measure of separation between cluster i and

cluster j, i.e. the distance between the two centroids. Therefore, a set of micro-clusters will have a

good quality if they have a relatively low DBI. When we update the components of micro-clusters

within a text cell, we calculate the DBI of the updated micro-clusters and compare it with the old

DBI of that text cell. If the relative difference is not above a threshold δ, then we just keep these

updated new micro-clusters. Otherwise, we need to re-cluster all the small micro-clusters within

the text cell to get a group of high quality big micro-clusters.

The pseudo code of the update process is shown in Algorithm 2. The major part of why using

56

a DBI quality measure can save a lot of re-clustering efforts is shown from Line 2 to Line 2. In the

algorithm description, when tc is a concrete cell, the K micro-clusters in tc (denoted as big-micro-

clusters) are clustered from the micro-clusters in tc’s sub cells (denoted as small-micro-clusters).

Therefore, we can either remove a small-micro-cluster unit from a big-micro-cluster or insert one

into the big-micro-cluster. The algorithm is pretty efficient when there is only a little update in

the database. In an extreme case, if there are only a small number of new documents inserted,

Algorithm 2 will just insert these documents into the corresponding micro-clusters, and there is no

need to do any re-clustering during the update process.

4.3 Online Analysis of Text Cells

After a MiTexCube is materialized, we can carry out various kinds of online analysis based on this

infrastructure. In this section, we discuss three representative online analysis tasks.

4.3.1 Standard (Neutral) Cell Summarization

Standard (i.e., topic-neutral) cell summarization means to give analysts an overview of the content

in any given text cell by grouping all the documents in that text cell into P different clusters, where

P is the desired number of clusters specified by an analyst. Based on the MiTexCube model, one can

efficiently generate such a standard cell summary by clustering the already formed micro-clusters

instead of clustering all the documents from scratch. Specifically, assume one cell has in total MC

micro-clusters (MC > P). We can use the mean vector of each micro-cluster as a data point (as

if it were a document vector) and use the k-means algorithm to partition them into P clusters.

When we cluster several micro-clusters into one big cluster, we can use Eq. (4.1) and Eq. (4.2)

to update the mean and size of this big cluster. Thus algorithm-wise, our method for standard

cell summarization is similar to re-clustering in the materialization algorithm except that we now

generate fewer macro-clusters for the purpose of online analysis of a text cell’s content.

Since the k-means method is an iterative method, the time complexity of the baseline method

of clustering all the documents from scratch (which we denote by GS-Base) is O(D ∗P ∗n), where

D is the total number of documents to be clustered, n is the total number of iterations. With

MiTexCube, the time complexity of our method (denoted by GS-MC) is O(MC ∗ P ∗m), where

57

Algorithm 2: Pseudo Code for MiTexCube Update

Input: A materialized MiTexCube and documents to be added and removed
Output: A new updated MiTexCube
for cuboid in Base Cuboid to Apex Cuboid do1

foreach cell tc in current cuboid do2

if there is no change in tc’s sub cells then3

Continue;4

else if after update, tc has less than M documents then5

Leave tc as a non-concrete cell;6

else if tc is a non-concrete cell then7

Do Line 1 to Line 1 in Algorithm 1;8

else if tc is a concrete cell with K big-micro-clusters then9

Find all the old small-micro-clusters (in a low level cuboid, a small-micro-cluster10

could be a document) that made up these K big-micro-clusters, and find all the
new small-micro-clusters generated from tc’s sub cells after update;
if any of these old small-micro-clusters are changed in tc’s sub cells then11

Remove all these old small-micro-clusters and update those big-micro-clusters12

which contain them;
end13

if the number of big-micro-clusters after deletion is less than K then14

Do Line 1 to Line 1 in Algorithm 1;15

else16

foreach new small-micro-clusters do17

Find its nearest big-micro-cluster, put it in, and update the size and the18

mean of this big-micro-cluster;
end19

if new DBI < (1 + δ) * old DBI then20

Continue;21

else22

Regroup current small-micro-clusters into K big-micro-clusters;23

end24

end25

end26

end27

end28

MC is the number of micro-clusters and m is the number of iterations. When MC � D, we can

expect that GS-MC should be much faster than GS-Base (the number of iterations m is comparable

with n). While it is inevitable that GS-MC would be inferior to GS-Base in clustering quality,

we can expect the sacrifice of quality to be insignificant since documents in a micro-cluster are

generally similar to each other in content. Indeed, since we can adjust the size of a micro-cluster

(thus also the number of micro-clusters), MiTexCube enables flexible efficiency-quality tradeoff.

58

4.3.2 Query-Specific Cell Summarization

The purpose of query-specific cell summarization is to customize a summary based on the topic

preference that a user may have. Specifically, given a set of documents in one text cell as well as

a topic keyword query q, the task of query-specific summarization is to generate a summary with

P documents selected from the cell that are both representative of the cell and relevant to the

query, where P is a number specified by a user to indicate the desired number of documents in the

summary. This is different from a traditional information retrieval task, which only considers the

relevance of documents to a query. For a summarization task, we also want the selected documents

cover well the major content in the cell.

With MiTexCube, we can leverage the available micro-clusters to optimize the coverage of the

documents in the cell by forcing the summary to include documents distributed over all the distinct

micro-clusters. Intuitively, micro-clusters tell us where the redundancy is, because documents

within the same micro-cluster are believed to be similar. Specifically, suppose there are K micro-

clusters in a cell, given a topic query q we first rank all the documents into a candidate list based on

their relevance to the query. Then, in the first round, we select documents from the most relevant

one, and if one document is selected, all the documents in the same micro-cluster will be removed

from the candidate list and not be considered for selection. The next document to be considered is

the most relevant document remained in the list. So this ensure that we select relevant documents

distributed over all the micro-clusters. If we need more representative documents (i.e. P > K), we

just get back all those non-selected documents and do another round of selection.

An indirect way to generate a query-specific summary for a text cell is to use a greedy algorithm

called Maximal Marginal Relevance (MMR) [10] to avoid redundancy in the selected documents.

MMR reranks a list of documents by using the following formula to select the next document to

reduce redundancy in the selected documents:

argmaxDi∈R\S [λSim1(Di, Q)− (1− λ) max
Dj∈S

Sim2(Di, Dj)] (4.3)

Here, R is the candidate document set, S is the current selected document set, Di is a candidate

document to be considered as the next selected document, Q is a user specified query, Sim1 is a

59

function used to measure the similarity between a query and a document, and Sim2 measures the

similarity between two documents.

Compared with the MiTexCube-based method (denoted as QS-MC), the MMR approach (de-

noted as QS-Base) is less efficient because it requires computation of pair-wise similarity for po-

tentially many document pairs on the fly; besides, the MMR approach may not achieve represen-

tativeness well because avoiding redundancy does not always lead to representative topics, while

the MiTexCube method achieves representativeness more directly through the structure based on

micro-clusters.

4.3.3 Common Topic Comparison

Another analysis task is to compare multiple text cells to reveal the difference of their coverage

on common topics. The standard cell summarization of the text cells cannot easily quantify the

coverage of a common topic in different cells, because the result clusters may not be comparable

across different cells. A better way to support common topic comparison is to pool the text

documents in all the text cells to be compared and cluster them into P clusters, which can then be

assumed to be P common topics covered in these cells and serve as a common basis for comparison

of different cells. With these P topic clusters as a basis, we can measure the content of each

cell by a vector of weights corresponding to the numbers or percentages of documents in the cell

that belong to each of the P clusters. Intuitively, such a weight vector (in P -dimensional space)

indicates the coverage of each common topic in the corresponding cell, thus comparing these weight

vectors across cells can easily reveal which cell covers which topic more and generate trends of topic

coverage in any standard dimension with ordinal variables (e.g., location or time).

Once again, MiTexCube can speed up this clustering process as we only need to cluster all the

micro-clusters in these cells instead of all the documents in them. Without MiTexCube, we would

have to pool all the documents together and then cluster them from scratch into P common topics.

As discussed earlier in the case of standard cell summarization, MiTexCube can be potentially much

faster than this baseline approach and it also naturally allows us to flexibly take a tradeoff between

efficiency and clustering quality.

60

4.4 Experimental Results

In this section, we will evaluate how well the proposed MiTexCube model supports online exploration

tasks.

4.4.1 Data Sets

We mainly used the ASRS database [2] for our experiments. We downloaded and extracted two

years (1998, 1999) of the data from the database, giving us a total of 4073 records for our experi-

ments. We selected 7 dimensions from the database to construct our MiTexCube, and the number

of distinct values in each dimension is summarized in Table 4.5.

Table 4.5: Number of distinct values in each dimension of ASRS
State Flight Condition Light Operator FAR Flight Phase Affiliation

3 5 2 8 8 32 10

Another data set we used is the DBLP data set [3]. We totally downloaded 207652 records from

the database, which contain papers from year 1989 to 2008 in 75 conferences. Each record has the

title, year, one author, conference information about a paper. If one paper has multiple authors,

it will generate multiple records with the same title, year, and conference attributes but different

one author attribute. We use the year, one author, and conference attributes as the standard

fields and use the title attribute as the text field. The number of distinct values in each standard

dimension of the DBLP data set is shown in Table 4.6.

Table 4.6: Number of distinct values in each dimension of DBLP
Year Author Conferece

20 77517 75

Compared with the ASRS data, the DBLP data set has fewer dimensions but much more

records. Besides, the number of distinct values in the author dimension is much larger than the

other two dimensions, while in ASRS data the number of distinct values in each dimension is pretty

close to each other. These different characteristics of the two data sets may have different effects

on the progressive materialization results. Therefore, we will mainly use the DBLP data set to test

the progressive materialization result and compare it with the ASRS data.

61

4.4.2 Evaluation of Progressive Materialization

We first evaluate the disk storage cost of our progressive materialization strategy. Basically, we

will examine the number of concrete cells which are materialized by our strategy as well as their

proportion to the total number of cells. There are two important thresholds in our algorithm: the

number of micro-clusters K stored in each cell and the upper bound of micro-clusters M that we

can deal with efficiently online. We vary both of these parameters to examine how the proportion

of concrete cells changes. Besides, we will also examine the scalability of our strategy by varying

the number of dimensions and the number of total documents to see how the proportion of concrete

cells changes.

In Figure 4.4, we show the results on ASRS data with different number of records used to

construct the cube. In Figure 4.4(a) and Figure 4.4(b), we show the comparison among different

numbers of micro-clusters stored in each cell (M is fixed to 70), and in Figure 4.4(c) and Fig-

ure 4.4(d), we show the comparison of different upper bound M used in our algorithm (K is fixed

to 10). We can see that as the number of micro-clusters K stored in each cell increases, both the

number and the proportion of concrete cells will increase. On the other hand, the increase of M

results in decreasing of the number and the proportion of concrete cells. This is as expected as we

have analyzed in previous sections. The overall trend in each of these four figures shows that with

the same setting of parameters K and M , the total number of concrete cells will increase as the

number of total records goes up.

In Figure 4.5, we show the results on ASRS data with different number of dimensions that we

used to construct the cube. We can see that the difference between Figure 4.5 and Figure 4.4 is

that as the number of dimensions increases, the proportion of the concrete cells becomes less and

less. This is because as the number of dimensions increases, the total number of cells increases

much faster than the number of concrete cells. From this perspective, it demonstrates that our

progressive strategy scales well with the number of dimensions of the cube.

In Figure 4.6, it shows the results on the DBLP data. Since there are only three dimensions

in the data, we only plot the graph as the number of records increases. In both Figure 4.6(a) and

Figure 4.6(b), we fix K to 100 and vary M from 200 to 1000. From the results, we find similar

trend to the results on ASRS data. But we notice that although the total number of records

62

in DBLP is 100 times larger than the ASRS data, the proportion of concrete cells in DBLP as

shown in Figure 4.6(b) is much smaller than the proportion of concrete cells in ASRS as shown in

Figure 4.4(d). This is due to the differences between the characteristics of these two data sets. It

indicates that when the number of distinct values among all the dimensions are about the same,

then there would be a larger portion of cells need to be materialized than the case where the number

of distinct values in each dimension are quite different.

0

20

40

60

80

100

120

500 1000 1500 2000 2500

K10

K20

K30

K40

K50

N
u

m
b

e
r
 o

f
C

o
n

c
r
e
te

 C
e
ll

s

Number of Records

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

500 1000 1500 2000 2500

K10

K20

K30

K40

K50

P
ro

p
o

rt
io

n
 o

f
C

o
n

cr
et

e
C

el
ls

Number of Records

(a) (b)

0

50

100

150

200

250

300

500 1000 1500 2000 2500

M15

M25

M35

M45

M55

N
u

m
b

e
r
 o

f
C

o
n

c
r
e
te

 C
e
ll

s

Number of Records

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

500 1000 1500 2000 2500

M15

M25

M35

M45

M55

P
ro

p
o

rt
io

n
 o

f
C

o
n

cr
et

e
C

el
ls

Number of Records

(c) (d)

Figure 4.4: Storage Estimation with Different Number of Documents in ASRS

4.4.3 Evaluation of Representative Analysis Tasks

Standard Cell Summarization

We use the ASRS data set to test the standard cell summarization application and compare our

GS-MC method (based on MiTexCube) with the baseline method GS-Base (works directly on the

documents in a cell), in terms of both efficiency and effectiveness. We vary the parameter K to

63

0

50

100

150

200

250

300

3 4 5 6 7

K10

K20

K30

K40

K50

N
u

m
b

e
r
 o

f
C

o
n

c
r
e
te

 C
e
ll

s

Number of Dimensions

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

3 4 5 6 7

K10

K20

K30

K40

K50

P
ro

p
o

rt
io

n
 o

f
C

o
n

cr
et

e
C

el
ls

Number of Dimensions

(a) (b)

0

200

400

600

800

1000

1200

1400

3 4 5 6 7

M15

M25

M35

M45

M55

N
u

m
b

e
r
 o

f
C

o
n

c
r
e
te

 C
e
ll

s

Number of Dimensions

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

3 4 5 6 7

M15

M25

M35

M45

M55

P
ro

p
o

rt
io

n
 o

f
C

o
n

cr
et

e
C

el
ls

Number of Dimensions

(c) (d)

Figure 4.5: Storage Estimation with Different Number of Dimensions in ASRS

generate different settings of GS-MC with different numbers of micro-clusters K in each cell, which

will be denoted by a suffix indicating the value of K. For example, GS-MC-100 refers to the setting

of K = 100.

Efficiency: In Figure 4.7(a), we compare the speed of clustering documents or micro-clusters when

we vary the size of a cell from 1,000 to 3,000. The target number of clusters in this experiment

is 10, which means that we use 10 clusters to summarize the content of documents in each cell.

From Figure 4.7, we can see that for all the three different settings (i.e., K=20, 60, and 100),

GS-MC is much faster than the GS-Base method, and for some cells, GS-MC is 100 times faster

than GS-Base. Moreover, as the number of documents increases, the GS-Base method slows down

dramatically, but the time cost of GS-MC does not increase much. In general, the larger the number

of micro-clusters K is, the slower the GS-MC method is; this is the price we pay for obtaining a

finer granularity representation of content, which gives us better approximation of content.

64

0

50

100

150

200

250

300

350

400

450

12500 25000 50000 100000 200000

N
u

m
b

e
r
 o

f
C

o
n

c
r
e

t
e

 C
e

ll
s

Number of Records

M200

M400

M600

M800

M1000

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

0.08%

0.09%

0.10%

12500 25000 50000 100000 200000

P
ro

p
o

rt
io

n
 o

f
C

o
n

cr
e

te
 C

e
ll

s

Number of Records

M200 M400 M600

M800 M1000

(a) (b)

Figure 4.6: Storage Estimation with Different Number of Documents in DBLP

In Figure 4.7(b), we further compare the two methods by varying the number of targeted

clusters. Here, we also test three different settings for GS-MC, corresponding to setting K to 60,

80, and 100, respectively. In this experiment, we use a cell which has 2000 documents in it. From

the figure, we can make the same conclusion as in Figure 4.7(a), i.e. GS-MC is much faster than

GS-Base in all the settings.

10

100

1000

10000

100000

1000000

1000 1500 2000 2500 3000

GS-Base GS-MC-100

GS-MC-60 GS-MC-20

Number of Documents

T
im

e
 (

m
il

li
se

c
o

n
d

)

100

1000

10000

100000

1000000

5 10 15 20 25

GS-Base GS-MC-100

GS-MC-80 GS-MC-60

T
im

e
 (

m
il

li
se

c
o

n
d

)

Number of Clusters

(a) (b)

Figure 4.7: Efficiency Comparison between GS-Base and GS-MC

Quality of clustering: Since there is always a tradeoff between the efficiency and accuracy, we

expect our method GS-MC to have inferior quality to the baseline method GS-Base, and our

main goal is to see how well GS-MC can support flexible tradeoff between efficiency and quality.

(Indeed, we may view GS-Base as a special case of our GS-MC when we have each document as

a micro-cluster.) Table 4.7 shows the comparison result in a text cell with 2000 documents, and

65

the number of target cluster P is set to 10 and 5. For each method, we compute its clustering

quality as well as its time cost, and the numbers are the average result of 10 runs for each method

on each test case. Here, the quality of a clustering result is the sum of cosine similarity between

each document vector and its cluster’s mean vector, which intuitively captures the coherence of a

cluster, and the larger the better.

We tried two strategies to improve the quality of the clustering result.

1. Increasing the number of micro-clusters: During online analysis, when we need finer granularity

of micro-clusters to analyze a text cell, we can always go down to its sub cells, which result in a set

of larger number of micro-clusters. In our experiment, we test our method with different number

of micro-clusters (i.e. K80, K500, K1000), and the result in the table shows that as the number of

micro-clusters increase we can get improvement on the quality by sacrificing some time.

2. Additional iterations of document based clustering: After running GS-MC, we may also further

improve the quality of clustering by starting from the results of GS-MC and running additional

iterations of k-means on document vectors, as shown in the last six rows of the table where we show

the results of running one additional iteration and two additional iterations. For example, K80 +

1 means we do one iteration of document-based clustering after clustering all the 80 micro-clusters

into P target clusters, using mean vectors of the result P clusters as the starting point. The result

also shows that by additional iterations of document vector based clustering, the quality of clusters

can be improved.

Table 4.7: Quality Comparison for Standard Cell Summarization
P= 10 P= 5

Method Quality Time Quality Time

Baseline 491.84 52.36 444.09 47.38

K80 445.59 0.57 408.02 0.50

K500 456.22 6.55 420.82 6.31

K1000 469.87 17.83 430.60 14.86

K80 + 1 463.88 3.53 422.35 2.77

K500 + 1 473.98 9.78 432.84 8.71

K1000 + 1 482.36 21.15 437.90 17.29

K80 + 2 468.11 6.46 427.01 4.98

K500 + 2 477.12 12.97 434.19 11.03

K1000 + 2 484.30 24.42 438.48 19.69

66

Overall, although the baseline method gets very high quality of cluster, the time cost of it is also

the highest. With the help of MiTexCube, GS-MC can indeed support flexible tradeoff between

efficiency and quality of clustering.

Query-Specific Cell Summarization

We now look at query-specific cell summarization, and here we compare our method QS-MC with

the MMR baseline method QS-Base again in terms of both efficiency and quality. Still, we use

the ASRS data as our test data, and use a query (“flight”, “system”) to test the performance of

the two methods (similar conclusions can be drawn with other queries). To calculate the similarity

between a document and a query, we use the KL-divergency retrieval model [31].

Efficiency: Figure 4.8(a) and Figure 4.8(b) show the experimental results for different cell sizes

and different numbers of summary documents, respectively. From these figures, we can see that

the time cost of QS-Base increases linearly as we increase either the total number of documents in

a cell or the number of target summary documents. If we look at Eq. 4.3, we can find out that in

MMR, whenever a top ranked document is selected, it would need to update the score of all the

rest documents, and this is the reason why the time cost of QS-Base increases linearly as shown

in Figure 4.8.

In contrast, the time cost of QS-MC only increases very little when the total number of doc-

uments increases, as shown in Figure 4.8(a), or when the number of target summary documents

increases, as shown in Figure 4.8(b). Moreover, the performance of different settings of the number

of micro-clusters K do not have very much difference, so that their curves overlap with each other.

Actually, from previous section we can know that the time cost of QS-MC mainly depends on the

process of document ranking, and almost independent of the number of target summary documents

and the setting of the number of micro-clusters K. So overall, the QS-MC method is much faster

than the QS-Base method.

Quality: Table 4.8 shows the quality comparison result of one query when we retrieve 20 document

as a summary based on two measures: (1) coverage and (2) relevance. The coverage is calculated

using the following method: for each unselected document, we calculate the highest cosine similarity

of this document with the selected 20 documents as its score, which intuitively captures how well

67

0

5

10

15

20

25

30

35

1000 1500 2000 2500 3000

QS-Base QS-MC-100

QS-MC-60 QS-MC-20

Number of Documents

T
im

e
 (

S
e
c
o

n
d

)

0

2

4

6

8

10

12

14

16

5 10 15 20 25

QS-Base QS-MC-100

QS-MC-60 QS-MC-20

Number of Summaries

T
im

e
 (

S
e
c
o

n
d

)

(a) (b)

Figure 4.8: Efficiency Comparison between QS-Base and QS-MC

this document is covered by the selected 20 documents. Then, we sum over the scores of all the

unselected documents as the coverage. Relevance is the total similarity of all the selected document

to a query. The top three rows are results of MMR (i.e., QS-Base), and the bottom three rows are

result of our method (i.e., QS-MC), where K is the number of micro-clusters in the cell and λ is

the weight parameter used in MMR. The total number of document is 2000. From these results,

we can see that QS-MC consistently outperforms QS-Base in coverage due to better capturing

the representative topics in the cell through micro-clusters, confirming our hypothesis that direct

modeling topics through micro clusters is more effective for selecting documents representing the

cell well than the indirect way through eliminating redundancy used in MMR. However, we also

note that QS-MC has lower relevance than QS-Base, which indicates a tradeoff between relevance

and coverage as well as a tradeoff between relevance and efficiency (as discussed earlier, QS-Base

is much less efficient than QS-MC). Note that here again MiTexCube allows us to make flexible

tradeoff between relevance and efficiency since as K get larger, we get better relevance.

Table 4.8: Quality Comparison for Topic-biased Cell Summarization
λ 0.2 0.4 0.6 0.8 1

relevance -283.27 -282.278 -282.278 -282.218 -282.21

coverage 258.28 257.919 257.919 259.707 259.707

K 10 20 30 50 100

relevance -284.86 -284.0996 -282.8749 -282.6589 -282.5442

coverage 264.3687 269.9924 271.238 264.84 267.6433

68

0

50

100

150

200

250

300

350

400

Topic_1 Topic_2 Topic_3

CA

TX

FL

Topic_1: (ft, 2.51808) (tcasii, 2.03836) (deg, 1.98563)

Topic_2: (rwy, 4.20236) (twr, 3.32848) (apch, 2.33843)

Topic_3: (eng, 4.18536) (fuel, 3.06673) (maint, 1.9488)

0

100

200

300

400

500

600

700

Topic_1 Topic_2 Topic_3

CA

TX

FL

Topic_1: (ft, 2.17672) (tfc, 1.41212) (alt, 1.41139)

Topic_2: (rwy, 4.42674) (txwy, 3.18102) (twr, 2.98404)

Topic_3: (eng, 3.58031) (fuel, 2.84583) (rptr, 1.71506)

0

50

100

150

200

250

300

350

Topic_1 Topic_2 Topic_3

CA

TX

FL

Topic_1: (alt, 2.40233) (ft, 2.34535) (arr, 1.90526)

Topic_2: (rwy, 3.81793) (apch, 2.8462) (twr, 2.64009)

Topic_3: (eng, 3.73188) (fuel, 2.81638) (maint, 1.78779)

(a) (b) (c)

Figure 4.9: Common Topic Comparison

Sample results of comparative analysis of text cells

We use sample results from the ASRS data to show the effectiveness of MiTexCubein the Common

Topic Comparison task. We use the total 4071 documents within three cells for the comparison,

which have different locations(states), namely CA, TX, and FL. The number of common topics to

be compared is set to 10.

Figure 4.9(a) shows the comparison result based on document units1. Figure 4.9(b) is the result

based on micro-clusters in which each cell has 100 micro-clusters inside, and Figure 4.9(c) is the

result where each cell has 500 micro-clusters. The y-axis is the number of documents that belong to

one topic within a cell. The three topics on the x-axis are the top three major topics within the 10

common topics. The top weighted terms are also listed under each graph. We can see that the two

micro-cluster based methods got similar comparison result to the document unit based method.

When the number of micro-clusters of each cell increases, the comparison results are much closer

to the document unit based approach. For example, for the comparison of topic 3 over different

states, Figure 4.9(c) is more accurate than Figure 4.9(b). In addition, compared with the K100

based approach, the K500 based approach has more similar top weighted terms to the document

based approach. The time cost for these three methods are: 215.77, 18.09, and 62.35 seconds,

which shows the advantage of micro-cluster based methods in terms of efficiency.

1Abbreviations: (ft: Feet), (tcasii: Traffic Alert and Collision Avoidance System), (deg: Degree), (rwy: Run-
way), (twr: Tower), (apch: Approach), (eng: Engine), (maint: Maintenance), (tfc: Traffic), (alt: Altitude), (txwy,
Taxiway), (rptr: Reporter)

69

4.5 Conclusions and Future Work

In this Chapter, we proposed a novel cube called MicroTextCluster Cube (MiTexCube) to enable

efficient online analysis of text cells in several applications. We proposed a progressive material-

ization algorithm for this novel cube, an update algorithm for the cube when there are changes

in the database, and methods to leverage MiTexCube for three analysis tasks, including standard

cell summarization, query-specific cell summarization, and common topic coverage comparison.

Experimental results on real multidimensional text databases show that applications based on the

proposed materialized MiTexCube are more efficient than the baseline methods of direct analysis

based on document units in each cell, without sacrificing much quality of analysis. The proposed

MiTexCube has several parameters to accommodate flexible tradeoffs between time and space as

well as effectiveness and efficiency. We conducted several experiments to understand the effects of

changing these parameters and discussed how to set these parameters empirically.

70

Chapter 5

Probabilistic Topic Mapping Model
for Mining Parallel Text Fields

In the last two chapters, we discussed Topic Cube and MiTexCube, and their usage in digesting

and exploring an MDT database. To better take the advantage of the rich information within the

database, e.g. to support decision making, it is often necessary to go beyond supporting digestion

and exploration to further support analysis of latent patterns within the database. To achieve

this goal, in this chapter I will describe a novel model for discovering and comparing latent topical

patterns embedded in text data. The proposed model performs comparative analysis of two parallel

text fields in an MDT database to extract topics from each field and discover their associations. This

kind of MDT databases, i.e. MDT databases with multiple text fields, exist in many domains. For

example, in IT service domain, an MDT database has both “Problem” and “Solution” text fields,

and in medical care domain, an MDT database always has both “Symptom” and “Treatment” text

fields. A record in such a database always has text information in both of these two text fields,

which means a document in one text field is always accompanied by a document in another text

field. Comparative analysis on these text dimensions could discover many useful knowledge. For

example, by analyzing the correlations between the “Problem” field and the “Solution” field, an IT

service manager could figure out possible solutions to a certain type of IT service problems, and this

kind of knowledge is very desirable. Therefore, in this chapter, we are interested in mining two text

fields in an MDT database, which we also call a parallel document collection. In general, a parallel

document collection consists of two sets of documents source and target such that a document of

source set is associated with a document of target set. For mining such a collection, I proposed

and studied a novel model called Probabilistic Topic Mapping (PTM). Experimental results show

that PTM can not only mine meaningful knowledge out of a parallel collection, but is also capable

of mining millions of records with a Hadoop implementation.

71

5.1 Introduction

We present two motivating examples to illustrate real parallel document collections in MDT

databases and the need for mining them.

Help Desk Support: Service providers such as help desks are continuously seeking improved

techniques to diagnose problems, identify their root cause and develop and deploy solutions quickly.

Typically, service providers deploy workflow systems that track the lifecycle of problem records from

occurrence to resolution. Over time, a large number of these records are collected by the provider,

which constitutes the core knowledge-base for IT problems and solutions. Such records naturally

form a parallel document collection where one set of documents includes all the problem records, the

other has all the solution records, and each problem record and solution record form a semantic pair.

For example, Table 5.1 shows an example problem record from a service provider. Such problem-

solution data contains valuable knowledge about problem solving strategies as well as problem

patterns, making it interesting to study how to mine such data to discover useful knowledge. One

particularly interesting goal is to discover the major problem areas, major solution strategies and

what solution strategies can be applied to what problem areas. That is, to discover latent topics

from both problem set and solution set, and to map problem topics to solution topics.

Disease Diagnosis: As another example, consider the medical text data shown in Table 5.2,

where there are two separated text fields for each kind of disease. We can view all the text under

“symptoms” and “treatments” as two separate sets of documents that can be paired with each

other. Although the vocabularies in symptom set and treatment set are often very different, the

semantic topics and their mapping from symptom to treatment are often very consistent. For

such a parallel document collection, it would be extremely valuable to discover the major topics on

symptoms and treatments, and further understand the mapping between symptoms and treatments

so that we can map a category of symptoms to potentially multiple categories of treatments.

In both examples, we see that the general mining problem is as follows: Given a parallel

document collection, discover a set of topics from each set of documents and map a topic from one

set to potentially multiple topics in the other. Although much work has been done on text mining

(see Section 2 for a detailed review of related work), no previous work has addressed this novel

problem. The challenges for mining parallel document collections are the followings:

72

• How to simultaneously mine two sets of topics and their correlations? One challenge here is

the vocabulary gap existent between source and target document sets. E.g., in the medical

example, although a symptom document companies with a treatment document, the vocab-

ularies are often very different. So it’s not feasible to first mine two sets of topics and then

match them based on the content of the topics.

• How to handle the different granularities of topics in source and target sets? E.g., in the

medical example, similar symptoms can lead to very different treatments. It is important to

allow flexible mapping between source and target topics.

• How to construct the model over millions or billions of parallel documents? E.g., there are

tons of IT service tickets generated everyday, and mining such a large scale of data is highly

desirable.

• How to design a model which can flexibly incorporate prior belief? E.g., in certain analysis,

symptom and treatment topics often need to be calibrated with physician’s own belief in

order to generate clinically meaningful topics.

To address all these challenges, we propose to solve this mining problem with a novel prob-

abilistic topic model and a scalable parallel EM implementation. Specifically, we propose a new

probabilistic topic model, called Probabilistic Topic Mapping (PTM) model, to mine parallel docu-

ment collections to simultaneously discover latent topics in both collections as well as the mapping

of topics in one collection to those in the other. We evaluate the PTM model on two different

parallel document collections in two representative domains. One is from IT service management

domain, which we collected from a commercial IT service problem management system; the other

is a medical domain symptom-treatment data set derived from Google Health 1. Evaluation results

show that PTM can effectively discover meaningful topics and mappings on both data sets. We

also show that the discovered topic mappings can be used to improve text matching when there’s

a vocabulary gap. We further implement PTM with MapReduce on a large Hadoop cluster and

test its scalability. The results show that PTM can scale up to parallel document collections with

million documents on a large Hadoop cluster.

1https://health.google.com/health/ref

73

Table 5.1: Examples of Ticket Data

Topic Problem Solution

Capacity Received TEC alert: Disk space C: increased to 91%, only 443MB
is free.

Deleted temp files to free up space

Backup Investigate why server shows failed or incomplete on the backup
report

Verified backup service on servers

Printer Please create a print queue for our site... cleared print queue and print test
page

Hardware USSBHDD1- Disk failure mirrored disk was replaced

Table 5.2: Examples of Medical Data

Disease Symptom Treatment

Food allergy Symptoms usually begin immediately,
within 2 hours after eating. Rarely, the
symptoms may begin hours after eating the
offending food...

The only proven treatment for a food allergy is to avoid
the food. If you suspect you or your child has a food
allergy, consult an allergy specialist...

Sciatica Sciatica pain can vary widely. It may feel
like a mild tingling, dull ache, or a burning
sensation. In some cases...

Treatment is aimed at maximizing mobility and inde-
pendence. The cause of the nerve dysfunction should be
identified and treated as appropriate. In some cases...

5.2 Problem Formulation

Our input consists of two sets of documents from two text fields of an MDT database, where

documents in one set are paired with those in the other. We would assume that one set of documents

to be source documents and the other to be target documents, and the corresponding sets would be

referred to as source document set and target document set, respectively. Our goal is to (1) discover

the major topics from both the source set and target set, and (2) discover a mapping from source

topics to target topics.

We now define this problem more formally.

Definition 5.2.1 (Parallel Document Collection) A Parallel Document Collection C is a set

of text document pairs, i.e., C = {(s1, t1), (s2, t2), . . . , (sN , tN)}, where si and ti are two text

documents and are referred to as a source document and target document, respectively; N is the

total number of document pairs in the collection. We also refer to (si, ti) as a parallel document,

and denote it by di.

Given a parallel document collection D, we also refer to the set of all source documents as the

74

source set, Cs = {s1, s2, . . . , sN}, and similarly, the set of all target documents as the target set,

Ct = {t1, t2, . . . , tN}. Thus, we may also regard the entire parallel document collection C as

{Cs, Ct}. For example, Table 5.1 shows a set of parallel documents, each of which contains a

Problem field (source document) and a Solution field (target document).

Definition 5.2.2 (Topic) A topic in a text collection (either a source set or a target set) is

a probabilistic distribution over words, which characterizes a semantically coherent topic in the

collection. Formally, a topic is represented by a unigram language model θ, i.e. a word distribution

{P (w|θ)}w∈V s.t.
∑
w∈V P (w|θ) = 1. Here, V denotes the whole vocabulary of our corpus.

A word with high probability in such a distribution often suggests what the topic is about. For

example, a probability distribution which has high probability over the words “tape”, “restore”,

and “incomplete” may suggest a topic about backup of data. Such a definition of topic has been

commonly adopted in most of the existing work on using topic models for text mining (e.g., [27, 9]).

Definition 5.2.3 (Mining Topic Mapping (MTM)) Given a parallel corpus C = {Cs, Ct},

the goal of mining topic mapping (MTM) from C is to mine Ks topics {θi}Ksi=1 from the source set

Cs and Kt topics {ψj}Ktj=1 from the target set Ct, as well as the Ks×Kt topic mapping probabilities

from the source to the target document set, i.e. P (ψj |θi) for i = 1, . . . ,Ks and j = 1, . . . ,Kt. See

Figure 5.1 for a visual illustration of a possible output of MTM.

A unique novelty of the MTM task is that it not only extracts two sets of topics from two

correlated text document sets, respectively, and but also discovers mappings between these two

sets of topics, which no previous work has attempted to discover.

For example, in the ticket data described in Table 5.1, MTM will mine topics like “Capacity

Problem” and “Hardware Problem” from the source set (i.e., problem set) and topics like “Deletion

Operation” and “Replace Operation” from the target set (i.e., solution set). At the same time,

the task will also indicate which solution topic is the most appropriate one for a problem topic.

For example, the “Deletion Operation” could be the best solution for the “Capacity Problem”. An

example of the mining result is shown in Figure 5.1.

75

increase 0.12
disk 0.10
fs 0.09
alert 0.07
space 0.05
high 0.03

fail 0.11
backup 0.09
incomplete 0.05
restore 0.05
record 0.03

array 0.10
battery 0.08
failure 0.06
board 0.05
drive 0.03
controller 0.02
slot 0.01

verify 0.15
kept 0.12
bak 0.10
notesdata 0.09
mailrest 0.06
sudo 0.05
restore 0.04

clean 0.16
false 0.15
temp 0.12
free 0.10
remove 0.09
delete 0.06

……

……

0.1

0.6

……

0.7

0.1

0.2

0.2

Source Topics

Target Topics

Topic Mapping Probability

P(w | θ1)

P(w | θ2)

P(w | θ3)

P(w | ψ1)

P(w | ψ2)

P(ψ | θ)

Figure 5.1: An Illustration of Mining Topic Mapping

5.2.1 Generating a Parallel Document Collection from an MDT Database

For an MDT database with multiple text fields, it naturally contains a parallel document collection,

e.g. the MDT databases shown in Table 5.1 and Table 5.2. For MDT databases with only one text

field, although there is no natural parallel document collections available, it’s still possible to

generate a parallel document collection from the database and use PTM to mine useful knowledge

out of it. The idea is to first partition all the records in the database into two groups and then

associate documents from different groups by standard dimension values. For example, in the MDT

database shown in Table 1.1, we can first partition all the records by “Daylight” and “Night”, and

then associate the narratives from “Daylight” and “Night” by the same date or the same flight

model to generate a parallel document collection. In this way, any MDT databases can generate

several possible parallel document collections, and then PTM can be used for comparative analysis

on the collections.

76

5.3 Probabilistic Topic Mapping

In this section, we present a novel probabilistic topic model called Probabilistic Topic Mapping

(PTM) model to solve the problem of mining topic mappings from a parallel document collection.

We will first define the model and then discuss how to estimate the parameters of the model.

5.3.1 Model Description

The idea of PTM is to introduce two sets of word distributions to model the topics in a source

set and a target set, respectively, use a set of possible topic mapping probabilities to model the

topic mapping relation, and then assume a parallel document collection is a sample drawn from

a mixture model involving these word distributions and topic mapping probabilities. Therefore,

given a parallel document collection, we can then fit the model to the data and estimate all those

parameters. The estimated parameter values would give us the specific topics in each set and

specific mapping probabilities between topics.

Formally, let {θi}Ksi=1 be Ks topics in the source set Cs and {ψj}Ktj=1 be Kt topics in the target

set Ct, where p(w|θi) and p(w|ψj) are word distributions for each topic θi and ψj . Let P (ψj |θi)

(i = 1, . . . ,Ks and j = 1, . . . ,Kt) denote the probability that topic θi of the source set should be

mapped to topic ψj in the target set. These probabilities essentially encode the major knowledge

we would like to discover from a parallel document collection.

Now we assume that a parallel document d = (ds, dt) (ds and dt are the source and target

documents) is generated word by word in the following way:

1. To generate a word w in the source document ds:

(a) Pick a topic zs = θi with probability P (θi|d)

(b) Sample a word w from the multinomial distribution P (w|θi)

2. To generate a word w in the target document dt:

(a) Pick a topic from the source set, zs = θj with probability P (θj |d)

(b) Pick a topic in the target set, ψi, according to the topic mapping probability distribution

P (ψi|θj)

77

(c) Generate a word w from the multinomial distribution P (w|ψi)

Note that we model the source document and the target document differently to capture the

asymmetric mapping from topics in the source set to those in the target set. The mapping is

reflected in step 2.(b) when generating a target document, where we first sample a topic from the

source set and use the topic mapping model p(ψi|θj) to select a topic in the target set. This ensures

the coupling of the topic choices for the source and target documents, and the discovered topics on

the two sets would be aligned with each other. The graphical representation of PTM is described

in Figure 5.2. Note that no previous model outputs topics as well as their mappings as we do, and

if we apply topic models to each set separately, the mined topics from the two sets may not be

well-aligned with each other.

Based on the generative process described above, every word in the source document of d can

be potentially generated using any of the Ks topics, thus the probability of generating word w is:

Ps(w|d) =
Ks∑
j=1

P (θj |d)P (w|θj), (5.1)

To compute the probability of generating a word w in the target document, we first need to compute

the probability that a topic ψi would be selected, i.e., p(ψi|d). Since ψi is selected through a topic

mapping probability distribution P (ψi|θj) and θj can be any of the Ks source topics, we have

P (ψi|d) =
Ks∑
j=1

P (ψi, θj |d) =
Ks∑
j=1

{P (ψi|θj)P (θj |d)} (5.2)

Once p(ψi|d) is known, we can compute the probability of generating word w in the target document

of d in the same way as we did for a word in the source document. That is,

Pt(w|d) =
Kt∑
i=1

P (ψi|d)P (w|ψi) (5.3)

=
Kt∑
i=1

Ks∑
j=1

P (ψi|θj)P (θj |d)

P (w|ψi) (5.4)

Therefore, given the document IDs for all the documents in a parallel document collection, the

78

log-likelihood of the whole parallel document collection C is

L(C) =
∑
d∈C

∑
w∈V
{c(w, ds) logPs(w|d) + c(w, dt) logPt(w|d)}

=
∑
d∈C

∑
w∈V

c(w, ds) log
Ks∑
j=1

P (w|θj)P (θj |d) (5.5)

+
∑
d∈C

∑
w∈V

c(w, dt) log
Kt∑
i=1

Ks∑
j=1

P (ψi|θj)P (θj |d)

P (w|ψi),

where c(w, ds) and c(w, dt) are the count of w in d’s source document ds and target document

dt, respectively. The proposed PTM model has the following parameters, which we will denote

θ

D

z w
Ns

ψ z

Nt

Figure 5.2: Graphical Model for PTM

by Λ: (1) source topics: {P (w|θi)}V×Ks ; (2) target topics: {P (w|ψj)}V×Kt ; (3) topic mapping:

{P (ψj |θi)}Kt×Ks ; and (4) coverage of source topics in each parallel document d: {P (θi|d)}Ks×N .

They satisfy the following constraints:

∑Ks
i=1 P (θi|d) = 1 for d ∈ C∑
w P (w|θj) = 1 for j = 1, . . . ,Ks∑
w P (w|ψi) = 1 for i = 1, . . . ,Kt∑Kt
i=1 P (ψi|θj) = 1 for j = 1, . . . ,Ks

79

We can now see that the problem of mining topic mappings is now reduced to one to compute the

values of these parameters based on a given parallel document collection. In the next section, we

will discuss how we estimate these parameters so that we can obtain the mined topics in both the

source and document sets and the mappings of topics from source to target.

5.3.2 Parameter Estimation

In this section, we discuss how to estimate the parameters Λ using the maximum likelihood esti-

mator, which selects parameter values that maximize the data likelihood. That is, our estimate

would be given by

Λ∗ = argmaxΛL(C|Λ)

where L(C|Λ) is the log-likelihood of the parallel document collection C given in Equation 5.5 (here

we introduced Λ into the function to make the optimization problem more explicit).

Since PTM is a mixture model, there is no analytical solution to the maximum estimation

problem. However, as in the case of other mixture models, we can use use the Expectation-

Maximization (EM) algorithm to estimate the parameters. The EM algorithm is an iterative

hill-climbing algorithm. It starts with a randomly chosen initial value for Λ and then iteratively

improves it until it reaches a local maximum of the likelihood function. In each iteration, it would

update the parameters through an E-Step and an M-step.

In the E-step, we use the current version of parameter values to infer the latent topics sampled

in the generation process (i.e., the zs and zt described in the generation process) by computing the

probability distributions of three hidden variables: (1) {zds,w ∈ [1,Ks]} indicates the source topic

used to generate word w in source document ds (thus P (zds,w = j) gives the probability that word

w in ds is generated from source topic θj). (2) {zdt,w ∈ [1,Kt]} indicates the target topic used to

generate word w in a target document dt. (3) {zdt,ψi ∈ [1,Ks]} indicates the source topic used to

generate the target topic ψi through mapping, thus P (zdt,ψi = j) is the probability that the target

topic ψi in dt is selected based on (i.e., mapped from) the source topic θj . The updating formulas

for the E-step are shown in Eq. 5.6 to Eq. 5.8, where P (m) indicates the value of a parameter

80

estimated in the m-th step of the EM algorithm.

P (zds,w = j) ∝ P (m)(w|θj)P (m)(θj |d) (5.6)

P (zdt,w = i) ∝ P (m)(w|ψi)
Ks∑
j=1

P (m)(ψi|θj)P (m)(θj |d) (5.7)

P (zdt,ψi = j) ∝ P (m)(ψi|θj)P (m)(θj |d) (5.8)

In the M-step, we use the hidden variable distributions obtained from the E-step to re-estimate

all the parameters. Specifically, the formulas for updating all the parameters of our PTM model

are as shown in Eq. 5.9 to Eq. 5.12, where all the parameters would be normalized with their

corresponding constraints so that all the probabilities would sum to 1.0. Basically, we just pool

together the expected counts for all these parameters with respect to the distributions of the hidden

variables computed in the E-step.

P (m+1)(w|θj) ∝
∑
d

c(w, ds)P (zds,w = j) (5.9)

P (m+1)(w|ψi) ∝
∑
d

c(w, dt)P (zdt,w = i) (5.10)

P (m+1)(ψi|θj) ∝
∑
d

∑
w

c(w, dt)P (zdt,w = i)P (zdt,ψi = j) (5.11)

P (m+1)(θj |d) ∝
∑
w

c(w, ds)P (zds,w = j) (5.12)

+
∑
w

c(w, dt)

{
Kt∑
i=1

P (zdt,w = i)P (zdt,ψi = j)

}

The EM algorithm is only guaranteed to converge to a local maximum, so in general, we run

multiple trials and select the best local maximum as an approximation of the true global maximum.

5.3.3 Incorporating Prior Knowledge into PTM

Sometimes we have some prior knowledge about the topics or topic mappings in an application

domain that we may wish to leverage in mining topic mappings. For example, an analyst may

have some knowledge about topics exist in the collection and so can easily specific some keywords

to define a topic (e.g., words like “print”, “ink”, and “queue” may be provided for a topic about

printing problems). Also, we may know that the mapping from source topics to target topics is

81

one-to-one. We now discuss how we can incorporate such prior knowledge into PTM and obtain

interesting variants of the “standard” PTM introduced earlier.

First, instead of using the maximum likelihood estimator to estimate the parameters of PTM,

we can use our prior knowledge to define a prior distribution of parameters and use the Maximum

A Posteriori (MAP) estimator to estimate the parameters. The MAP estimator would attempt to

maximize both the likelihood and the consistency with the defined prior. If we define a conjugate

prior to our model, the MAP estimator can be computed using the same EM-algorithm as we

used for the Maximum Likelihood estimator except that the M-step will involve pooling additional

“pseudo counts” from the prior with the expected counts in the original formulas. In this sense,

a conjugate prior thus in effect would convert our prior knowledge into additional “pseudo data”

to improve our estimate of parameters. For example, when we describe a topic about printing

problem with words such as “print” and “queue”, with a conjugate prior, we would pretend we had

observed additional counts of these words in the M-step, leading to higher probabilities for these

words, and thus effectively “forcing” the estimated topic to be closer to our topic specification.

Such a way of allowing a user to control a topic model has also been used in previous work [49].

Second, we may also use our prior knowledge to set some parameters of the PTM model. Here

we discuss one interesting case, where we know that the topic mapping is one-to-one. In this case,

the numbers of source and target topics would be identical, i.e., Ks = Kt. Moreover, a source topic

can only be mapped to precisely one target topic, so we can assume that the topic choice in both the

source document and the target document to be identical, i.e., P (θi|d) = P (ψi|d), for i = 1, . . . ,Ks.

Intuitively, such a model would allow us to align each topic in the source documents to precisely

one topic in the target documents and vice versa. Thus we call such a special case of PTM an

Alignment PTM (APTM), and its graphical illustration is shown in Figure 5.3.

The estimation of the APTM can be done by using the same EM algorithm used for the

standard PTM except that we do not need to estimate p(ψi|θj) as it is known that p(ψi|θi) = 1,

while p(ψi|θj) = 0 if i 6= j.

82

θ

D

z w
Ns

z

Nt

Figure 5.3: Graphical Model for APTM

5.4 Experiments

In this section, we evaluate our PTM model both qualitatively and quantitatively. Besides, we

also test the scalability of our PTM model using the Hadoop framework, which demonstrates the

feasibility of PTM in real business in which at least millions of parallel documents need to be

analyzed.

5.4.1 Data Set

We used two data sets from two different domains, namely IT service domain and medical domain,

to evaluate the proposed PTM model. The two data sets also represent two different ways to form

a parallel document collection.

The first data set is collected from a commercial IT service problem management system.

Everyday, thousands of tickets are delivered to this IT service problem management system. Once

a problem ticket is resolved, the agent will document the solution for future references. All these

archived data need to be analyzed for further improving the whole IT services for their customers.

Our PTM model can serve as a powerful tool for analyzing this data, where we treat each ticket’s

problem and solution as a parallel document pair. For different experiment purposes, we use subsets

of different sizes collected from this large data archive.

83

Table 5.3: Word distributions of topics mined from PTM in ticket data

Capacity Hardware

Problem Solution Problem Solution

increase 0.06 free 0.04 array 0.08 replace 0.07
space 0.05 temp 0.04 battery 0.06 battery 0.04
disk 0.04 delete 0.04 accelerate 0.05 cache 0.03
alert 0.04 clean 0.03 failure 0.03 ce 0.02
filesy 0.03 file 0.03 drive 0.03 adu 0.02
cpu 0.03 false 0.02 fail 0.03 array 0.02
tec 0.03 normal 0.02 controller 0.02 ok 0.02

diskused 0.03 fs 0.02 slot 0.02 raid 0.02
91pct 0.03 usage 0.02 board 0.02 detect 0.01
high 0.03 old 0.02 attach 0.02 fine 0.01

The second data set is collected from medical domain and is downloaded from Google Health.

For each disease, we use the description of its symptom and treatment as the parallel document

pair. Totally, we collected 1300 pairs of parallel documents from this web site.

5.4.2 Sample Topic Mapping Results

The output from our PTM model consists of (1) a set of source topics; (2) a set of target topics;

and (3) mapping relations of the source topics and target topics. We now show some sample mining

results for all these three components of the mining results. We first show two sample source topics

and their corresponding target topics mined from the problem-solution ticket domain in Table 5.3.

For each topic, we show the top k words with the highest probability in the word distribution of

that topic (i.e., p(w|θ) or p(w|ψ)). The two columns labeled as “Capacity Problem and Capacity

Solution” are a sample pair of source topic and target topic with high mapping probability. We see

that they are intuitively very meaningful, showing that disk space is a major problem in this data

set and its common solution is to delete temporary files and free up disk space. Similarly, the two

columns labeled as “Hardware Problem and Hardware Solution” are another pair of source topic

and target topic with high mapping probability. Once again, we see that the mined topics and

their mapping are very meaningful, indicating that another major category of problems is hardware

problems. Clearly, such PTM results would be very useful to help analysts understand the major

problems and their solution strategies.

84

We show some sample topic mapping results with PTM on our medical data set in Figure 5.4

and Figure 5.5. Figure 5.4 shows the result where we set more target topics (Kt = 40) than source

topics (Ks = 20), while in Figure 5.5 the number of source topics is larger. In the first case,

one symptom can have several different treatments. For example, the (“abdominal”, “vomit”,

“diarrhea”) symptom could be either diagnosed as “allergy” to some “food” and treated with

“antihistamine”, or be diagnosed as “intestine” or “bowel” disease and treated by “vitamin” and

“nutrition” “supplement”. The modeling result of PTM also provides the possibilities of these two

treatments according to the data. In the second case, when the number of symptom topics is larger

than the number of treatment topics, we can find some treatments which can be used for several

different symptoms. For example, the “antibiotic” and “penicillin” treatment can be used for both

(“fever”, “headache”) symptom and (“ulcer”, “blister”) symptom. In summary, from this example,

we can see that with different settings, PTM can reveal different correlations between topics in two

parallel document collections, providing the needed flexibility for an analyst to probe a data set

according to different application needs.

In contrast, the sample results in Figure 5.6 show that APTM only allows one to one topic

mappings. So if one symptom has several possible treatments, the corresponding treatment topic

of that symptom topic may mix several treatments together. For example, Figure 5.6 shows the

mining result with APTM on the same medical data. On the left, “Symptom 1” has almost the

same content as the “Symptom 1” in Figure 5.4. While in Figure 5.4 we know there are several

possible treatments for this symptom and their possibilities, in Figure 5.6 all the possible treatments

are mixed together. This is not very clear for an analyst to analyze the correlations between topics

embedded in the data. A similar example is shown on the right in Figure 5.6, where one treatment

can resolve several symptoms and all the those symptoms are mixed together in the mining result

of APTM.

In both domains, we see that the PTM model can discover meaningful topics from both the

source set and the target set and map source topics to target topics to reveal interesting associations.

85

eye 0.17
vision 0.09
light 0.03
eyelid 0.03
blur 0.03
sensitive 0.02
tear 0.02
blind 0.01
pupil 0.01
red 0.01

eye 0.11
cornea 0.02
retina 0.02
lens 0.02
glass 0.02
drop 0.02
glaucoma 0.01
compress 0.01
corticosteroid 0.01
lubricate 0.01

58% 41%

Treatment_1

sleep 0.06
drop 0.06
lase 0.03
bed 0.02
tick 0.02
cataract 0.02
conjunctivitis 0.02
eye 0.02
lyme 0.02
immediate 0.01

Treatment_2

Symptom_1

……

abdominal 0.11
vomit 0.06
diarrhea 0.06
stool 0.06
nausea 0.04
cramp 0.03
weight 0.02
bloody 0.02
watery 0.01
constipate 0.01

allergy 0.03
milk 0.03
food 0.03
diarrhea 0.03
electrolyte 0.02
fluid 0.02
colon 0.02
allergic 0.01
impact 0.01
antihistamine 0.01

51% 34%

Treatment_3

intestine 0.05
bowel 0.04
diarrhea 0.03
stomach 0.03
vitamin 0.02
lost 0.02
fluid 0.02
nutrition 0.01
mineral 0.01
supplement 0.01

Treatment_4

Symptom_2

51%41%

……

Figure 5.4: Word distributions and topic mapping learned from PTM on medical data (Ks =
20,Kt = 40)

5.4.3 Quantitative Evaluation of PTM

To quantitatively evaluate the quality of the discovered topics and their mappings by PTM, we

study an interesting application of PTM for matching a document in the source set with documents

in the target set. That is, given a document in the source set, we would like to retrieve documents

in the target set that are semantically associated with the source document. This can be very useful

in the IT domain to suggest solutions from an archive for a new problem. Similarly in medical

domain, it can also reveal typical treatments for some reported symptoms of a patient. While

this problem can be solved by using a standard retrieval model by treating the source document

as a long query to score and rank target documents, we will show that PTM can enhance such a

method through bridging the vocabulary gap between the source document and a target document

through the learned underlying topic mappings. Such an evaluation will help us indirectly measure

the quality of the mining results of PTM. (Please be aware of that the goal of this experiment is

not to find the best way for retrieving target documents.)

Specifically, if we use the source document (either ticket problem description or symptom de-

86

joint 0.04
inflammatory 0.04
anti 0.03
nsaid 0.03
nonsteroidal 0.02
arthritis 0.02
relieve 0.02
improve 0.02
physical 0.01
tendon 0.01

joint 0.17
pain 0.07
foot 0.04
tend 0.03
swell 0.03
toe 0.03
arthritis 0.02
red 0.02
affect 0.02
deform 0.02

Symptom_1

leg 0.13
pain 0.09
arm 0.06
shoulder 0.03
hip 0.03
knee 0.03
stiff 0.02
elbow 0.02
stand 0.02
walk 0.02

Treatment_2Treatment_1

……

antibiotic 0.14
infect 0.08
bacteria 0.03
penicillin 0.03
syphilis 0.02
tetracycline 0.02
doxycycline 0.02
intravenous 0.02
vein 0.01
erythromycin 0.01

fever 0.09
rash 0.05
red 0.04
chill 0.03
ache 0.03
ill 0.03
degree 0.02
headache 0.02
bite 0.02
syphilis 0.02

ulcer 0.05
discharge 0.05
painful 0.04
node 0.03
lymph 0.02
anus 0.02
blister 0.02
sore 0.02
burn 0.02
groin 0.02

Symptom_2 Symptom_3 Symptom_4

……

Figure 5.5: Word distributions and topic mapping learned from PTM on medical data (Ks =
40,Kt = 20)

scription) as a query q, retrieval methods like the KL-divergence retrieval model [31] can be used

to rank possible targets (solutions or treatments). With this retrieval model, one critical issue is

how to construct a query language model for q, and we will use PTM to improve the construction

of the query language model. We will thus experiment with three different methods:

1. Baseline retrieval method: we define a query language model for q as P (w|q) ∝ c(w, q), where

c(w, q) is the number of words w in q.

2. PLSA based approach: one disadvantage of the baseline approach is that the source descrip-

tion may be too short (e.g. a short description of a patient’s symptom) to be informative to

retrieve the archived solutions. One possible solution is to use PLSA model to help expand

the original query language model P (w|q) [57]. Specifically, we first train PLSA model on

a set of archived source documents and learn Ks from it. Then, we first use the folding-in

method proposed in [27] to calculate {P (θi|q)}Ksi=1 in the source description. Basically, we fix

the parameters {P (w|θi)}Ksi=1 which are estimated from the training data, and then run the

EM algorithm used in PLSA to estimate {P (θi|q)}Ksi=1. Then, the smoothed query language

87

eye 0.06
lase 0.03
drop 0.03
stone 0.02
glass 0.01
steroid 0.01
cornea 0.01
freeze 0.01
hemangioma 0.01
polyp 0.01

eye 0.12
vision 0.06
light 0.03
color 0.03
eyelid 0.02
red 0.02
lesion 0.02
white 0.02
face 0.02
blur 0.02

Symptom_1

Treatment_2Treatment_1

……

antibiotic 0.13
infect 0.05
bacteria 0.03
factor 0.02
vein 0.02
intravenous 0.02
tetracycline 0.02
doxycycline 0.02
gonorrhea 0.02
drain 0.01

urine 0.07
bleeding 0.06
fever 0.06
pain 0.05
chill 0.03
urinary 0.03
rash 0.02
red 0.02
painful 0.02
tract 0.02

Symptom_2

……

(Left) (Right)

Figure 5.6: Word distributions and topic mapping learned from APTM on medical data where
K = 20

model is calculated as follows:

PPLSA(w|q) = λP (w|q) + (1− λ)
Ks∑
i=1

P (w|θi)P (θi|q)

where P (w|q) is the original query language model. It can be easily verified that:

∑
w

PPLSA(w|q) = 1

3. PTM based approach: Both the baseline method and the PLSA based approach would fail

if the query document (source document) does not have much overlap in vocabulary with

a target document (which is often the case as, e.g., treatments and symptoms are often

described in different terms). Our PTM model can be used to solve or alleviate the problem

through expanding the query through related topics and their mappings to the target topics,

88

which presumably helps “crossing the source-target boundary”. Specifically, first we train

our PTM model on a training data set and learn all its parameters. Then, we still use the

folding-in method in PLSA to estimate {P (θi|q)}Ksi=1 of our source query q. After that, we

use the topic mapping probabilities {P (ψj |θi)}j=1...Kt
i=1...Ks

to calculate the corresponding target

topic mixture distribution for q, i.e. {P (ψj |q)}Ktj=1, using Eq. 5.2. Then, the smoothed query

language model is calculated as follows:

PPTM (w|q) ∝ λP (w|q) + (1− λ)

Ks∑
i=1

P (w|θi)P (θi|q) +
Kt∑
j=1

P (w|φj)P (φj |q)

 ,

Both the parameters {P (w|θi)}Ksi=1 and {P (w|φj)}Ktj=1 are got from our training data.

Since there is no relevance judgement data available for evaluating the retrieval performance,

we conduct our experiments in a simulated way. Specifically, first we split our data into two parts,

training and testing, and then learn either PLSA or PTM model on the training data. Second,

we treat the source document in each testing parallel document pair as a query, and treat its

corresponding target document as the true answer for the retrieval. After that, we put all the

target documents into a pool, including target documents in both training and testing parallel

document pairs, and using the three methods to rank all the targets based on each source query.

We use the rank of the true targets to evaluate these three methods. For each method, the higher

it ranks the true target, the better that method is. Since we use the KL-divergence retrieval

model [31] for our purpose, we also build a document language model ηt for each target dt in the

archive P (w|ηt) ∝ c(w, dt). Then, we score a target dt based on the KL-divergence between the

different query language models and ηt.

Two data sets are used for this evaluation. In the first data set, we randomly select 2500

tickets as our training data, and randomly select another 200 tickets as our test data. For each

test ticket, we use its problem field as a source query to retrieve relevant tickets from those 2700

solution/target documents. In the second data set, we randomly split our 1300 medical document

pairs into two parts: 1200 for training and 100 for testing. The number of source and target topics

are set empirically.

To analyze the effectiveness of PTM in bridging the vocabulary gap between source and target

89

IT Medical
Easy Difficult Easy Difficult

Baseline 23.23 639.47 4.14 216.15

PLSA

0.8 24.42 645.07 3.69 213.24
0.85 23.19 652.12 3.66 213.87
0.9 23.56 653.59 3.79 214.56
0.91 22.91 653.07 3.83 215.1
0.95 23.23 656.77 3.93 215.75

PTM

0.8 29.86 519.6 4.55 174.92
0.85 27.96 529.79 4.45 181.41
0.9 25.91 542.15 4.1 192.27
0.91 25.51 547.43 4.07 195.1
0.95 24.46 573.81 4.1 205.66

Figure 5.7: Effectiveness of PTM in improving difficult cases for document matching

document sets, we divide all the test cases into two groups: easy and difficult. If one test case’s

source document and target document do not have vocabulary gap and are very similar to each

other, then the test case will be put into the easy group, otherwise it will be put into the hard group.

Here, we use cosine similarity to compare the similarity between a source document and a target

document. If the similarity is above 0.2, then we regard that there is not significant vocabulary

gap between the two documents. By this way, there are 80 test cases in IT service data and 39

test cases in Medical data are classified into easy groups, and all the other test cases are classified

into the hard groups. Then, for each group, we calculate the average rank of the true target of all

the test cases in this group. Here, we use average rank as the metric, because, compared with the

commonly used measure MRR (Mean Reciprocal Rank), average rank allows us to see more clearly

the improvement on the difficult cases. Figure 5.7 shows the experimental results. For both PTM

and PLSA, we also vary the value of the combination weight λ, which is list in the second column.

Here, λ controls the weight of the original source document in the expanded query. If it is set too

small, both PLSA and PTM will get worst results because the expanded query is too different from

the original source document.

From the table, we can see that PTM indeed improves over the baseline for difficult cases

consistently. However, its performance on the easy cases is often not as good as the baseline,

which is expected because by bringing latent topics to smooth query language model, we may lose

discriminativeness. Indeed, the trend along the parameter variation shows clearly this tradeoff: if

we trust the baseline model more, we would do better on easy cases, but worse on difficult cases,

90

thus the potential for PTM to improve difficult cases is very clear. With appropriate setting of

the weighting parameter, it’s possible for PTM to do better for both easy cases and difficult cases.

However, on the other hand, we did not see clear improvement of PLSA on the difficult cases over

the baseline method, though there is a little improvement over the easy cases with some settings

of the weighting parameter. This indicates that smoothing the query language model with only

the source topics is not effective enough for bridging the vocabulary gaps between the source and

target documents.

5.4.4 Efficiency Analysis

In this section, we evaluate the efficiency of our PTM model in two ways. First, we compare the

performance of our model with a PLSA based method, in terms of CPU time and memory usage.

This test is conducted on a single node, and it’s mainly used to show whether using PTM to mine

both topics and their mappings will cost more time or space, compared with a PLSA based method

which only mines two sets of topics independently. Second, we exam the scalability of our model

on millions of pair documents base on Hadoop framework, which is to test the feasibility of using

our model for real business where a large collection of parallel documents needs to be analyzed.

All the efficiency experiments are conducted on IT service ticket collections.

Experiments on a Single Node

Experimental Setup

We use the following performance metrics for evaluation: (1) CPU time: the average time

spent on one iteration of EM algorithm; (2) memory usage: the maximum memory usage during

the execution. We use PLSA model as the baseline algorithm. For comparing CPU time, PLSA

runs on the problem corpus and the solution corpus separately, and then uses the sum of average

time spent per iteration on both corpus as the CPU time. Similarly, for comparing memory, we

also sum the memory usage of PLSA on both corpus together as its memory usage.

There are two main factors in the PTM models which affect its total cost: the total number

of document pairs M and the number of topics Ks and Kt. All the single node experiments are

performed on a machine with 1GB RAM and 3.2 GHz CPU.

91

Scalable to the number of documents

We randomly vary the corpus size from1000 to 6000 document pairs (tickets), while setting all

the other parameters as the following: the number of problem and solution topics as 10 and 5,

respectively, the number of unique words is 9469. For each trial, we run PTM and PLSA 10 times

and compute the average time per iteration. For the memory usage, we use the maximum memory

usage during the entire run. Since there is some common memory cost of both PTM and PLSA

(e.g. the memory cost of loading the inverted index of the whole corpus), we deduct that part from

the results and only compare the actual memory usage of each algorithm.

Figure 5.8 (a) plots CPU time as a function of the number of documents. We can see that the

time spent for PTM per iteration is almost the same as baseline PLSA model, even though PTM

mines more patterns such as topic mapping probabilities. From Figure 5.8 (b), we find that the

maximum memory usage for the baseline method is a little larger than the PTM model. This is

because in the baseline method, the PLSA model needs to store two different sets of topic portion

parameters {P (θi|s)} and {P (ψj |t)} parameters for both source and target collections. On the

other hand, PTM only stores one set of topic portion parameters {P (θi|s)} and one set of topic

correlation parameters {P (ψj |θi)} which do not depend on the number of documents. Since the

number of topics is always much smaller than the number of documents, the total memory usage

of PTM is smaller than the baseline method.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1000 2000 3000 4000 5000 6000

PTM

Baseline

T
im

e
C

os
t P

er
 It

er
at

io
n

(S
)

Number of Docs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 2000 3000 4000 5000 6000

PTM

Baseline

M
em

or
y

C
os

t (
K

B
)

Number of Docs

(a) CPU time (b) Memory Usage

Figure 5.8: Efficiency Analysis with Different Corpus Size

92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(5,2) (10,5) (15,7) (20,10) (25,12)

PTM

Baseline

T
im

e
C

os
t P

er
 It

er
at

io
n

(S
)

(Kp, Ks)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(5,2) (10,5) (15,7) (20,10) (25,12)

PTM

Baseline

M
em

or
y

C
os

t (
K

B
)

(Kp, Ks)

(a) CPU time (b) Memory Usage

Figure 5.9: Efficiency Analysis with Different Topics

Scalable to the number of topics

In this experiment, we test our algorithm’s efficiency by changing the number of topics, while

fixing the other parameters, e.g. the size of document corpus is 2500. We set the number of target

topics Kt as the half of the number of source topics.

Figure 5.9 shows the experimental results, from which we get similar conclusion as from Fig-

ure 5.8. We also notice that both the CPU time and memory usage increase linearly as the number

of topics. In summary, despite PTM provides richer mining results compared with traditional topic

models, it does not sacrifice any performance in CPU time and memory usage.

Experiments on Multiple Nodes

Since the PTM model is estimated using EM algorithm, it is possible to scale up in parallel using

Map-Reduce framework [15]. As a result, our algorithm can mine millions or even billions of

parallel document collections. The documents are first distributed into different mappers, which

calculate all the hidden variables (E-step: Eq. 5.6 to Eq. 5.8). Then, reducers will collect these

calculation results from mappers and update all the model parameters (M-step). We implement

the Map-Reduce version of our algorithm with Hadoop 2, and test it on a set of 3 million tickets.

The experiments are conducted on a cloud computing testbed which consists of 128 HP DL160

compute nodes with dual quad core CPUs (2.66GHz), 16GB of RAM, and 2 TB of disk space.

2http://hadoop.apache.org

93

The performance metrics we use are 1) speed-up that is the ratio between running time on one

node and that on N nodes, 2) execution time per EM iteration.

Figure 5.10(a) shows how well our algorithm is scaled up with different number of nodes. We

observe a near linear scale-up initially, then goes flat, because the mapper jobs are getting too

small and MapReduce overhead overtakes. However, as we have more data, the linear scale-up will

extend to a larger number of nodes.

We also test the efficiency of estimating our model with different number of mappers and

reducers. The performance is evaluated by the time cost for each iteration of the EM algorithm.

Figure 5.10(b) shows the time cost of our algorithm with different number of mappers, where the

number of reducers is set to 5, and Figure 5.10(c) shows the time cost of our algorithm with different

number of reducers, where the number of mappers is fix to 200. We observe that with 200 mappers

and 5 reducers, one iteration of our EM algorithm takes about 60 to 80 seconds when we train our

model over 3 million tickets. Another finding is that increasing the number of reducers does not

save the computation cost, while increasing the number of mappers does. It indicates that in the

Map-Reduce version of PTM model, most of the computation cost of our algorithm is done during

E-step rather than M-step.

Theoretically, on a single node, the time complexity of each EM iteration for estimating PTM

is O((Ks +Kt)MNavg), where M is the totaly number of tickets and Navg is the average number

of unique words in each ticket. On X multiple nodes, the time complexity for each EM iteration

will be approximately O((Ks +Kt)
M
XNavg) plus additional cost by Hadoop framework.

5.5 Conclusions and Future Work

In this chapter, we proposed a novel approach called Probabilistic Topic Mapping (PTM) model for

mining two text fields, i.e. a parallel document collection, of a MDT database. Our experimental

results show that PTM can effectively discover meaningful topics and their mappings from parallel

document collections. We also use applications to demonstrate PTM’s capability of improving text

matching and retrieval when there is vocabulary gap. The Map-Reduce version of our PTM makes

it feasible to analyze parallel collections with million parallel documents. The proposed PTM

model can be regarded as a novel extension of the PLSA model [26] to model parallel documents

94

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

Sp
ee

du
p

Number of nodes

0

50

100

150

200

250

300

0 50 100 150 200

Se
co

nd
s f

or
 e

ac
h

ite
ra

tio
n

Number of mappers

(a) Speedup with different number of nodes (b) Efficiency with different number of mappers

0

10

20

30

40

50

60

70

80

0 10 20 30 40

Se
co

nd
s f

or
 e

ac
h

ite
ra

tio
n

Number of reducers

(c) Efficiency with different number of reducers

Figure 5.10: Scale up analysis of PTM model

and discover topic mappings. Similar extension can also be made to the LDA model [9], which

would be an interesting future research direction. Also, in many applications, the MDT databases

are increasing over time, so how to modify PTM to model the time evolved topic mapping between

two text fields is also a promising direction.

95

Chapter 6

Conclusions

In this chapter, I will summarize the contributions of my thesis and discuss some future research

problems that are interesting to explore.

6.1 Summary

As the amount of MultiDimensional Text databases grows explosively, efficient and effective analysis

of this kind of databases and mining knowledge out of them becomes more and more desirable.

In my thesis, I first identified three major challenging tasks in analyzing MDT databases, namely

digestion, exploration, and analysis, and then proposed and studied different novel models to solve

research problems raised by these challenging tasks. Specifically:

1. To support efficient digestion of the text information within an MDT database, I studied a novel

data model called Topic Cube. It combines OLAP technology and topic modeling approach so that

we can extend OLAP to the text dimension which allows an analyst to flexibly digest the content

in text documents together with other standard dimensions. Technically, a topic cube extends the

standard data cube in two ways: (1) adopt a hierarchical topic tree to define a topic dimension for

exploring text information, and (2) store word distributions as the primary content measure (and

topic coverage probabilities as auxiliary measure) of text information. To efficiently materialize

topic cube, I proposed two kinds of heuristic aggregations which leverage previously estimated

models in component cells or lower level topics to choose a good starting point for estimating the

model for a merged large cell or higher level topics. Experimental results show that the heuristic

aggregations are effective and topic cube can be used for many different applications.

2. To support flexible and efficient online exploration of MDT databases, I proposed a novel cube

called MicroTextCluster Cube (MiTexCube). I proposed a progressive materialization algorithm

96

for this novel cube, an update algorithm for the cube when there are changes in the database, and

methods to leverage MiTexCube for three analysis tasks, including standard cell summarization,

query-specific cell summarization, and common topic coverage comparison. Experimental results

on real multidimensional text databases show that applications based on the proposed materialized

MiTexCube are more efficient than the baseline methods of direct analysis based on document units

in each cell, without sacrificing much quality of analysis. The proposed MiTexCube has several

parameters to accommodate flexible tradeoffs between time and space as well as effectiveness and

efficiency. We conducted several experiments to understand the effects of changing these parameters

and discussed how to set these parameters empirically.

3. To carry out comparative analysis on MDT databases with multiple text fields, I proposed and

studied a novel model called Probabilistic Topic Mapping (PTM) model. It simultaneously mines

two different sets of topics from two parallel text fields and generates their probabilistic mappings

as well. Experimental results show that PTM can effectively discover meaningful topics and their

mappings from parallel document collections. We also use applications to demonstrate PTM’s

capability of improving text matching and retrieval when there is vocabulary gap. The Map-

Reduce version of our PTM makes it feasible to analyze parallel collections with million parallel

documents. Although the PTM model is originally designed for MDT databases with multiple text

fields, an MDT database with only one text field can also be mined by the model if we first generate

a parallel document collection based on the standard dimensions of the database.

To demonstrate the power of the proposed techniques, as part of my thesis work, both Topic

Cube and MiTexCube have already been implemented in a domain independent prototype system

called EventCube (http://dmserv1.cs.illinois.edu/eventcube/). Figure 6.1 shows an example of the

Topic Cube function in the EventCube system, in which a user can specify values in standard

dimensions to digest the text information online.

In summary, the main contribution of this thesis is to systematically advance the state-of-

the-art technology for supporting digestion, exploration, and analysis in multidimensional text

databases. All the studied algorithms are general and thus can be applied to any multidimensional

text databases in any application domain.

97

Figure 6.1: Topic Cube Function in EventCube System

6.2 Future Work

Integrative management and analysis of multidimensional text databases is a relatively new topic,

and this thesis represents some initial steps toward solving this important problem. There are

several interesting directions to further extend the work of this thesis.

Other Possible Combinations of OLAP and Text Mining Techniques

My thesis proposed a novel Topic Cube model to combine the OLAP technology with topic modeling

approaches in text mining, and a novel MiTexCube model to combine the OLAP technology with

clustering algorithms in text mining. Both of them show the possibility and the great potential of

combining these two general areas. Indeed, there are many other powerful text mining techniques

studied in literature which can be integrated with OLAP technology to provide other powerful tools

for analyzing MDT databases. For example, combining OLAP with some deep text understanding

98

techniques in NLP would be a very promising direction to explore.

Domain Independent Systems Built on the Proposed Techniques

Since all the proposed algorithms are general, we can develop general toolkits or systems to support

multiple applications across different domains based on the proposed techniques. The EventCube

system can support the digestion and exploration functions for MDT databases in any domain.

It would be interesting to further extend the current system or build a new general system which

can use PTM model to support comparative analysis on any MDT databases. For example, given

an MDT database with only one text field, the system can first do some correlation analysis and

find out the most meaningful combinations of the standard dimensions. Then, it can use these

combinations to partition all the records into groups, align documents from different groups, and

create the most interesting parallel document collections from the database, so that PTM can be

used to mine the most valuable knowledge. Furthermore, it would also be interesting to connect

and combine all the proposed algorithms to provide users a more powerful tool to analyze MDT

databases.

Other Challenges for Integrative Text Mining in MDT databases

For many MDT databases, besides the structured dimensions and the text dimension, they also have

an associated numerical value in each record. For example, in an MDT database in business domain,

it always has a numerical dimension called “Sale” which stores the total number of a product sold

in a certain period. Mining the highly correlated terms with the numerical values from the text

data and using them to predict unknown numerical values would be very desirable and challenging.

For example, in an MDT database with both user reviews and sales, a sales manager would like to

predict the sale of a product based on current user reviews and then make corresponding decisions.

Another challenging but interesting direction is to use the standard dimensions to supervise topic

discovery in text data. For example, the “Time” dimension could guide topic discovery in an MDT

to form a trend of topic evolution, while two highly correlated standard dimensions also imply that

the associated documents should have correlated topics. All of these explorations will generate

more interesting studies on integrative text mining in MDT databases.

99

References

[1] Anomaly event schema. http://www.asias.faa.gov/pls/portal/stage.meta show column?
v table id=165477.

[2] Aviation safety reporting system. http://asrs.arc.nasa.gov/.

[3] The dblp computer science bibliography. http://www.informatik.uni-trier.de/∼ley/db/.

[4] Megaputer’s polyanalyst. http://www.megaputer.com/.

[5] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and
S. Sarawagi. On the computation of multidimensional aggregates. In VLDB, pages 506–521,
1996.

[6] N. Bansal and N. Koudas. Blogscope: a system for online analysis of high volume text streams.
In VLDB ’07: Proceedings of the 33rd international conference on Very large data bases, pages
1410–1413. VLDB Endowment, 2007.

[7] D. Blei and J. Lafferty. Correlated topic models. In NIPS ’05: Advances in Neural Information
Processing Systems 18, 2005.

[8] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic models and
the nested chinese restaurant process. In NIPS, 2003.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

[10] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In SIGIR ’98, pages 335–336, New York, NY, USA,
1998. ACM.

[11] V. T. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania. Efficiently linking text documents
with relevant structured information. In VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pages 667–678. VLDB Endowment, 2006.

[12] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology. SIGMOD
Rec., 26(1):65–74, 1997.

[13] B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. In VLDB ’05: Pro-
ceedings of the 31st international conference on Very large data bases, pages 982–993. VLDB
Endowment, 2005.

100

[14] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression analysis of
time-series data streams. In Proc. 2002 Int. Conf. Very Large Data Bases (VLDB’02), pages
323–334, Hong Kong, China, Aug. 2002.

[15] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and K. Olukotun. Map-
reduce for machine learning on multicore. In NIPS, pages 281–288, 2006.

[16] W. F. Cody, J. T. Kreulen, V. Krishna, and W. S. Spangler. The integration of business
intelligence and knowledge management. IBM Syst. J., 41(4):697–713, 2002.

[17] G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun. Finding question-answer pairs from
online forums. In SIGIR ’08, pages 467–474, New York, NY, USA, 2008. ACM.

[18] A. Corrada-Emmanuel and W. B. Croft. Answer models for question answering passage re-
trieval. In SIGIR ’04, pages 516–517, New York, NY, USA, 2004. ACM.

[19] H. T. Dang, D. Kelly, and J. Lin. Overview of the trec 2007 question answering track. In
Proceeding of the 16th Text Retrieval Conference, 2007.

[20] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Trans. Pattern Anal.
Mach. Intell., 1:224–227, Feb. 1979.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of Royal Statist. Soc. B, 39:1–38, 1977.

[22] F. M. fei Jiang, J. Pei, and A. W. chee Fu. Ix-cubes: iceberg cubes for data warehousing and
olap on xml data. In CIKM ’07: Proceedings of the sixteenth ACM conference on Conference
on information and knowledge management, pages 905–908, New York, NY, USA, 2007. ACM.

[23] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. ICDE, 00:152, 1996.

[24] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

[25] T. Hofmann. The cluster-abstraction model: Unsupervised learning of topic hierarchies from
text data. In T. Dean, editor, IJCAI, pages 682–687. Morgan Kaufmann, 1999.

[26] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR ’99: Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 50–57. ACM Press, 1999.

[27] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn.,
42(1-2):177–196, 2001.

[28] A. Inokuchi and K. Takeda. A method for online analytical processing of text data. In CIKM
’07: Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management, pages 455–464, New York, NY, USA, 2007. ACM.

[29] P. G. Ipeirotis, A. Ntoulas, J. Cho, and L. Gravano. Modeling and managing changes in text
databases. ACM Trans. Database Syst., 32(3):14, 2007.

101

[30] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

[31] J. Lafferty and C. Zhai. Document language models, query models, and risk minimization for
information retrieval. In SIGIR ’01, pages 111–119, New York, NY, USA, 2001. ACM.

[32] C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text cube: Computing ir measures for
multidimensional text database analysis. In ICDM, pages 905–910, 2008.

[33] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W. Cheung. Olap on sequence
data. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 649–660, New York, NY, USA, 2008. ACM.

[34] Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic modeling with network regularization. In WWW
’08, pages 101–110, New York, NY, USA, 2008. ACM.

[35] Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture: Modeling facets
and opinions in weblogs. In Proceedings of WWW ’07, 2007.

[36] Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to spatiotemporal theme pattern
mining on weblogs. In L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and M. Dahlin, editors,
WWW, pages 533–542. ACM, 2006.

[37] Q. Mei, X. Shen, and C. Zhai. Automatic labeling of multinomial topic models. In Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 490.

[38] Q. Mei and C. Zhai. Generating impact-based summaries for scientific literature. In Proceedings
of the 46th Annual Meeting of the Association for Computational Linguistics, page 816.

[39] D. Mimno, H. M. Wallach, J. Naradowsky, D. A. Smith, and A. Mccallum. Polylingual topic
models. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 880–889, Singapore, August 2009. Association for Computational Linguis-
tics.

[40] R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen. Joint latent topic models for text
and citations. In KDD ’08, pages 542–550, New York, NY, USA, 2008. ACM.

[41] J. M. Pérez, R. Berlanga, M. J. Aramburu, and T. B. Pedersen. A relevance-extended multi-
dimensional model for a data warehouse contextualized with documents. In DOLAP ’05:
Proceedings of the 8th ACM international workshop on Data warehousing and OLAP, pages
19–28, New York, NY, USA, 2005. ACM.

[42] J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Pro-
ceedings of the ACM SIGIR’98, pages 275–281, 1998.

[43] D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Molina. Clustering the tagged web.
In WSDM ’09, pages 54–63, New York, NY, USA, 2009. ACM.

[44] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

102

[45] L. Shrestha and K. McKeown. Detection of question-answer pairs in email conversations. In
COLING ’04, page 889, Morristown, NJ, USA, 2004. Association for Computational Linguis-
tics.

[46] A. Simitsis, A. Baid, Y. Sismanis, and B. Reinwald. Multidimensional content exploration.
Proc. VLDB Endow., 1(1):660–671, 2008.

[47] R. Soricut and E. Brill. Automatic question answering using the web: Beyond the factoid.
Inf. Retr., 9(2):191–206, 2006.

[48] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths. Probabilistic author-topic models for
information discovery. In Proceedings of KDD’04, pages 306–315, 2004.

[49] T. Tao and C. Zhai. Regularized estimation of mixture models for robust pseudo-relevance
feedback. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 162–169, New York, NY, USA,
2006. ACM.

[50] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, pages 567–580, New York, NY, USA, 2008. ACM.

[51] I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models. In WWW
’08, pages 111–120, New York, NY, USA, 2008. ACM.

[52] X. Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated bursty topic patterns from
coordinated text streams. In P. Berkhin, R. Caruana, and X. Wu, editors, KDD, pages 784–
793. ACM, 2007.

[53] X. Wei and W. B. Croft. Lda-based document models for ad-hoc retrieval. In SIGIR ’06,
pages 178–185, New York, NY, USA, 2006. ACM.

[54] P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven analytical processing. In SIG-
MOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on Management
of data, pages 617–628, New York, NY, USA, 2007. ACM.

[55] X. Xue, J. Jeon, and W. B. Croft. Retrieval models for question and answer archives. In
SIGIR ’08, pages 475–482, New York, NY, USA, 2008. ACM.

[56] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization.
In ICML ’97: Proceedings of the Fourteenth International Conference on Machine Learning,
pages 412–420, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[57] C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach to informa-
tion retrieval. In Tenth International Conference on Information and Knowledge Management
(CIKM 2001), pages 403–410, 2001.

[58] D. Zhang, J. Sun, C. Zhai, A. Bose, and N. Anerousis. PTM: probabilistic topic mapping
model for mining parallel document collections. In Proceedings of the 19th ACM international
conference on Information and knowledge management, CIKM ’10, pages 1653–1656, New
York, NY, USA, 2010. ACM.

103

[59] D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for olap on multidimensional
text databases. In SDM’09: Proceedings of the Ninth SIAM International Conference on Data
Mining, pages 1124–1135. SIAM, 2009.

[60] D. Zhang, C. Zhai, and J. Han. Mitexcube: Microtextcluster cube for online analysis of text
cells. In CIDU, pages 204–218, 2011.

[61] D. Zhang, C. Zhai, and J. Han. Mitexcube: Microtextcluster cube for online analysis of text
cells and its applications. Statistical Analysis and Data Mining, 2012. DOI: 10.1002/sam.11159.

[62] D. Zhang, C. Zhai, J. Han, A. Srivastava, and N. Oza. Topic modeling for olap on multidi-
mensional text databases: topic cube and its applications. Stat. Anal. Data Min., 2:378–395,
December 2009.

[63] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method for
very large databases. SIGMOD Rec., 25(2):103–114, 1996.

[64] D. Zhou, J. Bian, S. Zheng, H. Zha, and C. L. Giles. Exploring social annotations for infor-
mation retrieval. In WWW ’08, pages 715–724, New York, NY, USA, 2008. ACM.

104

	Chapter 1 Introduction
	Chapter 2 Related Work
	2.1 Online Analytical Processing
	2.2 Probabilistic Topic Modeling
	2.3 Document Clustering
	2.4 Other Related Work
	2.4.1 OLAP for Text Analysis
	2.4.2 Question and Answering

	Chapter 3 Topic Modeling for OLAP on Multidimensional Text Databases
	3.1 Introduction
	3.2 Topic Cube as an Extension of Data Cube
	3.2.1 Standard Data Cube and OLAP
	3.2.2 Overview of Topic Cube
	3.2.3 Definition of Topic Cube

	3.3 Construction of Topic Cube
	3.3.1 Probabilistic Latent Semantic Analysis (PLSA)
	3.3.2 Materialization
	3.3.3 Saving Storage Cost

	3.4 Experiments
	3.4.1 Data Set
	3.4.2 Efficiency Comparison
	3.4.3 Topic Comparison in Different Context
	3.4.4 Topic Coverage in Different Context
	3.4.5 Shaping Factor Analysis
	3.4.6 Accuracy of Categorization

	3.5 Conclusions and Future Work

	Chapter 4 MicroTextCluster Cube for Online Analysis of Text Cells
	4.1 Introduction
	4.2 MicroTextCluster Cube
	4.2.1 Definition of MiTexCube
	4.2.2 Progressive Materialization
	4.2.3 Update a MiTexCube

	4.3 Online Analysis of Text Cells
	4.3.1 Standard (Neutral) Cell Summarization
	4.3.2 Query-Specific Cell Summarization
	4.3.3 Common Topic Comparison

	4.4 Experimental Results
	4.4.1 Data Sets
	4.4.2 Evaluation of Progressive Materialization
	4.4.3 Evaluation of Representative Analysis Tasks

	4.5 Conclusions and Future Work

	Chapter 5 Probabilistic Topic Mapping Model for Mining Parallel Text Fields
	5.1 Introduction
	5.2 Problem Formulation
	5.2.1 Generating a Parallel Document Collection from an MDT Database

	5.3 Probabilistic Topic Mapping
	5.3.1 Model Description
	5.3.2 Parameter Estimation
	5.3.3 Incorporating Prior Knowledge into PTM

	5.4 Experiments
	5.4.1 Data Set
	5.4.2 Sample Topic Mapping Results
	5.4.3 Quantitative Evaluation of PTM
	5.4.4 Efficiency Analysis

	5.5 Conclusions and Future Work

	Chapter 6 Conclusions
	6.1 Summary
	6.2 Future Work

	References

