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ABSTRACT

Current GPU computing models support a mixture of coherent and incoher-

ent classes of memory operations. Workloads using these models typically

have working sets too large to fit in an economical SRAM structure. Still,

GPU architectures have last-level caches to primarily fulfill two functions:

eliminate redundant DRAM accesses servicing requests from different L1

caches to the same line, and maintain on-chip memory coherence for the

coherent class of memory operations.

In this thesis, we propose an alternative memory system design for GPU

architectures better fit for their workloads. Our architectural design features

a directory-like sharing tracker that allows the incoherent private L1 caches

to directly satisfy remote requests for shared data. It also retains a shared L2

cache with a customized caching policy to support coherent accesses on-chip

and better serve non-coalesced requests that contend aggressively for cache

lines.

This thesis characterizes the novel and intriguing tradeoffs between the

components of our proposed memory system design for area, energy, and

performance. We show that the proposed design achieves a 22% average

reduction in DRAM data demand over a standard GPU architecture with

1MB L2 cache, leading to an overall 28% reduction in the memory system

energy consumption on average. Conversely, our results show that the DRAM

data demand of the proposed design with 256KB L2 cache is on par with a

standard GPU architecture with 1MB L2 cache, albeit at a smaller area

overhead and power leakage. Our results, while drawn on motivations from

the GPU realm, are not architecture-specific and can be extended to other

throughput-oriented many-core organizations.
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CHAPTER 1

INTRODUCTION

Throughput-oriented compute accelerators in heterogeneous computing sys-

tems have become ubiquitous targets for performance-sensitive applications.

Graphics processing units (GPUs) have played a dominant role across accel-

erated computational domains, and have significantly influenced their soft-

ware programming models. As such, programming for accelerated systems

today is almost synonymous with General-Purpose Computing on Graphics

Processing Units (GPGPU) [1].

GPU architectures at first were heavily influenced by their original graph-

ics workloads. The lack of a general cache for instance was mainly justified

by graphics workloads folding spatial locality into vector accesses of entire

DRAM bursts in a single instruction. In addition, specialized caching mech-

anisms for input textures, output frame buffers, and global constants were

sufficient for the graphics workloads.

Experiences with general computing, however, led designers of more recent

GPU architectures to include bona fide cache systems. In a stark contrast

to GPUs of only few years ago, the most recent GPUs from NVIDIA for

example have up to 64KB of L1 cache private to each compute unit, and a

1536KB L2 cache shared between compute units [2]. With an aggregate L1

cache capacity on par with the L2 cache, the on-chip memory hierarchy of a

GPU breaks the conventions of the CPU world, where the last-level cache is

orders of magnitudes larger than the aggregate lower levels of the hierarchy,

to handle the largest working set possible on-chip. Instead, GPU architects

devote much less chip area to the last-level cache, because for many general-

purpose workloads amenable to acceleration, the largest economical on-chip

RAM structure (SRAM or EDRAM) would still be too small to hold the

entire working set.

That being the case, the L2 cache in current GPU memory designs does not

increase the amount of cache space per thread compared to the L1 caches: the
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cache capacity divided by the number of threads with access to that cache is

equivalent for both cache levels. The second-level GPU cache serves primarily

as a coherence point between the otherwise incoherent L1 caches, and a

sharing point for L1 caches requesting the same lines. Yet sharing among

private L1 caches can be facilitated by other means, including direct line

transfers between them. Proposals to this end range between assuming fully

coherent memory systems similar to modern CPUs, or completely incoherent

systems [3]. Both extremes, however, do not address the de facto memory

models of GPU programming languages at hand, the former being rather too

constrained, and the latter being far more lax.

A second observation about current GPU memory designs is that their

cache hierarchies are optimized for wide SIMD accesses, but handle strided

and interleaved accesses less efficiently. L1 cache lines in GPUs are typically

longer than L2 cache lines, and fully occupied systems have more threads than

unique cache lines. In pathological scenarios, strided and interleaved accesses

thrash the L1 caches and incur the cost of a full L1 cache line transaction,

rather than the smaller cost of an L2 cache line transaction, for each word

used. Accessing data from a thrashing L1 cache constantly requesting lines

is thus worse in many cases than doing so directly from the DRAM. Previous

work noted that performance can be significantly improved by leveraging

instruction set architecture (ISA) features to bypass the L1 cache in these

cases as directed by static compiler analysis [4]. We see little reason to rely on

the compiler for such caching policy decisions when the hardware already has

full knowledge of the access pattern of a memory instruction upon generating

cache line requests for it.

Based on these insights, we propose a GPU memory system design with

the following novel features:

• A directory-like sharing tracker compatible with real GPU memory

models, including the support of thread-block self-consistency and co-

herent memory operations. We show that the sharing tracker, when

combined with a shared L2 cache, reduces total DRAM data demand

and memory system energy consumption, even when the L2 cache is

as large as the L1 caches combined. These benefits amount to 9% av-

erage reduction in DRAM data demand and memory system energy

consumption when the L2 cache capacity is one-eighth the aggregate
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L1 cache capacity.

• A pure hardware policy for selectively bypassing the L1 caches based

on the likelihood of cache thrashing for each memory access. On top

of the sharing tracker, this new caching policy reduces DRAM data

demand by 20%, and energy consumption by 25% on average in a

memory system with 1MB L2 cache. Conversely, the sharing tracker

and caching policy reduce the DRAM data demand of a memory system

with 256KB L2 cache to the levels of a system with 1MB L2 cache that

uses neither.

Not only are the proposed features individually useful, but also they are

synergistically related. A sharing tracker essentially increases the exclusivity

of the L1 and L2 caches, and thus the effective cache capacity of the system.

A caching policy adaptive to cache contention makes better usage of the

extra L2 cache space unlocked by the sharing tracker for accesses with poor

or dynamic locality not addressed well by the L1 caches.

In terms of temporal performance, the memory system energy and data

demand reductions should not come at any cost for compute-bound applica-

tions. The sharing tracker and caching policy should have a positive impact

as well for systems where the aggregate L1 cache capacity outweighs the L2

cache capacity. However, for systems with relatively large L2 caches, the

on-chip network bandwidth and latency must be kept under control lest the

additional on-chip traffic for direct L1 cache transfers render them as the

new bottlenecks.

Before going through the details of our proposed design, we discuss the

architecture and memory model of current NVIDIA GPUs in Chapter 2,

together with the common characteristics of the memory access patterns of

GPU workloads. Chapter 3 explores the details of our proposed design and

presents our architectural improvements. The effects of our design on energy,

area, and off-chip memory traffic, according to our simulation methodology,

are evaluated and discussed in Chapter 4. Chapter 5 highlights related work

and concludes.

3



CHAPTER 2

GPU ARCHITECTURE, MEMORY
MODEL, AND WORKLOAD

CHARACTERISTICS

2.1 GPU Architecture and Memory Model

Efficiency has recently become a multi-faceted notion and goal, ranging from

the ever-crucial performance efficiency to the freshly minted energy efficiency.

Performance has been the most directly visible aspect of efficiency for appli-

cation users. Energy efficiency, however, is becoming increasingly important

across the spectrum of computing markets, from portable devices and their

battery lives, to supercomputers and their electric bills. Perhaps unsurpris-

ingly, these two aspects of efficiency are organically linked: applications with

higher performance tend to use less energy in general, simply by virtue of

finishing more quickly, spending less time consuming power. It is this desire

for both high performance and efficient energy usage, coupled with the stag-

nation of processor frequencies, that led to the mass adoption of parallel and

accelerated computing.

The mainstream vehicle for accelerated computing has been graphics pro-

cessing units, or GPUs. GPUs began as special purpose processors, but

gradually adopted more general workloads. The current generation of low-

level, general-purpose accelerator programming models, including CUDA [5],

OpenCL [6], and Direct Compute [7], as well as their higher-level relatives,

such as OpenACC [8] and C++AMP [9], all attempt to map common hard-

ware artifacts to software constructs in an elegant way for high performance.

The programmability of any of these languages, however, is at least as com-

plicated as developing sequential C or C++ code. Accelerator program-

ming models and languages have primarily been the domain of performance-

sensitive code regions or kernels, where developers are keen to invest extra

time and effort to improve efficiency even after meeting all functionality cri-

teria.
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Figure 2.1: An Abstract Accelerator Architecture

Moving forward, there are two plausible perspectives to consider on the

evolution of accelerated computing. One perspective assumes that acceler-

ated code is optimized code, and thus rationalizes designing features for the

utmost efficiency and performance of well-optimized programs, regardless of

the performance cliffs for certain patterns of poor optimizations. The other

perspective expects the average level of optimization in kernels to decrease

as the barrier of entry lowers and more developers adopt accelerated pro-

gramming. In this thesis, we reevaluate the GPU memory architecture, as a

specimen of accelerators, and show that current designs can be significantly

improved from each of these two perspectives. Therefore, we continue our

background discussion with an analysis of current GPU architectures, and

the resulting execution and memory access patterns and how well they suit

these architectures.

Though the concepts of our thesis are language-agnostic, we use the CUDA

language and terminology for our studies. One reason to choose CUDA is

that its current implementations often perform better than other languages

on NVIDIA’s hardware [10]. It is the recent NVIDIA GPUs that have the

most extensive caching among consumer GPU products, which ensures that

our simulations are grounded with real hardware results.

Figure 2.1 shows our abstract accelerator architecture. We assume that the

device is composed of a number of independent compute units (processors),

attached to a single DRAM memory system. Each compute unit is equipped

with a scratchpad memory and L1 cache. These are logically separate mem-
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ories, though in some GPUs they inhabit the same physical storage. The

last-level cache is shared by all compute units. The focus of this study is

on effectively caching DRAM accesses through the different cache levels and

policies.

Almost all of the current competing accelerator programming models im-

plement a bulk-synchronous parallelism model [11] between the host CPU

and the device. The primary construct for the device code in these models

is a data-parallel, single program multiple data (SPMD) kernel comprising

groups of co-scheduled threads, or thread blocks. Thread blocks have access

to private local stores, through which their constituent threads can share

data. Each thread in turn has a private data space, typically implemented

as registers. All other data reside in the global memory, a space shared by

all thread blocks.

When scheduled, each thread block is assigned to a particular compute

unit, which executes the constituent threads to completion. A compute unit

may concurrently host multiple thread blocks, and it interleaves their ex-

ecution to overlap the instruction latencies of different threads. Internally,

threads are not independently executed, but are bound into execution groups,

or warps. The execution hardware schedules instructions at the granularity

of a warp, with transparent mechanisms for masking off individual threads

not following the same control flow path as the rest of the warp. As shown

in Figure 2.1, the execution hardware essentially comprises single instruction

multiple data (SIMD) vector units, and all loads and stores are actually SIMD

gather and scatter operations. Requests from all SIMD lanes, or threads of

a warp, are grouped by a coalescing unit into the smallest number of cache

lines necessary to satisfy them. Memory transactions processed at the first

cache level are coalesced.

In such a SIMD-like execution model, memory operations are most effi-

cient if the SIMD lanes access adjacent memory locations, thereby generating

memory requests with ideal spatial locality. When programmers follow this

pattern, the SIMD execution of a memory instruction generates a single, co-

alesced memory transaction, and the cache hierarchy is accordingly built to

accommodate such a transaction in a single line. Strided or scattered access

patterns, on the other hand, generate many memory transactions to multiple

cache lines at once [4, 12], exposing the poor provision of the cache hierarchy

for these access patterns.
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As far as memory coherence and consistency are concerned, GPU (accel-

erator) programming languages have very relaxed memory models. In par-

ticular, they feature three scopes over which different models hold: within

a thread block, across thread blocks, and across kernel instances (or be-

tween the kernel and the host code). There is weak consistency within a

thread block, as threads can barrier-synchronize with each other, forcing

all their pending memory operations to complete. Threads from different

threads blocks cannot, however, and there is generally no memory coherence

or consistency between them [6]. Weak consistency holds again across ker-

nel instances. To allow for a kernel’s output to be safely used following its

execution, the host code (or GPU driver) can synchronize with the device to

ensure that all memory operations in the kernel have completed.

The absence of inter-block memory consistency means that there can be

no global coordination within kernels. Nevertheless, thread blocks can still

use atomic operations to communicate, which implies a consistency model

stronger than the one described above. Atomics are an example of a set of

coherent memory operations which observe a coherent memory state, sup-

ported besides the usual incoherent memory operations. Coherent accesses

are visible to later coherent accesses from all threads, and therefore can be

used for inter-block communication.

Furthermore, current GPUs, to the best of our knowledge, also provide

consistency among accesses from the same compute unit, allowing all ac-

cesses performed by a thread block to be visible to all subsequent accesses

from the same thread block. In this thesis, we assume a coherence (mem-

ory operation visibility) and consistency (memory operation ordering) model

based on CUDA and the observed behavior of NVIDIA GPUs.

This relaxed memory model arises because GPUs eschew hardware cache

coherence, and stale data in their private caches is an artifact of the lack

thereof. Stale data may remain in a private cache until invalidated at a global

synchronization event. A shared higher-level cache, to which the private

caches write through, provides a coherent view of memory because all writes

update it. Atomics, among other memory operations, achieve coherence by

bypassing the private cache levels.

Practically, for programmers to attain predictable behavior, they need to

partition memory into regions, some private to thread blocks and incoher-

ently accessed only by the associated thread block, and others shared between

7



Shared Shared Shared

Shared

Shared

(a) Broadcast Sharing: Data Accessed by a
Large Number of Threads

Shared Shared Shared

Shared

Shared

(b) Boundary Sharing: Data Shared by a
Small Number of Threads at Tile Boundaries

Shared Shared Shared

Shared

Shared

(c) Dynamic Sharing: Indirect Accesses to
Shared Data Have Undetermined Sharing
Between Threads

Figure 2.2: Data Sharing Patterns in GPU Computing Workloads

thread blocks that are either coherently accessed, or incoherently read only.

The partitioning may change at global synchronization events.

2.2 GPU Workload Memory Characteristics

Our proposals for refining the GPU memory system are motivated by an

analysis of the workloads of that system. In this section, we categorize the

common patterns of interactions between GPU computing applications and

the memory system, and highlight benchmarks which demonstrate those pat-

terns.

Sharing in GPU computing workloads generally falls into one of three

patterns. The first, depicted in Figure 2.2a, is a broadcast pattern, where a
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Figure 2.3: Data Partitioning Patterns in GPU Computing Workloads
(Cache Lines are Marked in Different Shades of Gray)

particular data region has many sharers in the same kernel. This includes

both full and partial broadcasts. A histogramming benchmark, where each

datum of the input set can affect all output elements, is an example of the

former, while a tiled matrix multiplication benchmark, where each tile of

input matrices is consumed by a band of threads assigned to output tiles, is

an example of the latter.

Figure 2.2b shows the second pattern, boundary sharing, common in sten-

cils. In this pattern, tiles of data overlap between different threads, resulting

in a small number of sharers for any particular element. Boundary sharing

can cause a varying degree of cache-line sharing, depending on the sizes of

tiles and cache lines, but a common case of tile sizes matching cache line

sizes results in a small degree of sharing for most cache lines.

Finally, dynamic sharing, depicted in Figure 2.2c, is a data-driven sharing

pattern, resulting from statically unknown indirection, and thus a nondeter-

ministic sharing pattern. The sharing is proportional to the access density,

how many accesses are spread over how many data elements, if the accesses

are random. Frequent accesses to a small lookup table for example exhibit

lots of sharing, while a sparsely accessed data structure does not.

Partitioned data are data needed by only one thread. Data partitioned

contiguously can still be falsely shared between threads, with a cache behav-

ior similar to boundary sharing, if the partition boundaries are not aligned

to cache-line boundaries as shown in Figure 2.3a. In the best scenario from
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a performance standpoint, portrayed in Figure 2.3b, partitioned data are

accessed in a perfectly coalesced manner, with aligned contiguous accesses

that do not straddle several cache lines. In such situations, no cache line is

touched by more than one thread, and more often than not, a cache line is

touched exactly once in the kernel, either read into registers to be reused as

necessary, or written with the final result previously accumulated in registers.

The interplay between data with non-coalesced partitioning and the cache

hierarchy is more intricate and nuanced.

Besides the L1 cache, compute units in most GPU architectures are usu-

ally equipped with a scratchpad. Threads within a block can cooperate by

sharing data through the scratchpad while synchronizing their execution to

coordinate memory accesses. Using the scratchpad as a software-managed

cache changes the access pattern visible to the cache hierarchy itself. Our

preliminary experiments confirm that the number of L1 cache accesses is sig-

nificantly lower for benchmarks optimized by using the scratchpad, as many

redundant accesses are diverted to it. However, the accesses seen by the rest

of the memory hierarchy are largely identical, as thread blocks traverse the

same data in roughly the same general order. Therefore, we can conclude

that the insights about a memory system design drawn using cache-optimized

workloads are equally applicable for scratchpad-optimized workloads. In this

thesis, we focus exclusively on cache-optimized workloads since they are the

most sensitive to the changes we propose to the cache hierarchy.
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CHAPTER 3

A NEW ARCHITECTURE DESIGN FOR
MIXED-COHERENCY GPU WORKLOADS

3.1 Harnessing Locality in GPU Workloads

Traditional chip multiprocessors use cache coherence as a means for their

processors to share data. In a coherent multiprocessor, caches provide both

migration and replication of shared data to allow for transparent accesses to

shared data at a small latency and minimal contention [13]. Coherent caches

hence present a uniform view of memory using coherence protocols that track

the state of all shared data and propagate changes throughout the system.

There are two classes of coherence protocols used in chip multiprocessors,

namely snooping protocols and directory-based protocols. Snooping proto-

cols are popular in small-scale multiprocessors because they use the existing

bus to memory to interrogate the status of the caches. For many-core archi-

tectures, however, a snooping protocol poses a scalability challenge, requiring

a wider bus with higher bandwidth to support a larger volume of broadcast

coherence traffic as the number of processors in the system increases. A

directory-based protocol is thus the practical option for these architectures.

To maintain their coherence requirements, not only do coherence proto-

cols allow a processor to access data shared on-chip, but also they ensure

it receives the most up-to-date version of that data. To this end, coherence

protocols either grant a processor exclusive access to a data item before it

writes that item by invalidating other copies, or update all cached copies of a

data item whenever that item is written. Supporting the correct semantics of

hardware coherence indeed comes at the expense of considerable complexity

and power consumption.

These functionalities of hardware cache coherence often exceed the needs of

scalable parallel applications, which typically comprise largely independent

tasks. Accelerated applications often have no inter-block communication, for
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data being either read-only or private to a thread block throughout kernel

execution. Existing hardware [14, 15] and previous work [3] take advantage

of these workload characteristics to forgo cache coherence and its attendant

complexities in accelerated systems and their programming models.

Independence notwithstanding, GPU workloads still share data, especially

at the input side, between compute units, as demonstrated in Section 2.2.

It is necessary for the L1 caches to have some form of coordination to avoid

pulling shared data repeatedly from the DRAM. The latency-tolerant design

of a GPU transforms caches from being tools to reduce memory access latency

into tools to conserve memory bandwidth.

Existing GPU architectures capture inter-processor sharing either by buffer-

ing and combing requests extensively in the memory controller, or using a

non-inclusive L2 cache. As an alternative to the latter, Tarjan and Skadron

proposed using a sharing tracker to identify L1 caches that share a copy of a

cache line and thus can satisfy remote misses to it [3]. Similar to Tarjan and

Skadron’s, we use a directory-like sharing tracker whose tags match those of

L1 cache lines, but are instead associated with a list of compute units that

have those lines of data cached. The sharing tracker is especially effective

due to the large aggregate capacity of the L1 caches. Both mechanisms for

capturing inter-processor locality, the L2 cache or direct transfer between L1

caches, have their advantages. In this work, we compare each fundamental

design approach individually with the other and with their combination in

terms of performance, area and energy.

The sharing tracker is effectively a simplified cache coherence directory that

retains only the elements of functionality constructive for a GPU platform.

The relaxations of GPU programming models void the need to track the

states of shared cache lines (exclusive or shared for example). Moreover,

neither is it necessary to track all cache lines, nor all copies of a cache line

since a compute-unit is not required to have exclusive access to a line on a

write. The sharing tracker enables an optimization opportunity for compute

units to supply pieces of data from their L1 caches to other compute units,

rather than dictate a requirement for compute units to either keep their data

up-to-date or invalidate it.
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Figure 3.1: Proposed GPU Memory System Design

3.2 Memory Coherence in a Mixed-Coherence System

Our overall proposed design is shown in Figure 3.1. The memory system

is divided into two domains: a coherent one comprising the DRAM and L2

cache, and an incoherent one comprising the L1 caches and sharing tracker.

Incoherent memory requests access all levels of the hierarchy, while coherent

requests bypass the incoherent levels to the coherent domain. The L1 caches

are write-through, while the L2 cache is write-back. The L2 cache is neither

exclusive nor inclusive, and the size of an L1 cache line is four times that

of an L2 cache line. Therefore, each L1 cache line fetched from or written

back to the coherent domain is broken into four separate requests. This

configuration of cache line sizes strikes a balance between the need for an L1

cache to efficiently serve the wide vector accesses of a warp, and the need for

the L2 cache to efficiently use its space for the narrow accesses of coherent

operations.

Incoherent memory requests look up the L1 cache first and those that hit

do not incur further memory traffic. In particular, no cache coherence or

write-through traffic is generated. Otherwise, incoherent accesses go to the

sharing tracker upon an L1 cache miss, and finally to the coherent memory

domain on sharing tracker misses.
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As described in Chapter 2, current GPU programming languages guarantee

that all accesses performed by a thread block are visible to all subsequent

accesses from the same thread block, but not to accesses from other thread

blocks. This lack of coherence guarantees between thread blocks, as opposed

to the guaranteed consistency of memory accesses within a thread block,

implies that a compute unit’s L1 cache may not reflect a consistent view

of memory to other compute units; i.e. the most recent writes visible to

them. Consequently, it is not always valid for an L1 cache to satisfy a

memory request from the L1 cache of another compute unit lest it violates

the memory consistency to that compute unit. Tarjan and Skadron’s sharing

tracker overlooks this element of memory semantics, and thus does not fully

maintain the memory consistency guarantees of current GPU programming

languages. Consider for example a scenario where compute units P and Q

share a line in their L1 caches. Now suppose that Q writes to the line and

then evicts it, while the sharing tracker continues to point to the non-updated

line in P’s L1 cache. If Q requests the line again, the sharing tracker may

direct that request to P, and so Q ends up with stale data rather than the

data it wrote to the line before it was evicted.

To solve this problem and preserve the consistency guarantees of GPU pro-

gramming languages, we incorporate selective and full invalidations of cache

lines and sharing tracker entries into our design. As far as the visibility of

a compute unit’s writes to its subsequent accesses is concerned, invalidat-

ing a sharing tracker’s entry on any write to the corresponding line ensures

that any possible future source of the written line listed in sharing tracker

will have read the new data from the coherent memory domain. Note that

cache-invalidation messages, the primary bottleneck in coherent memory ar-

chitectures, are not necessary because other compute units are allowed to

have a stale copy of the line as long as they do not supply it to the compute

units that wrote it.

Similar to writes, coherent operations invalidate the relevant entries in the

sharing tracker before accessing the coherent memory domain. However, to

maintain coherence among the coherent and incoherent memory operations

from the same compute unit, coherent operations also invalidate the cor-

responding lines in the L1 cache of that compute unit. Coherent memory

operations are allocated space only in the L2 cache, and since incoherent op-

erations to the same lines are unusual, doing so has little performance impact.
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Invalidation messages to the other incoherent caches are again unnecessary

since coherent operations are visible only to later coherent operations as

noted in Chapter 2, and thus other compute units are allowed to access stale

data incoherently.

Being incoherent, global synchronization events flush all L1 caches, and

the sharing tracker, to ensure that all data is globally visible. Global syn-

chronization is generally initiated by the host after a kernel completes, and

does not occur during kernel execution in any of our benchmarks.

3.3 Memory Coalescing and Selective Cache Bypassing

The GPU memory system is optimized for coalesced, incoherent accesses,

which constitute the majority of memory accesses in typical GPU workloads.

It is designed to utilize the L1 caches to achieve high memory throughput

for this class of memory requests.

For strided or scattered memory accesses, however, bringing a line into

the L1 cache only to consume one or a few words thereof and then evict as

other threads contend for cache space is wasteful of both cache space and

energy. An L2 cache with four times as many lines as the L1 caches combined,

assuming its size is equal to the aggregate L1 cache capacity, is a better fit

for such access patterns.

We therefore propose a cache fill policy adaptive to contentious memory

access patterns. To keep the hardware implementation simple, we use the

number of unique L1 cache lines touched by a single dynamic warp instruction

as a metric for cache contention. At runtime, a compute unit calculates

the number of L1 cache lines it has available to each active warp by simply

dividing the number of lines in its L1 cache by the number of warps scheduled

to it. If a vector instruction touches less cache lines than those available to

a warp, we deem cache contention small enough to bring the requested data

into the L1 cache. Otherwise, the instruction bypasses the L1 cache to the

coherent memory domain. Such instructions are allocated lines in the L2

cache. Coalesced accesses hence generate full L1 cache line requests, whereas

scattered accesses that bypass the L1 caches generate only the L2 cache line

requests necessary to satisfy them, thereby saving both memory bandwidth

and energy.
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With a sharing tracker, both the L1 caches and L2 cache facilitate sharing,

and there is little advantage to requiring data to occupy both caches levels.

Opting for the exclusivity between the two cache levels therein allows the

L2 cache to degenerate into a small victim buffer for the lines evicted from

the last L1 cache sharing them, and a coherence point for atomic operations.

This reduces the size requirement for the L2 cache and improves energy and

space efficiency of the overall design.

3.4 High-Throughput Atomic Operations

The throughput of atomic operations on NVIDIA’s latest GPUs has been

substantially improved, and for a common address it is one atomic opera-

tion per clock cycle. With the atomic operation throughput to independent

addresses also significantly accelerated, atomic operations can often be pro-

cessed at rates similar to generic load operations [2].

Our baseline design incorporates a small buffer for atomic operations into

each memory controller or L2 cache bank to exclusively hold the last memory

line accessed atomically. If an atomic operation does not hit in the buffer,

the existing line is evicted back into the L2 cache to be replaced by the new

line accessed by the atomic operation. Such an atomic buffer results in the

kinds of atomic throughput properties of the latest NVIDIA GPUs.

3.5 Decision and Access Flow Summarized

Figure 3.2 illustrates how memory requests proceed through our proposed

memory architecture. Incoherent requests are combined by the coalescing

unit into L1 cache line transactions and sent to the cache. Upon a cache miss,

only requests that do not contend excessively for cache lines are allocated in

the L1 cache, however. Evictions from the L1 cache are reported to the

sharing tracker to remove the evicting cache from the list of sharers for the

evicted lines.

The L1 cache directly satisfies the transactions that hit, while a miss results

in a message to the sharing tracker. A remote L1 cache access is initiated

on a sharing tracker hit, and the data is forwarded to the requesting cache.
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Figure 3.2: Complete Decision and Access Flow Graph for the Proposed
Hybrid Shared/Distributed Cache System for a Mixture of Coherent and
Incoherent Accesses

A sharing tracker miss, on the other hand, indicates the inability to find any

L1 cache to satisfy the request, resulting in a message to the L2 cache. The

message is broken into L2 cache line transactions that may individually be

satisfied in the cache or from the DRAM. Contentious requests, designated

to bypass the L1 cache, are allocated in the L2 cache on a miss. Conversely,

non-contentious requests, allocated in the L1 cache, mark the requesting

compute unit as a sharer of the corresponding lines in the sharing tracker

when the complete lines are fetched.

As discussed in Section 3.2, the L1 caches write-through to the coherent

memory domain, invalidating the sharing tracker entries for the correspond-

ing lines along the way to retain the visibility of the writes from a particular

compute unit to future reads from the same compute unit. Evicted clean

lines are simply reported to the sharing tracker to purge the sharers list.

Atomic and other coherent operations bypass the incoherent memory sys-

tem, invalidating the L1 cache line and sharing tracker entry, and complete

directly in the atomic buffer of the L2 cache.
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CHAPTER 4

EXPERIMENTAL METHODOLOGY AND
DESIGN EVALUATION

4.1 Simulation Framework

We use a trace-driven simulator to model the behavior of a GPU memory

system. Traces are collected for all global memory and synchronization in-

structions by running the device code using a GPUOcelot plugin [16]. Traces

also include the block and thread identifiers for each dynamic instruction.

The framework is structured into separate phases, the first of which sim-

ulates the behavior of compute units in a GPU. Based on their IDs, thread

blocks are scheduled in a round-robin fashion to compute units from a pending-

block queue. Compute units fetch thread blocks from this queue until they

run out of hardware resources to schedule more blocks. During this stage,

the simulator decomposes the thread blocks scheduled to a compute unit into

warps, which are inserted into the run queue of that compute unit.

The execution of each compute unit is simulated by reading one trace

entry from each warp in the run queue in a round-robin manner. A warp is

retired from the run queue when all of its trace entries are consumed, and the

simulation proceeds with the remaining warps in the run queue. When all

warps of a thread block are retired, the compute unit fetches a new thread

block from the pending-block queue, and the process is repeated until all

thread blocks are simulated. The output of the first phase of the simulation

is a memory queue for each L1 cache containing one or more coalesced line

requests for each dynamic memory instruction in the trace.

The second phase of the simulation tracks the contents of the first level

of the cache hierarchy. Each associated with a particular compute unit, the

L1 caches read the requests from the output memory queue of their compute

units in sequence. Whenever an L1 cache misses, a memory request is pushed

into a memory queue to the higher levels of the memory hierarchy.
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The higher levels of the memory hierarchy, the sharing tracker or L2 cache

for example, are simulated in a similar way, but taking into consideration

their sharing among multiple compute units. The simulator interleaves the

requests from the output queues of the lower levels of the memory hierarchy,

and the simulation ends when all requests are consumed. Requests that hit

in the sharing tracker, and thus can be satisfied by an L1 cache, are not

propagated further. Otherwise, they are pushed to the L2 cache.

While our simulation methodology does not model real hardware timings,

the more simplistic approach allows us to run relatively long simulations for

entire kernels, and using multiple design configurations nonexistent in real

hardware.

Real GPUs, even those without general-purposes caches, have various

caching mechanisms which workloads can exploit under certain restricted

circumstances. Having such a variety of caching mechanisms available to

general compute workload may be of benefit, but we consider those beyond

the scope of this work. We would rather reexamine the design of a GPU

memory system to better support compute workloads from the ground up,

and leave the evaluation of specialized structures like the constant cache for

future work.

4.2 Simulation Parameters and Benchmark Suite

Our simulated system is described in Table 4.1. As per NVIDIA’s latest, we

assume a GPU consisting of 16 compute-units, each of which has a 64KB

private L1 cache, 16KB scratchpad, and 64K registers. The L1 caches are

write-through, 4-way set-associative with 128B lines. The compute-units

share an 8-way set-associative L2 cache comprising 8 banks and 32 byte lines,

and an 8-way set-associative sharing tracker. With 1024 sets, the sharing

tracker has enough entries to cover all 8K unique lines in the aggregate L1

cache space. Each sharing tracker entry has a 16-bit mask to track all L1

caches sharing a copy of the corresponding line. We explore variants of this

design in terms of L2 cache size, sharing tracker bitmasks length, and number

of sharing trackers in our experimental evaluation.

We chose to use the Parboil benchmark suite [17] for our analysis and ex-

periments. We analyzed the access patterns and locality optimizations repre-
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Table 4.1: Details of the Simulated System

GPU
No. of Compute Units 16
Warp Size 32

Compute Unit
Max. Warps 64
Register File Size 64K registers
Shared Memory Size 16KB

L1 Cache
Size 64KB
Line Size 128B
Associativity 4
No. of Banks 1

Sharing Tracker
No. of Sets 1024
Associativity 8
No. of Banks 8
No. of Sharers per Line 1, 16

L2 Cache
Size {128, 256, 512}KB, 1MB
Line Size 32B
Associativity 8
No. of Banks 8

Table 4.2: Profiles of Parboil Benchmarks

Benchmark Kernel
Shared Data Partitioned Data Atomic Performance

Broadcast Boundary Dynamic Coalesced Non-coalesced Operations Bound
BFS X X X X Bandwidth
CutCP X X Balanced
Gridding many X X Balanced

Histo

prescan X X X Bandwidth
inter X Bandwidth
main X X X Bandwidth
final X Bandwidth

LBM
AoS X Bandwidth
SoA X Bandwidth

MRIQ
computePhiMag X X Compute

computeQ X X Compute
SGEMM X X Compute
SPMV X X Bandwidth
Stencil X X Bandwidth
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sented in the benchmarks, and our findings are summarized in Table 4.2. Ta-

ble 4.2 also notes which benchmarks use atomic operations to global memory

that interact with the cache hierarchy, and categorizes each benchmark im-

plementation as bound by compute throughput or memory bandwidth after

optimization, to point out that some benchmarks may be more performance-

sensitive to the behavior of the memory system than others.

Shared data is nearly ubiquitous in our benchmarks, with LBM being the

exception. Broadcast sharing is the most common sharing pattern across the

board, but boundary and dynamic sharing are also present. Partitioned data

is also nearly ubiquitous, with perfectly coalesced partitioning being typical

for these reasonably well-optimized benchmarks. Still, BFS and SPMV have

misaligned partitions, the former from appending dynamically sized blocks

to a queue, and the latter from compressed data of unknown alignments.

4.3 Experimental Results

To evaluate the overall impact of our proposed design on a many-core GPU,

we first gauge the benefits of adding a sharing tracker to a conventional base-

line GPU design. Figure 4.1 in part shows that for our workloads, augmenting

L2 caches of different sizes with a sharing tracker provides DRAM demand

management superior to that of a shared L2 cache individually. By essentially

increasing the exclusivity between the L1 and L2 caches, the sharing tracker

effectively increases the aggregate system cache capacity. The benefits of the

sharing tracker are demonstrated best in systems with L2 caches relatively

too small to fully capture inter-processor locality (up to 9% average DRAM

data demand reduction for 128KB L2 cache). In such systems, a sharing

tracker allows for a DRAM data demand comparable to that of systems with

an L2 cache of at least twice the size for benchmarks like BFS, CutCP, Histo,

MRIQ, SPMV, and Stencil. The one notable exception is LBM, whose large

cache footprint and limited inter-processor locality result in minimal benefits

from combining the L2 cache with the sharing tracker.

There are two elements to our proposed caching policy: bypassing the L1

caches on contentious memory accesses, and bypassing the L2 cache on co-

alesced memory accesses. The first element of our caching policy, pertinent

to the L1 caches, offers LBM a significant reduction in DRAM data demand.
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Figure 4.2: Average First Cache Level Miss Rate for Benchmarks Sensitive
to Bypassing the L1 Caches for Non-coalesced Accesses

In general, benchmarks like Gridding, LBM, and SPMV with poorly coa-

lesced or dynamic access patterns often contend aggressively for cache lines.

Therefore, having those benchmarks bypass the L1 cache when they do so

and instead service their requests through shorter L2 lines allows for a more

efficient utilization of DRAM traffic, compared to both the baseline GPU de-

sign and the proposed design with only the sharing tracker, as demonstrated

in Figure 4.1 (22% DRAM data demand reduction on average for 1MB L2

cache). So much so is the efficient utilization of DRAM traffic that the L2

cache is able to capture more inter-processor locality beyond that attainable

without our caching policy, as alluded to by the drop of DRAM data de-

mand of LBM using a 1MB L2 cache. Figure 4.2 shows that bypassing L1

caches upon contention as designated by our caching policy results in only a

small increase in the average L1 cache miss rate, and thus a small penalty

for memory access latency that can be well-hidden on a throughput-oriented

architecture. It goes without saying that benchmarks with mostly regular

access patterns, such as CutCP, SGEMM, and Stencil, exhibit no change of

behavior under the first element of our caching policy.

The second element of our caching policy, bypassing the L2 cache on co-
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Figure 4.3: Normalized DRAM Data Demand When the L2 Cache is
Bypassed for Coalesced Accesses (Both Configurations have 1MB L2 Cache,
Sharing Tracker, and Bypass L1 Caches for Non-coalesced Accesses)

alesced memory accesses, further increases the exclusivity of the two cache

levels, offering some extra potential for a better utilization of the cache space.

Figure 4.3 elicits this potential for the BFS, CutCP, and SPMV benchmarks,

yet it also exposes an issue with memory writes for Gridding, Histo, MRIQ,

and SGEMM that outweighs all gains from memory reads. The problem

stems from using read-write arrays in each of these benchmarks, coalesced

data read from which bypass the L2 cache. When those arrays are later writ-

ten through the L1 caches, therefore, they incur write misses in the L2 cache

and end up being pulled again from the DRAM, possibly superfluously if they

are completely overwritten. This is in part a shortcoming of our simulator,

which does not keep track of dirty cache lines at the byte granularity. As a

result, we exclude this element of our caching policy from our evaluation, and

leave full analysis for future work. With this room for improvement in mind,

our proposed design with the sharing tracker and the first element of the

caching policy still furnishes significant reductions in DRAM data demand

compared to a conventional baseline GPU design as shown in Figure 4.1.

Given the conventional block scheduling policies on a GPU, only a limited

subset of compute units tend to share data. Tracking all L1 caches which

have a copy of a particular cache line may thus be wasteful when only a small
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Figure 4.4: Normalized DRAM Data Demand When Tracking Different
Number of Sharers (Both Configurations have 1MB L2 Cache, Sharing
Tracker, and Bypass L1 Caches for Non-coalesced Accesses)

number is typically sufficient. Figure 4.4 compares the extremes of maintain-

ing either a full map of sharers or a single-element entry. Clearly, tracking

a single sharer is sufficient for all practical purposes, with the exception of

CutCP for which at least a subset of sharers is required to take full advantage

of inter-processor locality. It remains to say that keeping track of a subset of

sharers, as opposed to one, allows the sharing tracker to alternate between

different L1 caches upon responding to successive requests to a particular

cache line for load balance.

As GPUs increase the number of compute-units on chip, the latency of

accessing a sharing tracker will grow, potentially becoming a bottleneck.

One way to deal with this scalability problem is by replicating resources,

distributing multiple copies of the global sharing tracker across the GPU.

Alternatively, we can leverage the GPU execution model with a distributed

design of multiple smaller sharing trackers, where each covers a subset of com-

pute units. The distributed sharing trackers can interrogate each other, but

we keep them isolated in our simulations for simplicity. Apart from CutCP

and SGEMM in which thread blocks scheduled to all compute units share

data, Figure 4.5 shows that such an arrangement achieves the same DRAM
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Figure 4.5: Normalized DRAM Data Demand with Distributed Sharing
Trackers (All Configurations have 1MB L2 Cache, Sharing Tracker, and
Bypass L1 Caches for Non-coalesced Accesses)

demand reduction advantages as a design with a global sharing tracker for

most of our benchmarks at a smaller area overhead. While we leave the dis-

tributed sharing trackers with a collective number of sets equal to that in the

global sharing tracker, we shorten the sharers lists in each of them to match

the smaller set of possible sharers they each cover, effectively reducing the

total area overhead.

Table 4.3 shows the models for area, power, and energy for the cache

and sharing tracker structures of the system in a 22 nm process modeled by

Table 4.3: Power, Area, and Energy Models for the Components of a GPU
Memory System in a Conventional Baseline Design and Our Proposed
Design

Structure Capacity
Line

Assoc. Ports
Aggregate Aggregate Line Read Line Write

Size Chip Area Leakage Energy Energy

L1 (Baseline) 64KB 128B 4-way 1R/W, 1W 5.76 mm2 170.38 mW 30.5 pJ 44.4 pJ

L1 (Proposed) 64KB 128B 4-way 2-R/W 5.79 mm2 183.11 mW 30.5 pJ 44.5 pJ

1 ST 16KB 2B 8-way 1-R/W 0.07 mm2 13.35 mW 2.3 pJ 3.9 pJ

2 STs 2×8KB 2B 8-way 1-R/W 0.05 mm2 12.72 mW 1.7 pJ 2.9 pJ

4 STs 4×4KB 2B 8-way 1-R/W 0.07 mm2 12.30 mW 1.2 pJ 2.1 pJ

L2 Cache

128KB 32B 8-way 1-R/W 0.46 mm2 59.82 mW 62.1 pJ 61.5 pJ

256KB 32B 8-way 1-R/W 0.56 mm2 81.26 mW 67.7 pJ 67.5 pJ

512KB 32B 8-way 1-R/W 0.81 mm2 124.27 mW 78.5 pJ 77.2 pJ

1MB 32B 8-way 1-R/W 1.25 mm2 211.24 mW 99.7 pJ 96.1 pJ

Interconnect N/A N/A N/A N/A N/A N/A 0.144 pJ B−1 mm−1

DRAM (GDDR5) N/A 32B N/A N/A N/A N/A 4480 pJ
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CACTI 6.5, which combines many of the features of CACTI 5 and 6 [18, 19].

Our proposed sharing tracker proves to be economical, both energy- and

area-wise. DRAM energy costs are a best-case calculation from industry

specifications [20] assuming prefect row locality for a fully saturated read-

only access stream. Interconnect message costs are calculated based on data

for a 0.1 V low-swing interconnect from the DARPA exascale report [21]. We

exclude the energy costs of the memory controller for its design is beyond the

scope of this work and would only increase the DRAM access cost further.

Based on this energy cost data, we calculate the memory system energy

cost on a variety of memory system configurations as in Figure 4.6. Over-

all, DRAM accesses and L1 hits are the dominant components of the energy

costs in almost every benchmark and configuration. Although generously

estimated, the increased interconnect energy cost due to the sharing tracker

is all but negligible. Therefore, the benchmarks that show significant DRAM

demand improvement on the combined L2 cache and sharing tracker config-

uration, like CutCP, Gridding, LBM, and SPMV, also demonstrate reduced

total energy cost as expected. Interestingly though, some benchmarks with

little change in DRAM data demand due to the sharing tracker, BFS and

Histo in particular, and SGEMM to a lesser extent, still show meaningful

energy reductions due to a smaller L2 access component. For the remaining

benchmarks, MRIQ and Stencil, the memory access profile with a 1MB L2

cache hardly changes in the presence of a sharing tracker, and thus the mem-

ory system energy cost is virtually the same for all configurations. However,

for smaller L2 cache sizes with which a sharing tracker is shown in Figure 4.1

to be more significant for reducing DRAM data demand, the total energy

cost is proportionally smaller although not demonstrated in Figure 4.6.

To summarize, DRAM access is the first-order factor in the energy cost

of the memory system that utterly dominates the costs of adding a sharing

tracker to the system and the resultant increase in interconnect traffic. By

making a more efficient use of the two cache levels in the system, our proposed

sharing tracker and caching policy eliminate some of the redundant DRAM

traffic and reduce the total system energy cost (28% total energy reduction

on average for 1MB L2 cache). These benefits are magnified whenever the

cache space is insufficient for the purposes of the workloads hosted by the

system.

The temporal aspect of performance for our proposed design obviously de-
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pends on the relative latencies of remote L1 cache accesses, L2 cache accesses,

and DRAM accesses. Our results suggest that the overhead of accessing the

sharing tracker and remote L1 caches is likely to be hidden completely in

compute-bound benchmarks, such as CutCP, MRIQ, and SGEMM, even for

remote L1 cache access latencies drastically biased against our design. As for

memory-bound benchmarks, LBM, SPMV, and Stencil for example, the exe-

cution times are likely to be dominated by the overhead of DRAM accesses in

systems with relatively small L2 caches, and we expect our proposed design to

consistently outperform the conventional baseline architecture. For systems

with large L2 caches, however, the on-chip network bandwidth and latency

must be kept under control in order to alleviate the overhead of accessing

data from remote L1 caches via the sharing tracker.
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CHAPTER 5

RELATED WORK AND CONCLUSION

A huge body of work has explored conventional hardware cache coherence

organizations [22], and the optimizations that can be built on the top of

which. For example, Chang and Sohi use cooperative caching to share the

resources of private caches on a single chip [23]. Their Central Coherence

Engine embodies a full coherence directory and engine. Herrero et al. extend

the cooperative caching framework to large scale chip multiprocessors by

replacing the Central Coherence Engine with Distributed Coherence Engines

spread across the nodes to improve scalability [24].

A number of non-coherent shared-memory architectures have been pro-

posed or developed [25, 14, 26, 15] as a more scalable and cost-effective al-

ternative to cache-coherent shared-memory architectures. Coherence in such

systems must be managed in software [22]. Our software coherence model,

based on the software support available on Fermi GPUs [14], is similar to the

task-centric memory model [25].

Caches can exploit relaxed hardware coherence requirements by tracking

less information, generating fewer coherence messages, and/or not waiting

for messages. Tarjan and Skadron propose a directory-like structure, dubbed

a sharing tracker, to share data between a GPU’s L1 caches [3] at a lower

cost than larger caches. The original sharing tracker is designed for work-

loads with a mixture of read-shared and private data, differentiated at the

granularity of cache lines, and it does not address false sharing or coherent

memory operations. The Rigel architecture [25] adds fine-grained dirty bits

to avoid the problem of false sharing.

Coherence decoupling in cache-coherent architectures uses data specula-

tively on a cache hit instead of waiting for memory coherence messages [27].

Coherence decoupling thereby reduces the average memory latency, but it is

unlikely to save energy or area since it does not reduce coherence traffic or

cache pressure.
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A large body of work has proposed ways to combine the speed and hard-

ware simplicity of small private caches to the sharing benefits of large shared

caches, without assuming any prior knowledge of shared and private data

in general. Such approaches include coordinating multiple private caches to

emulate the increased sharing and capacity of a shared cache [23], and dy-

namically migrating lines between the banks of a shared cache to draw near

the latency of a private cache [27, 28].

Another line of research fine-tunes the cache filling and eviction policies

on GPUs to better utilize the available cache memory. Cache bypassing [29]

has been proposed to avoid polluting the L2 cache with private data [30].

Jia et al. observe that non-coalesced accesses to the L1 cache can be slower

than non-cached accesses, and propose bypassing the L1 cache to alleviate

this problem, based on the estimated memory traffic of an instruction [4].

In this era of data-intensive computing, the principles of designing for data-

parallelism, throughput, and latency tolerance make GPUs an ideal platform

for drawing general lessons for the many-core architectures of the future. For

this thesis, we propose a new memory system for GPU architectures based on

an analysis of the characteristics of their workloads, and the features of their

programming models. We show that for systems where the aggregate L1

cache capacity outweighs the L2 cache, an economical sharing tracker widens

the temporal window of the cache hierarchy enough to capture as much inter-

processor locality as an L2 cache of twice the size in a baseline system. We

also show that the L2 cache with its shorter lines is better poised with an

adaptive caching policy at hand to serve non-coalesced memory requests that

contend aggressively for cache lines.

Our novel design with its sharing tracker and smart cache allocation policy

exposes new tradeoffs for future work to assess more thoroughly. In the light

of these conclusions, and given their applicability to many-core architectures

in general, future work can continue to explore the roles of each level in

the cache hierarchy within these next-generation architectures and for their

emerging applications. It is worth considering whether the traditional role

of a last-level cache is still relevant, and thus justifies raising its share of the

transistor budget, or whether transistors are better spent on larger private

first-level caches to which a small last-level cache plays an ancillary role.
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