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Abstract

This thesis pertains to the development of distributed algorithms in the context of networked multi-
agent systems. Such engineered systems may be tasked with a variety of goals, ranging from the
solution of optimization problems to addressing the solution of variational inequality problems.
Two key complicating characteristics of multi-agent systems are the following: (i) the lack of
availability of system-wide information at any given location; and (ii) the absence of any central
coordinator. These intricacies make it infeasible to collect all the information at a location and
preclude the use of centralized algorithms. Consequently, a fundamental question in the design
of such systems is the need for developing algorithms that can support their functioning. Accord-
ingly, our goal lies in developing distributed algorithms that can be implemented at a local level
while guaranteeing a global system-level requirement. In such techniques, each agent uses locally
available information, including that accessible from its immediate neighbors, to update its deci-
sions, rather than availing of the decisions of all agents. This thesis focuses on multi-agent systems
tasked with the solution of three sets of problems: (i) convex optimization problems; (ii) Cartesian
variational inequality problems; and (iii) a sub-class of Nash games.

In the first part of this thesis, we consider a multiuser convex optimization problem. Tradition-
ally, a multiuser problem is a constrained optimization problem characterized by a set of users (or
agents). Such problems are characterized by an objective given by a sum of user-specific utility
functions, and a collection of separable constraints that couple user decisions. We assume that
user-specific utility information is private while users may communicate values of their decision
variables. The multiuser problem is to maximize the sum of the users-specific cost functions sub-
ject to the coupling constraints, while abiding by the informational requirements of each user. In
this part of the thesis, we focus on generalizations of convex multiuser optimization problems
where the objective and constraints are not separable by user and instead consider instances where
user decisions are coupled, both in the objective and through nonlinear coupling constraints. To
solve this problem, we consider the application of distributed gradient-based algorithms on an ap-
proximation of the multiuser problem. Such an approximation is obtained through a regularization
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and is equipped with bounds of the difference between the optimal function values of the original
problem and its regularized counterpart. In the algorithmic development, we consider constant
stepsize primal-dual and dual schemes in which the iterate computations are distributed naturally
across the users, i.e., each user updates its own decision only. We observe that a generalization of
this result is also available when users choose their stepsize and regularization parameters inde-
pendently from a prescribed range.

The second part of this thesis is devoted to the solution of a Cartesian variational inequality (VI)
problem. A Cartesian VI provides a unifying framework for studying multi-agent systems includ-
ing regimes in which agents either cooperate or compete in a Nash game. Under suitable convexity
assumptions, sufficiency conditions of such problems can be cast as a Cartesian VI. We consider
a monotone stochastic Cartesian variational inequality problem that naturally arise from convex
optimization problems or a subclass of Nash games over continuous strategy sets. Almost sure
convergence of standard implementations of stochastic approximation rely on strong monotonicity
of the mappings arising in such variational inequality problems. Our interest lies in weakening
this requirement and this motivates the development of distributed iterative stochastic approxima-
tion algorithms. We introduce two classes of stochastic approximation methods, each of which
requires exactly one projection step at every iteration, and provide convergence analysis for them.
Of these, the first is a stochastic iterative Tikhonov regularization method which necessitates the
update of regularization parameter after every iteration. The second method is a stochastic iterative
proximal-point method, where the centering term is updated after every iteration. Conditions are
provided for recovering global convergence in limited coordination extensions of such schemes
where agents are allowed to choose their stepsize sequences, regularization and centering param-
eters independently, while meeting a suitable coordination requirement. We apply the proposed
class of techniques and their limited coordination versions to a stochastic networked rate alloca-
tion problem.

The focus of the third part of the thesis is on a class of games, termed as aggregative games,
being played over a networked system. In an aggregative game, an agent’s objective function is
coupled across agents through a function of the aggregate of all agents decisions. Every agent
maintains an estimate of the aggregate and agents exchange this information over a connected net-
work. We study two classes of distributed algorithm for information exchange and computation
of equilibrium. The first method, a diffusion-based algorithm, operates in a synchronous setting
which can contend with time-varying connectivity of the underlying network graph model. The
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second method, a gossip-based distributed algorithm, is inherently asynchronous and is applicable
when the network is static. Our primary emphasis is on proving the convergence of these algo-
rithms under an assumption of a diminishing (agent-specific) stepsize sequence. Under standard
conditions, we establish the almost-sure convergence of these algorithms to an equilibrium point.
Moreover, we also develop and analyze the associated error bounds when a constant stepsize (user-
specific) is employed in the gossip-based method. Finally, we present numerical results to assess
the performance of the diffusion and the gossip algorithm for a class of aggregative games for
various network models and sizes.
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Chapter 1

Introduction

The theory of complex networked systems continues to galvanize a wide range of scientific com-
munities including those in mathematics, engineering, computer science, biology, sociology, among
others. Complex networks arise in a multitude of application regimes and this ubiquity has inspired
a range of questions in the development and analysis of algorithms. While early inquiries focused
on gaining consensus on a particular parameter under possibly evolving connectivity graphs, subse-
quent efforts have concentrated on the optimization of multi-agent systems. The field of distributed
algorithms continues to grow at a brisk pace and presents a plethora of challenging problems that
will have profound impact on the ability to optimize and control networked systems as well as
understand their associated emergent behavior.

A complex networked system may be modelled as a graph where the nodes represent agents and
the underlying connectivity graph provides the foundation for information exchange amongst these
agents1. The resulting multi-agent system consists of agents communicating and exchanging infor-
mation over a complex topological network. Following are some of the important characteristics
of a multi-agent system:

1. Limited communication: In truly large networks, agents may communicate with only a subset
of other agents, often referred to as its neighbors;

2. Lack of a central coordinator: There is no designated central coordinator tasked with the
collection and broadcast of system-wide information to make it accessible to every agent;

3. Local information: Each agent has access to only its local information and may control only
its own decision.

Multi-agent systems, as mentioned earlier, may be tasked with a wide array of functionalities,
ranging from consensus to optimization to equilibrium seeking and may operate in uncertain and
dynamic environments. The precise implications of these characteristics are context sensitive and

1In competitive regimes, the words agent and player will be used interchangeably through this monograph.
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their discussion is delayed until the next section. Examples of multi-agent systems include, but
are not limited to: (i) Computer networks where computers are the agents and communication
channels (wired or wireless) form the edges; (ii) Transportation networks where the routes (edges)
connect various locations (nodes); (iii) Social networks where individual or organizations are the
agents and the dyadic ties between them form the connection.

Naturally, the type of network significantly influences the problem at hand. To address the
challenges posed by networked systems, two broad classes of design approaches may be employed.
The first of these is a top-down approach and entails decomposing a large system into smaller
subsystems that are relatively easy to analyse. A hierarchical chain of decompose and analyse is
executed, and so until the final subsystem falls into a class of problems that is well understood. In
contrast, the second approach, referred to as the bottom-up approach, takes an altogether different
path. Here, almost all the effort is devoted to the atomic level problem. Once the entities at the
atomic level are made self-efficient, all that is left to be done is an assembly, which itself may be
automated.

To highlight the subtle differences across the approaches, we consider the following question:

Suppose we want to understand the pattern formation of a large population of mi-

gratory birds through a mathematical simulation? What would be the right approach

for developing such a computer simulation?

Any experienced programmer would ascertain that almost all the effort must be devoted to mod-
elling the behaviour of the single entity, the bird. The above example, though naı̈ve, serves the
purpose of highlighting the importance of a bottom-up approach in truly large complex networked
systems. Bottom-up approaches start with a rigorously predefined set of rules for agent behaviour
and interactions, and then a desirable system-level behaviour emerges through such interactions.

With the advent of computers and other advanced technologies that came along with them, the
size of network systems increased from large to colossal. This has led to the development and
refinement of distributed algorithms for multi-agent system theoretic problems, a topic of central
importance of this research work.

1.1 Distributed algorithms in multi-agent systems

This thesis focuses on the development of distributed algorithms in multi-agent systems. The
local information structure of the multi-agent systems when coupled with the absence of a central
coordinator does impose a host of restrictions on choices of algorithms. Thus in this work, we
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focus on developing distributed algorithms that are in compliance with the distributed information
structure of the problem:

(i) Limited informational requirements: Any given user does not have access to the utility func-
tions or the constraints of other users;

(ii) Single iteration schemes: Two nested iterative schemes require coordination across outer and
inner iteration level, a challenging prospect in networked setting. Our goal lies in developing
single iteration schemes that require less coordination;

(iii) Limited coordination of algorithm parameters: In truly large-scale networks, enforcing con-
sistency across algorithm parameters is often challenging and ideally, one would like minimal
coordination across users in specifying algorithm parameters;

(iv) Uncertainty: In many practical problems some elements may involve uncertain data, for
instance, communication over the wireless medium.

The aforementioned criteria will persistently feature in all of the algorithms that are developed
and studied in this thesis. More generally, the theme of algorithms fall in the bottom-up design
approach. In effect, our algorithms endow each agent in the network with a mandatory protocol,
and we then establish the emergence of a desirable behaviour.

The nature of agents in the sense of cooperation gives rise to different problem classes within
multi-agent systems. For instance, if the agents are cooperative then the multi-agent system is
essentially a multiuser optimization problem where all agents are collectively working towards a
common goal. A popular choice of these problems is one where agents are collectively optimizing
the sum of local individual objective2 or a min-max problem where the worst case scenario loss
is optimized. A problem of this kind may arise in network resource allocation such as rate alloca-
tion among multiple users, where the coupling cost may be due to congestion or delay, while the
coupling constraints may be due to the network link capacities [1, 2, 3].

While multiuser optimization problems present a way to capture cooperative behaviour of the
multi-agent system, Nash games may be natural models for capturing the strategic behaviour in a
multi-agent system. A competitive counterpart of multiuser optimization problems is a Nash game.
More precisely, agents are only interested in optimizing their own individual goals which are also
affected by decisions of other agents in the network. Game-theoretic models find application in a
range of settings ranging from wired and wireless communication networks [4, 5, 6], bandwidth

2The total sum of individual goals is considered to be a good measure of fair allocation.
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allocation [7, 8, 5], spectrum allocation in radio networks [9], cognitive radio networks [10], Nash-
Cournot games [11, 12] and optical networks [13, 14]. While aforementioned work lies in con-
tinuous strategy games, [15, 16] have examined a range of questions, under varying informational
assumptions, in the regime of finite-strategy games.

The connection between multiuser optimization and Nash games is interesting from two impor-
tant standpoints. The first of these is the efficiency3. The efficiency is a measure used to assess the
quality of a Nash equilibrium with respect to the centralized welfare problem. More precisely, a
Nash equilibrium is regarded as efficient if no single player can be made better-off without making
at least one other player worse off. Interestingly, an efficient Nash equilibrium for a restricted
class of Nash games is characterized as an optimal solution of a centralized optimization prob-
lem4. Notably, Nash games are known to arise in engineered multi-agent systems, as motivated by
the development of decentralized control schemes. For instance, in massive networks, it may be
impossible to exercise direct control over the users and a possible approach lies in allowing users
to behave selfishly and compete for resources. If the aggregate cost of the Nash equilibria asso-
ciated with the Nash counterpart is identical to its centralized counterpart, then the equilibria are
deemed as efficient. In effect, the game achieves the same outcome as the centralized optimization
problem.

We now discuss the second connection standpoint between multiuser optimization problems and
Nash games, the computation. For the design of algorithms for computation of optimal or equi-
librium point, the theory of variational inequalities has been instrumental. Variational inequalities
(VI) provide a unifying framework for studying and analyzing both multiuser optimization prob-
lems and convex Nash games. In fact, under convexity assumptions, the (sufficient) optimality
conditions of a multiuser optimization problem or the equilibrium condition of a Nash game give
rise to a Cartesian variational inequality. We have a responsibility of explaining the main advan-
tages of taking the VI path, and we take this towards the end of this section. We pause here to
briefly introduce the theory of VI which is of importance to this work (see xiii for an overview of
notation). To begin with, the problem VI(K,F) requires finding a vector x ∈ K ⊆ R

n such that

(y− x)T F(x)≥ 0 for all y ∈ K, VI(K,F)

where F : K → R
n. Usually, K is a closed convex set and F is a continuous map. Additionally,

when the set K is a Cartesian set, the VI(K,F) is called a Cartesian variational inequality.

3To be more precise, the notion of efficiency considered here is Pareto-efficiency.
4The generality of this statement and its discussion is beyond the scope of this thesis.
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In this thesis, we also consider a stochastic Cartesian variational inequality problem SVI(K,F)

for a mapping F over the Cartesian set K, which can be viewed as a natural extension of determin-
istic Cartesian variational inequality problem VI(K,F) with the mapping F given as an expectation
of some uncertainty. Due to lack of analytical expression of F, approaches of deterministic VI can-
not be directly applied. Our interest is in developing distributed stochastic approximation schemes
for such a problem when the mapping F is monotone5 over the Cartesian set K.

We resume with our discussion of problems arising in multi-agent systems. So far we have
eluded the discussion of two important aspects of of multi-agent systems, specifically the infor-
mation and communication. In fact, throughout our preceding discussion on multi-agent systems
we have been implicitly assuming that agents have the access to the desired information either
directly or through observation. In context of multiuser optimization problems or Nash games, this
essentially requires every agent to have access to decision of all the other agents in the network;
however, utility functions and constraint sets are not public knowledge. Such an assumption may
be difficult to satisfy in many application, especially in truly large networks. Inspired by the need
to address this restriction, we next consider a game-theoretic networked setting where agents have
limited access to the decisions of other agents.

Towards this end, we consider a special class of Nash games called aggregative games, being
played over a network of agents. An aggregative games is a game with the specific property that
each player’s cost function is represented as a function which depends only upon its decision
and an aggregate of the decisions of all agents in the network. Aggregative games enjoy the
luxury of belonging to a class of Nash games for which existence and uniqueness results are well-
established. Problems arising in networked Nash-Cournot games [17, 18, 19, 20], rate allocation in
communication networks including public goods games [21], common resource games [22], cost
sharing games [23] usually belong to the the class of aggregative games. In all the preceding work
related to the computation of Nash equilibrium, it is intrinsically assumed that each player is aware
of the aggregate of the network. However, in the absence of a central coordinator, computation of
the aggregate and its dissemination is a challenging proposition. The problem aggravates further
if the players are precluded from sharing their decision with any other player but are allowed to
share their belief of the aggregate information. To motivate the situation arising in the preceding
discussion, consider the following question:

A group of people (at least 3) are in a meeting and they are all interested in know-

ing the average salary (or any other personal characteristics, age for instance). How-
5A mapping F : K→ R

n is said to be monotone over a set K ⊆ Rn if (F(x)−F(y))T (x− y)≥ 0 for all x,y ∈ K. It
is said to be strictly monotone over K if (F(x)−F(y))T (x− y)> 0 for all x,y ∈ K with x 6= y. In addition, it is said to
be strongly monotone if there exists a positive scalar η such that (F(x)−F(y))T (x− y)≥ η‖x− y‖2 for all x,y ∈ K.
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ever, being conscious and also humble, they abstain to disclose their own information.

Is there a way to compute the average abiding the informational restriction?6

Under such a restrained scenario, a distributed algorithm can possibly aid agents to to build an
estimate of true information by constructively using partial information obtained through commu-
nication with their immediate neighbours (possibly time varying). Our interest is lies in exploring
this avenue and establishing the emergence of a Nash equilibria following a distributed protocol.

More generally, the distributed methods are developed and studied in this thesis with the goal of
computation of optimal decision in case of optimization problem or equilibrium decision in game-
theoretic regimes. However, we follow a very similar approach in all the problems that we address:
we attempt to cast the original problem into a Cartesian variational inequality. The solution to the
Cartesian variational inequality originating through such a transformation is also a solution to the
original problem. This approach provides us with two advantages: first, the ability to discuss the
existence/uniqueness of a solution; and second, an avenue for constructing convergent methods to
obtain these solutions. In particular, a solution to Cartesian VI also solves a fixed point equation
of the related natural map which serves as the impetus behind all our algorithmic endeavours.

Our primary interest is in first-order methods, as these methods have relatively small overhead
per iteration. They also exhibit stable behaviour in the presence of various sources of noise in the
computations, as well as in the information exchange due to possibly noisy links in the underlying
communication network over which the users communicate. Another important and desirable
property of distributed algorithms is scalability: the computational effort to solve the problem
should grow slowly (ideally linearly) with the size of the network7.

A final note is in order regarding certain terms that we use in this work. The term “error anal-
ysis” pertains to the development of bounds on the difference between a given solution or func-
tion value and its optimal counterpart. The term “coordination” assumes relevance in distributed
schemes where certain algorithmic parameters may need to satisfy a prescribed requirement across
all users. Finally, it is worth accentuating why our work assumes relevance in implementing dis-
tributed algorithms in practical settings. In large-scale networks, the success of standard distributed
implementations is often contingent on a series of factors. For instance, convergence often requires
that steplengths match across users, exact/inexact solutions are available in bounded time intervals
and finally, users have access to recent updates by the other network participants. In practice,
algorithms may not subscribe to these restrictions and one may be unable to specify the choice
of algorithm parameters, such as steplengths and regularization parameters, across users. Accord-

6This is adapted from a famous interview question.
7The number of agents in the network is often a good proxy for the size of the network.
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ingly, we extend standard fixed-steplength gradient methods to allow for heterogeneous steplengths
and diversity in other algorithmic parameters.

The remainder of the chapter is organised as follows. We provide a brief summary of distributed
algorithms in the context of multi-agent system and formally set out our goals. We consider three
diverse problems arising in a multi-agent system, the treatment of which spans the next three
chapters. We describe each of them briefly in Sections 1.2, 1.3 and 1.4.

1.2 Multiuser optimization problem

In this thesis we consider the generic forms of multiuser problems. A multiuser problem is a
constrained optimization problem associated with a finite set of N users (or players). Each user i

has a convex cost function fi(xi) that depends only on its decision vector xi. The decision vectors
xi, i = 1, . . . ,N are typically subject to a finite system of linear inequalities ∑

N
i=1 aT

jixi ≤ b j for j =

1, . . . ,m, which couple the user decision variables. The traditional multiuser problem is formulated
as a convex minimization of the form

minimize
N

∑
i=1

fi(xi)

subject to
N

∑
i=1

aT
jixi ≤ b j, j = 1, . . . ,m (1.1)

xi ∈ Ki, i = 1, . . . ,N,

where Ki is the set constraint on user i decision xi (often Ki is a box constraint). In many appli-
cations, users are characterized by their payoff functions rather than cost functions, in which case
the multiuser problem is a concave maximization problem. Often, the informational restrictions
dictate that the ith user only has access to his objective fi and constraint set Ki. Furthermore, user
i can modify only its own decision xi but may observe the decisions (x j) j 6=i of the other users. In
effect, every user can see the entire vector x. Consequently, distributed schemes that abide by these
requirements are of relevance.

The prior work on multiuser optimization problem arising in network resource allocation [1,
2, 3, 24, 25, 26] is dealing with users with separable objectives, but coupled polyhedral con-
straints. Methods discussed therein are typically in a continuous-time setting (with exception for
[3] where discrete-time schemes are investigated). Discrete-time (approximate) schemes, com-
bined with simple averaging, have been studied in [27, 28, 29] for a general convex constrained
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formulation. However, all of the aforementioned work establishes the convergence properties of
therein proposed algorithms under the assumption that the users coordinate their steplengths, i.e.,
the steplength values are equal across all users.

This thesis work generalizes the standard multiuser optimization problem, defined in (1.1), in
two distinct ways: (i) The user objectives are coupled by a congestion metric (as opposed to being
separable). Specifically, the objective in (1.1) is replaced by a system cost given by ∑

N
i=1 fi(xi)+

c(x1, . . . ,xN), with a convex coupling cost c(x1, . . . ,xN); and (ii) The linear inequalities in (1.1)
are replaced with general convex inequalities. In effect, the constraints are nonlinear and not
necessarily separable by user decisions.

To this end, consider a generalization to the canonical multiuser optimization problem of the
following form:

minimize f (x),
N

∑
i=1

fi(xi)+ c(x)

subject to d j(x)≤ 0 for all j = 1, . . . ,m, (1.2)

xi ∈ Ki for all i = 1, . . . ,N,

where N is the number of users, fi(xi) is user i cost function depending on a decision vector xi and
Ki is the constraint set for user i. The function c(x) is a joint cost that depends on the user decisions,
i.e., x = (x1, . . . ,xN). The functions fi, c and d j are convex and continuously differentiable.

Before proceeding on our approach to solve this problem, we motivate the problem of interest
via an example drawn from communication networks [1, 2], which can capture a host of other
problems (such as in traffic or transportation networks).

Example 1. Consider a network (see Fig 1.1) with a set of J link constraints and b j being the

finite capacity of link j, for j ∈ J. Let R be a set of user-specific routes, and let A be the associated

link-route incidence matrix, i.e., A jr = 1 if j ∈ r implying that link j is traversed on route r, and

A jr = 0 otherwise.

Suppose, the rth user has an associated route r and a rate allocation (flow) denoted by xr. The

corresponding utility of such a rate is given by Ur(xr). Assume further that utilities are additive

implying that total utility is merely given by ∑r∈RUr(xr). Further, let c(x) represent the congestion

cost arising from using the same linkages in a route. Under this model the system optimal rates

solve the following problem.

maximize ∑
r∈R

Ur(xr)− c(x)

subject to Ax≤ b, x≥ 0. (1.3)
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Figure 1.1: A network with 3 users and 5 links.

To handle these generalizations of the multiuser problem, we propose approximating the prob-
lems with their regularized counterparts and, then, solving the regularized problems in a distributed
fashion in compliance with the user specific information (user functions and decision variables).
We provide an error estimate for the difference between the optimal function values of the orig-
inal and the regularized problems. For solving the regularized problems, we consider distributed
primal-dual and dual approaches, including those requiring inexact solutions of Lagrangian sub-
problems. We investigate the convergence properties and provide error bounds for these algorithms
using two different assumptions on the stepsizes, namely that the stepsizes are the same across all
users and the stepsizes differ across different users. These results are extended to regimes where the
users may select their regularization parameters from a broadcasted range. Hence, these algorithms
satisfy the requirement we set out in the beginning of this chapter, namely, limited informational
requirement, single level iteration, limited coordination of algorithm parameters [30, 31].

1.3 Stochastic Cartesian variational inequality problems

We consider a Cartesian monotone stochastic variational inequality problem, which is a problem
that requires finding a vector x = (x1, . . . ,xN) satisfying

(x1− y1)
T F1(x)≥ 0, ∀y1 ∈ K1,

...

(xN− yN)
T FN(x)≥ 0, ∀yN ∈ KN ,

(1.4)
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where F1(x) = E[ f̃1(x,ξ )] and E[ ] denotes the expectation with respect to some uncertainty ξ . Our
interest is in developing distributed stochastic approximation schemes for such a problem when
the mapping

F(x) = (F1(x), . . . ,FN(x))

is monotone over the Cartesian product of the sets Ki, i.e., (F(x)−F(y))T (x− y)≥ 0 for all x,y ∈
K1×·· ·×KN . Cartesian stochastic variational inequalities arise from both stochastic optimization
and game-theoretic problem as illustrated next. Consider a Nash game in which the ith player
solves the following problem:

minimize fi(x),E[ fi(xi,x−i,ξi)]

subject to xi ∈ Ki. (1.5)

When fi(x) is convex over Ki for all i = 1, . . . ,N, then the equilibrium (sufficient) conditions of this
problem are given by (1.4) where Fi(x) = ∇xiE[ fi(x,ξ )] for i = 1, . . . ,N, and the resulting mapping
F is monotone over K1× ·· · ×KN . This can be rewritten as a stochastic variational inequality
SVI(K,F) where F = (FT

1 , . . . ,FT
N )T and K = K1×·· ·×KN .

For the Cartesian stochastic variational inequalities, it seems natural to exploit the presence
of decoupled constraint sets and develop distributed schemes. When considering multiuser op-
timization problems, distributed optimization approaches have been natural candidates (cf. [2]).
Yet, there appears to have been markedly little on stochastic variational inequalities that natu-
rally extend multiuser optimization. Our work in this thesis intends to fill the lacuna through this
framework. In a deterministic setting, distributed schemes for computing equilibria arising from
monotone Nash games have received significant attention recently [5, 7, 32, 33, 14, 6, 34, 12].
Of particular relevance is the work in [14, 33], the latter employing an extragradient scheme [35]
capable of accommodating deterministic monotone Nash games. Finally, Scutari et al. [10] exam-
ine an array of monotone Nash games and consider proximal-point based distributed schemes in a
basic prox-setting where a sub-problem is solved at each iteration.

To the best of our knowledge, [36] appears to be the only existing work considering stochastic
approximation methods for variational inequalities. Moreover, the convergence therein is estab-
lished under the strong monotonicity assumption of mapping F . The work in this thesis is moti-
vated by the challenges associated with solving stochastic variational problems when the mappings
lose strong monotonicity. In solving deterministic variational inequalities, such a departure is ably
handled through techniques, such as Tikhonov regularization [37, 38] and proximal-point [39]. A
direct implementation of regularization techniques leads to a two nested level methods which are
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difficult to implement in a distributed networked setting. And the presence of uncertainty aggra-
vates the implementation further. In the present work we overcome this challenge by emphasizing
on iterative regularization for stochastic variational inequalities with monotone maps. In Chapter 3,
we present and analyze two stochastic iterative regularization schemes:

1. Stochastic iterative Tikhonov regularization method;

2. Stochastic iterative proximal-point method.

Each of these schemes requires exactly one projection step at every iteration with users having
autonomous choice of algorithmic parameters. Under some restrictions on the deviations across the
users choices, we establish convergence properties of these methods in almost sure sense [40, 41].

1.4 Networked aggregative Nash games

In this section we introduce an aggregative game of our interest. An aggregative game is a non-
cooperative game in which each player’s payoff is parametrized by its action and the aggregate of
the actions taken by all players [42, 43, 44]. Such games have been shown to be closely related
with subclasses of potential games [45, 46] where a potential game refers to a Nash game in which
the payoff functions admit a potential function [47]. Nash-Cournot games represent one instance
of such games; here firms make quantity bids that fetch a price based aggregate quantity sold,
implying that the payoff of any player is a function of the aggregate quantity sold [17, 48].

We consider aggregative games wherein the agents compete over a network. The players in this
game are assumed to have local interactions with each other over time, where these interactions
are modelled by time-varying connectivity graphs. To this end, consider a set of N players (or
agents) indexed by 1, . . . ,N, and let N = {1, . . . ,N}. The ith player is characterized by a strategy
set Ki ⊆ R

n and a payoff function fi(xi, x̄), which depends on player i decision xi and the aggregate
x̄ = ∑

N
i=1 xi of all player decisions. To formalize the game, let K̄ denote the Minkowski sum of the

sets Ki:

K̄ =
N

∑
i=1

Ki. (1.6)

In a generic aggregative game, player i faces the following parametrized optimization problem:

minimize fi(xi, x̄)

subject to xi ∈ Ki, (1.7)
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where Ki ⊆ R
n and x̄ is the aggregate of the agent’s decisions xi, i.e.,

x̄ =
N

∑
j=1

x j, x̄ ∈ K̄. (1.8)

The set Ki and the function fi are assumed to be known by agent i only.
Next, we motivate our work by providing an example of aggregative games, whose broad range

emphasizes the potential scope of our work.

Example 2 (Networked Nash-Cournot game). A classical example of an aggregative game is a

networked Nash-Cournot game [17, 18, 19, 20]. Suppose a set of N firms compete over L locations.

Firm i’s production and sales at location l are denoted by gil and sil , respectively, while its cost of

production at location l is denoted by cil(gil). Consequently, goods sold by firm i at location l fetch

a revenue pl(s̄l)sil where pl(s̄l) denotes the sales price at location l and s̄l = ∑
N
i=1 sil represents

the aggregate sales at location l. Finally, firm i’s production at location l is capacitated by capil

and its optimization problem is given by the following8:

minimize
L

∑
l=1

(cil(gil)− pl(s̄l)sil)

subject to
L

∑
l=1

gil =
L

∑
l=1

sil,

gil,sil ≥ 0, gil ≤ capil, l = 1, . . . ,L. (1.9)

In effect, firm i’s payoff function is parametrized by nodal aggregate sales, thus rendering an

aggregative game. Note that, in this example we have two independent networks, the first being

used to model the communication of the firms and the second being used to model the physical

layout of the firms production unit and locations. We allow the communication network to be

dynamic but the layout network is assumed to be static.

Distributed computation of equilibria in such games is complicated by two challenges. First,
the connectivity graphs of the underlying network may evolve over time. Second, in many set-
tings, agents do not have ready access to aggregate decisions, implying that agents cannot compute
their exact payoffs (or their gradients). Consequently, standard gradient-based or best-response
schemes cannot be directly implemented since agents do not have ready access to the aggregate.
Accordingly, we propose two distributed algorithms which allow agents to build estimates of the

8Note that the transportation costs are assumed to be zero.
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aggregate and compute an equilibrium of aggregative games. Of these, the first is a synchronous

distributed algorithm while the second is an asynchronous distributed (gossip-based) algorithm.
Distributed gradient-based algorithms for computing equilibria in deterministic regimes have

received significant attention recently, particularly in the context of wireless and wireline com-
munication networks and distributed control engineering [5, 7, 32, 33, 14]. Much of this work
assumes a somewhat more restrictive strong monotonicity property on the mapping corresponding
to the associated variational problem. By combining a regularization technique, this requirement
can be weakened [20] while extensions to stochastic regimes can also be incorporated by exam-
ining regularized counterparts of stochastic approximation [40]. However, all of these approaches
are under the assumption that agents have access to the decisions of all their competitors.

The novelty of the work in this chapter is in extending the realm of distributed algorithms in [49]
for computation of a Nash equilibrium point while the majority of preceding efforts have been
applied towards the solution of feasibility and optimization problems. Succinctly, the main con-
tributions of this work lie in studying a distributed synchronous and asynchronous algorithm for
aggregative Nash games and proving that they produce sequences that converge almost-surely to
the unique equilibrium.

13



Chapter 2

Distributed Algorithms For Convex Multiuser
Optimization Problem

In this chapter we present distributed algorithms aimed at solving system optimization prob-
lem (1.2). These algorithms are distributed in the sense that each user executes computations
only in the space of its own decision variables.

The work presented in this chapter is closely related to the distributed algorithms in [49, 50] and
the more recent work on shared-constraint games [51, 6], where several classes of problems with
the structures admitting decentralized computations are addressed. However, the algorithms in the
aforementioned work hinge on equal stepsizes for all users and exact solutions for their success.
In most networked settings, these requirements fail to hold, thus complicating the application of
these schemes. Furthermore, due to the computational complexity of obtaining exact solutions for
large scale problems, one is often more interested in a good approximate solution (with a provable
error bound) rather than an exact solution.

Related is also the literature on centralized projection-based methods for optimization (see for
example books [52, 53, 35]) and variational inequalities [54, 55, 56, 57, 35, 58]. Recently, effi-
cient projection-based algorithms have been developed in [59, 60, 61, 62] for optimization, and
in [63, 64] for variational inequalities. The algorithms therein are all well suited for distributed
implementations subject to some minor restrictions such as choosing Bregman functions that are
separable across users’ decision variables. The aforementioned algorithms will preserve their ef-
ficiency as long as the stepsize values are the same for all users. When the users are allowed to
select their stepsizes within a certain range, there may be some efficiency loss. By viewing the
stepsize variations as a source of noise, the work in this chapter may be considered as an initial
step into exploring the effects of “noisy” stepsizes on the performance of first-order algorithms,
starting with simple first-order algorithms which are known to be stable under noisy data.

The layout of the chapter is as follows. In Section 2.1 we present the approach which paves
the path to the development of algorithms presented later in the chapter. We also formally present
various assumptions we make on the multiuser problem (2.1) and recap the related fixed-point
problem. In Section 2.2, we propose a regularized primal-dual method to allow for more general
coupling among the constraints. Our analysis is equipped with error bounds when step-sizes and
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regularization parameters differ across users. Dual schemes are discussed in Section 2.3, where
error bounds are provided for the case when inexact primal solutions are used. The behavior of the
proposed methods is examined for a multiuser traffic problem in Section 2.4. We finally provide
some concluding remarks in Section 2.5.

2.1 Fixed point approach

Before proceeding on with our approach, we re-present the problem and related notation for com-
pleteness.

minimize f (x),
N

∑
i=1

fi(xi)+ c(x)

subject to d j(x)≤ 0 for all j = 1, . . . ,m, (2.1)

xi ∈ Ki for all i = 1, . . . ,N,

where N is the number of users, fi(xi) is user i cost function depending on a decision vector xi ∈Rni

and Ki⊆R
ni is the constraint set for user i. The function c(x) is a joint cost that depends on the user

decisions, i.e., x = (x1, . . . ,xN) ∈ Rn, where n = ∑
N
i=1 ni. The functions fi : Rni → R and c : Rn→ R

are convex and continuously differentiable. Further, we assume that d j : Rn→ R is a continuously

differentiable convex function for every j. Often, when convenient, we will write the inequal-
ity constraints d j(x) ≤ 0, j = 1, . . . ,m, compactly as d(x) ≤ 0 with d(x) = (d1(x), . . . ,dm(x))T .

Similarly, we use ∇d(x) to denote the vector of gradients ∇d j(x), j = 1, . . . ,m, i.e., ∇d(x) =

(∇d1(x), . . . ,∇dm(x))T . The user constraint sets Ki are assumed to be nonempty, convex and closed.
We denote by f ∗ and K∗, respectively, the optimal value and the optimal solution set of this prob-
lem.

Our approach is based on casting the system optimization problem as a fixed point problem
through the variational inequality framework. Toward this goal, letting λ ∈Rm

+ denote the Lagrange
multipliers of problem (2.1), the Lagrangian is given as:

L(x,λ ) = f (x)+λ
T d(x), K = K1×K2×·· ·×KN .

Under suitable strong duality conditions, from the first-order optimality conditions and the decom-
posable structure of K it can be seen that (x∗,λ ∗) ∈ K ×R

m
+ is a solution to (2.1) if and only

x∗i solves the parameterized variational inequalities VI(Ki,∇xiL(xi;x∗−i,λ
∗)), i = 1, . . . ,N, and
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λ ∗ solves VI(R+
m,−∇λL(x∗,λ )). A vector (x∗,λ ∗) solves VI(Ki,∇xiL(xi;x∗−i,λ

∗)), i = 1, . . . ,N
and VI(Rm

+,−∇λL(x∗,λ )) if and only if each x∗i is a zero of the parameterized natural map1

Fnat
Ki
(xi;x∗−i,λ

∗)= 0, for i= 1, . . . ,N, and λ ∗ is a zero of the parameterized natural map Fnat
R

m
+
(λ ;x∗)=

0, i.e.,

Fnat
Ki
(xi;x∗−i,λ

∗), xi−ΠKi(xi−∇xiL(xi;x∗−i,λ
∗)) = 0 for i = 1, . . . ,N,

Fnat
R
+
m
(λ ;x∗), λ −Π

R
+
m
(λ +∇λL(x

∗,λ )) = 0.

Equivalently, letting x∗ = (x∗1, . . . ,x
∗
N) ∈ K, a solution to the original problem is given by a solution

to the following system of nonsmooth equations:

x∗ = ΠK(x∗−∇xL(x∗,λ ∗)),

λ
∗ = ΠR

m
+
(λ ∗+∇λL(x

∗,λ ∗)). (2.2)

Thus, x∗ solves problem (2.1) if and only if it is a solution to the system (2.2) for some λ ∗ ≥ 0.
This particular relation motivates our algorithmic development. We now discuss the conditions
that we use in the subsequent development. Specifically, we assume that the Slater condition holds
for problem (2.1).

Assumption 1. (Slater Condition) There exists a Slater vector x́ ∈ K such that d j(x́) < 0 for all

j = 1, . . . ,m.

Under the Slater condition, the primal problem (2.1) and its dual have the same optimal value,
and a dual optimal solution λ ∗ exists. When K is compact for example, the primal problem also
has a solution x∗. A primal-dual optimal pair (x∗,λ ∗) is also a solution to the coupled fixed-point
problems in (2.2). For a more compact notation, we introduce the mapping Φ(x,λ ) as

Φ(x,λ ), (∇xL(x,λ ),−∇λL(x,λ )) = (∇xL(x,λ ),−d(x)), (2.3)

and we let z = (x,λ ). In this notation, the preceding coupled fixed-point problems are equivalent
to a variational inequality requiring a vector z∗ = (x∗,λ ∗) ∈ K×R

m
+ such that

(z− z∗)T
Φ(z∗)≥ 0 for all z = (x,λ ) ∈ K×R

m
+. (2.4)

In the remainder of the chapter, in the product space R
n1 × ·· · ×R

nN , we use ‖x‖ and xT y to
denote the Euclidean norm and the inner product that are induced, respectively, by the Euclidean

1See [35], volume 1, 1.5.8 Proposition, page 83.
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norms and the inner products in the component spaces. Specifically, for x = (x1, . . . ,xN) with
xi ∈ Rni for all i, we have

xT y =
N

∑
i=1

xT
i yi and ‖x‖=

√
N

∑
i=1
‖xi‖2.

We now state our basic assumptions on the functions and the constraint sets in problem (2.1).

Assumption 2. The set K is closed, convex, and bounded. The functions fi(xi), i = 1, . . . ,N, and

c(x) are continuously differentiable and convex.

Next, we define the gradient map

F(x) =
(
∇x1( f1(x1)+ c(x))T , . . . ,∇xN ( fN(xN)+ c(x))T)T

,

for which we assume the following.

Assumption 3. The gradient map F(x) is Lipschitz continuous with a constant L over the set K,

i.e.,

‖F(x)−F(y)‖ ≤ L‖x− y‖ for all x,y ∈ K.

2.2 Regularized primal-dual method

In this section, we present a distributed gradient-based method that employs a fixed regularization
in the primal and dual space. We present the regularized problem and proceed to provide bounds on
the error. We then claim the monotonicity and Lipschitzian properties of the regularized mapping
and develop the main convergence result of this section. Notably, the theoretical convergence
results prescribe a set from which users may independently select stepsizes with no impact on the
overall convergence of the scheme. Finally, we further weaken the informational restrictions of
the scheme by allowing users to select regularization parameters from a broadcasted range, and we
extend the Lipschitzian bounds and convergence rates to this regime.

2.2.1 Regularization

For approximately solving the variational inequality (2.4), we consider its regularized counterpart
obtained by regularizing the Lagrangian in both primal and dual space. In particular, for ν > 0 and
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ε > 0, we let Lν ,ε denote the regularized Lagrangian, given by

Lν ,ε(x,λ ) = f (x)+
ν

2
‖x‖2 +λ

T d(x)− ε

2
‖λ‖2. (2.5)

The regularized variational inequality requires determining a vector z∗ν ,ε = (x∗ν ,ε ,λ
∗
ν ,ε) ∈ K×R

m
+

such that
(z− z∗ν ,ε)

T
Φν ,ε(z∗ν ,ε)≥ 0 for all z = (x,λ ) ∈ K×R

m
+, (2.6)

where the regularized mapping Φν ,ε(x,λ ) is given by

Φν ,ε(x,λ ) , (∇xLν ,ε(x,λ ),−∇λLν ,ε(x,λ )) = (∇xL(x,λ )+νx,−d(x)+ ελ ). (2.7)

The gradient map ∇xLν ,ε(x,λ ) is given by

∇xLν ,ε(x,λ ), (∇x1Lν ,ε(x,λ ), . . . ,∇xNLν ,ε(x,λ ))

where ∇xiLν ,ε(x,λ ) = ∇xi

(
f (x)+λ T d(x)

)
+ νxi. It is known that, under some conditions, the

unique solutions z∗ν ,ε of the variational inequality in (2.6) converge, as ν → 0 and ε → 0, to the
smallest norm solution of the original variational inequality in (2.4) (see [35], Section 12.2). We,
however, want to investigate approximate solutions and estimate the errors resulting from solving
a regularized problem instead of the original problem, while the regularization parameters are kept
fixed at some values.

To solve the variational inequality (2.6), one option lies in considering projection schemes for
monotone variational inequalities (see Chapter 12 in [35]). However, the lack of Lipschitz continu-
ity of the mapping precludes a direct application of these schemes. In fact, the Lipschitz continuity
of Φν ,ε(z) cannot even be proved when the functions f and d j have Lipschitz continuous gradients.
In proving the Lipschitzian property, we observe that the boundedness of the multipliers cannot be
assumed in general. However, the “bounding of multipliers λ” may be achieved under the Slater
regularity condition. In particular, the Slater condition can be used to provide a compact convex
region containing all the dual optimal solutions. Replacing R

m
+ with such a compact convex set

results in a variational inequality that is equivalent to (2.6),
Determining a compact set containing the dual optimal solutions can be accomplished by view-

ing the regularized Lagrangian Lν ,ε as a result of two-step regularization: we first regularize the
original primal problem (2.1), and then we regularize its Lagrangian function. Specifically, for
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ν > 0, the regularized problem (2.1) is given by

minimize fν(x) ,
N

∑
i=1

(
fi(xi)+

ν

2
‖xi‖2

)
+ c(x)

subject to d j(x) ≤ 0 for all j = 1, . . . ,m, (2.8)

xi ∈ Ki for all i = 1, . . . ,N.

Its Lagrangian function is

Lν(x,λ ) = f (x)+
ν

2
‖x‖2 +λ

T d(x) for all x ∈ K, λ ≥ 0, (2.9)

and its corresponding dual problem is

maximize vν(λ ) ,min
x∈K

Lν(x,λ )

subject to λ ≥ 0.

We use v∗ν to denote the optimal value of the dual problem, i.e., v∗ν = maxλ≥0 vν(λ ), and we use
Λ∗ν to denote the set of optimal dual solutions. For ν = 0, the value v∗0 is the optimal dual value of
the original problem (2.1) and Λ∗0 is the set of the optimal dual solutions of its dual problem.

Under the Slater condition, for every ν > 0, the optimal dual multipliers λ ∗ exist and if we
assume that solution x∗ν to problem (2.8) exists then strong duality holds [65]. In particular, the
optimal values of problem (2.8) and its dual are equal, i.e., f (x∗ν) = v∗ν , and the dual optimal set
Λ∗ν is nonempty and bounded [66]. Specifically, we have

Λ
∗
ν ⊆

{
λ ∈ Rm

∣∣∣ m

∑
j=1

λ j ≤
f (x́)+ ν

2 ‖x́‖2− v∗ν
min1≤ j≤m{−d j(x́)}

, λ ≥ 0

}
for all ν > 0.

When the Slater condition holds and the optimal value f ∗ of the original problem (2.1) is finite, the
strong duality holds for that problem as well, and therefore, the preceding relation also holds for
ν = 0, with v∗0 being the optimal value of the dual problem for (2.1). In this case, we have f ∗ = v∗0,
while for any ν > 0, we have v∗ν = f (x∗ν) for a solution x∗ν of the regularized problem (2.8). Since
f (x∗ν)≥ f ∗, it follows that v∗ν ≥ v∗0 for all ν ≥ 0, and therefore,

Λ
∗
ν ⊆

{
λ ∈ Rm

∣∣∣ m

∑
j=1

λ j ≤
f (x́)+ ν

2 ‖x́‖2− v∗0
min1≤ j≤m{−d j(x́)}

, λ ≥ 0

}
for all ν ≥ 0,

where the set Λ∗0 is the set of dual optimal solutions for the original problem (2.1). Noting that a
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larger set on the right hand side can be obtained by replacing v∗0 with any lower-bound estimate of
v∗0 [i.e., v(λ́ ) for some λ́ ≥ 0], we can define a compact convex set Dν for every ν ≥ 0, as follows:

Dν =

{
λ ∈ Rm

∣∣∣ m

∑
j=1

λ j ≤
f (x́)+ ν

2‖x́‖2− v(λ́ )
min1≤ j≤m{−d j(x́)}

, λ ≥ 0

}
for every ν ≥ 0, (2.10)

which satisfies
Λ
∗
ν ⊂Dν , for every ν ≥ 0. (2.11)

Observe that v∗0 ≤ v∗ν ≤ vν ′ for 0≤ ν ≤ ν ′, implying that D0 ⊆Dν ⊆Dν ′ . Therefore, the compact
sets Dν are nested, and their intersection is a nonempty compact set D which contains the optimal
dual solutions Λ∗0 of the original problem.

For the remainder of this chapter, we will assume that the Slater condition holds and the set
K is compact (Assumption 2), so that the construction of such nested compact sets is possible.
Specifically, we will assume that a family of nested compact convex sets Dν ⊂R

m
+, ν ≥ 0, satisfying

relation (2.11) has already been determined. In this case, the variational inequality of determining
zν ,ε = (xν ,ε ,λν ,ε) ∈ K×Dν such that

(z− zν ,ε)
T

Φν ,ε(zν ,ε)≥ 0 for all z = (x,λ ) ∈ K×Dν , (2.12)

has the same solution set as the variational inequality in (2.6), where λ is constrained to lie in the
nonnegative orthant.

2.2.2 Regularization error

We now provide an upper bound on the distances between xν ,ε and x∗ν . Here, xν ,ε is the primal
component of zν ,ε , the solution of the variational inequality in (2.12) and x∗ν is the solution of the
regularized problem in (2.8) for given positive parameters ν and ε .

Proposition 1. Let Assumption 2 hold except for the boundedness of K. Also, let Assumption 1

hold. Then, for any ν > 0 and ε > 0, for the solution zν ,ε = (xν ,ε ,λν ,ε) of variational inequality

(2.12), we have

ν‖x∗ν − xν ,ε‖2 +
ε

2
‖λν ,ε‖2 ≤ ε

2
‖λ ∗ν‖2 for all λ ∗ν ∈ Λ∗ν ,

where x∗ν is the optimal solution of the regularized problem (2.8) and Λ∗ν is the set of optimal

solutions of its corresponding dual problem.

20



Proof. The existence of a unique solution x∗ν ∈ K of problem (2.8) follows from the continuity and
strong convexity of fν . Also, by the Slater condition, the dual optimal set Λ∗ν is nonempty. In what
follows, let λ ∗ν ∈ Λ∗ν be an arbitrary but fixed dual optimal solution for problem (2.8). To make the
notation simpler, we use ξ to denote the pair of regularization parameters (ν ,ε), i.e., ξ = (ν ,ε).
When the interplay between the parameters is relevant, we will write them explicitly.

From the definition of the mapping Φξ it follows that the solution zξ = (xξ ,λξ ) ∈ K×Dν is a
saddle-point for the regularized Lagrangian function Lξ (x,λ ) = L(x,λ )+ ν

2‖x‖2− ε

2‖λ‖2, i.e.,

Lξ (xξ ,λ )≤ Lξ (xξ ,λξ )≤ Lξ (x,λξ ) for all x ∈ K and λ ∈Dν . (2.13)

Recalling that Λ∗ν ⊆Dν , and by letting λ = λ ∗ν in the first inequality of the preceding relation, we
obtain

0≤ Lξ (xξ ,λξ )−Lξ (xξ ,λ
∗
ν ) = (λξ −λ

∗
ν )

T d(xξ )−
ε

2
‖λξ‖2 +

ε

2
‖λ ∗ν‖2. (2.14)

We now estimate the term (λξ −λ ∗ν )
T d(xξ ) = ∑

m
j=1(λξ , j−λ ∗

ν , j)d j(xξ ) by considering the individ-
ual terms, where λ ∗

ν , j is the j-th component of λ ∗ν . By convexity of each d j, we have

d j(xξ )≤ d j(x∗ν)+∇d j(xξ )
T (xξ − x∗ν)≤ ∇d j(xξ )

T (xξ − x∗ν),

where the last inequality follows from x∗ν being a solution to the primal regularized problem (hence,
d j(x∗ν)≤ 0 for all j). By multiplying the preceding inequality with λξ , j (which is nonnegative) and
by adding over all j, we obtain

m

∑
j=1

λξ , jd j(xξ )≤
m

∑
j=1

λξ , j∇d j(xξ )
T (xξ − x∗ν).

By the definition of the regularized Lagrangian Lξ (x,λ ), we have

m

∑
j=1

λξ , j∇d j(xξ )
T (xξ − x∗ν) = ∇xLξ (xξ ,λξ )

T (xξ − x∗ν)−
(
∇ f (xξ )+νxξ

)T
(xξ − x∗ν)

≤ −
(
∇ f (xξ )+νxξ

)T
(xξ − x∗ν),

where the inequality follows from ∇xLξ (xξ ,λξ )
T (xξ −x∗ν)≤ 0, which holds in view of the second

inequality in saddle-point relation (2.13) with x = x∗ν ∈ K. Therefore, by combining the preceding
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two relations, we obtain

m

∑
j=1

λξ , jd j(xξ )≤−
(
∇ f (xξ )+νxξ

)T
(xξ − x∗ν). (2.15)

By convexity of each d j, we have d j(xξ ) ≥ d j(x∗ν)+∇d j(x∗ν)
T (xξ − x∗ν) By multiplying the pre-

ceding inequality with −λ ∗
ν , j (which is non-positive) and by adding over all j, we obtain

−
m

∑
j=1

λ
∗
ν , jd j(xξ ) ≤ −

m

∑
j=1

λ
∗
ν , jd j(x∗ν)−

m

∑
j=1

λ
∗
ν , j∇d j(x∗ν)

T (xξ − x∗ν)

=
m

∑
j=1

λ
∗
ν , j∇d j(x∗ν)

T (x∗ν − xξ ),

where the equality follows from (λ ∗ν )
T d(x∗ν) = 0, which holds by the complementarity slackness

of the primal-dual pair (x∗ν ,λ
∗
ν ) of the regularized problem (2.8). Using the definition of the La-

grangian function Lν in (2.9) for the problem (2.8), we have

m

∑
j=1

λ
∗
ν , j∇d j(x∗ν)

T (x∗ν − xξ ) = ∇xLν(x∗ν ,λ
∗
ν )

T (x∗ν − xξ )− (∇ f (x∗ν)+νx∗ν)
T (x∗ν − xξ )

≤ −(∇ f (x∗ν)+νx∗ν)
T (x∗ν − xξ ),

where the inequality follows from relation ∇xL(x∗ν ,λ
∗
ν )

T (x∗ν − xξ ) ≤ 0, which in turn holds since
(x∗ν ,λ

∗
ν ) is a saddle-point of the Lagrangian function Lν(x,λ ) over K×Dν and xξ ∈K. Combining

the preceding two relations, we obtain

−
m

∑
j=1

λ
∗
ν , jd j(xξ )≤−(∇ f (x∗ν)+νx∗ν)

T (x∗ν − xξ ) = (∇ f (x∗ν)+νx∗ν)
T (xξ − x∗ν).

The preceding relation and inequality (2.15), yield

(λξ −λ
∗
ν )

T d(xξ ) =
m

∑
j=1

(λξ , j−λ
∗
ν , j)d j(xξ )≤ (∇ f (x∗ν)−∇ f (xξ ))

T (xξ − x∗ν)−ν‖xξ − x∗ν‖2.

From the monotonicity of ∇ f , we have (∇ f (x∗ν)−∇ f (xξ ))
T (xξ − x∗ν) ≤ 0, thus implying (λξ −

λ ∗ν )
T d(xξ )≤−ν‖xξ − x∗ν‖2. Finally, by combining the preceding relation with (2.14), and recall-

ing notation ξ = (ν ,ε), we obtain for any solution x∗ν ,

ν‖xν ,ε − x∗ν‖2 +
ε

2
‖λν ,ε‖2 ≤ ε

2
‖λ ∗ν‖2 for all λ

∗ ∈ Λ
∗
ν , (2.16)
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thus showing the desired relation. �

As an immediate consequence of Proposition 1, in view of Λ∗ν ⊂Dν , we have

‖xν ,ε − x∗ν‖ ≤
√

ε

2ν
max

λ ∗∈Dν

‖λ ∗‖ for all ν > 0 and ε > 0. (2.17)

This relation provides a bound on the distances of the solutions x∗ν of problem (2.8) and the com-
ponent xν ,ε of the solution zν ,ε of the regularized variational inequality in (2.12). The relation
suggests that a ν larger than ε would yield a better error bound. Note, however, that increas-
ing ν would correspond to the enlargement of the set Dν , and therefore, increasing value for
maxλ ∗∈Dν

‖λ ∗‖. When the specific structure of the sets Dν is available, one may try to optimize

the term
√

ε

2ν
maxλ ∗∈Dν

‖λ ∗‖ with respect to ν , while ε is kept fixed. In fact, the following result
provides a simple result when Dν is specified using the Slater point x́.

Lemma 1. Under the assumptions of Proposition 1, for a fixed ε > 0, the tightest bound for

‖xν ,ε − x∗ν‖ is given by

‖xν ,ε − x∗ν‖ ≤


√

ε

(
f (x́)− v(λ́ )

)
min1≤ j≤m{−d j(x́)}

‖x́‖

 .

Proof. Using ‖x‖2 ≤ ‖x‖1, from relation (2.17) we have

‖xν ,ε − x∗ν‖ ≤
√

ε

2ν

(
max
λ∈Dν

‖λ‖2

)
≤
√

ε

2ν

(
max
λ∈Dν

‖λ‖1

)
.

But by the structure of the set Dν , we have that√
ε

2ν

(
max
λ∈Dν

‖λ‖1

)
=

√
ε

2ν

(
f (x́)+ ν

2‖x́‖2− v(λ́ )
min1≤ j≤m{−d j(x́)}

)

=

√
ε

2ν

(
f (x́)− v(λ́ )

min1≤ j≤m{−d j(x́)}

)
+

√
νε

2

(
1
2‖x́‖2

min1≤ j≤m{−d j(x́)}

)

=

√
ε√

2 min1≤ j≤m{−d j(x́)}

(
a√
ν
+b
√

ν

)
,

where a = f (x́)− v(λ́ ) and b = 1
2‖x́‖2. It can be seen that the function h(ν) = a/

√
ν +b

√
ν has a
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unique minimum at ν∗ = a
b , with the minimum value h(ν∗) = 2

√
ab. Thus, we have

√
ε

2ν

(
max
λ∈Dν

‖λ‖1

)
≤


√

ε

(
f (x́)− v(λ́ )

)
min1≤ j≤m{−d j(x́)}

 ‖x́‖,
implying the desired estimate. �

When the set K is bounded, as another consequence of Proposition 1, we may obtain the error
bounds on the sub-optimality of the vector xν ,ε by using the preceding error bound. Specifically,
we can provide bounds on the violation of the primal inequality constraints d j(x) ≤ 0 at x = xν ,ε .
Also, we can estimate the difference in the values f (xν ,ε) and the primal optimal value f ∗ of the
original problem (2.1). This is done in the following lemma.

Lemma 2. Let Assumptions 2 and 1 hold. For any ν ,ε > 0, we have

max
{

0,d j(xν ,ε)
}
≤Md jMν

√
ε

2ν
for all j = 1, . . . ,m,

| f (xν ,ε)− f (x∗)| ≤M f Mν

√
ε

2ν
+

ν

2
D2,

with Md j = maxx∈K ‖∇d j(x)‖ for each j, M f = maxx∈K ‖∇ f (x)‖, Mν = maxλ∈Dν
‖λ‖ and D =

maxx∈K ‖x‖.

Proof. Let ν > 0 and ε > 0 be given, and let j ∈ {1, . . . ,m} be arbitrary. Since d j is convex, we
have

d j(xν ,ε)≤ d j(x∗ν)+∇d j(x∗ν)
T (xν ,ε − x∗ν)≤ ‖∇d j(x∗ν)‖‖xν ,ε − x∗ν‖,

where in the last inequality we use d j(x∗ν)≤ 0, which holds since x∗ν is the solution to the regular-
ized primal problem (2.8). Since K is compact, the gradient norm ‖∇d j(x)‖ is bounded by some
constant, say Md j . From this and the estimate

‖xν ,ε − x∗ν‖ ≤
√

ε

2ν
‖λ ∗ν‖, (2.18)

which follows by Proposition 1, we obtain

d j(xν ,ε)≤Md j

√
ε

2ν
‖λ ∗ν‖,
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where λ ∗ν is a dual optimal solution of the regularized problem. Since the set of dual optimal
solutions is contained in the compact set Dν , the dual solutions are bounded. Thus, for the violation
of the constraint d j(x)≤ 0, we have

max{0,d j(xν ,ε)} ≤Md jMν

√
ε

2ν
,

where Mν = maxλ∈Dν
‖λ‖. Next, we estimate the difference | f (xν ,ε)− f (x∗)|. We can write

| f (xν ,ε)− f (x∗)| ≤ | f (xν ,ε)− f (x∗ν)|+ f (xν)− f ∗, (2.19)

where we use 0≤ f (x∗ν)− f ∗. By convexity of f , we have

∇ f (x∗ν)
T (xν ,ε − x∗ν)≤ f (xν ,ε)− f (x∗ν)≤ ∇ f (xν ,ε)

T (xν ,ε − x∗ν).

Since xν ,ε , x∗ ∈ K and K is compact, by the continuity of the gradient ‖∇ f (x)‖, the gradient norm
is bounded over the set K, say by a scalar M f , so that

| f (xν ,ε)− f (x∗ν)| ≤M f ‖xν ,ε − x∗ν‖.

Using the estimate (2.18) and the boundedness of the dual optimal multipliers, similar to the pre-
ceding analysis, we obtain the following bound

| f (xν ,ε)− f (x∗ν)| ≤M f Mν

√
ε

2ν
.

By substituting the preceding relation in inequality (2.19), we obtain

| f (xν ,ε)− f (x∗)| ≤M f Mν

√
ε

2ν
+ f (xν)− f ∗.

Further, by using the estimate f (x∗ν)− f ∗ ≤ ν

2 maxx∈K ‖x‖2 = ν

2 D2 of Lemma 23 (see appendix),
we obtain the desired relation. �

Next, we discuss how one may specify ν and ε . Given a threshold error δ on the deviation of
the obtained function value from its optimal counterpart, we have that | f (xν ,ε)− f (x∗)|< δ , if the
following holds

M f Mν

√
ε

2ν
+

ν

2
D2 < δ .
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But by the structure of the set Dν , we have that

Mν =

√
ε

2ν

(
max
λ∈Dν

‖λ‖1

)
=

√
ε

2ν

(
f (x́)+ ν

2‖x́‖2− v(λ́ )
min1≤ j≤m{−d j(x́)}

)

=

√
ε

2ν

(
f (x́)− v(λ́ )

min1≤ j≤m{−d j(x́)}

)
+

√
νε

2

( ‖x́‖2

2
min1≤ j≤m{−d j(x́)}

)

=
1√

2 min1≤ j≤m{−d j(x́)}

(
a
√

ε√
ν

+b
√

εν

)
,

where a = f (x́)− v(λ́ ) and b = ‖x́‖2

2 . Thus, we have

M f Mν

√
ε

2ν
+

ν

2
D2 ≤ M f√

2 min1≤ j≤m{−d j(x́)}

(
a
√

ε√
ν

+b
√

εν

)
+

ν

2
D2 < δ .

Next, we may choose parameters ν and ε so that the above inequality is satisfied. The expression
suggests that one must choose ε < ν (as M f could be large). Thus setting ε = ν3, we will obtain a
quadratic inequality in parameter ν which can subsequently allow for selecting ν and therefore ε.

Unfortunately, the preceding results do not provide a bound on ‖xν ,ε − x∗‖ and indeed for the
optimal ν∗ minimizing ‖xν ,ε−x∗‖, the error in ‖xν ,ε−x∗ν‖ can be large (due to error in ‖x∗ν−x∗‖).
The challenge in obtaining a bound on ‖x∗ν ,ε − x∗‖ implicitly requires a bound on ‖x∗ν − x∗‖ which
we currently do not have access to. Note that by introducing a suitable growth property on the
function, one may obtain a handle on ‖x∗ν − x∗‖.

2.2.3 Properties of Φν ,ε

We now focus on characterizing the mapping Φν ,ε under the following assumption on the con-
straint functions d j for j = 1, . . . ,m.

Assumption 4. For each j, the gradient ∇d j(x) is Lipschitz continuous over K with a constant

L j > 0, i.e.,

‖∇d j(x)−∇d j(y)‖ ≤ L j‖x− y‖ for all x,y ∈ K.

Under this and the Slater assumption, we prove and the strong monotonicity and the Lipschitzian
nature of Φν ,ε(x,λ ).
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Lemma 3. Let Assumptions 2–4 hold and let ν ,ε ≥ 0. Then, the regularized mapping Φν ,ε is

strongly monotone over K ×R
m
+ with constant µ = min{ν ,ε} and Lipschitz over K ×Dν with

constant LΦ(ν ,ε) given by

LΦ(ν ,ε) =
√

(L+ν +Md +MνLd)2 +(Md + ε)2, Ld =

√
m

∑
j=1

L2
j ,

where L is a Lipschitz constant for ∇ f (x) over K, L j is a Lipschitz constant for ∇d j(x) over K,

Md = maxx∈K ‖∇d(x)‖, and Mν = maxλ∈Dν
‖λ‖.

Proof. We use λ1, j and λ2, j to denote the jth component of vectors λ1 and λ2. For any two vectors
z1 = (x1,λ1), z2 = (x2,λ2) ∈ K×R

m
+, we have

(Φν ,ε(z1)−Φν ,ε(z2))
T (z1− z2)

=

(
∇xL(x1,λ1)−∇xL(x2,λ2)+ν(x1− x2)

−d(x1)+ ελ1 +d(x2)− ελ2

)T (
x1− x2

λ1−λ2

)
= (∇ f (x1)−∇ f (x2))

T (x1− x2)+ν‖x1− x2‖2

+
m

∑
j=1

(λ1, j∇d j(x1)−λ2, j∇d j(x2))
T (x1− x2)

−
m

∑
j=1

(d j(x1)−d j(x2))(λ1, j−λ2, j)+ ε‖λ1−λ2‖2.

By using the monotonicity of ∇ f (x), and by grouping the terms with λ1, j and λ2, j, separately, we
obtain

(Φν ,ε(z1)−Φν ,ε(z2))
T (z1− z2)≥ ν‖x1− x2‖2

+
m

∑
j=1

λ1, j
(
d j(x2)−d j(x1)+∇d j(x1)

T (x1− x2)
)

+
m

∑
j=1

λ2, j
(
d j(x1)−d j(x2)−∇d j(x2)

T (x1− x2)
)
+ ε‖λ1−λ2‖2.

Now, by non-negativity of λ1, j,λ2, j and convexity of d j(x) for each j, we have

λ1, j
(
d j(x2)−d j(x1)+∇d j(x1)

T (x1− x2)
)
≥ 0,

λ2, j
(
d j(x1)−d(x2)−∇d j(x2)

T (x1− x2)
)
≥ 0.
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Using the preceding relations, we get

(Φν ,ε(z1)−Φν ,ε(z2))
T (z1− z2)≥ ν‖x1− x2‖2 + ε‖λ1−λ2‖2 ≥min{ν ,ε}‖z1− z2‖2,

showing that Φν ,ε is strongly monotone with constant µ = min{ν ,ε}.
Next, we show that Φν ,ε is Lipschitz over K×Dν . Thus, given ν ,ε ≥ 0, and any two vectors

z1 = (x1,λ1), z2 = (x2,λ2) ∈ K×Dν , we have

‖Φν ,ε(z1)−Φν ,ε(z2)‖

=

∥∥∥∥∥
(

∇ f (x1)−∇ f (x2)+ν(x1− x2)+∑
m
j=1
(
λ1, j∇d j(x1)−λ2, j∇d j(x2)

)
−d(x1)+d(x2)+ ε(λ1−λ2)

)∥∥∥∥∥
≤ ‖∇ f (x1)−∇ f (x2)‖+ν‖x1− x2‖+

∥∥∥∥∥ m

∑
j=1

(λ1, j∇d j(x1)−λ2, j∇d j(x2))

∥∥∥∥∥
+‖d(x1)−d(x2)‖+ ε‖λ1−λ2‖. (2.20)

By the compactness of K (Assumption 2) and the continuity of ∇d j(x) for each j, the bounded-
ness of ∇d(x) = (∇d1(x), . . . ,∇dm(x))T follows, i.e.,

‖∇d(x)‖ ≤Md for all x ∈ K and some Md > 0. (2.21)

Furthermore, by using the mean value theorem (see for example [52], page 682, Prop. A.22), we
can see that d(x) is Lipschitz continuous over the set K with the same constant Md. Specifically,
for all x,y ∈ K, there exists a θ ∈ [0,1] such that

‖d(x)−d(y)‖= ‖∇d(x+θ(y− x))(x− y)‖ ≤Md‖x− y‖.

By using the Lipschitz property of ∇ f (x) and d(x), and by adding and subtracting the term

∑
m
j=1 λ1, j∇d j(x2), from relation (2.20) we have

‖Φν ,ε(z1)−Φν ,ε(z2)‖ ≤ L‖x1− x2‖+ν‖x1− x2‖+
m

∑
j=1

λ1, j
∥∥∇d j(x1)−∇d j(x2)

∥∥
+

m

∑
j=1
|λ1, j−λ2, j|

∥∥∇d j(x2)
∥∥+Md‖x1− x2‖+ ε‖λ1−λ2‖,

where we also use λ1, j ≥ 0 for all j. By using Hölder’s inequality and the boundedness of the dual
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variables λ1,λ2 ∈Dν , we get

m

∑
j=1

λ1, j
∥∥∇d j(x1)−∇d j(x2)

∥∥≤‖λ1‖
√

m

∑
j=1
‖∇d j(x1)−∇d j(x2)‖2

≤Mν

√
m

∑
j=1

L2
j ‖x1− x2‖,

where in the last inequality we also use the Lipschitz property of ∇d j(x) for each j. Similarly, by
Hölder’s inequality and the boundedness of ∇d(x) [see (2.21)], we have

m

∑
j=1
|λ1, j−λ2, j|

∥∥∇d j(x2)
∥∥≤Md‖λ1−λ2‖.

By combining the preceding three relations and letting Ld =
√

∑
m
j=1 L2

j , we obtain

‖Φν ,ε(z1)−Φν ,ε(z2)‖ ≤(L+ν +Md +MνLd)‖x1− x2‖+(Md + ε)‖λ1−λ2‖.

Further, by Hölder’s inequality, we have

‖Φν ,ε(z1)−Φν ,ε(z2)‖ ≤
√

(L+ν +Md +MνLd)2 +(Md + ε)2
√
‖x1− x2‖2 +‖λ1−λ2‖2

= LΦ(ν ,ε)‖z1− z2‖,

thus showing the Lipschitz property of Φν ,ε . �

2.2.4 Primal-dual method

The strong monotonicity and Lipschitzian nature of the regularized mapping Φν ,ε for given ν > 0
and ε > 0, imply that standard projection algorithms can be effectively applied. Our goal is to
generalize these schemes to accommodate the requirements of limited coordination. While in
theory, convergence of projection schemes relies on consistency of primal and dual step-lengths,
in practice, this requirement is difficult to enforce. In this section, we allow for different step-
lengths and show that such a scheme does indeed result in a contraction.

Now, we consider solving the variational inequality in (2.12) by using a primal-dual method
in which the users can choose their primal stepsizes independently with possibly differing dual
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stepsizes. In particular, we consider the following algorithm:

xk+1
i = ΠKi(x

k
i −αi∇xiLν ,ε(xk,λ k)),

λ
k+1 = ΠDν

(λ k + τ∇λLν ,ε(xk,λ k)), (2.22)

where αi > 0 is the primal steplength for user i and τ > 0 is the dual steplength. Next, we present
our main convergence result for the sequence {zk} with zk = (xk,λ k) generated using (2.22).

Theorem 2. Let Assumptions 2–4 hold. Let {zk} be a sequence generated by (2.22). Then, we

have

‖zk+1− zν ,ε‖ ≤ √qν ,ε‖zk− zν ,ε‖ for all k ≥ 0,

where qν ,ε is given by

qν ,ε =



1+α2
maxL2

Φ
(ν ,ε)−2µτ +(αmin− τ)max{1−2ν , M2

d}
+2(αmax−αmin)LΦ(ν ,ε), for τ < αmin ≤ αmax;

1+α2
maxL2

Φ
(ν ,ε)−2αminµ

+2(αmax−αmin)LΦ(ν ,ε), for αmin ≤ τ < αmax;

1+ τ2L2
Φ
(ν ,ε)−2µαmin +(τ−αmin)max{1−2ε, M2

d}
+2(αmax−αmin)LΦ(ν ,ε), for αmin ≤ αmax ≤ τ,

where αmin = min1≤i≤N{αi}, αmax = max1≤i≤N{αi}, Md = maxx∈K ‖∇d(x)‖, µ = min{ν ,ε} and

LΦ(ν ,ε) is as defined in Lemma 3.

Proof. Let {αi}N
i=1 be the user dependent stepsizes of the primal iterations and let

αmin = min
1≤i≤N

{αi} and αmax = max
1≤i≤N

{αi}

denote the minimum and maximum of the user stepsizes. Using

xi,ν ,ε = ΠKi(xi,ν ,ε −αi∇xiLν ,ε(xν ,ε ,λν ,ε)),

non-expansive property of projection operator and Cauchy-Schwartz inequality, it can be verified
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that

‖xk+1− xν ,ε‖2 ≤ ‖xk− xν ,ε‖2 +α
2
max‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖2

−2αmin(∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε))
T (xk− xν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖,

and

‖λ k+1−λν ,ε‖2 ≤ ‖λ k−λν ,ε‖2 + τ
2‖(−d(xk)+ ελ

k)− (−d(xν ,ε)+ ελν ,ε)‖2

−2τ(−d(xk)+ ελ
k +d(xν ,ε)− ελν ,ε)

T (λ k−λν ,ε).

Summing the preceding two relations, we obtain

‖zk+1− zν ,ε‖2 ≤ ‖zk− zν ,ε‖2 +max{α2
max,τ

2}‖Φ(zk)−Φ(zν ,ε)‖2

−2αmin(∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε))
T (xk− xν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖
−2τ(∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε))

T (λ k−λν ,ε). (2.23)

We now consider three cases:
Case 1 (τ < αmin ≤ αmax): By adding and subtracting

2τ(∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε))
T (xk− xν ,ε),

we see that relation in (2.23) can be written as

‖zk+1− zν ,ε‖2 ≤ ‖zk− zν ,ε‖2 +α
2
max‖Φν ,ε(zk)−Φν ,ε(zν ,ε)‖2

−2τ(Φν ,ε(zk)−Φν ,ε(zν ,ε))
T (zk− zν ,ε)

−2(αmin− τ)
(

∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)
)T

(xk− xν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖.

By Lemma 3, the mapping Φν ,ε is strongly monotone and Lipschitz with constants µ = min{ν ,ε}

31



and LΦ(ν ,ε), respectively. Hence, from the preceding relation we obtain

‖zk+1− zν ,ε‖2 ≤ (1+α
2
maxL2

Φ(ν ,ε)−2τµ)‖zk− zν ,ε‖2

−2(αmin− τ)
(

∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)
)T

(xk− xν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖.

Now

‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖ ≤ ‖Φ(zk)−Φ(zν ,ε)‖‖zk− zν ,ε‖
≤ LΦ(ν ,ε)‖zk− zν ,ε‖2

and thus we get

‖zk+1− zν ,ε‖2 ≤ (1+α
2
maxL2

Φ(ν ,ε)−2τµ)‖zk− zν ,ε‖2 +2(αmax−αmin)LΦ(ν ,ε)‖zk− zν ,ε‖2

−2(αmin− τ)
(

∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)
)T

(xk− xν ,ε). (2.24)

We next estimate the last term in the preceding relation. By adding and subtracting ∇xLν ,ε(xν ,ε ,λ
k),

we have (
∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)

)T
(xk− xν ,ε)

=
(

∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λ
k)
)T

(xk− xν ,ε)

+
(

∇xLν ,ε(xν ,ε ,λ
k)−∇xLν ,ε(xν ,ε ,λν ,ε)

)T
(xk− xν ,ε).

Using the strong monotonicity of ∇xLν ,ε , and writing the second term on the right hand side
explicitly, we get(

∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)
)T

(xk− xν ,ε)

≥ ν‖xk− xν ,ε‖2 +
m

∑
j=1

(
∇d j(xν ,ε)(λ

k
j −λν ,ε, j)

)T
(xk− xν ,ε)

≥ ν‖xk− xν ,ε‖2− 1
2

∥∥∥∥∥ m

∑
j=1

∇d j(xν ,ε)(λ
k
j −λν ,ε, j)

∥∥∥∥∥
2

− 1
2
‖xk− xν ,ε‖2,

where the last step follows by noting that ab≥−1
2(a

2+b2). Using Cauchy-Schwartz and Hölder’s
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inequality, we have∥∥∥∥∥ m

∑
j=1

∇d j(xν ,ε)(λ
k
j −λν ,ε, j)

∥∥∥∥∥
2

≤
(

m

∑
j=1
‖∇d j(xν ,ε)‖|λ k

j −λν ,ε, j|
)2

≤
(

m

∑
j=1
‖∇d j(xν ,ε)‖2

)
‖λ k−λν ,ε‖2

≤ M2
d ‖λ k−λν ,ε‖2,

where in the last step, the boundedness of ∇d(x) over K was employed (‖∇d(x)‖ ≤ Md). By
combining the preceding relations, we obtain(

∇xLν ,ε(xk,λ k) − ∇xLν ,ε(xν ,ε ,λν ,ε))
T (xk− xν ,ε)

≥ −1
2

(
(1−2ν)‖xk− xν ,ε‖2 +M2

d‖λ k−λν ,ε‖2
)

≥ −1
2

max{1−2ν , M2
d}‖zk− zν ,ε‖2.

If the above estimate is substituted in (2.24), we obtain

‖zk+1− zν ,ε‖2 ≤ qν ,ε‖zk− zν ,ε‖2,

where qν ,ε = 1+α2
maxL2

Φ
(ν ,ε)− 2µτ +(αmin− τ)max{1− 2ν , M2

d}+ 2(αmax−αmin)LΦ(ν ,ε),

thus showing the desired relation.
Case 2 (αmin ≤ τ < αmax): By adding and subtracting

2αmin(∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε))
T (λ k−λν ,ε),

for τ < αmax relation (2.23) reduces to

‖zk+1− zν ,ε‖2 ≤ ‖zk− zν ,ε‖2 +α
2
max‖Φ(zk)−Φ(zν ,ε)‖2

−2αmin(Φ(zk)−Φ(zν ,ε))
T (zk− zν ,ε)

−2(τ−αmin)(∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε))
T (λ k−λν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖,
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which by Lipschitz continuity and strong monotonicity of Φ implies,

‖zk+1− zν ,ε‖2 ≤ (1+α
2
maxL2

Φ(ν ,ε)−2αminµ)‖zk− zν ,ε‖2

+2(αmax−αmin)‖∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε)‖‖λ k−λν ,ε‖
+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖.

Using Hölder’s inequality, we get

‖zk+1− zν ,ε‖2 ≤ (1+α
2
maxL2

Φ(ν ,ε)−2αminµ)‖zk− zν ,ε‖2

+2(αmax−αmin)‖Φ(zk)−Φ(zν ,ε)‖‖zk− zν ,ε‖.

Finally using Lipschitz continuity of Φ we get

‖zk+1− zν ,ε‖2 ≤ q‖zk− zν ,ε‖2,

where qν ,ε = 1+α2
maxL2

Φ
(ν ,ε)−2αminµ +2(αmax−αmin)LΦ(ν ,ε).

Case 3 (αmin ≤ αmax ≤ τ): Note that

(∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε))
T (xk− xν ,ε)

=
(

Φν ,ε(zk)−Φν ,ε(zν ,ε)
)T

(zk− zν ,ε)

−(−d(xk)+ ελ
k +d(xν ,ε)− ελν ,ε)

T (λ k−λν ,ε).

Thus, from the preceding equality and relation (2.23), where αmax < τ , we have

‖zk+1− zν ,ε‖2 ≤ ‖zk− zν ,ε‖2 + τ
2‖Φ(zk)−Φ(zν ,ε)‖2

−2αmin(Φ(zk)−Φ(zν ,ε))
T (zk− zν ,ε)

−2(τ−αmin)(∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε))
T (λ k−λν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖.

By Lemma 3, the mapping Φν ,ε is strongly monotone and Lipschitz with constants µ = min{ν ,ε}
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and LΦ(ν ,ε), respectively. Hence, it follows

‖zk+1− zν ,ε‖2 ≤ (1+ τ
2L2

Φ(ν ,ε)−2αminµ)‖zk− zν ,ε‖2

−2(τ−αmin)(∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε))
T (λ k−λν ,ε)

+2(αmax−αmin)‖∇xLν ,ε(xk,λ k)−∇xLν ,ε(xν ,ε ,λν ,ε)‖‖xk− xν ,ε‖,

which can be further estimated as

‖zk+1− zν ,ε‖2 ≤ (1+ τ
2L2

Φ(ν ,ε)−2αminµ)‖zk− zν ,ε‖2 +2(αmax−αmin)LΦ(ν ,ε)‖zk− zν ,ε‖2

−2(τ−αmin)(∇λLν ,ε(xk,λ k)−∇λLν ,ε(xν ,ε ,λν ,ε))
T (λ k−λν ,ε). (2.25)

Next, we estimate the last term on the right hand side of the preceding relation. Through the use
of Cauchy-Schwartz inequality, we have(

d(xk)−d(xν ,ε)
)T

(λ k−λν ,ε)≤
1
2

∥∥∥d(xk)−d(xν ,ε)
∥∥∥2

+
1
2
‖λ k−λν ,ε‖2.

By the continuity of the gradient mapping of d(x) = (d1(x), . . . ,dm(x))T and its boundedness
(‖∇d(x)‖ ≤Md), using the Mean-value Theorem we further have∥∥∥d(xk)−d(xν ,ε)

∥∥∥2
≤M2

d‖xk− xν ,ε‖2.

From the preceding two relations we have

(
d(xk)−d(xν ,ε)

)T
(λ k−λν ,ε)≤

M2
d

2
‖xk− xν ,ε‖2 +

1
2
‖λ k−λν ,ε‖2,

which when substituted in inequality (2.25) yields

‖zk+1− zν ,ε‖2 ≤
(
1+ τ

2L2
Φ(ν ,ε)−2µαmin +2(αmax−αmin)LΦ(ν ,ε)

)
‖zk− zν ,ε‖2

+(τ−αmin)(1−2ε)‖λ k−λν ,ε‖2 +(τ−αmin)M2
d‖xk− xν ,ε‖2.

The desired relation follows by observing that

(1−2ε)‖λ k−λν ,ε‖2 +M2
d‖xk− xν ,ε‖2 ≤max{1−2ε, M2

d}‖zk− zν ,ε‖2.

�
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An immediate corollary of Theorem 2 is obtained when all users have the same steplength. More
precisely, we have the following algorithm:

xk+1 = ΠK(xk−α∇xLν ,ε(xk,λ k)),

λ
k+1 = ΠDν

(λ k + τ∇λLν ,ε(xk,λ k)), (2.26)

where α > 0 and τ > 0 are, respectively, primal and dual stepsizes. We present the convergence of
the sequence {zk} with zk = (xk,λ k) in the next corollary.

Corollary 1. Let Assumptions 2–4 hold. Let {zk} be a sequence generated by (2.26) with the

primal and dual step-sizes chosen independently. Then, we have

‖zk+1− zν ,ε‖ ≤ √qν ,ε‖zk− zν ,ε‖ for all k ≥ 0,

where qν ,ε is given by

qν ,ε = 1−2µ min{α,τ}+max{α2,τ2}L2
Φ(ν ,ε)+θ(α,τ),

and θ(α,τ),

{
(α− τ)max{1−2ν , M2

d} for τ ≤ α,

(τ−α)max{1−2ε, M2
d} for α < τ,

µ = min{ν ,ε} and L2
Φ
(ν ,ε) is as given in Lemma 3.

Note that when αmin = αmax = τ and τ < 2µ/L2
Φ
(ν ,ε), Theorem 2 implies the standard con-

traction result for a strongly monotone and Lipschitz mapping. However, Theorem 2 does not
guarantee the existence of a tuple (αmin,αmax,τ) resulting in a contraction in general, i.e., does not
ensure that qν ,ε ∈ (0,1). This is done in the following lemma.

Lemma 4. Let qν ,ε be as given in Theorem 1. Then, there exists a tuple (αmin,αmax,τ) such that

qν ,ε ∈ (0,1).

Proof. It suffices to show that there exists a tuple (αmin,αmax,τ) such that

0 < 1+α2
maxL2

Φ
(ν ,ε)−2µτ +(αmin− τ)max{1−2ν , M2

d}
+2(αmax−αmin)LΦ(ν ,ε)< 1 τ < αmin ≤ αmax

0 < 1+α2
maxL2

Φ
(ν ,ε)−2αminµ

+2(αmax−αmin)LΦ(ν ,ε)< 1 αmin ≤ τ < αmax

0 < 1+ τ2L2
Φ
(ν ,ε)−2µαmin +(τ−αmin)max{1−2ε, M2

d}
+2(αmax−αmin)LΦ(ν ,ε)< 1 αmin ≤ αmax ≤ τ.
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Also, it suffices to prove only one of the cases since the other cases follow by interchanging the
roles of τ and αmin or τ and αmax . We consider the case where τ < αmin ≤ αmax. Here, if
αmax < 2µ/L2

Φ
(ν ,ε) then there is β < 1 such that setting τ = βαmax we have q < 1. To see this let

αmin = β1αmax such that β < β1 ≤ 1 and max{1−2ν ,M2
d}= M2

d . Consider

qν ,ε −1 =−2µτ +α
2
maxL2

Φ(ν ,ε)+(αmin− τ)M2
d +2(αmax−αmin)LΦ(ν ,ε).

Setting τ = βαmax, αmin = β1αmax, the preceding relation reduces to

qν ,ε −1 =−2µβαmax +α
2
maxL2

Φ(ν ,ε)+αmax(β1−β )M2
d +2αmax(1−β1)LΦ(ν ,ε).

Using β < β1 ≤ 1 we obtain

qν ,ε −1≤−2µβαmax +α
2
maxL2

Φ(ν ,ε)+αmax(1−β )M2
d +2αmax(1−β )LΦ(ν ,ε).

We are done if we show that the expression on the right hand side of the preceding relation is
negative for some β i.e.,

−2µβαmax +α
2
maxL2

Φ(ν ,ε)+αmax(1−β )M2
d +2αmax(1−β )LΦ(ν ,ε)< 0.

Following some rearrangement it can be verified that

β >
αmaxL2

Φ
(ν ,ε)+M2

d +2LΦ(ν ,ε)

2µ +M2
d +2LΦ(ν ,ε)

.

Since we have αmaxL2
Φ
(ν ,ε)< 2µ it follows that the expression on right hand side of the preceding

relation is strictly less than 1 and we have

β ∈
(

αmaxL2
Φ
(ν ,ε)+M2

d +2LΦ(ν ,ε)

2µ +M2
d +2LΦ(ν ,ε)

,1
)
,

implying that we have β ∈ (0,1). �

The previous result is motivated by several issues arising in practical settings. First there may be
errors due to noisy links in the communication network, which may cause inconsistencies across
stepsizes. Often, it may be difficult to even enforce this consistency. As a consequence, we
examine the extent to which the convergence theory is affected by a lack of consistency. A re-
lated question is whether one can, in a distributed setting, impose alternative requirements that

37



weaken consistency. This can be achieved by setting bounds on the primal and dual stepsizes
which are independent. For instance, if αmax <

2µ

L2
Φ
(ν ,ε)

, then it suffices to choose τ independently

as τ ≤ βαmax ≤ β
2µ

L2
Φ
(ν ,ε)

, where β is chosen independently. Importantly, Lemma 4 provides a
characterization of the relationship between αmin, αmax and τ using the values of problem pa-
rameters, to ensure convergence of the scheme. Expectedly, as the numerical results testify, the
performance does deteriorate when there αi’s and τ do not match.

Finally, we remark briefly on the relevance of allowing for differing stepsizes. In distributed
settings, communication of stepsizes may be corrupted via error due to noisy communication links.
A majority of past work on such problems (cf. [3, 27]) requires that stepsizes be consistent across
users. Furthermore, in constrained regimes, there is a necessity to introduce both primal (user)
stepsizes and dual (link) stepsizes. We show that there may be limited diversity across all of these
parameters while requiring that these parameters together satisfy some relationship. One may
question if satisfying this requirement itself requires some coordination. In fact, we show that this
constraint is implied by a set of private user-specific and dual requirements on their associated
stepsizes, allowing for ease of implementation.

2.2.5 Extension to independently chosen regularization parameters

In this subsection, we extend the results of the preceding section to a regime where the ith user
selects its own regularization parameter νi. Before proceeding, we provide a brief motivation of
such a line of questioning. In networked settings specifying stepsizes and regularization parameters
for the users at every instant is generally challenging. Enforcing consistent choices across these
users is also difficult. An alternative lies in broadcasting a range of choices for stepsizes, as done
in the previous subsection. In this section, we show that an analogous approach can be leveraged
for specifying regularization parameters, with limited impacts on the final results. Importantly, the
benefit of these results lies in the fact that enforcement of consistency of regularization parameters
is no longer necessary. We start with definition of the regularized Lagrangian function with user
specific regularization terms. In particular, we let

LV,ε(x,λ ) = f (x)+
1
2

xTV x+λ
T d(x)− ε

2
‖λ‖2 (2.27)

where V is a diagonal matrix with diagonal entries ν1, . . . ,νN . In this case, letting

νmax , max
i∈{1,...,N}

{νi},
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for some x́ ∈ K and λ́ ≥ 0, we define the set Dνmax given by:

Dνmax =

{
λ ∈ Rm

∣∣∣ m

∑
j=1

λ j ≤
f (x́)+ νmax

2 ‖x́‖2− v(λ́ )
min1≤ j≤m{−d j(x́)}

, λ ≥ 0

}
. (2.28)

We consider the regularized primal problem (2.1) with the regularization term 1
2xTV x. We let Λ∗V

be the set of dual optimal solutions of such regularized primal problem. Then, relation (2.10)
holds for Λ∗V and Dνmax , i.e., Λ∗V ⊆ Dνmax and, therefore, the development in the preceding two
sections extends to this case as well. We let x∗V and λ ∗V denote primal-dual of the regularized
primal problem with the regularization term 1

2xTV x. Analogously, we let x∗V,ε and λ ∗V,ε denote
respectively the primal and the dual part of the saddle point solution for LV,ε(x,λ ) over K×R

m
+.

We present the modified results in the form of remarks and omit the details of proofs.
The bound of Proposition 1 when user i uses its own regularization parameter νi will reduce to:

(x∗V − xV,ε)
TV (x∗V − xV,ε)+

ε

2
‖λV,ε‖2 ≤ ε

2
‖λ ∗V‖2 for all λ

∗
V ∈ Λ

∗
V ,

and thus we have the following bound

‖x∗V − xV,ε‖ ≤
√

ε

2νmin
max

λ ∗∈Dνmax

‖λ ∗‖,

where νmin , min
i∈{1,...,N}

{νi}.
The result in Lemma 2 is replaced by the following one.

Lemma 5. Let Assumptions 1 and 2 hold. For any νi > 0, i = 1, . . . ,N, and ε > 0, we have

max
{

0,d j(xV,ε)
}
≤Md jMνmax

√
ε

2νmin
for all j = 1, . . . ,m,

| f (xV,ε)− f (x∗)| ≤M f Mνmax

√
ε

2νmin
+

νmax

2
D2,

with Md j =maxx∈K ‖∇d j(x)‖ for each j = 1, . . . ,m, M f =maxx∈K ‖∇ f (x)‖, Mνmax = max
λ ∗∈Dνmax

‖λ ∗‖
and D = maxx∈K ‖x‖.

Our result following Lemma 2 where we describe how one may choose parameters ε and ν to
get within a given threshold error on the deviation of the obtained function value from its optimal
counterpart will have to be reconsidered using the appropriate parameters νmin and νmax. More
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precisely, we will have | f (xV,ε)− f (x∗)|< δ if we have

M f Mνmax

√
ε

νmin
+

νmax

2
D2 < δ .

Following a similar analysis and using the structure of the set Dνmax , we have

Mνmax

√
ε

2νmin
=

√
ε

2νmin

(
max

λ∈Dνmax

‖λ‖1

)
=

√
ε

2νmin

(
f (x́)+ νmax

2 ‖x́‖2− v(λ́ )
min1≤ j≤m{−d j(x́)}

)

=

√
ε

2νmin

(
f (x́)− v(λ́ )

min1≤ j≤m{−d j(x́)}

)
+

√
ε

2νmin

(
νmax

2 ‖x́‖2

min1≤ j≤m{−d j(x́)}

)
,

Letting a = f (x́)−v(λ́ )√
2 min1≤ j≤m{−d j(x́)}

and b = ‖x́‖2

2
√

2 min1≤ j≤m{−d j(x́)}
, we have

M f Mνmax

√
ε

νmin
+

νmax

2
D2 ≤M f

 a
√

ε√
νmin

+b

√
εν2

max
νmin

+
νmax

2
D2 < δ .

Next, we may choose parameters νmin, νmax and ε so that the above inequality is satisfied. The
expression suggests that one must choose ε < νmin (as M f could be large). Thus, setting ε =

νminν2
max, we will obtain a quadratic inequality in parameter νmax which can subsequently allow

for selecting νmax and, therefore, selecting νmin and ε.

Analogous to the definition of the mapping Φν ,ε(x,λ ) in (2.7), we define the regularized map-
ping corresponding to the Lagrangian in (2.27). Specifically, we have the regularized mapping
ΦV,ε(x,λ ) given by

ΦV,ε(x,λ ) , (∇xLV,ε(x,λ ),−∇λLV,ε(x,λ )) = (∇xL(x,λ )+V x,−d(x)+ ελ ).

The properties of ΦV,ε , namely, strong monotonicity and Lipschitz continuity remain. Specifically,
ΦV,ε is strongly monotone with the same constant µ as before, i.e., µ = min{νmin,ε}. However,
Lipschitz constant is not the same. Letting LΦ(V,ε) denote a Lipschitz constant for ΦV,ε , we have

LΦ(V,ε) =
√
(L+νmax +Md +MνmaxLd)2 +(Md + ε)2. (2.29)
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The result of Theorem 2 can be expressed as in the following corollary.

Corollary 2. Let Assumptions 1-4 hold. Let {zk} be a sequence generated by (2.22) with each user

using νi as its regularization parameter instead of ν . Then, we have

‖zk+1− zV,ε‖ ≤ √qV,ε‖zk− zV,ε ,‖

with qV,ε as given in Theorem 2, where LΦ(ν ,ε) is replaced by LΦ(V,ε) from (2.29).

2.3 A regularized dual method

The focus in Section 2.2 has been on primal-dual method dealing with problems where a set of
convex constraints couples the user decisions. A key property of our primal-dual method is that
both schemes have the same time-scales. In many practical settings, the primal and dual updates are
carried out by very different entities so that the time-scales may be vastly different. For instance,
the dual updates of the Lagrange multipliers could be controlled by the network operator and might
be on a slower time-scale than the primal updates that are made by the users. Dual methods have
proved useful in multiuser optimization problems and their convergence to the optimal primal

solution has been studied for the case when the user objectives are strongly convex [3, 2].
In this section, we consider regularization to deal with the lack of strong convexity of Lagrangian

subproblems and to also accommodate inexact solutions of the Lagrangian subproblems. For the
inexact solutions, we develop error bounds. Inexactness is essential in constructing distributed
online schemes that require primal solutions within a fixed amount of time. In the standard dual
framework, for each λ ∈Rm

+, a solution x(λ )∈K of a Lagrangian subproblem is given by a solution
to VI(K,∇xL(x,λ )), which satisfies the following inequality:

(x− x(λ ))T
∇xL(x(λ ),λ )≥ 0 for all x ∈ K,

where ∇λL(x(λ ),λ ) = ∇x f (x(λ ))+∑
m
j=1 λ j∇d j(x(λ )). An optimal dual variable λ is a solution

of VI(Rm
+,−∇λL(x(λ ),λ )) given by

(λ̂ −λ )T (−∇λL(x(λ ),λ ))≥ 0 for all λ̂ ∈ Rm
+,

where ∇λL(x,λ ) = d(x). We consider a regularization in both primal and dual space as discussed
in Section 2.2. In Section 2.3.1, we discuss the exact dual method and provide the contraction re-
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sults in the primal and dual space as well as bounds on the infeasibility. These results are extended
to allow for inexact solutions of Lagrangian subproblems in Section 2.3.2.

2.3.1 Regularized exact dual method

We begin by considering an exact dual scheme for the regularized problem given by

xt = ΠK(xt−α∇xLν ,ε(xt ,λ t)), (2.30)

λ
t+1 = ΠDν

(λ t + τ∇λLν ,ε(xt ,λ t)) for t ≥ 0, (2.31)

where the set Dν is as defined in (2.10). In the primal step (2.30), the vector xt denotes the solution
x(λ t) of the fixed-point equation corresponding to the current Lagrange multiplier λ t .

We now focus on the conditions ensuring that the sequence {λ t} converges to the optimal dual
solution λ ∗ν ,ε and that the corresponding {x(λ t)} converges to the primal optimal x∗ν ,ε of the reg-
ularized problem. We note that Proposition 1 combined with Lemma 2 provide bounds on the
constraint violations, and a bound on the difference in the function values f (x∗ν ,ε) and the primal
optimal value f ∗ of the original problem.

Lemma 6. Under Assumption 2, the function −d(x(λ )) is co-coercive in λ with constant ν

M2
d
,

where Md = maxx∈K ‖∇d(x)‖.

Proof. Let λ1 and λ2 ∈ R
m
+. Let x1 and x2 denote the solutions to VI(K,∇xLν ,ε(x,λ1)) and

VI(K,∇xLν ,ε(x,λ2)), respectively. Then, we have the following inequalities:

(x2− x1)
T (∇ fν(x1)+

m

∑
j=1

λ1, j∇d j(x1))≥ 0,

(x1− x2)
T (∇ fν(x2)+

m

∑
j=1

λ2, j∇d j(x2))≥ 0,

where λ1, j and λ2, j denote the jth component of vectors λ1 and λ2, respectively. Summing these
inequalities, we get

m

∑
j=1

λ1, j(x2− x1)
T

∇d j(x1)+
m

∑
j=1

λ2, j(x1− x2)
T

∇d j(x2)

≥ (x2− x1)
T (∇ fν(x2)−∇ fν(x1))≥ ν‖x2− x1‖2. (2.32)

42



By using the convexity of the functions d j and inequality (2.32), we obtain

(λ2−λ1)
T (−d(x2)+d(x1)) =

m

∑
j=1

λ1, j(d j(x2)−d j(x1))+
m

∑
j=1

λ2, j(d j(x1)−d j(x2))

≥
m

∑
j=1

λ1, j(x2− x1)
T

∇d j(x1)+
m

∑
j=1

λ2, j(x1− x2)
T

∇d j(x2)

≥ ν‖x2− x1‖2. (2.33)

Now, by using the Lipschitz continuity of d(x), as implied by Assumption 2, we see that ‖x2−
x1‖2 ≥ ν

M2
d
‖d(x2)− d(x1)‖2 with Md = maxx∈K ∇d(x), which when substituted in the preceding

relation yields the result. �

We now prove our convergence result for the dual method, relying on the exact solution of the
corresponding Lagrangian subproblem.

Proposition 3. Let Assumptions 1 and 2 hold, and let the step size τ be such that

τ <
2ν

M2
d +2εν

with Md = max
x∈K

∇d(x).

Then, for the sequence {λt} generated by the dual method in (2.31), we have

‖λ t+1−λ
∗
ν ,ε‖ ≤ q‖λ t−λ

∗
ν ,ε‖ where q = 1− τε.

Proof. By using the definition of the dual method in (2.31) and the non-expansivity of the projec-
tion, we obtain the following set of inequalities:

‖λ t+1−λ
∗
ν ,ε‖2 ≤ ‖λ t + τ(d(xt)− ελ

t)−
(
λ
∗
ν ,ε + τ(d(x∗ν ,ε)− ελ

∗
ν ,ε)
)
‖2

= ‖(1− τε)(λ t−λ
∗
ν ,ε)− τ

(
d(x∗ν ,ε)−d(xt)

)
‖2

= (1− τε)2‖λ t−λ
∗
ν ,ε‖2 + τ

2‖d(x∗ν ,ε)−d(xt)‖2

−2τ(1− τε)(λ t−λ
∗
ν ,ε)

T (d(x∗ν ,ε)−d(xt)
)
.

By invoking the co-coercivity of −d(x) from Lemma 6, we further obtain

‖λ t+1−λ
∗
ν ,ε‖2 ≤ (1− τε)2‖λ t−λ

∗
ν ,ε‖2 +

(
τ

2−2τ(1− τε)
ν

M2
d

)
‖d(x∗ν ,ε)−d(xt)‖2.
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A contraction may be obtained by choosing τ such that (τ2−2τ(1− τε) ν

M2
d
)< 0

and τ <
1
ε

as given by τ <
2ν/M2

d

1+2εν/M2
d
<

1
ε
.

We therefore conclude that ‖λ t+1−λ ∗ν ,ε‖2 ≤ (1− τε)2‖λ t−λ ∗ν ,ε‖2 for all t ≥ 0. �

Next, we examine two remaining concerns. First, can a bound on the norm ‖xt − x∗ν ,ε‖ be
obtained, where xt = x(λ t)? Second, can one make a rigorous statement regarding the infeasibility
of xt , similar to that provided in the context of the primal-dual method in Section 2.2?

Proposition 4. Let Assumptions 1 and 2 hold. Then, for the sequence {xt}, with xt = x(λ t),

generated by the dual method (2.30) using a step-size τ such that τ < 2ν

M2
d+2εν

, we have for all

t ≥ 0,

‖xt− x∗ν ,ε‖ ≤
Md

ν
‖λ t−λ

∗
ν ,ε‖ and max{0,d j(xt)} ≤ M2

d
ν
‖λ t−λ

∗
ν ,ε‖.

Proof. From relation (2.33) in the proof of Lemma 6, the Cauchy-Schwartz inequality and the
boundedness of ∇d j(x) for all j = 1, . . . ,m, we have

‖xt− x∗ν ,ε‖2 = ‖x(λ t)− x(λ ∗ν ,ε)‖2

≤ 1
ν

(
λ

t−λ
∗
ν ,ε)

T (−d(x(λ t))+d(x(λ ∗ν ,ε))
)

≤ Md

ν
‖λ t−λ

∗
ν ,ε‖‖x(λ t)− x(λ ∗ν ,ε)‖,

implying that ‖xt − x∗ν ,ε‖ ≤ Md
ν
‖λ t − λ ∗ν ,ε‖. Furthermore, a bound on max{0,d j(xt)} can be ob-

tained by invoking the convexity of each of the functions d j and the boundedness of their gradients,
as follows:

d j(xt)≤ d j(x∗ν ,ε)+∇d j(x∗ν ,ε)
T (xt− x∗ν ,ε)≤Md‖xt− x∗ν ,ε‖ ≤

M2
d

ν
‖λ t−λ

∗
ν ,ε‖,

where in the second inequality we use d j(x∗ν ,ε)≤ 0. Thus, a bound on the violation of constraints

d j(x)≤ 0 at x = xt is given by max{0,d j(xt)} ≤ M2
d

ν
‖λ t−λ ∗ν ,ε‖. �
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2.3.2 Regularized inexact dual method

The exact dual scheme requires solving the Lagrangian subproblem to optimality for a given value
of the Lagrange multiplier. In practical settings, primal solutions are obtained via distributed it-
erative schemes and exact solutions are inordinately expensive from a computational standpoint.
This motivates our study of the error properties resulting from solving the Lagrangian subproblem
inexactly for every iteration in dual space. In particular, we consider a method executing a speci-
fied fixed number of iterations, say K, in the primal space for every iteration in the dual space. Our
intent is to provide error bounds contingent on K. The inexact form of the dual method is given by
the following:

xk+1(λ t) = ΠK(xk(λ t)−α∇xLν ,ε(xk(λ t),λ t)) k = 0, . . . ,K−1, t ≥ 0, (2.34)

λ
t+1 = ΠDν

(
λ

t + τ∇λLν ,ε(xK(λ t),λ t)
)

t ≥ 0. (2.35)

Throughout this section, we omit the explicit dependence of x on λ , by letting xk(t), xk(λ t). We
have the following result.

Lemma 7. Let Assumptions 1–4 hold. Let {xk(t)},k = 1, . . . ,K, t ≥ 0 be generated by (2.34) using

a step-size α , with 0 < α < 2
L f

where L f = L+ν +MνLd , L and Ld are Lipschitz constants for the

gradient maps ∇ f and ∇d respectively, while Mν = maxλ∈Dν
‖λ‖. Then, we have for all t and all

k = 1, . . . ,K,

‖xk(t)− x(t)‖ ≤ qk/2
p ‖x0(t)− x(t)‖,

where x(t) := x(λ t) solves the Lagrangian subproblem corresponding to the multiplier λ t and

qp = 1−αν(2−αL f ).

Proof. We observe that for each λt the mapping ∇xLν ,ε(xk(λ t),λ t) of the Lagrangian subproblem
is strongly monotone and Lipschitz continuous. The geometric convergence follows directly from
[57], page 164, Theorem 13.1. �

Our next proposition provides a relation for ‖λ t+1−λ ∗ν ,ε‖ in terms of ‖λ t−λ ∗ν ,ε‖2 with an error
bound depending on K and t.

Proposition 5. Let Assumptions 2–4 hold. Let the sequence {λ t} be generated by (2.34)–(2.35)

using a step-size α as in Lemma 7 and a step-size τ such that

τ < min
{

2ν

M2
d +2εν

,
2ε

1+ ε2

}
with Md = max

x∈K
‖∇d‖.
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We then have for all t ≥ 0,

‖λ t+1−λ
∗
ν ,ε‖2 ≤ qt+1

d ‖λ 0−λ
∗
ν ,ε‖2 +

1−qt+1
d

1−qd
M2

d

(
qdqK

p +2τ
2Mx qK/2

p

)
,

where qp = 1−αν(2−αL f ), qd = (1− τε)2 + τ2, and Mx = maxx,y∈K ‖x− y‖.

Proof. In view of (2.35) and the non-expansive property of the projection, we have

‖λ t+1−λ
∗
ν ,ε‖2 ≤

∥∥(1− τε)(λ t−λ
∗
ν ,ε)− τ

(
d(x∗ν ,ε)−d(xK(t))

)∥∥2

= (1− τε)2‖λ t−λ
∗
ν ,ε‖2 + τ

2 ‖d(x∗ν ,ε)−d(xK(t))‖2︸ ︷︷ ︸
Term1

−2τ(1− τε)(λ t−λ
∗
ν ,ε)

T (d(x∗ν ,ε)−d(xK(t))
)︸ ︷︷ ︸

Term2

. (2.36)

Next, we provide bounds on terms 1 and 2. For term 1 by adding and subtracting d(x(t)), we obtain

‖d(x∗ν ,ε)−d(xK(t))‖2 = ‖d(x∗ν ,ε)−d(x(t))+d(x(t))−d(xK(t))‖2

≤ ‖d(x∗ν ,ε)−d(x(t))‖2 +‖d(x(t))−d(xK(t))‖2 +2‖d(x∗ν ,ε)−d(x(t))‖‖d(x(t))−d(xK(t))‖.

By using the Lipschitz continuity of d(x) for x ∈ K, we further have for all t ≥ 0,

‖d(x∗ν ,ε)−d(xK(t))‖2 ≤ ‖d(x∗ν ,ε)−d(x(t))‖2 +‖d(x(t))−d(xK(t))‖2

+2M2
d‖x∗ν ,ε − x(t)‖‖x(t)− xK(t)‖. (2.37)

Now, we consider term 2, for which by adding and subtracting d(x(t)), and by using the co-
coercivity of −d(x(λ )) (see (2.33)), we obtain

(λ t−λ
∗
ν ,ε)

T (d(x∗ν ,ε)−d(xK(t))
)

= (λ t−λ
∗
ν ,ε)

T (d(x∗ν ,ε)−d(x(t))
)
+(λ t−λ

∗
ν ,ε)

T (d(x(t))−d(xK(t))
)

≥ ν

M2
d
‖d(x∗ν ,ε)−d(x(t))‖2 +(λ t−λ

∗
ν ,ε)

T (d(x(t))−d(xK(t))
)
.

Thus, we have

−2τ(1− τε)(λ t−λ
∗
ν ,ε)

T (d(x∗ν ,ε)−d(xK(t))
)
≤−2τ(1− τε)

ν

M2
d
‖d(x∗ν ,ε)−d(x(t))‖2

+τ
2‖λ t−λ

∗
ν ,ε‖2 +(1− τε)2∥∥d(x(t))−d(xK(t))

∥∥2
. (2.38)
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From relations (2.36), (2.37) and (2.38), by grouping the corresponding expressions accordingly,
we obtain

‖λ t+1−λ
∗
ν ,ε‖2 ≤

(
(1− τε)2 + τ

2)‖λ t−λ
∗
ν ,ε‖2

+

(
τ

2−2τ(1− τε)
ν

M2
d

)
‖d(x∗ν ,ε)−d(x(t))‖2

+
(
(1− τε)2 + τ

2)‖d(x(t))−d(xK(t))‖2

+2τ
2M2

d‖x∗ν ,ε − x(t)‖‖x(t)− xK(t)‖.

By Lemma 7, we have ‖xK(t)− x(t)‖ ≤ qK/2
p ‖x0(t)− x(t)‖ with qp = 1−αν(2−αL f ). By using

this, the Lipschitz continuity of d(x) over K, and ‖x∗ν ,ε−x(t)‖ ≤Mx where Mx = maxx,y∈K ‖x−y‖,
we obtain

‖λ t+1−λ
∗
ν ,ε‖2 ≤

(
(1− τε)2 + τ

2)‖λ t−λ
∗
ν ,ε‖2 +

(
τ

2−2τ(1− τε)
ν

M2
d

)
M2

dM2
x

+
(
(1− τε)2 + τ

2)M2
dqK

p +2τ
2M2

dMx qK/2
p .

By choosing τ such that

τ < min
{

2ν

M2
d +2εν

,
2ε

1+ ε2

}
,

we ensure that (1− τε)2 + τ2 < 1 and τ2−2τ(1− τε) ν

M2
d
< 0. Therefore for such a τ , by letting

qd = (1− τε)2 + τ2, we have

‖λ t+1−λ
∗
ν ,ε‖2 ≤ qd‖λ t−λ

∗
ν ,ε‖2 +qdM2

dqK
p +2τ

2M2
dMx qK/2

p ,

and by recursively using the preceding estimate, we obtain

‖λ t+1−λ
∗
ν ,ε‖2 ≤ qt+1

d ‖λ 0−λ
∗
ν ,ε‖2 +

1−qt+1
d

1−qd
M2

d

(
qdqK

p +2τ
2Mx qK/2

p

)
.

�

Note that by Proposition 5, we have limK→∞ qK
p = 0 since qp < 1 and, hence, the term

1−qt+1
d

1−qd
M2

d(qdqK
p +2τ

2Mx qK/2
p )
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converges to zero. This is precisely what we expect: as the Lagrangian problem is solved to
a greater degree of exactness, the method approaches the exact regularized counterpart of sec-
tion 2.3.1. Also, note that when K is fixed the following limiting error holds

lim
t→∞
‖λ t+1−λ

∗
ν ,ε‖2 ≤ 1

1−qd
M2

d

(
qdqK

p +2τ
2Mx qK/2

p

)
.

We now establish bounds on the norm ‖xK(t)−x∗ν ,ε‖ and the constraint violation d j(x) at x = xK(t)

for all j.

Proposition 6. Under assumptions of Proposition 5, for the sequence {xK(t)} generated by (2.34)–

(2.35) we have for all t ≥ 0,

‖xK(t)− x∗ν ,ε‖ ≤ qK/2
p Mx +

Md

ν
‖λ t−λ

∗
ν ,ε‖,

max{0,d j(xK(t))} ≤Md

(
qK/2

p Mx +
Md

ν
‖λ t−λ

∗
ν ,ε‖

)
,

where qp, Mx and Md are as defined in Proposition 5.

Proof. Consider ‖xK(t)− x∗ν ,ε‖. By Lemma 7 we have ‖xK(t)− x(t)‖ ≤ qK/2
p ‖x0(t)− x(t)‖, while

by co-coercivity of −d(x), it can be seen that ‖x(t)− x∗ν ,ε‖ ≤ Md
ν
‖λ t−λ ∗ν ,ε‖. Hence,

‖xK(t)− x∗ν ,ε‖ ≤ ‖xK(t)− x(t)‖+‖x(t)− x∗ν ,ε‖ ≤ qK/2
p Mx +

Md

ν
‖λ t−λ

∗
ν ,ε‖,

where we also use ‖x0(t)−x(t)‖ ≤Mx. For the constraint d j, by convexity of d j and using d j(x∗ν ,ε)

we have for any t ≥ 0,

d j(xK(t))≤ d j(x∗ν ,ε)+∇d(x∗ν ,ε)
T (xK(t)− x∗ν ,ε)

≤ ‖∇d(x∗ν ,ε)‖‖xK(t)− x∗ν ,ε‖ ≤Md

(
qK/2

p Mx +
Md

ν
‖λ t−λ

∗
ν ,ε‖

)
,

where in the last inequality we use the preceding estimate for ‖xK(t)−x∗ν ,ε‖. Thus, for the violation
of d j(x) at x = xK(t) we have,

max{0,d j(xK(t))} ≤Md

(
qK/2

p Mx +
Md

ν
‖λ t−λ

∗
ν ,ε‖

)
.

�

One may combine the result of Proposition 6 with the estimate for ‖λ t −λν ,ε‖ of Proposition 5
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to bound the norm ‖xK(t)−x(t)‖ and the constraint violation max{0,d j(xK(t))} in terms of initial
multiplier λ 0 and the optimal dual solution λ ∗ν ,ε .

An obvious challenge in implementing such schemes is that convergence relies on exact primal
solutions. Often, there is a fixed amount of time available for obtaining primal updates, leading
us to consider whether one could construct error bounds for dual schemes where an approximate
primal solution is obtained through a fixed number of gradient steps.

Finally, we discuss an extension of the preceding results to the case of independently chosen
regularization parameters. Analogous to Section 2.2.5, we extend the results of dual method to the
case when user i selects a regularization parameter νi for its own Lagrangian subproblem. As in
Section 2.2.5, the results follow straight-forwardly from the results developed so far in this section.
We briefly discuss the modified results here for completeness.

As in Section 2.2.5, Lagrange multiplier λ belongs to set Dνmax defined in (2.28). In this case,
similar to the proof of Lemma 6, it can be seen that the function−d(x(λ )) is co-coercive in λ with
constant νmin

M2
d
. The result of Proposition 3 will require the dual steplength τ to satisfy the following

relation:
τ <

2νmin

M2
d +2ενmin

.

Similarly, the result of Proposition 4 will hold with νmin replacing the regularization parameter ν

i.e., for τ such that τ < 2νmin
M2

d+2ενmin
, we have for all t ≥ 0,

‖xt− x∗V,ε‖ ≤
Md

νmin
‖λ t−λ

∗
V,ε‖ and max{0,d j(xt)} ≤ M2

d
νmin
‖λ t−λ

∗
V,ε‖.

Finally, Lemma 7 will hold with L f defined by L f = L+ νmax +MνLd and qp = 1−ανmin(2−
αL f ). Also, for the result of Proposition 5 to hold, the dual steplength τ should be required to
satisfy

τ < min
{

2νmin

M2
d +2ενmin

,
2ε

1+ ε2

}
.

2.4 Case study

In this section, we report some experimental results for the algorithms developed in preceding
sections. We use the knitro solver [67] on Matlab 7 to compute a solution of the problem and
examine the performance of our proposed methods on a multiuser optimization problem involving
a serial network with multiple links. The problem captures traffic and communication networks
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where users are characterized by utility/cost functions and are coupled through a congestion cost.
This case manifests itself through delay arising from the link capacity constraints. In Section 2.4.1,
we describe the underlying network structure and the user objectives and we present the numer-
ical results for the primal-dual and dual methods, respectively. In each instance, an emphasis
will be laid on determining the impact of the extensions, specifically independent primal and dual
step-lengths and independent primal regularization (primal-dual), and inexact solutions of the La-
grangian subproblems (dual).

2.4.1 Network and user data

���������	


������������

Figure 2.1: A network with 5 users and 9 links.

The network comprises of a set of N users sharing a set L of links (see Fig. 2.1 for an illustra-
tion). A user i ∈ N has a cost function fi(xi) of its traffic rate xi given by

fi(xi) =−ki log(1+ xi) for i = 1, . . . ,N. (2.39)

Each user selects an origin-destination pair of nodes on this network and faces congestion based
on the links traversed along the prescribed path connecting the selected origin-destination nodes.
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We consider the congestion cost of the form:

c(x) =
N

∑
i=1

∑
l∈L

xli

N

∑
j=1

xl j, (2.40)

where, xl j is the flow of user j on link l. The total cost of the network is given by

f (x) =
N

∑
i=1

fi(x)+ c(x) =
N

∑
i=1
−ki log(1+ xi)+

N

∑
i=1

∑
l∈L

xli

N

∑
j=1

xl j.

Let A denote the adjacency matrix that specifies the set of links traversed by the traffic generated
by the users. More precisely, Ali = 1 if traffic of user i goes through link l and 0 otherwise. It
can be seen that ∇c(x) = 2AT Ax and thus the Lipschitz constant of the gradient map ∇ f (x) is

given by L =
√

∑i k2
i + 2‖AT A‖. Throughout this section, we consider a network with 9 links

and 5 users. Table 2.1 summarizes the traffic in the network as generated by the users and the
parameters ki of the user objective. The user traffic rates are coupled through the constraint of the

Table 2.1: Network and User Data

User(i) Links traversed ki
1 L2, L3, L6 10
2 L2, L5, L9 0
3 L1, L5, L9 10
4 L6, L4, L9 10
5 L8, L9 10

form ∑
N
i=1 Alixi ≤Cl for all l ∈L , where Cl is the maximum aggregate traffic through link l. The

constraint can be compactly written as Ax≤C, where C is the link capacity vector and is given by
C = (10,15,20,10,15,20,20,15,25).

Regularized Primal-Dual Method. Figure 2.2 shows the number of iterations required to at-
tain a desired error level for ‖zk− z∗ν ,ε‖ with {zk} generated by primal-dual algorithm (2.26) for
different values of the step-size ratio β = α/τ between the primal step-size α and dual stepsize
τ . Note that in this case each user has the same step-size and the regularization parameter. Re-
lations in Lemma 4 are used to obtain the theoretical range for the ratio parameter β and the
corresponding step-lengths. The regularization parameters ν and ε were both set at 0.1, such that
µ = min{ν ,ε} = 0.1 and the algorithm was terminated when ‖zk− z∗ν ,ε‖ ≤ 10−3. It can be ob-
served that the number of iterations required for convergence decreases as the step-size ratio of
approaches the value 1.
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Figure 2.2: Performance of Primal-Dual Method for independent step-sizes in primal and dual
space.

Figure 2.3 illustrates the performance of the primal-dual algorithm in terms of the number of
iterations required to attain ‖zk− z∗ν ,ε‖< 10−3 as the steplength deviation in primal space αmax−
αmin increases. All users employ the same regularization parameter νi = ν = 0.1 and the dual
regularization parameter ε is chosen to be 0.1. The plot demonstrates that, as the deviation between
users’ step-sizes increases, the number of iteration for a desired accuracy also increases.

Next, we let each user choose its own regularization parameter νi with uniform distribution over
interval (νmin,0.1) for a given νmin ≤ 0.1. Figure 2.4 shows the performance of the primal-dual
algorithm in terms of the number of iterations required to attain the error ‖zk−z∗V,ε‖< 10−3 as νmin

is varied from 0.01 to 0.1. The dual steplength was set at τ = 1.9µ/L2
Φ

, where µ = min{νmin,ε}
with ε = 0.1. The primal stepsizes that users employ are the same across the users and are given
by αi = α = βτ , where β is as given in Lemma 4. As expected, the number of iterations increases
when νmin decreases.

Regularized Dual Method. Figure 2.5(a) compares dual iterations required to reach an accu-
racy level of ‖λ k−λ ∗ν ,ε‖ ≤ 10−6 for each K where {λ k} is generated using dual method (2.35) and
K is the number of iterations in the primal space for each λ k. The regularization parameter ε is
varied from 0.0005 to 0.0025, while ν is fixed at 0.001. The primal step-size is set at α = 0.25/L f

and the dual step-size is taken as τ = 0.75ν/M2
d (see Section 2.3). Faster dual convergence was

observed as K was increased for all ranges of parameters tested. For the case when ν = 0.001 and
ε = 0.001, Figure 2.5(b) shows the dependency of total number of iterations required (primal ×
dual) for ‖λ k−λ ∗ν ,ε‖ ≤ 10−6 as the number K of primal iterations is varied. It can be observed
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Figure 2.3: Performance of Primal-Dual method for deviation in user step-size.

that beyond a threshold level for K, the total number of iterations starts increasing. In effect, the
extra effort in obtaining increasingly exact solutions to the Lagrangian subproblem is not met with
faster convergence in the dual space.

2.5 Summary and conclusions

This chapter focuses on a class of multiuser optimization problems in which user interactions are
seen in the user objectives (through congestion or delay functions) and in the coupling constraints
(as arising from shared resources). Traditional algorithms rely on a high degree of separability and
cannot be directly employed. They also rely on coordination in terms of uniform or equal step-
sizes across users. The coordination requirements have been weakened to various degrees in this
chapter, which considers primal-dual and dual gradient algorithms, derived from the fixed-point
formulations of the regularized problem. These schemes are analyzed in an effort to make rigorous
statements regarding convergence behavior as well as provide error bounds in regularized settings
that limited coordination across step-length choices and inexact solutions. The main contributions
are summarized next:

(1) Regularized primal-dual method: Under suitable convexity assumptions, we consider a reg-
ularized primal-dual projection scheme and provide error bounds for the regularized solution
and optimal function value with respect to their optimal counterparts. In addition, we also
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Figure 2.4: Performance of Primal-Dual method as user minimum regularization parameter νmin
varies.

obtain a bound on the infeasibility for the regularized solution. We also show that, under
some conditions, the method can be extended to allow not only for independent selection of
primal and dual stepsizes as well as independently chosen stepsizes by every user but also
when users choose their regularization parameter independently.

(2) Regularized dual method: In contrast with (1), applying dual schemes would require an opti-
mal primal solution for every dual step. We show the contractive nature of a regularized dual
scheme reliant on exact primal solutions. Furthermore, we develop asymptotic error bounds
where for each dual iteration, the primal method for solving the Lagrangian subproblem ter-
minates after a fixed number of steps. We also provide error bounds for the obtained solution
and Lagrange multiplier as well as an upper bound on the infeasibility. Finally, we extend
these results to the case when each user independently chooses its regularization parameter.

It is of future interest to consider the algorithms proposed in [63, 64] as applied to multiuser
problem, whereby the users are allowed to implement step-sizes within a prescribed range of val-
ues. For this, at first, we would have to develop the error bounds for the algorithms in [63, 64] for
the case when different users employ different stepsizes.
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Figure 2.5: Inexact Dual Method: (a) Comparison of dual iterations for a fixed number K of primal
iterations; (b) Dependency of the total number of primal and dual iterations as the number K of
primal iterations varies.
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Chapter 3

Regularized Iterative Stochastic Approximation
Methods for Cartesian Stochastic Variational

Inequalities

In Chapter 2 we presented two distributed algorithms for the generalized multiuser optimization
problem. The interest of this chapter is to study distributed algorithms for stochastic variational
inequalities with monotone maps. An important question clouding our interest is whether one can
construct distributed algorithms abiding the suitable criteria we set in Chapter 1. In particular, the
single level iteration one is especially desirable for reasons which will become apparent soon.

Within the framework of stochastic variational inequalities, stochastic approximation methods
have been recently employed in [36]. The typical stochastic approximation procedure, first intro-
duced by Robbins and Monro [68], works toward finding an extremum of a function h(x) using the
following iterative method:

xk+1 = xk +ak(∇h(xk)+Mk+1),

where ak > 0 is a stepsize and Mk+1 is a martingale difference term. Under reasonable assumptions
on the stochastic errors Mk, stochastic approximation methods ensure that {xk} converges almost
surely to an optimal solution of the problem. Jiang and Xu [36] consider the use of stochastic
approximation for strongly monotone and Lipschitz continuous maps in the realm of stochastic
variational inequalities, rather than optimization problems. The use of stochastic approximation
methods has a long tradition in stochastic optimization for both differentiable [68] and nondiffer-
entiable problems [69], while a subset of more recent efforts include [70, 71, 72]. In contrast, our
work builds on different deterministic algorithms, including Tikhonov regularization and proximal-
point methods, and combines them with the stochastic approximation approach. At the same time,
our convergence results require less stringent monotonicity assumptions on the map.

It should be remarked that Tikhonov-based regularization and Proximal point methods [39]
methods have a long history in the solution of ill-posed optimization and variational problems [73,
35] (see Nesterov [64] and Nemirovski [63] for recent work o on proximal point and error bounds).
Such methods, in general, require a solution of a regularized (well-posed) problem and an iterative
process is often needed to obtain the solution. In both Tikhonov regularization and proximal point
methods, two nested iterative procedures are involved, where the outer procedure updates a pa-
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rameter after an increasingly accurate solution of an inner subproblem is available. In networked
stochastic regimes, this is challenging for two reasons: (1) First, obtaining increasingly accurate
solutions of stochastic variational problems via simulation techniques requires significant effort;
and (2) Second, assessing solution quality formally requires validation analysis to be conducted
over the network, a somewhat challenging task. We obviate this challenge by considering algo-
rithms where the parameter is updated after every iteration and, thus, the update of the steplength
and the regularization parameter is synchronized. Such an approach is popularly referred to as it-

erative regularization. While there have been efforts to use such techniques for optimization prob-
lems (cf. [73]), there has been noticeably less in the realm of variational inequalities, barring [74]
and more recently [6, 20, 75]. However, much of this work has been restricted to deterministic
regimes. In a stochastic regime, Borkar [76] examined two timescale stochastic approximation
methods. The present work emphasizes iterative regularization for stochastic variational inequal-
ities with monotone maps. We present and analyze two stochastic iterative regularization meth-
ods. Notably, distributed iterative regularization techniques, the deterministic counterparts of these
methods, have been examined in the context of monotone Nash games [20, 75].

1. Stochastic iterative Tikhonov regularization method:

We consider a stochastic iterative Tikhonov regularization method for monotone stochas-
tic variational inequalities where the steplength and regularization parameter are updated
at every iteration. Partially coordinated generalizations are presented where users indepen-
dently select stepsize and regularization sequences. Under some restrictions on the devia-
tions across the users’ choices, we establish convergence properties of the method in almost
sure sense.

2. Stochastic iterative proximal-point method:

An alternative to the stochastic iterative Tikhonov method lies in a stochastic iterative proximal-
point method where the steplength and prox-parameter are updated at every iteration. As
in the case of iterative Tikhonov method, we present convergence results for a partially co-
ordinated implementation. Our convergence results are established for strictly monotone
mappings.

The remainder of the chapter is organized as follows. In Section 3.1 we describe the basic
framework of stochastic approximation and the supporting convergence results. In Section 3.2,
we propose and analyze a stochastic iterative Tikhonov regularization method. Analogous results
for a stochastic iterative proximal point method are provided in Section 3.3. Section 3.4, the
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performance of our methods and their relative sensitivity to parameters is examined in the context
of networked rate allocation game. We conclude the chapter with some remarks in Section 3.5.

3.1 Stochastic approximation approach

Consider a variational inequality problem, denoted by VI(K,F), where the mapping F : K → R
n

and the set K are given by

F(x),


∇x1E[ f1(x,ξ1)]

...
∇xNE[ fN(x,ξN)]

 , K =
N

∏
i=1

Ki. (3.1)

Note that the set K is closed and convex set in R
n, whenever the sets Ki are closed and convex.

Recall that VI(K,F) requires determining a vector x∗ ∈ K such that

(x− x∗)T F(x∗)≥ 0 for all x ∈ K. (3.2)

When the expectation is over a general measure space, analytical forms of the expectation are
often hard to obtain. In such settings, stochastic approximation methods assume relevance.

Towards this end, consider the Robbins-Monro stochastic approximation method for solving the
stochastic variational inequality VI(K,F) in (3.1)–(3.2), given by

xk+1 = ΠK[xk−αk(F(xk)+wk)] for k ≥ 0, (3.3)

where x0 ∈ K is a random initial vector that is independent of the random variables ξi for all i and
such that E[‖x0‖2] is finite. The vector F(xk) is the true value of F(x) at x = xk, αk > 0 is the
stepsize, while the vector wk is the stochastic error given by

wk =−F(xk)+ F̃(xk,ξ k),

with

F̃(xk,ξ k),


∇x1 f1(xk,ξ k

1 )
...

∇xN fN(xk,ξ k
N)

 and ξ
k ,


ξ k

1
...

ξ k
N

 .

The projection method (3.3) is shown to be convergent when the mapping F is strongly mono-
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tone and Lipschitz continuous in [36]. In this chapter, we examine how the use of regularization
methods can alleviate the strong monotonicity requirement while maintaining single timescale and
distributed structure of the algorithm.

In our analysis we use some well-known results on supermartingale convergence, which we
provide for convenience. The following result is from [73], Lemma 10, page 49.

Lemma 8. Let Vk be a sequence of non-negative random variables adapted to σ -algebra Fk and

such that almost surely

E[Vk+1 | Fk]≤ (1−uk)Vk +βk for all k ≥ 0,

where 0≤ uk ≤ 1, βk ≥ 0, and

∞

∑
k=0

uk = ∞,
∞

∑
k=0

βk < ∞, lim
k→∞

βk

uk
→ 0.

Then, Vk→ 0 a.s.

The result of the following lemma can be found in [73], Lemma 11, page 50.

Lemma 9. Let Vk,uk,βk and γk be non-negative random variables adapted to σ -algebra Fk. If

almost surely ∑
∞
k=0 uk < ∞, ∑

∞
k=0 βk < ∞, and

E[Vk+1 | Fk]≤ (1+uk)Vk− γk +βk for all k ≥ 0,

then almost surely {Vk} is convergent and ∑
∞
k=0 γk < ∞.

3.2 Stochastic iterative Tikhonov methods

In this section, we propose and analyze a stochastic iterative Tikhonov algorithm for solving the
variational inequality VI(K,F) in (3.1)–(3.2). We consider the case when the mapping F is mono-
tone over the set K, i.e., F is such that

(F(x)−F(y))T (x− y)≥ 0 for all x,y ∈ K.

As we have already seen in previous chapter, a possible approach for addressing monotone vari-
ational problems is through a Tikhonov regularization method [35, Ch. 12] (cf. [38, 37]). In the
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context of variational inequalities, this avenue typically requires solving a sequence of perturbed
variational inequality problems. In particular, the kth problem in the sequence is the variational
inequality VI(K,F + εkI), where the mapping F + εkI is a perturbation of the original mapping F

given by a positive scalar εk. In this way, each of the variational inequality problems VI(K,F+εkI)
is strongly monotone and, hence, it has a unique solution denoted by yk ∈ K (see Theorem 2.3.3
in [35]). Under suitable conditions, it can be seen that the Tikhonov sequence {yk} satisfies
limk→∞ yk = x∗, where x∗ is the least norm solution of VI(K,F) (see Theorem 12.2.3 in [35]). Thus,
to reach a solution of VI(K,F), one has to solve a sequence VI(K,F + εkI) of variational inequal-
ity problems along some diminishing sequence {εk}. However, in the current setting, determining
a solution yk for a regularized problem VI(K,F + εkI) requires either the exact or approximate
solution of a strongly monotone stochastic variational inequality (see Section 12.2 in [35]).

In deterministic regimes, a solution to the regularized Tikhonov subproblem may be obtained
in a distributed fashion via a projection method. However, in stochastic regimes, this is a more
challenging proposition. While an almost sure convergence theory for a stochastic approximation
method for strongly monotone variational problems is provided in [36], termination criteria are
generally much harder to provide. As a consequence, one often provides confidence intervals
in practice by generating a fixed number of sample paths. Furthermore, the convergence theory
of Tikhonov-based methods necessitates that the solutions to the subproblem be computed with
increasing accuracy. Implementing such algorithms in a stochastic regime is significantly harder
since simulation-based methods are employed to obtain confidence intervals for each regularized
problem, which require that these intervals get increasingly tighter. In the numerical results, we
revisit this challenge by considering the behavior of the standard regularization methods (operating
in two nested iterative updates).

Accordingly, we consider an alternative iterative method that avoids solving a sequence of vari-
ational inequality problems; instead, each user takes a single projection step associated with his
regularized problem. By imposing appropriate assumptions on the steplength and regularization
sequences, we may recover convergence to the least-norm Nash equilibrium. To summarize, our
intent lies in developing algorithms that are characterized by (a) a single iterative process; (b)
a distributed architecture that can accommodate computation of equilibria; and (c) the ability to
accommodate uncertainty via expected-value objectives. An important characteristic of our dis-
tributed methods is that users can autonomously choose their parameters within from a provided
set. Thus, we consider a situation where users choose their individual stepsize and regularization
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sequence, leading to the following coupled user-specific Tikhonov updates:

xk+1
i = ΠKi[x

k
i −αk,i(Fi(xk)+ εk,i xk

i )+wk
i ]. (PITR)

Note that x0
i ∈ Ki is a random initial point with a finite expectation E[‖x0

i ‖2] and Fi(xk) denotes the
ith component of the mapping F(x) evaluated at xk. The vector wk

i is a stochastic error for user i in
evaluating Fi(xk), while αk,i is the stepsize and εk,i is the regularization parameter chosen by user i

at the kth iteration. The iterate updates can be compactly written as

xk+1 = ΠK[xk−D(αk)(F(xk)+D(εk)xk +wk)], (3.4)

where F = (F1, . . . ,FN), K = ∏
N
i=1 Ki and wk = (wk

1, . . . ,w
k
N), while D(αk) and D(εk) denote

the diagonal matrices with diagonal entries αk,i and εk,i, respectively. The method specified by
(PITR) (and its compact version (3.4)) is referred to as a partially coordinated iterative Tikhonov
regularization (PITR) method. It is motivated by the need to allow users to choose their steplength
and regularization parameter, namely αk,i and εk,i, while abiding by a coordination requirement.

Typically, an iterative Tikhonov method is studied by at first analyzing the behavior of the
Tikhonov sequence {yk}, where each yk is a (unique) solution to VI(K,F + ε̄kI) and the sequence
{yk} is obtained as the parameter ε̄k ≥ 0 is let to go to zero. Under certain conditions the Tikhonov
sequence {yk} converges to the smallest norm solution of VI(K,F). Then, the sequence of iterates
{xk} is related to the Tikhonov sequence to assert the convergence of the iterates xk.

We adopt the same approach. However, we cannot directly use the existing results for Tikhonov
sequence {yk} such as, for example, those given in Chapter 12.2 of [35]. In particular, arising from
user-specific Tikhonov regularization parameters εk,i in (3.4), our variational inequalities have the
form1 VI(K,F +D(εk)) instead of VI(K,F + ε̄kI) (which would be obtained if all the users choose
the same regularization parameter εk,i = ε̄k). In the next two subsections, we develop a necessary
result for Tikhonov sequence and investigate the convergence of the method.

3.2.1 Tikhonov sequence

Here, we analyze the behavior of our Tikhonov sequence {yk} as each user lets its regularization
parameter εk,i go to zero with yk ∈ SOL(K,F +D(εk)). Recall that D(εk) is the diagonal matrix
with diagonal entries εk,i > 0 and note that each VI(K,F +D(εk)) is strongly monotone. Thus, the
sequence {yk} is uniquely determined by the choice of user sequences {εk,i}, i = 1, . . . ,N. For the

1Note the slight abuse of notation; D(εk) also denotes the mapping D(εk)I whenever it is used as VI(K,F +D(εk)).
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sequence {yk}, we have the following result.

Lemma 10. Let the set K ⊆ R
n be closed and convex, and let the map F : K→ R

n be continuous

and monotone over K. Assume that SOL(K,F) is nonempty. Let the sequences {εk,i}, i = 1, . . . ,N,

be monotonically decreasing to zero and such that limsupk→∞

εk,max
εk,min

< ∞, where εk.max = maxi εk,i

and εk,min = mini εk,i. Then, for the Tikhonov sequence {yk} we have

(a) {yk} is bounded and every accumulation point of {yk} is a solution of VI(K,F);

(b) The following inequality holds

‖yk− yk−1‖ ≤My
εk−1,max− εk,min

εk,min
‖yk−1‖ for all k ≥ 1,

where My is a norm bound on the Tikhonov sequence, i.e., ‖yk‖ ≤My for all k ≥ 0;

(c) If limsupk→∞

εk,max
εk,min

≤ 1, then {yk} converges to the smallest norm solution of VI(K,F).

Proof. (a) Since SOL(K,F) 6= /0, by letting x∗ be any solution of VI(K,F) we have

(x− x∗)T F(x∗)≥ 0 for all x ∈ K. (3.5)

Since yk ∈ K solves VI(K,F +D(εk)) for each k ≥ 0 we have

(y− yk)T (F(yk)+D(εk)yk)≥ 0 for all y ∈ K and k ≥ 0. (3.6)

By letting x = yk in Eq. (3.5) and y = x∗ in Eq. (3.6), we obtain for all k ≥ 0,

(yk− x∗)T F(x∗)≥ 0 and (x∗− yk)T (F(yk)+D(εk)yk)≥ 0.

By the monotonicity of F we have (yk− x∗)T (F(x∗)−F(yk))≤ 0, implying that

(x∗− yk)T D(εk)yk ≥ 0.

By rearranging the terms in above expression we have

(x∗)T D(εk)yk ≥ (yk)T D(εk)yk ≥ εk,min‖yk‖2,

where εk,min = min1≤i≤N εk,i. By using the Cauchy-Schwartz inequality, we see that

εk,max‖x∗‖‖yk‖ ≥ (x∗)T D(εk)yk,
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where εk,max = max1≤i≤N εk,i. Combining the preceding two inequalities, we obtain

‖yk‖ ≤ εk,max

εk,min
‖x∗‖. (3.7)

Let limsupk→∞

εk,max
εk,min

= c. Since c is finite (by our assumption), it follows that the sequence {yk}
is bounded. By choosing any accumulation point ỹ of {yk} and letting k→ ∞ in Eq. (3.6) over a
corresponding convergent subsequence of {yk}, in view of continuity of F and εk,i→ 0 as k→ ∞,
we conclude that

(y− ỹ)T F(ỹ)≥ 0 for all y ∈ K.

Thus, every accumulation point ỹ of {yk} is a solution to VI(K,F).
(b) Now, we establish the inequality satisfied by the Tikhonov sequence {yk}. Since yk solves
VI(K,F +D(εk)) for each k ≥ 0, we have for k ≥ 1,

(yk−1− yk)T (F(yk)+D(εk)yk)≥ 0 and (yk− yk−1)T (F(yk−1)+D(εk−1)yk−1)≥ 0.

By adding the preceding relations, we obtain

(yk−1− yk)T (F(yk)−F(yk−1))+(yk−1− yk)T (D(εk)yk−D(εk−1)yk−1)≥ 0.

By the monotonicity of the mapping F , it follows

(yk−1− yk)T (D(εk)yk−D(εk−1)yk−1)≥ 0,

and thus
(yk−1− yk)T (D(εk)yk−D(εk)yk−1 +D(εk)yk−1−D(εk−1)yk−1)≥ 0.

By rearranging the terms in the above expression, we obtain

(yk−1− yk)T (D(εk)−D(εk−1))yk−1 ≥ (yk−1− yk)T D(εk)(yk−1− yk)≥ εk,min‖yk− yk−1‖2.

In the view of the Cauchy-Schwartz inequality, the left hand side is bounded from above as

(yk−1− yk)T (D(εk)−D(εk−1))yk−1 ≤ ‖yk−1− yk‖
∥∥∥(D(εk)−D(εk−1))yk−1

∥∥∥
≤ (εk−1,max− εk,min)‖yk−1− yk‖‖yk−1‖,
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where we use the monotonically decreasing property of the regularization sequences {εk,i} i =

1, . . . ,N, to bound the norm ‖D(εk)−D(εk−1)‖. Combining the preceding relations we obtain

‖yk− yk−1‖ ≤ ‖yk−1‖εk−1,max− εk,min

εk,min
. (3.8)

From the part (a) we have that the Tikhonov sequence is bounded. Let My > 0 be such that ‖yk‖ ≤
My for all k. Then, from relation (3.8) we obtain

‖yk− yk−1‖ ≤My
εk−1,max− εk,min

εk,min
for all k ≥ 1.

(c) Suppose now limsupk→∞

εk,max
εk,min

≤ 1. Then, by part (a), the sequence {yk} is bounded. Further-
more, in view of relation (3.7) (where the solution x∗ is arbitrary), it follows that every accumula-
tion point ỹ of {yk} satisfies

‖ỹ‖ ≤ limsup
k→∞

εk,max

εk,min
‖x∗‖ ≤ ‖x∗‖ for all x∗ ∈SOL(K,F). (3.9)

Therefore, every accumulation point ỹ of {yk} is bounded in norm from above by the norm of any
solution to VI(K,F). Since K is closed and convex and F : K→ R

n is continuous and monotone
over K, the solution set SOL(K,F) is closed and convex [35, Vol. 1, Theorem 2.3.5, pg. 158].
By the strong convexity of Euclidean norm ‖x‖2, the smallest norm solution x∗ ∈SOL(K,F) must
exist and it is unique. In view of relation (3.9), it follows the norm of each accumulation point
ỹ of {yk} is bounded from above by the least-norm solution of VI(K,F). Also, by part (a), we
have ỹ ∈ SOL(K,F) for every accumulation point ỹ, thus implying that the sequence {yk} must
converge to the smallest norm solution of VI(K,F). �

Lemma 10 plays a key role in the convergence analysis of the stochastic iterative Tikhonov
method (PITR). Aside from this, Lemma 10 may be of its own interest as it extends the existing
results for Tikhonov regularization to the case when the regularization mapping is a time varying
diagonal matrix as opposed to being the identity mapping as in the standard literature ([77, 35]).

3.2.2 Almost sure convergence of stochastic iterative Tikhonov method

We now focus on the method in (PITR). We introduce some notation and state assumptions on the
stochastic errors wk that are standard in stochastic approximation methods. Specifically, throughout
this section and the remainder of the chapter, we use Fk to denote the σ -field generated by the initial
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point x0 and errors w` for `= 0,1, . . . ,k, i.e., F0 = {x0} and

Fk = {x0, (w`, `= 0,1, . . . ,k−1)} for k ≥ 1.

Now, we specify our assumptions for VI(K,F) in (3.1)–(3.2) and the stochastic errors wk.

Assumption 5. Let the following hold:

(a) The sets Ki ⊆ R
ni are closed and convex;

(b) The mapping F : K→ R
n is monotone and Lipschitz continuous over K with a constant L;

(c) The stochastic error is such that E[wk | Fk] = 0 for all k ≥ 0 almost surely.

Expectedly, convergence of the method (PITR) does rely on some coordination across steplengths
and the regularization parameters. Specifically, we impose the following conditions.

Assumption 6. Let αk,max = max1≤i≤N{αk,i}, αk,min = min1≤i≤N{αk,i}, εk,max = max1≤i≤N{εk,i},
εk,min = min1≤i≤N{εk,i}. Let {εk,i} be a monotonically decreasing sequence for each i. Further-

more, with L being the Lipschitz constant of mapping F, let the following hold:

(a) limk→∞

αk,max
αk,min

αk,max
εk,min

(εk,max +L)2 = 0 and limk→∞

αk,max−αk,min
αk,minεk,min

= 0;

(b) limk→∞ αk,minεk,min = 0 and limk→∞ εk,i = 0 for all i;

(c) ∑
∞
k=0 αk,minεk,min = ∞;

(d) ∑
∞
k=1

(εk−1,max−εk,min)
2

ε2
k,min

(
1+ 1

αk,minεk,min

)
< ∞;

(e) limk→∞

(εk−1,max−εk,min)
2

ε3
k,minαk,min

(
1+ 1

αk,minεk,min

)
= 0;

(f) limk→∞

αk,max
εk,min

E[‖wk‖2 | Fk] = 0 and ∑
∞
k=0 α2

k,maxE[‖wk‖2 | Fk]< ∞ a.s.

When all the stepsizes αk,i and the regularization parameters εk,i across the users are the same,
the conditions in Assumption 6 are a combination of the conditions typically assumed for de-
terministic Tikhonov algorithms and the stepsize conditions imposed in stochastic approximation
methods. Later in forthcoming Lemma 11, we demonstrate that Assumption 6 can be satisfied by
a simple choice of steplength and regularization sequences of the form (k+ηi)

−a and (k+ζi)
−b.

In the following proposition, using Assumption 6, we prove that the random sequence {xk} of the
method (PITR) and the Tikhonov sequence {yk} associated with the problems VI(K,F +D(εk)),
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k ≥ 0, have the same accumulation points a.s. Assumption 6 basically provides the conditions on
the sequences {εk,i} and {αk,i} ensuring that the sequence {‖xk− yk−1‖2} is a convergent super-
martingale.

Proposition 7. Let Assumptions 5 and 6 hold. Also, assume that SOL(K,F) is nonempty. Let the

sequence {xk} be generated by stochastic iterative Tikhonov algorithm (PITR). Then, we have

lim
k→∞
‖xk− yk−1‖= 0 a.s.

Proof. By using the relation yk
i = ΠKi[y

k
i −αk,i(Fi(yk)+ εk,iyk

i )] and the non-expansive property of
the projection operator, we have

‖xk+1
i − yk

i ‖2 = ‖ΠKi[x
k
i −αk,i(Fi(xk)+ εk,ixk

i +wk
i )]−ΠKi[y

k
i −αk,i(Fi(yk)+ εk,iyk

i )]‖2

≤ ‖xk
i −αk,i(Fi(xk)+ εk,ixk

i +wk
i )− yk

i +αk,i(Fi(yk)+ εk,iyk
i )‖2.

Further, on expanding the expression on left of the preceding relation it can be verified that

‖xk+1
i − yk

i ‖2 ≤ ‖xk
i − yk

i ‖2−2αk,i(xk
i − yk

i )
T (Fi(xk)−Fi(yk))−2αk,iεk,i‖xk

i − yk
i ‖2

−2αk,i(xk
i − yk

i )
T wk

i +α
2
k,i‖Fi(xk)−Fi(yk)+wk

i + εk,i(xk
i − yk

i )‖2. (3.10)

The last term in the inequality can be expanded as

‖Fi(xk)−Fi(yk)+wk
i + εk,i(xk

i − yk
i )‖2 = ‖Fi(xk)−Fi(yk)‖2 +‖wk

i ‖2 + ε
2
k,i‖xk

i − yk
i ‖2

+2(Fi(xk)−Fi(yk))T wk
i +2εk,i((xk

i − yk
i )

T wk
i +(Fi(xk)−Fi(yk))T (xk

i − yk
i )). (3.11)

Now, we take the expectation of (3.10) and (3.11) conditional on the past Fk, and use E[wk
i |Fk] = 0

(cf. Assumption 5(c)). By combining the resulting two relations we get

E[‖xk+1
i − yk

i ‖2 | Fk]≤ (1−2αk,iεk,i +α
2
k,iε

2
k,i)‖xk

i − yk
i ‖2 +α

2
k,i(‖Fi(xk)−Fi(yk)‖2 +E[‖wk

i ‖2 | Fk])

+2α
2
k,iεk,i(xk

i − yk
i )

T (Fi(xk)−Fi(yk))−2αk,i(xk
i − yk

i )
T (Fi(xk)−Fi(yk)).

Summing over all i and using αk,min ≤ αk,i ≤ αk,max, εk,min ≤ εk,i ≤ εk,max together with the Lips-
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chitz continuity of F yields

E[‖xk+1− yk‖2 | Fk]≤ (1−2αk,minεk,min +α
2
k,maxε

2
k,max +α

2
k,maxL2)‖xk− yk‖2

+α
2
k,maxE[‖wk‖2 | Fk]+2

N

∑
i=1

α
2
k,iεk,i(xk

i − yk
i )

T (Fi(xk)−Fi(yk))

−2
N

∑
i=1

αk,i(xk
i − yk

i )
T (Fi(xk)−Fi(yk)). (3.12)

Next we estimate the last two sums in (3.12) with the inner product terms (xk
i − yk

i )
T (Fi(xk)−

Fi(yk)). The first sum involving α2
k,iεk,i can be estimated as follows:

N

∑
i=1

2α
2
k,iεk,i(xk

i − yk
i )

T (Fi(xk)−Fi(yk))≤ α
2
k,maxεk,max

N

∑
i=1
‖xk

i − yk
i ‖‖Fi(xk)−Fi(yk)‖.

By Hölder’s inequality, we have ∑
N
i=1 ‖xk

i − yk
i ‖‖Fi(xk)− Fi(yk)‖ ≤ ‖xk − yk‖‖F(xk)− F(yk)‖,

which through the use of Lipschitz continuity of F yields

N

∑
i=1

2α
2
k,iεk,i(xk

i − yk
i )

T (Fi(xk)−Fi(yk))≤ α
2
k,maxεk,maxL‖xk− yk‖2. (3.13)

Adding and subtracting αk,min(xk
i − yk

i )
T (Fi(xk)−Fi(yk)) in the last term of (3.12) we have

−
N

∑
i=1

2αk,i(xk
i − yk

i )
T (Fi(xk)−Fi(yk))≤−2αk,min(xk− yk)T (F(xk)−F(yk))

+2(αk,max−αk,min)
N

∑
i=1
‖xk

i − yk
i ‖‖Fi(xk)−Fi(yk)‖.

Using monotonicity of F we have (xk−yk)T (F(xk)−F(yk))≥ 0. Further, by letting δk , αk,max−
αk,min, and using Hölder’s inequality and Lipschitz continuity of F, we get

−
N

∑
i=1

2αk,i(xk
i − yk

i )
T (Fi(xk)−Fi(yk))≤ 2δkL‖xk− yk‖2, (3.14)

Combining relations (3.12), (3.13) and (3.14), we obtain

E[‖xk+1− yk‖2 | Fk]≤ (1−2αk,minεk,min +α
2
k,maxε

2
k,max +α

2
k,maxL2)‖xk− yk‖2

+α
2
k,maxE[‖wk‖2 | Fk]+ (2α

2
k,maxεk,maxL+2δkL)‖xk− yk‖2.
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Letting qk , 1−2αk,minεk,min +α2
k,max(εk,max +L)2 +2δkL, we can write

E[‖xk+1− yk‖2 | Fk]≤ qk‖xk− yk‖2 +α
2
k,maxE[‖wk‖2 | Fk]. (3.15)

Now, we relate ‖xk− yk‖ to ‖xk− yk−1‖. By the triangle inequality, we have ‖xk− yk‖ ≤ ‖xk−
yk−1‖+‖yk−1− yk‖, while from Lemma 10 we have

‖yk− yk−1‖ ≤My
εk−1,max− εk,min

εk,min
for all k ≥ 1.

Therefore, it follows that

‖xk− yk‖2 ≤ ‖xk− yk−1‖2 +‖yk− yk−1‖2 +2‖xk− yk−1‖‖yk− yk−1‖

≤ ‖xk− yk−1‖2 +

(
My

εk−1,max− εk,min

εk,min

)2

+2My
εk−1,max− εk,min

εk,min
‖xk− yk−1‖.

Further we use Cauchy-Schwartz inequality to estimate the last term as follows:

My
εk−1,max− εk,min

εk,min
‖xk− yk−1‖= 2

√
αk,minεk,min‖xk− yk−1 ‖ εk−1,max− εk,min√

αk,minεk,min εk,min
My

≤ αk,minεk,min‖xk− yk−1‖2 +
(εk−1,max− εk,min)

2

αk,minε3
k,min

M2
y

Using this in the preceding relation we obtain

‖xk− yk‖2 ≤ (1+αk,minεk,min)‖xk− yk−1‖2 +

(
My

εk−1,max− εk,min

εk,min

)2(
1+

1
αk,minεk,min

)
.

(3.16)
Combining the relations of (3.15) and (3.16) we obtain the following estimate:

E[‖xk+1− yk‖2 | Fk]≤qk(1+αk,minεk,min)‖xk− yk−1‖2 +α
2
k,maxE[‖wk‖2 | Fk]

+qk

(
My

εk−1,max− εk,min

εk,min

)2(
1+

1
αk,minεk,min

)
. (3.17)

Next, we estimate the coefficient of ‖xk − yk−1‖2 in (3.17). Recalling the definition qk = 1−
2αk,minεk,min +α2

k,max(εk,max +L)2 + 2δkL, we show that qk ∈ (0,1) for all k large enough. Note
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that we can write

qk = 1−αk,minεk,min

(
2−

α2
k,max

αk,minεk,min
(εk,max +L)2− 2δkL

αk,minεk,min

)
.

By Assumption 6(a) we have

α2
k,max

αk,minεk,min
(εk,max +L)2 +

2δkL
αk,minεk,min

→ 0,

implying that there exists a large enough integer k̃ ≥ 0 such that

α2
k,max

αk,minεk,min
(εk,max +L)2 +

2δkL
αk,minεk,min

≤ c for all k ≥ k̃ and some c ∈ (0,1). (3.18)

Thus,

1≤ 2−
α2

k,max

αk,minεk,min
(εk,max +L)2− 2δkL

αk,minεk,min
≤ 2 for all k ≥ k̃,

implying that for qk we have

1−2αk,minεk,min ≤ qk ≤ 1−αk,minεk,min for all k ≥ k̃.

Furthermore, since αk,minεk,min → 0 by Assumption 6(b), we can choose k̃ large enough so that
qk ∈ (0,1) for k ≥ k̃. Hence, for k ≥ k̃ we obtain 0 ≤ qk(1+αk,minεk,min) ≤ qk +αk,minεk,min and
using the definition of qk we further have for k ≥ k̃,

0≤ qk(1+αk,minεk,min)≤ 1−αk,minεk,min

(
1−

α2
k,max

αk,minεk,min
(εk,max +L)2− 2δkL

αk,minεk,min

)
≤ 1−αk,minεk,min(1− c), (3.19)

where the last inequality follows from (3.18). Using relations (3.19) and (3.17), we obtain

E[‖xk+1− yk‖2 | Fk]≤ (1−uk)‖xk− yk−1‖2 + vk for all k ≥ k̃,

where uk , (1− c)αk,minεk,min and

vk = qk

(
My

εk−1,max− εk,min

εk,min

)2(
1+

1
αk,minεk,min

)
+α

2
k,maxE[‖wk‖2 | Fk].
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We now verify that the conditions of Lemma 8 are satisfied for k ≥ k̃. Since c < 1, from (3.19) we
have 0 ≤ uk ≤ 1 for all k ≥ k̃, while from Assumption 6(c) we have ∑

∞

k=k̃ uk = ∞. Under stepsize
conditions Assumption 6(d)–(f), it can be verified that limk→∞

vk
uk

= 0 and ∑
∞
k=0 vk < ∞. Thus, the

conditions of Lemma 8 are satisfied for k ≥ k̃. Noting that Lemma 8 applies to a process delayed
by a deterministic time-offset, we can conclude that ‖xk− yk−1‖→ 0 a.s. �

As an immediate consequence of Proposition 7 and the properties of Tikhonov sequence estab-
lished in Lemma 10, we have the following result.

Proposition 8. Let Assumptions 5 and 6 hold. Also, assume that SOL(K,F) is nonempty. Then,

for the sequence {xk} generated by stochastic iterative Tikhonov algorithm (PITR), we have

(a) If limsupk→∞

εk,max
εk,min

< ∞, then {xk} is bounded and every accumulation point of {xk} is a solu-

tion of VI(K,F).

(b) If limsupk→∞

εk,max
εk,min

≤ 1, then {xk} converges to the smallest-norm solution of VI(K,F).

A further extension of Proposition 7 is obtained when the mapping F is strictly monotone over
the set K. In this case, the uniqueness of solution of VI(K,F) is guaranteed provided a solution
exists. Hence, from Lemma 10(a) we have {yk} converging to the unique solution of VI(K,F),
which in view of Proposition 7 implies that {xk} is converging to the solution a.s. This result is
precisely presented in the following corollary.

Corollary 3. Let Assumption 5 hold with F being strictly monotone over the set K. Also let

Assumption 6 hold, and assume that SOL(K,F) is nonempty. Then, the sequence {xk} generated

by iterative Tikhonov method (PITR) converges to the unique solution of VI(K,F) a.s.

We conclude this section by providing an example of steplength and regularization sequences
that satisfy the conditions of Assumption 6(a)–(e).

Lemma 11. Consider αk,i = (k + ηi)
−a and εk = (k + ζi)

−b for k ≥ 0, where each ηi and ζi

are selected from a uniform distribution on the intervals [η , η̄ ] and [ζ , ζ̄ ], respectively, for some

0 < η < η̄ and 0 < ζ < ζ̄ . Let a,b ∈ (0,1), a+ b < 1, and a > b. Then {αk,i} and {εk,i} satisfy

Assumption 6(a)–(e).

Proof. The first limit condition in Assumption 6(a) holds trivially as we see that for a > b,

lim
k→∞

αk,max

αk,min

αk,max

εk,min
(εk,max +L)2 = lim

k→∞

(k+ηmin)
−a

(k+ηmax)−a
(k+ηmin)

−a

(k+ζmax)−b ((k+ζmin)
−b +L)2,
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where ηmax = max1≤i≤N{ηi}, ηmin = min1≤i≤N{ηi}, ζmax = max1≤i≤N{ζi}, and
ζmin = min1≤i≤N{ζi}. We further have

lim
k→∞

(k+ηmin)
−a

(k+ηmax)−a = 1,

implying

lim
k→∞

(k+ηmin)
−a

(k+ηmax)−a
(k+ηmin)

−a

(k+ζmax)−b ((k+ζmin)
−b +L)2 = lim

k→∞

(k+ηmin)
−a

(k+ζmax)−b ((k+ζmin)
−b +L)2 = 0,

where the last equality follows by a > b. The second condition of Assumption 6(a) can be seen to
follow by noticing that the argument of the limit can be written as

αk,max−αk,min

αk,minεk,max
=

(k+ηmin)
−a− (k+ηmax)

−a

(k+ηmax)−a(k+ζmax)−b =

(k+ηmin)
−a

(k+ηmax)−a −1

(k+ζmax)−b

=

(
1− ηmax−ηmin

k+ηmax

)−a
−1

k−b(1+ ζmax
k )−b

≈
1+aηmax−ηmin

k+ηmax
+O(1/k2)−1

k−b(1+ ζmax
k )−b

= O(1/k1−b).

As k→ ∞, the required result follows. Also, Assumption 6(b) and (c) hold since αk,minεk,min =

k−a−b(1+ηmax/k)−a(1+ ζmax/k)−b > k−1. Under the given form of εk,i and αk,i the expression
in the summation of Assumption 6(d) becomes

((k−1+ζmin)
−b− (k+ζmax)

−b)2

(k+ζmax)−2b

(
1+

1
(k+ηmax)−a(k+ζmax)−b

)
≤ 2

((1+(ζmin−1)/k)−b(1+ζmax/k)b−1)2

(k+ηmax)−a(k+ζmax)−b ,

where the inequality follows from the fact that

1
(k+ηmax)−a(k+ζmax)−b ≥ 1 for k ≥ 1.

Using the expansion of (1− x)−b for x small and ignoring higher order terms, we have

(
(1+(ζmin−1)/k)−b(1+ζmax/k)b−1

)2
≈
((

1−b
ζmin−1

k

)(
1+b

bζmax

k

)
−1
)2

≈ b2(ζmax−ζmin +1)2

k2 .
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Also for k large enough, we have (k+ηmax)
−a(k+ζmax)

−b ≈ k−a−b. Thus we have

2
((1+(ζmin−1)/k)−b(1+ζmax/k)b−1)2

(k+ηmax)−a(k+ζmax)−b ≈ 2
b2(ζmax−ζmin +1)2

k2−a−b = O(k−(1+δ )),

where in the equality we use a+b < 1 and δ = 1− (a+b)> 0. Following a similar argument, it
can be verified that the term in Assumption 6(e) reduces to

((k−1+ζmin)
−b− (k+ζmax)

−b)2

(k+ζmax)−2b

(
1+

1
(k+ηmax)−a(k+ζmax)−b

)
1

(k+ηmax)−a(k+ζmax)−b

≈ 2
b2(ζmax−ζmin +1)2

k2−a−b
1

k−a−b ,

and the limit in Assumption 6(e) follows from a+b < 1. �

Note that Assumption 6(f) is immediately satisfied when E[‖wk‖2|Fk] is uniformly bounded by
some constant and the steplength and regularization sequences are chosen as per Lemma 11.

3.3 Stochastic iterative proximal-point methods

An alternative to using iterative Tikhonov regularization techniques is available through proximal-
point methods, a class of techniques that appear to have been first studied by Martinet [39], and
subsequently by Rockafellar [78]. A more recent description in the context of maximal-monotone
operators can be found in [35]. In the standard proximal-point methods, the convergence to a single
solution of VI(K,F) is obtained through the addition of a proximal term θ(xk− xk−1), where θ

is a fixed positive parameter. In effect, xk = SOL(K,F + θ(I− xk−1) and convergence may be
guaranteed under suitable assumptions.

A crucial shortcoming of standard proximal-point methods lies in the need to solve a sequence of
variational problems. Analogous to our efforts in constructing an iterative Tikhonov regularization
technique, we consider an iterative proximal-point method. In such a method, the centering term
xk−1 is updated after every projection step rather than when it obtains an accurate solution of
VI(K,F +θ(I− xk−1)).

Before providing a detailed analysis of the convergence properties of this method, we examine
the relationship between the proposed iterative proximal point method and the standard gradient
projection method, in the context of variational inequalities. An iterative proximal-point method
for VI(K,F) necessitates an update given by
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xk+1 = ΠK[xk− γk(F(xk)+θ(xk− xk−1))] = ΠK[xk(θ)− γkF(xk)],

where xk(θ) , (1− γkθ)xk + γkθxk−1. Therefore, when θ ≡ 0 and γk → 0, the method reduces
to the standard gradient projection method. More generally, one can view the proximal-point
method as employing a convex combination of the old iterate xk−1 and xk instead of xk in the
standard gradient method. In our algorithm, we allow θ to vary at every iteration, i.e., we employ
a sequence θk which can grow to +∞ but at a sufficiently slow rate.

Analogous to the partially coordinated iterative Tikhonov (PITR) method, we consider a limited
coordination generalization of the iterative proximal-point method (PIPP) where users indepen-
dently choose their individual stepsizes. More precisely we have the following algorithm:

xk+1
i = ΠKi[x

k
i −αk,i(Fi(xk)+θk,i(xk

i − xk−1
i )+wk

i )] for i = 1, . . . ,N, (PITR)

where αk,i is the stepsize and θk,i is the centering term parameter chosen by the ith user at the kth
iteration. We make the following assumption on user steplengths and parameters θk,i.

Assumption 7. Let αk,max =max1≤i≤N{αk,i}, αk,min =min1≤i≤N{αk,i}, θk,max =max1≤i≤N{θk,i},
θk,min = min1≤i≤N{θk,i}, and let the following hold:

(a) αk,maxθk,max ≤
(

1+2α2
k,maxL2

)
αk−1,minθk−1,min for all k ≥ 1, and

lim
k→∞

α2
k,maxθ 2

k,max

αk,minθk,min
= c with c ∈ [0,1/2) ;

(b) ∑
∞
k=0 αk,i = ∞ and ∑

∞
k=0 α2

k,i < ∞ for all i;

(c) ∑
∞
k=0
(
αk,max−αk,min

)
< ∞.

(d) ∑
∞
k=0 α2

k,maxE[‖wk‖2 | Fk]< ∞ almost surely.

Later on, after our convergence results of this section, we will provide an example for the step-
sizes and prox-parameters satisfying Assumption 7.

Our main result is given in the following proposition, where by using Assumption 7 we show
almost sure convergence of the method. In addition, we assume that the mapping F is strictly
monotone over the set K, i.e.,

(F(x)−F(y))T (x− y)> 0 for all x,y ∈ K with x 6= y.
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Proposition 9. Let Assumption 5 hold with F being strictly monotone. Assume that SOL(K,F)

is nonempty. Also, let the steplengths and the prox-parameters satisfy Assumption 7. Then, the

sequence {xk} generated by method (PITR) converges almost surely to the solution of VI(K,F).

Proof. Since F is strictly monotone and SOL(K,F) is nonempty, VI(K,F) must have a unique so-
lution, denoted by x∗ = (x∗1, . . . ,x

∗
N) (cf. Theorem 2.3.3 in [35]). By using x∗i = ΠKi[x

∗
i −αk,iFi(x∗)]

for all i and the nonexpansive property of the Euclidean projection operator, we bound the term
‖xk+1

i − x∗i ‖ as follows:

‖xk+1
i − x∗i ‖2 = ‖ΠKi[x

k
i −αk,i(Fi(xk)+θk,i(xk

i − xk−1
i )+wk

i )]−ΠKi[x
∗
i −αk,iFi(x∗)]‖2

≤
∥∥∥(xk

i − x∗i )−αk,i

(
Fi(xk)−Fi(x∗)−θk,i(xk

i − xk−1
i )−wk

i

)∥∥∥2
.

Further, the right hand side of preceding relation can be expanded as

RHS = ‖xk
i − x∗i ‖2 +α

2
k,i‖Fi(xk)−Fi(x∗)‖2 +α

2
k,i‖wk

i ‖2 +(αk,iθk,i)
2‖xk

i − xk−1
i ‖2

−2αk,i(xk
i − x∗i )

T (Fi(xk)−Fi(x∗))−2αk,iθk,i(xk
i − x∗i )

T (xk
i − xk−1

i )−2αk,i(xk
i − x∗i )

T wk
i

+2α
2
k,iθk,i(Fi(xk)−Fi(x∗))T (xk

i − xk−1
i )+2α

2
k,i(Fi(xk)−Fi(x∗))T wk

i +2α
2
k,iθk,i(xk

i − xk−1
i )T wk

i .

Taking expectation and using E[wk
i | Fk] = 0 (Assumption 5(c)), we obtain

E[‖xk+1
i − x∗i ‖2 | Fk]≤ ‖xk

i − x∗i ‖2 +α
2
k,i‖Fi(xk)−Fi(x∗)‖2 +α

2
k,iE[‖wk

i ‖2 | Fk]

+ (αk,iθk,i)
2‖xk

i − xk−1
i ‖2−2αk,i(xk

i − x∗i )
T (Fi(xk)−Fi(x∗))

−2αk,iθk,i(xk
i − x∗i )

T (xk
i − xk−1

i )+2α
2
k,iθk,i(Fi(xk)−Fi(x∗))T (xk

i − xk−1
i ).

Let αk,max = max1≤i≤N{αk,i}, αk,min = min1≤i≤N{αk,i}, θk,max = max1≤i≤N{θk,i} and θk,min =

min1≤i≤N{θk,i}. Summing over all i and using Lipschitz continuity of F (Assumption 5(b)) we
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arrive at

E[‖xk+1− x∗‖2 | Fk]≤ (1+α
2
k,maxL2)‖xk− x∗‖2 +α

2
k,maxE[‖wk‖2 | Fk]

+(αk,maxθk,max)
2‖xk− xk−1‖2−2

N

∑
i=1

αk,i(xk
i − x∗i )

T (Fi(xk)−Fi(x∗))︸ ︷︷ ︸
Term 1

−2
N

∑
i=1

αk,iθk,i(xk
i − x∗i )

T (xk
i − xk−1

i )︸ ︷︷ ︸
Term 2

+2
N

∑
i=1

α
2
k,iθk,i(Fi(xk)−Fi(x∗))T (xk

i − xk−1
i )︸ ︷︷ ︸

Term 3

. (3.20)

By adding and subtracting 2αk,min(xk
i − x∗i )

T (Fi(xk)−Fi(x∗)) to each term of Term 1 we see that

Term 1≤−2αk,min(xk− x∗)T (F(xk)−F(x∗))+2(αk,max−αk,min)
N

∑
i=1
‖xk

i − x∗i ‖‖Fi(xk)−Fi(x∗)‖

≤ −2αk,min(xk− x∗)T (F(xk)−F(x∗))+2(αk,max−αk,min)L‖xk− x∗‖2, (3.21)

where the first inequality follows by using Cauchy-Schwartz inequality, while the second inequal-
ity follows from Hölder’s inequality and Lipschitz continuity of F.

We now estimate Term 2. Since 2(x− y)T (x− z) = ‖x− y‖2 +‖x− z‖2−‖y− z‖2, we have

Term 2 =−
N

∑
i=1

αk,iθk,i

[
‖xk

i − x∗i ‖2 +‖xk
i − xk−1

i ‖2−‖xk−1
i − x∗i ‖2

]
≤−αk,minθk,min

N

∑
i=1

[
‖xk

i − x∗i ‖2 +‖xk
i − xk−1

i ‖2
]
+αk,maxθk,max

N

∑
i=1
‖xk−1

i − x∗i ‖2

=−αk,minθk,min

[
‖xk− x∗‖2 +‖xk− xk−1‖2

]
+αk,maxθk,max‖xk−1− x∗‖2. (3.22)
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We now consider Term 3. Using 2xT y≤ ‖x‖2 +‖y‖2 and Lipschitz continuity of F, we obtain

Term 3≤
N

∑
i=1

α
2
k,i

(
‖Fi(xk)−Fi(x∗)‖2 +θ

2
k,i‖xk

i − xk−1
i ‖2

)
≤ α

2
k,max

(
‖F(xk)−F(x∗)‖2 +θ

2
k,max‖xk− xk−1‖2

)
≤ α

2
k,max

(
L2‖xk− x∗‖2 +θ

2
k,max‖xk− xk−1‖2

)
. (3.23)

Combining (3.20) with (3.21), (3.22), and (3.23), we obtain

E[‖xk+1− x∗‖2 | Fk]≤
(
1+2α

2
k,maxL2 +2(αk,max−αk,min)L

)
‖xk− x∗‖2

+αk,maxθk,max‖xk−1− x∗‖2−αk,minθk,min‖xk− x∗‖2

−αk,minθk,min

(
1−

2α2
k,maxθ 2

k,max

αk,minθk,min

)
‖xk− xk−1‖2

−2αk,min(xk− x∗)T (F(xk)−F(x∗))+α
2
k,maxE[‖wk‖2 | Fk], (3.24)

By Assumption 7(a) we have

αk,maxθk,max ≤
(
1+2α

2
k,maxL2)

αk−1,minθk−1,min

≤
(
1+2α

2
k,maxL2 +2(αk,max−αk,min)L

)
αk−1,minθk−1,min.

Using this, moving the term −αk,minθk,min‖xk− x∗‖2 on the other side of inequality (3.24), and
noting that

2α2
k,maxθ 2

k,max

αk,minθk,min
≤ d for some d ∈ (0,1) and for k ≥ k̃,

with sufficiently large k̃ (since
2α2

k,maxθ 2
k,max

αk,minθk,min
→ 2c with 2c < 1 by Assumption 7(a)). We further see

that for k ≥ k̃,

E[‖xk+1− x∗‖2 | Fk]+αk,minθk,min‖xk− x∗‖2

≤
(
1+2α

2
k,maxL2 +2(αk,max−αk,min)L

)(
‖xk− x∗‖2 +αk−1,minθk−1,min‖xk−1− x∗‖2

)
−αk,minθk,min (1−d)‖xk− xk−1‖2

−2αk,min(xk− x∗)T (F(xk)−F(x∗))+α
2
k,maxE[‖wk‖2 | Fk]. (3.25)

It remains to show that the sequence {‖xk+1− x∗‖} converges to zero. This can be done by
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applying Lemma 9 to relation (3.25) with the following identification:

Vk = ‖xk− x∗‖2 +αk−1,minθk−1,min‖xk−1− x∗‖2, uk = 2α
2
k,maxL2 +2(αk,max−αk,min)L,

γk = αk,minθk,min(1−d)‖xk− xk−1‖2 +2αk,min(xk− x∗)T (F(xk)−F(x∗)),

βk = α
2
k,maxE[‖wk‖2 | Fk].

To use the lemma, we need to verify that γk ≥ 0, ∑
∞
k=0 uk < ∞ and ∑

∞
k=0 βk < ∞. Note that γk > 0 for

all k ≥ k̃ since d ∈ (0,1) and F is monotone. The condition ∑
∞
k=0 uk < ∞ holds by our assumption

that ∑
∞
k=0 α2

k,i < ∞ for all i (Assumption 7(b)), while ∑
∞
k=0 βk < ∞ holds by Assumption 7(d). Thus,

according to Lemma 9 (that holds for all k large enough) we have for the solution x∗,

{‖xk− x∗‖2 +αk−1,minθk−1,min‖xk−1− x∗‖2} converges a.s., (3.26)

∞

∑
k=0

αk,min(xk− x∗)T (F(xk)−F(x∗))< ∞ a.s. (3.27)

The expression (3.26) implies that the sequence {xk} is bounded a.s. and has accumulation points
a.s. Since K is closed and {xk}⊂K, it follows that all the accumulation points of {xk} belong to K.
By (3.27) and the relation ∑

∞
k=0 αk,min =∞ (see Assumption 7(b)) it follows that (xk−x∗)T (F(xk)−

F(x∗))→ 0 along a subsequence a.s. This and strict monotonicity of F imply that {xk} has one
accumulation point, say x̃, that must coincide with the solution x∗. By relation (3.26) it follows
that the entire sequence must converge to the solution x∗ a.s. �

Consider now the case when we have uniformity in user stepsize and prox-parameter. Precisely,
let each user i implement the following update rule:

xk+1
i = ΠKi[x

k
i −αk(Fi(xk)+θk(xk

i − xk−1
i )+wk

i )], (IPP)

where θk > 0 is the prox-parameter and αk is a stepsize for all players at iteration k. We refer to
this version of the method as Iterative Proximal Point (IPP) algorithm, to differentiate it from its
partially-coordinated version (PITR) where the users have some freedom in selecting the parame-
ters.

Almost sure convergence of the sequence {xk} generated using (IPP) can be obtained as a corol-
lary of Proposition 9.

Corollary 4. Let Assumption 5 hold, where F is strictly monotone. Assume that SOL(K,F) is

nonempty. Also, let the steplengths and the prox-parameters satisfy Assumption 7 with αk,i = αk
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and θk,i = θk for all i. Then, the sequence {xk} generated by method (IPP) converges almost surely

to the solution of VI(K,F).

Proposition 9 holds if the stepsize and prox-parameter sequences satisfy Assumption 7 for all k≥
k̃ where k̃ is some positive integer. We next discuss some examples for choices of stepsize sequence
{αk,i} and prox-parameter sequence {θk,i} that satisfy Assumption 7(a)–(c) for sufficiently large
indices k. Let

αk,i = (k+ηi)
−a and θk,i = (k+ηi)

−b,

for some scalars a and b such that a ∈ (1/2,1] and a+ b > 0. The scalars ηi are random with
uniform distribution over an interval [η , η̄ ] for some 0 < η < η̄ . Then, Assumption 7(a) holds if

αk,maxθk,max

αk−1,minθk−1,min
≤ 1+2α

2
max,kL2. (3.28)

If ηmax ,max1≤i≤N{ηi} and ηmin ,min1≤i≤N{ηi}, we have that

αk,maxθk,max

αk−1,minθk−1,min
=

(k+ηmin)
−(a+b)

(k−1+ηmax)−(a+b)
=
(

1+
ηmin

k

)−(a+b)
(

1− 1−ηmax

k

)a+b

.

Using (1+ x)n ≈ 1+nx for |x|<< 1, then for sufficiently large k, we have

αk,maxθk,max

αk−1,minθk−1,min
≈
(

1− (a+b)ηmin

k

)(
1− (a+b)(1−ηmax)

k

)
≈ 1− (a+b)(1+ηmin−ηmax)

k
.

Thus for ηmax−ηmin < 1 we have,

lim
k→∞

αk,maxθk,max

αk−1,minθk−1,min
↗ 1.

The preceding relation combined with the fact 1+2α2
max,kL2 > 1 implies that relation (3.28) holds

for sufficiently large k.
We now consider the limit in the second part of Assumption 7(a). We have

lim
k→∞

α2
k,maxθ 2

k,max

αk,minθk,min
= lim

k→∞

(k+ηmin)
−2(a+b)

(k+ηmax)−(a+b)
= 0,

where the zero-limit follows by a+ b > 0. The conditions of Assumption 7(b) hold trivially for
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a ∈ (1/2,1]. For the condition of Assumption 7(c), we have

αk,max−αk,min = (k+ηmin)
−a− (k+ηmax)

−a = (k+ηmax)
−a
(
(k+ηmin)

−a

(k+ηmax)−a −1
)

= (k+ηmax)
−a

((
1− ηmax−ηmin

k+ηmax

)−a

−1

)

≈ (k+ηmax)
−a
(

1+a
ηmax−ηmin

k+ηmax
+O(1/k2)−1

)
= O(1/k1+a),

which is summable for a > 0.

3.4 Case study

In this section, we examine the sensitivity of the proposed iterative Tikhonov method and the
proximal-point method to algorithm parameters. More specifically, in Section 3.4.1, we describe
the player payoffs and strategy sets as well as the network constraints employed in the case study.
The sensitivity of the methods to algorithm parameters is examined in Section 3.4.2. Finally,
Sections 3.4.3 and 3.4.4 provide comparisons with their standard (two-loop) counterparts as well
as sample-average approximation methods.

3.4.1 Network and user data

We re-consider the spatial network of Chapter 2 and present it again in Fig. 3.1 for completeness.
Suppose now there are N selfish users that compete over the network. Each user is characterized
by a user-specific utility and faces a congestion cost that is a function of the aggregate flow in
a link. Such a problem captures traffic and communication networks where the congestion cost
may manifest itself through link-specific delays [5, 6]. The ith user’s cost function fi(xi,ξi,ωi) is
a function of flow decisions xi and is parameterized by the uncertainty, denoted by (ξi,ωi). It is
defined as

fi(xi,ξi,ωi),−ξi log(1+ xi +ωi). (3.29)

Each user selects an origin-destination pair of nodes on this network and faces congestion based
on the links traversed along the prescribed path connecting the selected origin-destination nodes.
We assume that the network links are indexed by an index set L and we consider a congestion
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cost of the form:

c(x,ς) = ς

N

∑
i=1

∑
l∈L

xli

(
N

∑
j=1

xl j

)
, (3.30)

where xl j denotes the flow of user j on link l and ς is a random scaling parameter. For all i ∈
{1, . . . ,N} and l ∈L , xli is given by

xli =

{
xi if user i uses link l,

0 otherwise.

Let A denote the adjacency matrix that specifies the set of links traversed by the traffic generated
by a particular user. More precisely, for every link l ∈ L and user i, we have Ali = 1 if link l

carries flow of user i, and Ali = 0 otherwise. Throughout this section, we consider the network
with 9 links and 5 users, as given in Fig. 2.1. The simulation results are reported in tables, where
we use U(t,τ) to denote the uniform distribution over an interval [t,τ] for t < τ .

���������	


������������

Figure 3.1: A network with 5 users and 9 links.

Table 3.1 summarizes the traffic in the network as generated by the users and provides the
uniform distribution for the parameters ki(ξi) and noise ωi of the user objectives. In addition we
assume that congestion scaling parameter is uniformly distributed i.e., ς ∼U(1/2,1).

The strategy sets are coupled through an expected-value constraint of the form ∑
N
i=1 Alixi ≤

E[Cl(ζl)] for all l ∈L where Cl(ζl) is the random aggregate traffic through link l. The constraint
can be compactly written as Ax ≤ E[C(ζ )], where ζ = (ζ1, . . . ,ζ9)

T and C(ζ ) is the random link
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Table 3.1: Network and user data

User(i) Links traversed ξi ωi
1 L2, L3, L6 U(0,10) U(0,1)
2 L2, L5, L9 U(0,10) U(0,1)
3 L1, L5, L9 U(0,10) U(0,1)
4 L6, L4, L9 U(0,10) U(0,1)
5 L8, L9 U(0,10) U(0,1)

capacity vector with C(ζ ) ∼U(C̄−1,C̄+1) and C̄ = (10,15,20,10,15,20,20,15,25). In the re-
sulting N−player stochastic Nash game, given x−i, the ith player solves the following parametrized
convex program:

min
xi∈Ki

E[ fi(xi,ξi,ωi)+ c(x,ς)]

s.t. Ax≤ E[C(ζ )],
(3.31)

Since, the strategy sets are coupled by a set of shared constraints, the associated game is a
generalized Nash game with shared constraints. Suppose x denotes an equilibrium of this shared
constraint game. Then, under convexity assumptions on the player problems and the polyhedrality
of the shared constraints, there exist vectors λ 1, . . . ,λ N , such that

(yi− xi)
T

∇xiE[ fi(xi,ξi,ωi)+ c(x,ς)

+
|L |
∑
l=1

λ
i
l (Al,ixi−Cl(ζ ))]≥ 0, ∀yi ∈ Ki, i = 1, . . . ,N,

0≤ λ
i
l ⊥

N

∑
i=1

E[Alixi−Cl(ζ )]≤ 0,

l = 1, . . . , |L |, i = 1, . . . ,N. (3.32)

While the equilibria of this shared-constraint game are wholly captured by the solution set of a
quasi-variational inequality, a subset of equilibria (referred to as variational equilibria (VE)) is
characterized by common Lagrange multipliers associated with the shared constraint; more specif-
ically, a VE is given by an x that solves (3.32) with λ = λ 1 = λ 2 = . . . = λ N . A variational
equilibrium is obtainable by solving a suitably defined variational inequality problem. Defining
such a problem requires introducing a uniform pricing mechanism, controlled by the network ad-
ministrator, that allows for relaxing the shared constraints. If such a price is denoted by a Lagrange
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multiplier λ , player i solves:

min
xi∈Ki

E[ fi(xi,ξi,ωi)+ c(x,ς)+
|L |
∑
l=1

λl(Al,ixi−Cl(ζ ))],

where the expectation is with respect to ξi, ωi, ς and ζ and the price vector λ , (λl)
|L |
l=1 such that

λ ∈ R|L |+ and satisfies the complementarity relationship given by

0≤ λi ⊥ Al,ixi−E[Cl(ζ )]≤ 0, l = 1, . . . , |L |.

It is important to note that in this modified definition of player i’s payoff, the decision of other
players x−i and the price vector λ are to be viewed as parameters. Since fi(xi,ξ ,ωi) =−ξi log(1+
xi +wi), the gradient vector for player i is:

Fi(x,λ ), ∇xiE[ fi(xi,ξi,ωi)+ c(x,ς)+
|L |
∑
l=1

λl(Al,ixi−Cl(ζ ))]

= E

[
− ξi

1+ xi +ωi

]
+E

[
2ς

N

∑
j=1

(AT A)i jx j+
|L |
∑
l=1

λlAl,i

]
.

Furthermore, the expected violation of the shared constraints is denoted by the mapping Λ(x,λ )

which is defined as

Λ(x,λ ),


∑

N
i=1(E[C1(ζ )]−A1ixi)

...

∑
N
i=1(E[C|L |(ζ )]−A|L |ixi)

 .

Based on [79, Th. 3.1], under the convexity assumptions on the player problems, x is an equilib-
rium of the shared-constraint Nash game at which (3.32) holds with λ = λ 1 = λ 2 = . . . = λ N if
and only if (x,λ ) solves VI(K×R

|L |
+ ,Φ), where Φ(z) = Φ(x,λ ), (FT

1 , . . . ,FT
N ,ΛT )T .

It remains to verify that the mapping Φ is monotone over the set K×R
|L |
+ . Its Jacobian is given

by

∇Φ(z) =

(
H̃(x) 0

0 0

)
+

(
2E[ς ]AT A AT

−A 0

)
,
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where H̃(x) = E[H(x,ξ ,ω)] and

H(x,ξ ,ω) =


ξ1

(1+x1+ω1)2

. . .
ξN

(1+xN+ωN)2

 .

Since the matrix H̃(x) arises as the Hessian of user-specific utilities which are independent across
users, accordingly, the Hessian is a diagonal positive definite matrix. For z ∈ K×R

|L |
+ , consider

zT ∇Φ(z)z, we have zT ∇Φ(z)z = xT H̃(x)x+ 2E[ς ]xT AT Ax ≥ 0, where we use E[ς ] = 3/4 as ς ∼
U(1/2,1). Thus from the positive semidefiniteness of ∇Φ(z) it follows that Φ is monotone over
K×R

|L |
+ . Given the absence of strong monotonicity and the lack of compactness of K×R

|L |
+ ,

existence and uniqueness claims, while not immediate, can be derived (cf. [80]). For the present,
we assume that an equilibrium does indeed exist. Given these definitions, the standard projection
method is defined as

xk+1
i = ΠKi[x

k
i −αk,iFi(x,λ )], for all i = 1, . . . ,N,

λ
k+1
l = ΠR+[λ

k
l −αk,N+lΛl(x,λ )], for all l = 1, . . . , |L |,

where users and links have their steplength sequences and the regularized counterparts may be
appropriately defined. Compactly, the preceding iterations may be written as

zk+1 = Π
K×R|L |+

[zk−D(αk)Φ(zk)],

where αk = (αk,1, . . . ,αk,N+|L |) and z, (x,λ ). It is worth noting that our convergence theory for
PIPP requires strict monotonicity of Φ while our mapping is merely monotone; yet our numerical
results suggests that PIPP still performs well.

We now describe our experimental setup. Unless mentioned otherwise, we terminate each of our
simulations after 10,000 iterations and obtain 95% confidence intervals by using 100 sample-paths.
We report the confidence intervals at a 95% level for the normed error between the terminating
iterate and equilibrium solution, i.e., the confidence interval for ‖zk− z∗‖ where k = 10,000. For
the ITR method, the update rule for the regularization parameter is taken to be of the form εk =

(1000+k)−a where k≥ 1 is the current iterate. When implementing the IPP method, the proximal
parameter is updated using θk = (1000+ k)c where k ≥ 1. The steplength αk updated as αk =

(1000+k)−b, is chosen to be the same for both ITR and IPP methods. In both partially coordinated
methods, for i = 1, . . . ,N + |L |, we let αk,i = (1000+ k+δi)

−b with εk,i = (1000+ k+δi)
−a for
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PITR and θk,i = (1000 + k + δi)
−b for PIPP, where δi ∼ U(−500,500). Finally, z∗ denotes an

approximate solution of VI(K×R
|L |
+ ,Φ) computed by solving a sample-average approximation

(SAA) problem using the nonlinear programming solver knitro [67] on Matlab 7. Note that
x∈ [0,1+Cmax], where Cmax =maxl∈L {C̄l} and Ax≤E[C(ζ )]. For a sample size of 200, with 2000
replications for each sample, we observe that ‖z∗‖ = 0.808. We now summarize our numerical
algorithm for users iterate update.

1. For each sample path, at the beginning of each iteration, we draw a random sample of ξ , ω,

ς and C(ζ ) from their respective distributions.

2. Using this random sample and its current iterate, each user generates a sample of a gradient.

3. The next iterate is generated using the proposed algorithm with the sampled gradient com-
bined with appropriate stepsize and regularization parameter.

4. Repeat steps 1–3 for k̃ iteration; record the error ‖zk̃− z∗‖ for a particular sample.

5. The sample mean error and a 95% confidence interval is obtained and reported.

3.4.2 Sensitivity to parameters

We consider cases when the regularization parameter sequence is driven to zero at different rates.
Specifically, we choose εk as (1000+ k)−a for ITR and for i = 1, . . . ,N +L , εk,i is (1000+ k+

δi)
−a where δi ∼U(−500,500) for PITR. The user and link stepsizes αk are set to (1000+k)−0.54

for ITR and αk,i = (1000+ k+δi)
−0.54 for PITR. Table 3.2 compares the 95% confidence interval

for normed error ‖zk̃− z∗‖ of ITR method to that of PITR method, as a function of the parameter a

of the regularization stepsizes εk and εk,i. It can be seen that as a increases, the confidence intervals
tend to be tighter upon termination. Further, we also observe that when users and links choose their
steplengths independently, the resulting confidence intervals appear to be slightly better.

Next, we examine the performance of iterative proximal-point methods. Table 3.3 compares the
performance of IPP and PIPP methods when the rate of decay or growth of the prox parameter is
varied keep the users and links steplength update rule fixed. Specifically, we let θk = (1000+ k)c

with αk = (1000+ k)−0.54 for IPP, and for i = 1, . . . ,N + |L |, θk,i = (1000+ k+ δi)
c with αk =

(1000+ k+ δi)
−0.54 and δi ∼U(−500,500) for PIPP. Note that when c > 0 we have θ ↗ ∞. No

clear relationship can be observed between c (rate control parameter) and the recorded accuracy
upon termination though it seems that letting c > 0 results in a slightly better accuracy. We also
note that limited coordination has minimal impact on the obtained confidence intervals.
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Table 3.2: Varying a in regularization term of the form k−a for a fixed choice for stepsizes

Width of confidence intervals
a ITR PITR

0.25 1.29e-02 1.09e-02
0.30 1.19e-02 1.08e-02
0.35 1.15e-02 1.07e-02
0.40 1.14e-02 1.07e-02
0.45 1.10e-02 1.06e-02

Table 3.3: Varying c in prox-parameter of the form k−c for a fixed choice of the stepsizes

Width of confidence intervals
c IPP PIPP

-0.35 1.23e-02 1.13e-02
-0.15 1.18e-02 1.04e-02

0 1.16e-02 1.17e-02
0.15 9.46e-02 1.07e-02
0.35 1.04e-02 9.62e-02

Now, we examine the behavior of ITR and IPP methods by changing common parameters.

1. Impact of steplength, regularization and proximal-parameter sequences: We begin by exam-
ining the impact on the width of confidence interval of the rate at which stepsize αk decays
to zero in both ITR and IPP methods. Further, we report the computational time to achieve
the desired level of accuracy. The table to the right in Table 3.4 compares the width of
confidence intervals in both methods. It can be observed that as the decay rates increase,
IPP performs slightly better than ITR in terms of accuracy upon termination. Since there is
relatively limited impact on ITR methods from changing the decay rate of the regularization
parameter (see Table 3.2), given that a+b < 1 choosing b as close to 1 appears to be advan-
tageous. Note the slight change in the update rule of εk so as to accommodate a larger range
of variability for b. In Table 3.4 (right), we list the computation times required by ITR and
IPP to achieve the corresponding level of accuracy of right table in Table 3.4. Combining
the results of Table 3.4 with that of Table 3.2 it can be concluded that for iterative Tikhonov
methods, it might be useful to choose a faster decay rate for αk.

2. Varying coordination requirements: A worthwhile question in examining limited coordina-
tion generalizations is the extent to which disparity in steplength and parameter sequences
impacts the overall confidence width. In Table 3.5, we tabulate the performance of vary-
ing the coordination amongst users and links by changing the deviation in their individual
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Table 3.4: ITR vs. IPP: Varying b in αk = k−b with εk = (1000+ k)−0.25 and θk = (1000+ k)0.35.

Width of confidence intervals
b ITR IPP

0.54 1.16e-02 1.03e-02
0.59 8.89e-03 8.88e-03
0.64 7.20e-03 7.36e-03
0.69 7.08e-03 5.53e-03
0.74 4.84e-03 4.48e-03

Computational time in seconds
b ITR IPP

0.54 164.71 128.76
0.59 165.98 129.47
0.64 165.95 129.62
0.69 165.85 129.67
0.74 165.94 129.54

Table 3.5: Performance of PITR and PIPP for various levels of coordination δi.

Delta 95 % Confidence Interval
δi PITR PIPP

U(−50,50) 1.19e−02 9.08e−03
U(−100,100) 1.08e−02 9.49e−03
U(−200,200) 9.74e−03 1.07e−02
U(−500,500) 1.14e−02 8.25e−03

steplengths and parameters which is controlled by changing the size of the support of the
uniform distribution governing parameter δi. Notably, our tests show that within the range
of testing conducted, there is relatively minor impact associated with limited coordination.

3.4.3 Comparison with standard Tikhonov and proximal-point methods

Our methods are motivated by the observation that regularization-based algorithms that rely on
obtaining increasingly accurate solutions to a sequence of problems and such techniques cannot
be easily extended to regimes where the subproblems are stochastic, particularly when relying on
simulation-based methods. Naturally, getting solutions of increasing accuracy requires increasing
replication lengths at a much faster rate, making such approaches computationally impractical.
Iterative regularization methods obviate this challenge by requiring a replication in which the reg-
ularization parameter is updated during the replication.

In this subsection, we detail the insights drawn from a rudimentary bounded complexity im-
plementation of the standard Tikhonov and proximal-point methods (with two-nested loops). In
effect, we obtain solutions of fixed accuracy and not increasing accuracy. More specifically, we
examined the behavior of a Tikhonov regularization method where a sequence of subproblems was
solved and the method was initiated with ε = 1 and was terminated when the regularization param-
eter ε dropped below (11000)−0.35 (terminating value of the base case of corresponding iterative
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Tikhonov method). Note that the regularized subproblem was solved via a simulation method in
which the averaged solution over a fixed number of sample-paths was employed (100 in this case),
each of which required 10,000 steps. In the context of the proximal-point method, we terminate
the method when the normed error for numerically obtained solution and actual solution drops
below 1e-2. Note that both of these are heuristics and other parameter settings were examined to
get a flavor for the behavior of such methods, as well as to make the comparison as fair as possi-
ble. Table 3.6 tabulates the performance for both methods in terms of width of confidence interval
(table on the left) and the computational time required to reach the desired level of accuracy (table
on the right). On comparing with corresponding data of iterative methods in Table 3.4 we notice
that the both Tikhonov and proximal-point methods display almost identical performance in terms
of level of accuracy upon termination but require significant effort to do so, especially Tikhonov
methods.

Table 3.6: Tikhonov v/s proximal point method: Varying b in αk = k−b.

Width of confidence intervals
b Tikhonov Proximal Point

0.54 1.58e-02 1.62e-02
0.59 1.30e-02 1.38e-02
0.64 1.15e-02 1.03e-02
0.69 8.57e-03 8.10e-03
0.74 6.85e-03 7.27e-03

Computational time in seconds
Tikhonov Proximal Point

297.62 183.08
360.30 138.10
360.32 137.62
360.36 137.56
360.26 137.46

3.4.4 Comparison with sample average approximation (SAA) techniques

In this subsection, we investigate the performance of SAA methods with one of the candidate
methods namely, PIPP. We report a 95% confidence interval SAA obtained for a sample of size
100 for various replication levels to approximate the problem. For each sample, the replicated
averaged problem is solved using knitro and for i = 1, . . . ,N + |L |, PIPP is implemented with
αk,i = (1000+ k + δi)

−0.54 and θk,i = (1000+ k + δi)
0.35 where δi ∼ U(−500,500). Table 3.7

demonstrates the performance of SAA with accuracy level reached for various number of replica-
tions while Table 3.8 compares the computational effort required measured in time (seconds) by
SAA to reach the accuracy level to that of PIPP.
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Table 3.7: Performance for SAA

Width of confidence intervals for 100 samples
Replication per sample SAA

1000 3.86e-03
2000 2.32e-03
5000 1.65e-03

Table 3.8: Comparison of performance for SAA and PIPP

PIPP Iteration / Computational time in seconds
SAA Replication SAA PIPP

1000 1438.93 20.65
2000 3598.07 41.32
5000 14,645.32 103.27

3.5 Concluding remarks

In this chapter we proposed and investigated two algorithms for computing solutions to stochastic
variational inequalities when the mappings are not necessarily strongly monotone. The work in this
chapter is related to the past work by Jiang and Xu [36] who considered how stochastic approxima-
tion procedures could address stochastic variational inequalities with strongly monotone mappings.
Yet, these methods cannot easily contend with weaker requirements (such as strict monotonicity
or monotonicity) while retaining the single iteration structure. A simple regularization-based ex-
tension leads to a two-level method, that is usually harder to implement in networked settings.

Accordingly, this chapter makes the following contributions. First, we present single-loop it-

erative counterparts of standard Tikhonov and proximal-point methods that obviate the need to
solve a sequence of subproblems. Instead, we present a stochastic iterative Tikhonov regulariza-
tion method and a stochastic iterative proximal-point method in which the regularization parameter
in the former and the centering parameter in the latter are updated at every iteration. Suitable con-
ditions on the parameter sequences are established for guaranteeing the almost-sure convergence
of the resulting methods. Notably, the iterative proximal-point method also allows for raising the
proximal-parameter at every step.

The chapter concludes with a detailed study of the computational performance of these methods
on a networked monotone stochastic rate allocation game. Through this case study, we observe that
the methods perform better when the steplength sequences are driven to zero at a faster rate but are
less sensitive to changing the decay rates of the regularization and proximal parameter sequences.
Notably, partial coordination of steplength choices has minimal impact on the accuracy of the
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solution. Finally, naive implementations of standard Tikhonov and proximal-point methods prove
illuminating; both Tikhonov and proximal methods provide accurate solutions but at a significant
computational expense.
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Chapter 4

Network Aggregative Nash Games

In this chapter we focus on a subclass of Nash games, referred to as aggregative games. An
aggregative game is a non-cooperative Nash game in which each player’s payoff is parametrized
by its action and the aggregate of the actions taken by all players [81]. Nash-Cournot games
represent one instance of such games; here, firms make quantity bids that fetch a price based
aggregate quantity sold, implying that the payoff of any player is a function of the aggregate
quantity sold [17, 48]. This chapter considers aggregative games wherein the players1 compete
over a network. However, distributed computation of equilibria in such games is complicated by
two challenges. First, the connectivity graphs of the underlying network may evolve over time.
Second, in many settings, agents do not have ready access to aggregate decisions, implying that
agents cannot compute their exact payoffs (or their gradients). Consequently, standard gradient-
based or best-response schemes cannot be directly implemented since agents do not have ready
access to the aggregate. Accordingly, in this chapter, we propose two distributed agreement-based
algorithms which allow agents to build estimates of the aggregate and consequently compute an
equilibrium of aggregative games. Of these, the first is a synchronous algorithm where all agents
update simultaneously, while the second is a gossip-based algorithm that allows for asynchronous
computation:

(a) Synchronous distributed algorithm: At each epoch, every agent performs a “learning step” to
update its estimate of the aggregate using the information obtained through the time-varying
states of its neighbors. All agents exchange information and perform decision updates simul-
taneously. This algorithm builds on the ideas of the method developed in [82] for distributed
optimization problems.

(b) Asynchronous distributed algorithm: In contrast, the asynchronous algorithm uses a gossip-
based protocol for information exchange. In the gossip-based algorithm, only a pair of ran-
domly selected agent exchange their information and update their estimates of the aggregate

1Recall that we also refer player to as agent.
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and their decisions. The algorithm combines our synchronous method in (a) with the gossip
technique proposed in [83] for the agreement (consensus) problem 2.

We investigate the convergence behavior of these algorithms under a diminishing stepsize rule, and
provide error bounds under a constant steplength regime. Additionally, the results are supported
numerics derived from application of the proposed schemes on a class of networked Nash-Cournot
games. The novelty of this work is in our examination of distributed (neighbor-based) algorithms
for computation of a Nash equilibrium point for aggregative Nash games, while the majority of
preceding efforts on such algorithms have been spent towards solving feasibility and optimization
problems.

The distributed algorithms presented in this chapter draw inspiration from the seminal work
in [49], where a distributed method for optimization has been developed by allowing agents to
communicate locally with their neighbors over a time-varying communication network. This idea
has attracted a lot of attention recently in an effort to extend the algorithm of [49] to more general
and broader range of problems [85, 86, 87, 88, 89, 90, 91, 92, 93, 94]. Much of the aforementioned
work focuses on optimizing the sum of local objective function [85, 86, 87, 88, 89, 90, 91] in a
multi-agent networks, while a subset of recent work considered the min-max optimization prob-
lem [95, 96], where the objective is to minimize the maximum cost incurred by any agent in the
network. Notably, extensions of consensus based algorithms have also been studied in the domain
of distributed regression [93], estimation and inference tasks [92, 94]. The work in this paper
extends the realm of such algorithm to capture competitive aspect of multi-agent networks.

In section 4.1, we describe the problem of interest, state our assumptions and the equilibrium
conditions of the game. A synchronous distributed algorithm is proposed in section 4.2 and conver-
gence theory is provided. An asynchronous gossip-based variant of this algorithm is described in
section 4.3 and is supported by convergence theory and error analysis. In section 4.4, we present an
extension of aggregative games and suitably adapt the distributed synchronous and asynchronous
algorithm to address this generalization. We present some numerical results in section 4.5 and,
finally, conclude in section 4.6.

4.1 Problem formulation and background

In this section we introduce an aggregative game of our interest and provide its sufficient equi-
librium conditions. The players in this game are assumed to have local interactions with each

2A subset of this work appears in [84].
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other over time, where these interactions are modeled by time-varying connectivity graphs. We
also discuss some auxiliary results for the players’ connectivity graphs and present our distributed
algorithm for equilibrium computation.

Consider a set of N players (or agents) indexed by 1, . . . ,N, and let N = {1, . . . ,N}. The ith
player is characterized by a strategy set Ki ⊆ R

n and a payoff function fi(xi, x̄), which depends on
player i decision xi and the aggregate x̄ = ∑

N
i=1 xi of all player decisions. To formalize the game,

let K̄ denote the Minkowski sum of the sets Ki:

K̄ =
N

∑
i=1

Ki. (4.1)

In a generic aggregative game, player i faces the following parametrized optimization problem:

minimize fi(xi, x̄)

subject to xi ∈ Ki, (4.2)

where Ki ⊆ R
n and x̄ is the aggregate of the agent’s decisions xi, i.e.,

x̄ =
N

∑
j=1

x j, x̄ ∈ K̄, (4.3)

with K̄ ⊆ R
n as given in (4.1), and fi : Ki× K̄→ R. The set Ki and the function fi are assumed to

be known by agent i only.

4.1.1 Equilibrium conditions and assumptions

To articulate sufficiency conditions, we make the following assumptions on the constraint sets Ki

and the functions fi.

Assumption 8. For each i = 1, . . . ,N, the set Ki ⊂ R
n is compact and convex. Each function

fi(xi,y) is continuously differentiable in (xi,y) over some open set containing the set Ki× K̄, while

each function xi 7→ fi(xi, x̄) is convex over the set Ki.

Under Assumption 8, the (sufficient) equilibrium conditions of the Nash game in (4.2) can be
specified as a variational inequality problem VI(K,φ) (cf. [35]). Recall that VI(K,φ) requires

92



determining a point x∗ ∈ K such that

(x− x∗)T
φ(x∗)≥ 0 for all x ∈ K,

where

φ(x),


∇x1 f1(x1,x1 +∑

N
j=2 x j)

...
∇xN fN(xN ,∑

N−1
j=1 x j + xN)

 , K =
N

∏
i=1

Ki, (4.4)

with x , (xT
1 , . . . ,x

T
N)

T , xi ∈ Ki for all i. Note that, by Assumption 8, the set K is a compact and
convex set in R

nN , and the mapping φ : K→ R
nN is continuous. To emphasize the particular form

of the mapping φ , we define Fi(xi, x̄) as follows:

Fi(xi, x̄) = ∇xi fi(xi, x̄) for all i = 1, . . . ,N. (4.5)

The mapping F(x,u) is given by

F(x,u),


F1(x1,u)

...
FN(xN ,u)

 , (4.6)

where the component maps Fi : Ki× K̄→ R
n are given by (4.5). With this notation, we have

φ(x) = F(x, x̄) for all x ∈ K. (4.7)

Next, we make an assumption on the mapping φ(x).

Assumption 9. The mapping φ(x) is strictly monotone over K, i.e.,

(φ(x)−φ(x′))T (x− x′)> 0, for all x,x′ ∈ K.

Together with the compactness of K, this assumption allows one to claim existence and unique-
ness of a Nash equilibrium.

Proposition 10. Consider the aggregative Nash game defined in (4.2). Suppose Assumptions 8

and 9 hold. Then, the game admits a unique Nash equilibrium.

Proof. By Assumption 8, the set K is compact and φ is continuous. It follows from Corollary
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2.2.5 [35] that VI(K,φ) has a solution. By the strict monotonicity of φ(x), VI(K,φ) has at most
one solution based on Theorem 2.3.3 [35] and uniqueness follows. �

Strict monotonicity assumptions on the mapping are seen to hold in a range of practical problem
settings, including Nash-Cournot games [20], rate allocation problems [5, 7, 6], amongst others.

We now state our assumptions on the mappings Fi, which are related to the coordinate mappings
of φ in (4.4).

Assumption 10. Each mapping Fi(xi,u) is uniformly Lipschitz continuous in u over K̄, for every

fixed xi ∈ Ki i.e., for some L−i > 0 and for all u,z ∈ K̄,

‖Fi(xi,u)−Fi(xi,z)‖ ≤ L−i‖u− z‖.

One would naturally question whether such assumptions are seen to hold in practical instances
of aggregative games. We will show in section 4.5 that the assumptions are satisfied for the Nash-
Cournot game of Example 2.

Before proceeding, it is worthwhile to recall the motivation for the present work. In the context
of continuous-strategy Nash games, when the mapping φ satisfies a suitable monotonicity property
over K, then a range of distributed projection-based schemes [35, 7, 5, 13, 33] and their regularized
variants schemes [6, 75, 20] can be constructed. In all of these instances, every agent should
be able to observe the aggregate x̄ of the agent decisions. In this paper, we assume that this
aggregate cannot be observed and no central entity exists that can provide this quantity at any
time. Yet, when agents are connected in some manner, then a given agent can communicate locally
with their neighbors and generate estimates of the aggregate decisions. Under this restriction,
we are interested in designing algorithms for computing an equilibrium of an aggregative Nash

game (4.2).

4.2 Distributed synchronous algorithm

In this section we develop a distributed synchronous algorithm for equilibrium computation of the
game in (4.2) that relies on agents constructing an estimate by mixing information drawn from
local neighbors and making a subsequent projection step. In Section 4.2.1, we describe the scheme
and provide some preliminary results in Section 4.2.2. The section concludes in Section 4.2.3 with
an analysis of the convergence of the proposed scheme.
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4.2.1 Outline of algorithm

Our algorithm equips each agent in the network with a protocol that mandates that every agent
exchange information with its neighbors, and subsequently update its decision and the estimate
of the aggregate decisions, simultaneously. We employ a synchronous time model which can
contend with a time varying connectivity graph. Consequently, in this section we consider a time
varying network to model agent’s communications in time. More specifically, let Ek be the set of
underlying directed edges between agents and let Gk = (N,Ek) denote the connectivity graph at
time k. Let Ni(k) denote the set of agents who are immediate neighbors of agent i at time k that can
send information to i, assuming that i ∈ Ni(k) for all i ∈ N and all k ≥ 0. Mathematically, Ni(k)

can be expressed as:
Ni(k) = { j : ( j, i) ∈ Ek}.

We make the following assumption on the graph Gk = (N,Ek).

Assumption 11. There exists an integer Q ≥ 1 such that the graph (N,
⋃Q
`=1E`+k) is strongly

connected for all k ≥ 0.

This assumption ensures that the intercommunication intervals are bounded for agents that com-
municate directly; i.e., every agent sends information to each of its neighboring agents at least
once every Q time intervals. This assumption has been commonly used in distributed algorithms
on networks, starting with [49].

(a) Connectivity graph at one instant (b) Connectivity graph at another in-
stant

Figure 4.1: A depiction of an (undirected) communication network.

Due to incomplete information at any point, an agent only has an estimate of x̄ in contrast to
the actual x̄. We describe how an agent may build this estimate. Let xk

i be the iterate and vk
i be

the estimate of the average of the decisions xk
1, . . . ,x

k
N for agent i at the end of the kth iteration.
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At the beginning of the (k + 1)st iteration, agent i receives the estimates vk
j from its neighbors

j ∈ Ni(k + 1). Using this information, agent i aligns its intermediate estimate according to the
following rule:

v̂k
i = ∑

j∈Ni(k)
wi j(k)vk

j, (4.8)

where wi j(k) is the nonnegative weight that agent i assigns to agent j’s estimate. By specifying
wi j = 0 for j 6∈Ni(k) we can write:

v̂k
i =

N

∑
j=1

wi j(k)vk
j with v0

j = x0
j for all j = 1, . . . ,N.

Using this aligned average estimate v̂k
i and its own iterate xk

i , agent i updates its iterate and average
estimate as follows:

xk+1
i = ΠKi[x

k
i −αkFi(xk

i ,Nv̂k
i )], (4.9)

vk+1
i = v̂k

i + xk+1
i − xk

i , (4.10)

where, αk is the stepsize, ΠKi denotes the Euclidean projection onto the set Ki and Fi is as defined
in (4.5). The quantity Nv̂k

i in (4.9) is the aggregate estimate that agent i uses instead of the true
estimate ∑

N
i=1 xk

i of the agent decisions at time k. Under suitable conditions on the agents weights
wi j(k) and the stepsize αk, the iterate vector (xk

1, . . . ,x
k
N) can converge to a Nash equilibrium point

(x∗1, . . . ,x
∗
N) and the estimates Nv̂k

i in (4.9) will converge to the true aggregate value ∑
N
i=1 x∗i at the

equilibrium. These assumptions are given below.

Assumption 12. For all i ∈N and all k ≥ 0, the following hold:

(i) wi j(k)≥ δ for all j ∈Ni(k) and wi j(k) = 0 for j 6∈Ni(k);

(ii) ∑
N
j=1 wi j(k) = 1 for all i;

(iii) ∑
N
i=1 wi j(k) = 1 for all j.

Assumption 13. The stepsize αk is chosen such that the following hold:

(i) The sequence {αk} is monotonically non-increasing i.e., αk+1 ≤ αk for all k;

(ii) ∑
∞
k=0 αk = ∞;

(iii) ∑
∞
k=0 α2

k < ∞.
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Such an assumption is trivially satisfied for a stepsize update of the form αk = (k+1)−b where
0.5 < b≤ 1.

4.2.2 Preliminary results

We next provide some auxiliary results for the weight matrices and the estimates generated by the
method. Let W (k) be the weight matrix with entries wi j(k). We introduce the transition matrices
Φ(k,s) from time s to k > s, as follows:

Φ(k,s) =W (k)W (k−1) · · ·W (s+1)W (s) for 0≤ s < k,

where Φ(k,k) =W (k) for all k. Let [Φ(k,s)]i j denote the (i, j)th entry of the matrix Φ(k,s), and let
1 ∈ RN be the column vector with all entries equal to 1. We next state a result on the convergence
properties of the matrix Φ(k,s). The result can be found in [97] (Corollary 1).

Lemma 12 ([97] Corollary 1). Let Assumptions 11 and 12 hold. Then

(i) limk→∞ Φ(k,s) = 1
N 11T for all s≥ 0.

(ii) The convergence rate of Φ(k,s) is geometric; specifically, we have
∣∣[Φ(k,s)]i j− 1

N

∣∣≤ θβ k−s

for all k ≥ s≥ 0 and for all i and j, where θ = (1− δ

4N2 )
−2 and β = (1− δ

4N2 )
1
Q .

Now, we state some results which will allow us to claim the convergence of the algorithm. These
results involve the average yk of the estimates vk

i , i ∈N, given by

yk =
1
N

N

∑
i=1

vk
i for all k ≥ 0. (4.11)

As we will see, yk will play a key role in establishing the convergence of the iterates produced
by the algorithm in (4.9)–(4.10). One important property of yk is that we have yk = 1

N ∑
N
j=1 xk

j

for all k ≥ 0. Thus, yk not only captures the average belief of the agents in the network but it also
represents the true average information. This property of the true average yk has been shown in [93]
within the proof of Lemma 5.2 for a different setting, and it is given in the following lemma for
sake of clarity.

Lemma 13. Let W (k) be such that ∑
N
j=1[W (k)] ji = 1 for every i and k. Then, yk = 1

N ∑
N
i=1 xk

i for

all k ≥ 0, where yk is defined by (4.11).
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Proof. It suffices to show that for all k ≥ 0,

N

∑
j=1

vk
j =

N

∑
j=1

xk
j. (4.12)

We show this by induction on k. For k = 0 relation (4.12) holds trivially, as we have initialized the
beliefs with v0

j = x0
j for all j. Assuming relation (4.12) holds for k− 1, as the induction step, we

have

N

∑
j=1

vk
j =

N

∑
j=1

(v̂k−1
j + xk

j− xk−1
j )

=
N

∑
j=1

N

∑
i=1

[W (k−1)] jivk−1
i +

N

∑
j=1

(xk
j− xk−1

j )

=
N

∑
i=1

vk−1
i +

N

∑
j=1

(xk
j− xk−1

j ),

where the first equality follows from (4.10), the second inequality is a consequence of the mixing
relationship articulated by (4.8), and the last equality follows from ∑

N
j=1[W (k)] ji = 1 for every i and

k. Furthermore, using the induction hypothesis, we have ∑
N
j=1(x

k
j− xk−1

j ) = ∑
N
j=1 xk

j−∑
N
j=1 vk−1

j ,

thus implying that ∑
N
j=1 vk

j = ∑
N
j=1 xk

j. �

As a consequence of Lemma 13, Assumption 8 and Assumption 10, we have the following result
which will be often used in the sequel.

Corollary 5. Let W (k) satisfy the assumption of Lemma 13. Also, let Assumptions 8 and 10(ii)

hold. Then, there exists a constant C such that

‖Fi(xk
i ,Nyk)‖ ≤C, ‖Fi(xk

i ,Nv̂k
i )‖ ≤C for all i and k ≥ 0.

Proof. By Lemma 13, we have Nyk = ∑
N
i=1 xk

i = x̄k ∈ K̄, where K̄ is compact since each Ki s
compact (Assumption 8). Since each Fi is continuous over Ki× K̄, the first inequality follows. To
show that {Fi(xk

i ,Nv̂k
i )} is bounded, we write

‖Fi(xk
i ,Nv̂k

i )‖ ≤ ‖Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk)‖+‖Fi(xk

i ,Nyk)‖.

Using the Lipschitz property of Fi of Assumption 10, we obtain

‖Fi(xk
i ,Nv̂k

i )‖ ≤ L−iN‖v̂k
i − yk‖+‖Fi(xk

i ,Nyk)‖.
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Let K̂ be the convex hull of the union set ∪iKi. Note that v̂k
i ,y

k ∈ K̂ for all k and that K̂ is compact
(since each Ki is compact). Thus, {‖v̂k

i − yk‖} is bounded. As already established, {Fi(xk
i ,Nyk)} is

also bounded, implying that {Fi(xk
i ,Nv̂k

i )} is bounded as well. �

In the following lemma, we establish some error bounds for the norms ‖yk− v̂k
i ‖ which play

important role in our analysis.

Lemma 14. Let Assumptions 8–12 hold, and let yk be defined by (4.11). Then, we have

‖yk− v̂k
i ‖ ≤ θβ

kM+θNC
k

∑
s=1

β
k−s

αs−1 for all i ∈N and all k ≥ 1,

where v̂k
i is defined in (4.8), θ = (1− δ

4N2 )
−2, β = (1− δ

4N2 )
1
Q , M = ∑

N
j=1 maxx j∈K j ‖x j‖ and C is

as in Corollary 5.

Proof. Using the definitions of vk+1
i and v̂k

i given in Eqs. (4.10) and (4.8), respectively, we have

vk+1
i =

N

∑
j=1

wi j(k)vk
j + xk+1

i − xk
i ,

which through an iterative recursion leads to

vk+1
i =

N

∑
j=1

wi j(k)

(
N

∑
`=1

w j`(k−1)vk−1
` + xk

j− xk−1
j

)
+ xk+1

i − xk
i

=
N

∑
`=1

[Φ(k,k−1)]i`vk−1
` +

N

∑
j=1

[Φ(k,k)]i j

(
xk

j− xk−1
j

)
+ xk+1

i − xk
i

= · · ·

=
N

∑
`=1

[Φ(k,0)]i`v0
` +

k

∑
s=1

(
N

∑
j=1

[Φ(k,s)]i j(xs
j− xs−1

j )

)
+ xk+1

i − xk
i .

The preceding relation can be rewritten as:

vk+1
i − xk+1

i + xk
i =

N

∑
`=1

[Φ(k,0)]i`v0
` +

k

∑
s=1

(
N

∑
j=1

[Φ(k,s)]i j(xs
j− xs−1

j )

)
.
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By the definition of vk+1
i in Eq. (4.10), we have v̂k

i = vk+1
i − xk+1

i + xk
i , through which we get

v̂k
i =

N

∑
`=1

[Φ(k,0)]i`v0
` +

k

∑
s=1

(
N

∑
j=1

[Φ(k,s)]i j(xs
j− xs−1

j )

)
. (4.13)

Now, consider yk which may be written as follows:

yk = yk−1 +(yk− yk−1) = · · ·= y0 +
k

∑
s=1

(ys− ys−1).

By Lemma 13 we have ys = 1
N ∑

N
j=1 xs

j for all s≥ 0, which implies

yk = y0 +
k

∑
s=1

N

∑
j=1

1
N

(
xs

j− xs−1
j

)
=

N

∑
`=1

1
N

v0
` +

k

∑
s=1

N

∑
j=1

1
N

(
xs

j− xs−1
j

)
, (4.14)

where the last equality follows by the definition of y0 (see (4.11)).
From relations (4.13) and (4.14) we have

‖yk− v̂k
i ‖=

∥∥∥∥∥ N

∑
`=1

(
1
N
− [Φ(k,0)]i`

)
v0
` +

k

∑
s=1

N

∑
j=1

(
1
N
− [Φ(k,s)]i j

)(
xs

j− xs−1
j

)∥∥∥∥∥
≤

N

∑
`=1

∣∣∣∣ 1
N
− [Φ(k,0)]i`

∣∣∣∣∥∥v0
`

∥∥+ k

∑
s=1

N

∑
j=1

∣∣∣∣ 1
N
− [Φ(k,s)]i j

∣∣∣∣∥∥∥xs
j− xs−1

j

∥∥∥
≤

N

∑
`=1

β
k∥∥v0

`

∥∥+ k

∑
s=1

N

∑
j=1

β
k−s
∥∥∥xs

j− xs−1
j

∥∥∥ (4.15)

where the last inequality follows from
∣∣ 1

N − [Φ(k,s)]i j
∣∣≤ θβ k−s for all 0≤ s≤ k (cf. Lemma 12).

Now, we estimate ‖xs
i − xs−1

i ‖. From relation (4.9) we see that for any s≥ 1,

‖xs
i − xs−1

i ‖= ‖ΠKi[x
s−1
i −αs−1Fi(xs−1

i ,Nv̂s−1
i )]− xs−1

i ‖
≤ ‖xs−1

i −αs−1Fi(xs−1
i ,Nv̂s−1

i )− xs−1
i ‖

= αs−1‖Fi(xs−1
i ,Nv̂s−1

i )‖
≤Cαs−1, (4.16)

where the first inequality follows by the non-expansive property of projection map, and the last
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inequality follows by Corollary 5. Combining (4.16) and (4.15), we have

‖yk− v̂k
i ‖ ≤ θβ

k
N

∑
`=1
‖v0

`‖+θN
k

∑
s=1

β
k−s

αs−1C ≤ θβ
kM+θNC

k

∑
s=1

β
k−s

αs−1,

where in the last inequality, we use v0
` = x0

` ∈K` and M = ∑
N
`=1 maxx`∈K`

‖x0
`‖, which is finite since

each K` is a compact set (cf. Assumption 8). �

4.2.3 Convergence of Algorithm

In this subsection, under our assumptions, we prove that the sequence produced by the proposed
algorithm does indeed converge to the unique Nash equilibrium, which exists by Proposition 10.
Our next proposition provides the main convergence result for the algorithm. Prior to providing
this result, we state a lemma that will be employed in proving the required result [82, Lemma
3.1(b)].

Lemma 15. [82, Lemma 3.1(b)] Let {ζk} be a non-negative scalar sequence. If ∑
∞
k=0 ζk < ∞ and

0 < β < 1, then ∑
∞
k=0
(
∑

k
s=0 β k−sζs

)
< ∞.

In what follows, we use xk to denote the vector with components xk
i , i = 1, . . . ,N, i.e., xk =

(xk
1, . . . ,x

k
N) and, similarly, we write x∗ for the vector (x∗1, . . . ,x

∗
N).

Proposition 11. Let Assumptions 8–13 hold. Then, the sequence {xk} generated by the method

(4.9)–(4.10) converges to the (unique) solution x∗ of VI(K,φ).

Proof. By Proposition 10, VI(K,φ) has a unique solution x∗ ∈ K. When x∗ solves the variational
inequality problem VI(K,φ), the following relation holds x∗ = ΠKi[x

∗
i −αkFi(x∗i , x̄

∗)] (see [35,
Proposition 1.5.8, p. 83]). From this relation and the non-expansive property of projection operator,
we see that

‖xk+1
i − x∗i ‖2 = ‖ΠKi[x

k
i −αkFi(xk

i ,Nv̂k
i )]− x∗i ‖2

= ‖ΠKi[x
k
i −αkFi(xk

i ,Nv̂k
i )]−ΠKi[x

∗
i −αkFi(x∗i , x̄

∗)]‖2

≤ ‖xk
i − x∗i −αk(Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗))‖2.
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By expanding the last term, we obtain the following expression:

‖xk+1
i − x∗i ‖2 ≤‖xk

i − x∗i ‖2 +α
2
k ‖Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗)‖2︸ ︷︷ ︸
Term1

−2αk (Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i )︸ ︷︷ ︸
Term2

. (4.17)

To estimate Term1, we use the triangle inequality and the identity (a+ b)2 ≤ 2(a2 + b2), which
yields

Term1≤ 2‖Fi(xk
i ,Nv̂k

i )‖2 +2‖Fi(x∗i , x̄
∗)‖2 ≤ C̃ with C̃ = 2C2 +2 max

(xi,x̄)∈Ki×K̄
‖Fi(xi, x̄)‖2,

where C is such that ‖Fi(xk
i ,Nv̂k

i )‖≤C for all i and k (cf. Corollary 5) and max(xi,x̄)∈Ki×K̄ ‖Fi(xi, x̄)‖
is finite by Assumption 8. Next, we consider Term2. By adding and subtracting Fi(xk

i ,Nyk) in
Term2, where yk is defined by (4.11), we have

Term2 =
(

Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk)

)T
(xk

i − x∗i )+
(

Fi(xk
i ,Nyk)−Fi(x∗i , x̄

∗)
)T

(xk
i − x∗i ).

By applying the Cauchy-Schwartz inequality, i.e. aT b ≥ −‖a‖‖b‖, to the first term on the right
hand side of the preceding relation and the Lipschitz continuity of Fi(xi,u) in u (cf. Assumption 10),
we see that

(Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk))T (xk

i − x∗i )≥−‖Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk)‖ · ‖xk

i − x∗i ‖
≥ −L−iN‖v̂k

i − yk‖ · ‖xk
i − x∗i ‖

≥ −2L−iMN‖v̂k
i − yk‖,

where in the last inequality we use xk
i ,x
∗
i ∈ Ki and the compactness of Ki (cf. Assumption 8) and

M ≥maxxi∈Ki ‖xi‖ for all i. Therefore, we have

Term2≥−2L−iMN‖v̂k
i − yk‖+

(
Fi(xk

i ,Nyk)−Fi(x∗i , x̄
∗)
)T

(xk
i − x∗i ).

By substituting the preceding estimates of Term1 and Term2 in (4.17), we obtain

‖xk+1
i − x∗i ‖2 ≤‖xk

i − x∗i ‖2 +C̃α
2
k +4αkL−iMN‖v̂k

i − yk‖

−2αk

(
Fi(xk

i ,Nyk)−Fi(x∗i , x̄
∗)
)T

(xk
i − x∗i ).
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Summing over all agents from i = 1 to i = N, yields

N

∑
i=1
‖xk+1

i − x∗i ‖2 ≤
N

∑
i=1
‖xk

i − x∗i ‖2 +NC̃α
2
k +4αkMN

N

∑
i=1

L−i‖v̂k
i − yk‖

−2αk

N

∑
i=1

(
Fi(xk

i ,Nyk)−Fi(x∗i , x̄
∗)
)T

(xk
i − x∗i ).

Using Nyk = ∑
N
i=1 xk

i (see Lemma 13) and letting x̄k = ∑
N
i=1 xk

i , we have for all k ≥ 0,

‖xk+1− x∗‖2 ≤‖xk− x∗‖2 +NC̃α
2
k +4αkMN

N

∑
i=1

L−i‖v̂k
i − yk‖

−2αk

(
φ(xk)−φ(x∗)

)T
(xk− x∗), (4.18)

where we also use the fact that Fi(xi, x̄) is a coordinate map for the mapping φ(x) = F(x, x̄)

(see (4.6) and (4.7)).
To claim the convergence of xk to x∗, we apply Lemma 9 (for the deterministic sequences) to

relation (4.18). To apply this lemma, since ∑
∞
k=0 α2

k < ∞ by Assumption 13, we only need to prove

∞

∑
k=0

αk‖v̂k
i − yk‖< ∞ for all i ∈N. (4.19)

In view of Lemma 14, we have

‖yk− v̂k
i ‖ ≤ θβ

kM+θNC
k

∑
s=1

β
k−s

αs−1 for all i ∈N and all k ≥ 1,

so it suffices to prove that

∞

∑
k=1

αk

(
k

∑
s=1

β
k−s

αs−1

)
< ∞ and

∞

∑
k=1

αkβ
k < ∞.

Using αk ≤ αs for all k ≥ s (Assumption 13), for the series ∑
∞
k=1 αk

(
∑

k
s=1 β k−sαs−1

)
we have

∞

∑
k=1

αk

(
k

∑
s=1

β
k−s

αs−1

)
=

∞

∑
k=1

(
k

∑
s=1

β
k−s

αkαs−1

)
≤

∞

∑
k=1

(
k

∑
s=1

β
k−s

α
2
s−1

)
.

We now use Lemma 15, from which by letting ζs =α2
s we can see that ∑

∞
k=1 αk

(
∑

k
s=1 β k−sαs−1

)
<
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∞. To establish the convergence of ∑
∞
k=0 αkβ k, we note that αk ≤ α0 (Assumption 13), implying

that ∑
∞
k=0 αkβ k ≤ α0 ∑

∞
k=0 β k < ∞ since 0 < β < 1. Thus, relation (4.19) is valid.

As relation (4.18) satisfies the conditions of (the deterministic case of) Lemma 9, it follows that

{‖xk− x∗‖} converges, (4.20)

∞

∑
k=0

αk(φ(xk)−φ(x∗))T (xk− x∗)< ∞. (4.21)

Since {xk} ⊂ K and K is compact (Assumption 8), {xk} has accumulation points in K. By (4.21)
and ∑

∞
k=0 αk = ∞ it follows that (φ(xk)− φ(x∗))T (xk− x∗)→ 0 along a subsequence, say {xk`}.

This observation, together with the strict monotonicity of φ , implies that {xk`}→ x∗ as `→ ∞. By
relation (4.20), the entire sequence {xk} must converge to x∗. �

4.3 Distributed asynchronous algorithm

In this section, we propose a distributed gossip-based algorithm for computing an equilibrium of
aggregative Nash game (4.2). A description of the algorithm and some preliminary results are
provided in Section 4.3.1. The global convergence of the algorithm is examined in Section 4.3.2,
while constant steplength error bounds are provided in Section 4.3.3.

4.3.1 Outline of algorithm

In the proposed algorithm, agents perform their estimate and iterate updates the same as in the
synchronous algorithm (4.9)–(4.10), but the updates occur asynchronously. As a mechanism for
generating asynchronous updates we employ the gossip model for agent communications [83]. To-
gether with the asynchronous updates, we allow the agents to use uncoordinated stepsize values
by letting each agent choose a stepsize based on its own information-update frequency. To accom-
modate these asynchronous updates and uncoordinated stepsize selections, we model the agent
connectivity structure by an undirected static graph G(N,E), with node i ∈ N being agent i and E

being the set of undirected edges among the agents. When {i, j} ∈ E, the agents i and j can talk to
each other. We let Ni denote the set of neighbors of agent i, i.e., Ni = { j | {i, j} ∈ E}. We use the
following assumption for the graph G(N,E).

Assumption 14. The undirected graph G(N,E) is connected.
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pi j

Figure 4.2: A depiction of a gossip communication.

We use a gossip protocol to model agent communication and exchange of the estimates of the
aggregate x̄. In this model, each agent is assumed to have a local clock which ticks according to a
Poisson process with rate 1. At a tick of its clock, an agent i wakes up and contacts its neighbor
j ∈Ni with probability pi j. The agents’ clocks processes can be equivalently modeled as a single
(virtual) clock which ticks according to a Poisson process with rate N. We assume that only one
agent wakes up at each tick of the global clock, and we let Zk denote kth tick time of the global
Poisson process. We discretize time so that instant k corresponds to the time-slot [Zk−1,Zk). At
each time k, every agent i has its iterate xk

i and estimate vk
i of the average of the current aggregate.

We let Ik denote the agent whose clock ticked at time k and we let Jk be the agent contacted by the
agent Ik, where Jk is a neighbor of agent Ik, i.e., Jk ∈ NIk . At time k, agents Ik and Jk exchange
their estimates vk

Ik and vk
Jk and compute intermediate estimates:

v̂k
i =

vk
Ik + vk

Jk

2
for i ∈ {Ik,Jk}, (4.22)

and update their iterates and estimates of the aggregate average, as follows:

xk+1
i = ΠKi[x

k
i −αk,iFi(xk

i ,Nv̂k
i )]

vk+1
i = v̂k

i + xk+1
i − xk

i

}
for i ∈ {Ik,Jk}, (4.23)

where αk,i is the stepsize for agent i and Fi(xi,y) = ∇xi fi(xi,y). The other agents do nothing, i.e.,

v̂k
i = vk

i , xk+1
i = xk

i , and vk+1
i = vk

i for i 6∈ {Ik,Jk}. (4.24)

As seen from the preceding update relations, the agents perform the same updates as in the syn-
chronous algorithm (4.9)–(4.10), but instead of all agents updating, only two randomly selected
agents update their estimates and iterates, while the other agents do not update.
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We now rewrite the update steps more compactly. To capture the step in (4.22), we define the
weight matrix W (k):

W (k) = I− 1
2
(eIk− eJk)(eIk− eJk)T , (4.25)

where I stands for the identity matrix, ei is N-dimensional vector with ith entry equal to 1, and the
other entries equal to 0. By using W (k) we can rewrite the intermediate estimate update (4.22), as
follows: for all i = 1, . . . ,N,

v̂k
i =

N

∑
j=1

[W (k)]i jvk
j for all k ≥ 1, with v0

i = x0
i , (4.26)

where x0
i ∈ Ki, i = 1, . . . ,N, are initial (random) agent decisions. To rewrite the iterate xk+1

i update
(or no update) compactly for all agents, we let 1{i∈S} denote the indicator of the event {i ∈ S}.
Then, the update relations in (4.23) and (4.24) can be written as:

xk+1
i =

(
ΠKi[x

k
i −αk,iFi(xk

i ,Nv̂k
i )]− xk

i

)
1{i∈{Ik,Jk}}+ xk

i , (4.27)

vk+1
i = v̂k

i + xk+1
i − xk

i , (4.28)

Note that only agents i∈ {Ik,Jk} update since 1{i∈{Ik,Jk}} = 0 when i 6∈ {Ik,Jk} and, hence, xk+1
i =

xk
i and vk+1

i = v̂k
i with v̂k

i = vk
i (by (4.26)).

We allow agents to use uncoordinated stepsizes that are based on the frequency of the agent
updates. Specifically, agent i uses the stepsize αk,i =

1
Γk(i)

, where Γk(i) denotes the number of
updates that agent i has executed up to time k inclusively. These stepsizes are of the order of 1

k in a
long run [87, 90]. To formalize this result, we need to introduce the probabilities of agents updates.
We let pi denote the probability of the event that agent i updates, i.e. {i ∈ {Ik,Jk}}, for which we
have

pi =
1
N

(
1+ ∑

j∈Ni

p ji

)
for all i ∈N,

where p ji > 0 is the probability that agent i is contacted by its neighbor j. The long term estimates
for αk,i that we use in our analysis are given in the following lemma (cf. [90], Lemma 3).

Lemma 16. Let Assumption 14 hold, and let pmin = mini∈N pi and αk,i = 1/Γk(i) for all k and i.

Then, for any q ∈ (0,1/2), there is a large enough k̃ = k̃(q,N) such that almost surely we have for

all k ≥ k̃ and i ∈N,

αk,i ≤
2

kpi
,

∣∣∣∣αk,i−
1

kpi

∣∣∣∣≤ 2
k3/2−q p2

min
.
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Another useful result is provided by [87, Theorem 1], which is stated below in a form suitable
for our setting.

Lemma 17. Let G(N,E) be a graph that satisfies Assumption 14. Let W be an N ×N random

stochastic matrix such that E[W ] is doubly stochastic and E[W ]i j > 0 whenever {i, j} ∈ E. Fur-

thermore, let the diagonal elements of W be positive almost surely. Then, there exists a a scalar

λ < 1 such that

E

[∥∥∥∥(W − 1
N

11TW
)

z
∥∥∥∥2
]
≤ λ‖z‖2 for all z ∈ RN .

The random matrices W (k) in (4.25) are in fact doubly stochastic and thus, W̄ = E[W (k)] is
doubly stochastic. Moreover, it can be easily seen that W̄i j > 0 whenever {i, j} ∈ E. In addi-
tion, W (k) has positive diagonal entries. Hence, Lemma 17 applies to random matrices W (k).
However, since each W (k) is in fact doubly stochastic, we have 1TW (k) = 1T , implying that
W (k)− 1

N 11TW (k) = W (k)− 1
N 11T . Hence, using this observation and Lemma 17, we find that

there exists λ ∈ (0,1) such that for the matrix D(k) =W (k)− 1
N 11T we have

E[‖D(k)z‖2]≤ λ‖z‖2 for all z ∈ RN . (4.29)

By Jensen’s inequality we have |E[X ]| ≤
√
E[X2] for any random variable X (with a finite expec-

tation), which when applied to relation (4.29) yields

E[‖D(k)z‖]≤
√

λ ‖z‖ for all z ∈ RN . (4.30)

4.3.2 Convergence theory

In this section we establish the convergence of the asynchronous algorithm (4.26)–(4.28) with the
agent specific diminishing stepsize of the form αk,i =

1
Γk(i)

. To take account of the history, we
introduce Fk to denote the σ−algebra generated by the entire history up to k. More precisely

Fk = F0∪{Il,Jl;1≤ l ≤ k−1} for all k ≥ 2,

with F1 = F0{x0
i , i ∈N}. Thus, given Fk, the vectors vk

i and xk
i are fully determined. First we state

several result which we will use to claim the convergence of the algorithm, as well as to analyze
the error bounds.

In what follows, we will use a vector-component based analysis. To this end, we introduce [z]`
to denote the `-th component of a vector z ∈ R

n, with ` = 1, . . . ,n. A component-wise update of

107



each vk+1
i in (4.28) is given by: for all i = 1, . . . ,N,

[vk+1
i ]` =

N

∑
j=1

[W (k)]i j[vk
j]`+[xk+1

i − xk
i ]` for `= 1, . . . ,n.

We collect all `th coordinates of the vectors vk
1, . . . ,v

k
N and let vk(`) = ([vk

1]`, . . . , [v
k
N ]`)

T . We sim-
ilarly do for the vectors xk

1, . . . ,x
k
N and let xk(`) = ([xk

1]`, . . . , [x
k
N ]`)

T . Using the vectors vk(`) and
xk(`), we can rewrite the preceding relation as follows:

vk+1(`) =W (k)vk(`)+ζ
k+1(`) with ζ

k+1(`) = xk+1(`)− xk(`) for all `= 1, . . . ,n.
(4.31)

We have the following result for vk+1(`) for any `.

Lemma 18. Let Assumptions 8–10 and Assumption 14 hold. Then, for all `= 1, . . . ,n and k ≥ 0,

‖vk+1(`)− [yk+1]`1‖ ≤ ‖D(k)(vk(`)− [yk]`1)‖+
√

2C max
i

αk,i,

where D(k) =W (k)− 1
N 11T and C is a constant as in Corollary 5.

Proof. We fix an arbitrary coordinate `. By the decision update rule of (4.27), the ith coordinate of
the vector ζ k+1(`) is [ζ k+1(`)]i = [

(
ΠKi[x

k
i −αk,iFi(xk

i ,Nv̂k
i )]− xk

i
)
1{i∈{Ik,Jk}}]`. Since yk+1 is the

average of the vectors vk+1
i , from (4.31) for the `th coordinate of this vector we obtain

[yk+1]` =
1
N

1vk+1(`) =
1
N

(
1TW (k)vk(`)+1T

ζ
k+1(`)

)
,

which together with (4.31) leads us to

vk+1(`)− [yk+1]`1 =

(
W (k)− 1

N
11TW (k)

)
vk(`)+

(
I− 1

N
11T
)

ζ
k+1(`),

where I is the identity matrix. Note that each W (k) is a doubly stochastic matrix i.e., W (k)1= 1 and
1TW (k) = 1T . Thus, 1

N 11TW (k) = 1
N 11T . Furthermore, we have

(
W (k)− 1

N 11T)1 = 0, implying
that (

W (k)− 1
N

11T
)
[yk]`1 = 0.

By combining the preceding two relations, using 1
N 11TW (k) = 1

N 11T , and letting D(k) =W (k)−
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1
N 11T , we obtain

vk+1(`)− [yk+1]`1 = D(k)(vk(`)− [yk]`1)+
(
I− 1

N
11T
)

ζ
k+1(`).

Taking the norm, we obtain

‖vk+1(`)− [yk+1]`1‖ ≤ ‖D(k)(vk(`)− [yk]`1)‖+
∥∥∥∥(I− 1

N
11T
)

ζ
k+1(`)

∥∥∥∥ . (4.32)

We next estimate the last term in (4.32). The matrix I− 1
N 11T is a projection matrix (corresponds

to the projection on the subspace orthogonal to the vector 1), so ‖I− 1
N 11T‖= 1, implying that∥∥∥∥(I− 1

N
11T
)

ζ
k+1(`)

∥∥∥∥≤ ∥∥∥∥I− 1
N

11T
∥∥∥∥ ‖ζ k+1(`)‖= ‖ζ k+1(`)‖. (4.33)

From the definition of ζ k+1(`) in (4.31), we see that

‖ζ k+1(`)‖2 = ∑
i∈{Ik,Jk}

∥∥∥[ΠKi[x
k
i −αk,iFi(xk

i ,Nv̂k
i )]− xk

i

]
`

∥∥∥2
.

Using the non-expansive property of the projection operator and α2
k,i ≤maxi α2

k,i, we have

‖ζ k+1(`)‖2 ≤ ∑
i∈{Ik,Jk}

‖αk,i[Fi(xk
i ,Nv̂k

i )]`‖2 ≤max
i

α
2
k,i ∑

i∈{Ik,Jk}
‖Fi(xk

i ,Nv̂k
i )‖2.

By Corollary 5, ‖Fi(xk
i ,Nv̂k

i )‖ ≤ C for all i,k and some C > 0. This and |{Ik,Jk}| = 2 imply
‖ζ k+1(`)‖2 ≤ 2C2 maxi α2

k,i. By taking square roots we obtain ‖ζ k+1(`)‖ ≤
√

2C maxi αk,i which
when combined with (4.32) and (4.33) yields

‖vk+1(`)− [yk+1]`1‖ ≤ ‖D(k)(vk(`)− [yk]`1)‖+
√

2C max
i

αk,i.

�

Our result involves the average yk of the estimates vk
i , i ∈ N, which will be important in estab-

lishing the convergence of the algorithm.

Lemma 19. Let Assumptions 8–10 and Assumption 14 hold. Let vk
i be given by (4.26) and (4.28),
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respectively, and let yk = 1
N ∑

N
i=1 vk

i . Then, we have

∞

∑
k=1

1
k
‖vk

i − yk‖2 < ∞ a.s. for all i ∈N.

Proof. Using Lemma 16 we find that αk,i ≤ 2
kpmin

almost surely for all k large enough, where
pmin = mini pi. Thus, maxi αk,i ≤ 2

kpmin
, and from Lemma 18, we obtain almost surely for all k

large enough,

‖vk+1(`)− [yk+1]`1‖ ≤ ‖D(k)(vk(`)− [yk]`1)‖+
2
√

2C
kpmin

.

By taking the conditional expectation with respect to Fk, we obtain almost surely for all k large
enough,

E[‖vk+1(`)− [yk+1]`1‖ | Fk]≤ E[‖D(k)(vk(`)− [yk]`1)‖ | Fk]+
2
√

2C
kpmin

. (4.34)

Note that the expectation in the term on the right hand side is taken with respect to the randomness
in the matrix W (k) only. By relation (4.30), we have

E[‖D(k)(vk(`)− [yk]`1)‖ | Fk]≤
√

λ‖vk(`)− [yk]`1‖,

which combined with (4.34) yields almost surely for all k large enough,

E[‖vk+1(`)− [yk+1]`1‖ | Fk]≤
√

λ‖vk(`)− [yk]`1‖+
2
√

2C
kpmin

. (4.35)

By dividing both sides of (4.35) with 1
k and by using 1

k+1 < 1
k we find that almost surely for all

k large enough,

1
k+1

E[‖vk+1(`)− [yk+1]`1‖ | Fk]≤
√

λ

k
‖vk(`)− [yk]`1‖+

2
√

2C
k2 pmin

=
1
k
‖vk(`)− [yk]`1‖−

1−
√

λ

k
‖vk(`)− [yk]`1‖+

2
√

2C
k2 pmin

.

Since λ ∈ (0,1) we have 1−
√

λ > 0. Thus, by the supermartingale convergence of Lemma 9
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(applied with an index-shift), we can conclude that

∞

∑
k=1

1
k
‖vk(`)− [yk]`1‖< ∞ a.s.

Recalling that vk(`) = ([vk
1]`, . . . , [v

k
N ]`)

T , the preceding relation implies that

∞

∑
k=1

1
k

∣∣∣[vk
i ]`− [yk]`

∣∣∣< ∞ for all i ∈N a.s.

The coordinate index ` was arbitrary, so the relation is also true for every coordinate index ` =

1, . . . ,n. In particular, since ‖vk
i − yk‖ ≤ ∑

n
`=1 |[vk

i ]`− [yk]`| we have

∞

∑
k=1

1
k

∥∥∥vk
i − yk

∥∥∥≤ ∞

∑
k=1

1
k

n

∑
`=1
|[vk

i ]`− [yk]`|< ∞ for all i ∈N a.s.

�

For the rest of the paper, we use xk to denote the vector with components xk
i , i = 1, . . . ,N, i.e.,

xk = (xk
1, . . . ,x

k
N) and we write x∗ for the vector (x∗1, . . . ,x

∗
N). We now show the convergence of

the algorithm. We have the following result, where x∗ denotes the unique Nash equilibrium of the
aggregative game in (4.2).

Proposition 12. Let Assumptions 8–10 and Assumption 14 hold. Then, the sequence {xk} gener-

ated by the method (4.26)–(4.28) with the stepsize αk,i =
1

Γk(i)
converges to the (unique) x∗ of the

game almost surely.

Proof. Under strict monotonicity of the mapping and the compactness of K, uniqueness of the
equilibrium follows from Proposition 10. Then, by the definition of xk+1

i we have

‖xk+1
i − x∗i ‖2 =

∥∥∥(ΠKi[x
k
i −αk,iFi(xk

i ,Nv̂k
i )]− xk

i

)
1{i∈{Ik,Jk}}+ xk

i − x∗i
∥∥∥2

.

Using x∗i = ΠKi[x
∗
i −αk,iFi(x∗i , x̄

∗)] and the non-expansive property of the projection operator, we
have for i ∈ {Ik,Jk},

‖xk+1
i − x∗i ‖2 ≤‖xk

i −αk,iFi(xk
i ,Nv̂k

i )− xk
i − x∗i +αk,iFi(x∗i , x̄

∗)‖2

=‖xk
i − x∗i ‖2 +α

2
k,i‖Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗)‖2

−2αk,i(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i ).
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By Lemma 16, for k large enough we have almost surely

αk,i ≤
2

kpi
,

∣∣∣∣αk,i−
1

kpi

∣∣∣∣≤ 2
k3/2−q p2

min
.

Thus, we also have α2
k,i ≤ 4

k2 p2
i
. Writing αk,i =

(
αk,i− 1

kpi

)
+ 1

kpi
and using the preceding relations,

we obtain almost surely for i ∈ {Ik,Jk} and for all k large enough,

‖xk+1
i − x∗i ‖2 = ‖xk

i − x∗i ‖2 +α
2
k,i‖Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗)‖2

−2
(

αk,i−
1

kpi

)
(Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗))T (xk
i − x∗i )

− 2
kpi

(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i )

≤ ‖xk
i − x∗i ‖2 +

4
k2 p2

i
‖Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗)‖2

+
4

k3/2−q p2
min

∣∣∣(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i )
∣∣∣

− 2
kpi

(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i ). (4.36)

By Corollary 5 and Assumption 8 we can see that ‖Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗)‖2 ≤C1 for some scalar

C1, and for all i and k. Similarly, for the term in (4.36) involving the absolute value, we can see
that |(Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗))T (xk
i − x∗i )| ≤C2 for some scalar C2, and for all i and k. Substituting

these estimates in (4.36), we obtain almost surely for all k large enough,

‖xk+1
i − x∗i ‖2 ≤‖xk

i − x∗i ‖2 +
4C1

k2 p2
i
+

4C2

k3/2−q p2
min
− 2

kpi
(Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗))T (xk
i − x∗i ).

(4.37)

For the last term in the preceding relation, by adding and subtracting Fi(xk
i ,Nyk) and using Nyk =
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∑
N
i=1 xk

i = x̄k (cf. Lemma 13), we write

(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i ) =(Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk))T (xk

i − x∗i )

+(Fi(xk
i , x̄

k)−Fi(x∗i , x̄
∗))T (xk

i − x∗i )

≥−‖Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk)‖‖xk

i − x∗i ‖
+(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i )

≥−L−iN‖v̂k
i − yk‖M+(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i )

where we use the Lipschitz property of the mapping Fi (Assumption 10), while M is a constant
such that maxxi,zi∈Ki ‖xi−zi‖ ≤M for all i. The vector v̂k

i is a convex combination of vk
j (cf. (4.26)),

so by the convexity of the norm, we have ‖v̂k
i − yk‖ ≤ ∑

N
j=1[W (k)]i j‖vk

j− yk‖, which yields

(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i )≥−L−iNM
N

∑
j=1

[W (k)]i j‖vk
j− yk‖

+(Fi(xk
i , x̄

k)−Fi(x∗i , x̄
∗))T (xk

i − x∗i ). (4.38)

Finally, by combining relations (4.37) and (4.38) we obtain almost surely for i ∈ {Ik,Jk} and for
all k large enough,

‖xk+1
i − x∗i ‖2 ≤‖xk

i − x∗i ‖2 +
4C1

k2 p2
i
+

4C2

k3/2−q p2
min

+
2

kpi
L−iNM

N

∑
j=1

[W (k)]i j‖vk
j− yk‖

− 2
kpi

(Fi(xk
i , x̄

k)−Fi(x∗i , x̄
∗))T (xk

i − x∗i ).

Since xk+1
i = xk

i when i 6∈ {Ik,Jk}, it follows that ‖xk+1
i − x∗i ‖2 = ‖xk

i − x∗i ‖2 for i 6∈ {Ik,Jk}. We
combine these two cases with the fact that agent i updates with probability pi and, thus obtain
almost surely for all i ∈N and for all k large enough,

E[‖xk+1
i − x∗i ‖2 | Fk]≤‖xk

i − x∗i ‖2 +
4C1

k2 pi
+

4C2 pi

k3/2−q p2
min

+
2
k

L−iNM
N

∑
j=1

[W (k)]i j‖vk
j− yk‖

− 2
k
(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ). (4.39)

Summing relations (4.39) over all i = 1, . . . ,N, using the fact that W (k) is doubly stochastic and
recalling that Fi are coordinate maps for F and F(x, x̄) defines φ (cf. (4.6) and (4.7)), we further
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obtain for all k large enough almost surely

E[‖xk+1− x∗‖2 | Fk]≤‖xk− x∗‖2 +
4NC1

k2 pmin
+

4NC2 pmax

k3/2−q p2
min

+
2
k

L−iNM
N

∑
j=1
‖vk

j− yk‖

− 2
k
(φ(xk)−φ(x∗))T (xk− x∗), (4.40)

where pmin = mini pi and pmax = maxi pi. We now verify that we can apply the supermartingale
convergence result (cf. Lemma 9) to relation (4.40). For q ∈ (0,1/2) we have

∞

∑
k=1

(
4NC1

k2 pmin
+

4NC2 pmax

k3/2−q p2
min

)
< ∞.

Further from Lemma 19 it follows that ∑
∞
k=1 ∑

N
i=1

1
k‖vk

i − yk‖ < ∞ almost surely. Thus, all condi-
tions of Lemma 9 are satisfied (with a time-shift) and we conclude that

{‖xk− x∗‖} converges a.s., (4.41)

∞

∑
k=1

2
k
(φ(x)−φ(x∗))T (xk− x∗)< ∞ a.s. (4.42)

Since {xk}⊂K and K is compact (Assumption 8), it follows that {xk} has an accumulation point in
K. By ∑

∞
k=1

1
k = ∞, relation (4.42) implies that (xk−x∗)T (φ(xk)−φ(x∗))→ 0 along a subsequence

almost surely, say {xk`}. Then, by the strict monotonicity of φ it follows that {xk`}→ x∗ as `→ ∞

almost surely. By (4.41), the entire sequence converges to x∗ almost surely. �

4.3.3 Error bounds for constant stepsize

In this section, we investigate the properties of the algorithm where agents employ a deterministic
constant, albeit uncoordinated, stepsize. More specifically, our interest lies in establishing error
bounds contingent on the deviation of stepsize across agents. Under this setting, the stepsize is
αk,i = αi in the update rule for agents’ decisions in (4.27), which reduces to

xk+1
i =

(
ΠKi[x

k
i −αiFi(xk

i ,Nv̂k
i )]− xk

i

)
1{i∈{Ik,Jk}}+ xk

i ,

where αi is a positive constant stepsize for agent i. It is worth mentioning that the estimate mixing
rule of (4.22) and estimate update rule of (4.28) are invariant under this modification. Also, we
allow agents to independently choose αi, thereby maintaining the complete decentralization feature

114



of the gossip algorithm. We begin by providing an updated estimate for the disagreement among
the agents. Our result parallels the result of Lemma 19.

Lemma 20. Let Assumptions 8–10 and 14 hold. Consider {vk
i }, i = 1, . . . ,N, that are generated

by algorithm in (4.26)–(4.28) with αk,i = αi. Then, for yk = 1
N ∑

N
i=1 vk

i we have

limsup
k→∞

N

∑
i=1

E[‖vk
i − yk‖2]≤ 2nα2

maxC2

(1−
√

λ )2
, limsup

k→∞

N

∑
i=1

E[‖vk
i − yk‖]≤

√
2nNαmaxC

1−
√

λ
, a.s.,

where αmax = maxi{αi}, C is the constant as in Corollary 5, and λ is as given in (4.29).

Proof. We fix an arbitrary index `. By Lemma 18 with αk,i = αi, we have for all k ≥ 0,

‖vk+1(`)− [yk+1]`1‖ ≤ ‖D(k)(vk(`)− [yk]`1)‖+
√

2Cαmax, (4.43)

where D(k) =W (k)− 1
N 11T and αmax = maxi αi. Note that by relation (4.30) we have

E[‖D(k)(vk(`)− [yk]`1)‖] = E

[
E[‖D(k)(vk(`)− [yk]`1)‖ | Fk]

]
≤
√

λ E[‖vk(`)− [yk]`1‖]. (4.44)

Thus, by taking the expectation of booth sides in (4.43) we obtain

E

[
‖vk+1(`)− [yk+1]`1‖

]
≤
√

λE

[
‖vk(`)− [yk]`1‖

]
+
√

2Cαmax for all k ≥ 0,

which by iterative recursion leads to

E

[
‖vk+1(`)− [yk+1]`1‖

]
≤
(√

λ

)k+1
E
[
‖v0(`)− [y0]`1‖

]
+
√

2Cαmax

k

∑
s=0

(
√

λ )s for all k ≥ 0.

Thus, by letting k→ ∞, we obtain the following limiting result

limsup
k→∞

E[‖vk+1(`)− [yk+1]`1‖]≤
√

2Cαmax

1−
√

λ
. (4.45)

By taking the squares of both sides in relation (4.43), we find

‖vk+1(`)− [yk+1]`1‖2 ≤ ‖D(k)(vk(`)− [yk]`1)‖2 +2
√

2Cαmax‖D(k)(vk(`)− [yk]`1)‖+2C2
α

2
max.
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Taking the expectation of both sides in the preceding relation and using estimate (4.44), we obtain

E[‖vk+1(`)− [yk+1]`1‖2]≤ E[‖D(k)(vk(`)− [yk]`1)‖2]+2
√

2Cαmax
√

λE[‖vk(`)− [yk]`1‖]
+2C2

α
2
max

≤ λE[‖vk(`)− [yk]`1‖2]+2
√

2Cαmax
√

λE[‖vk(`)− [yk]`1‖]
+2C2

α
2
max

(4.46)

where the last inequality follows by

E[‖D(k)(vk(`)− [yk]`1)‖2] = E

[
E[‖D(k)(vk(`)− [yk]`1)‖2 | Fk]

]
≤ λ E[‖vk(`)− [yk]`1‖2],

which is a consequence of relation (4.29). Since vk
i and yk are convex combinations of points in

K1, . . . ,KN and each Ki is compact, the sequence {‖vk+1(`)− [yk+1]`1‖} is bounded, implying that
so is the sequence {E[‖vk+1(`)− [yk+1]`1‖]}. Thus, limsupk→∞E[‖vk+1(`)− [yk+1]`1‖2] exists,
and let us denote this limit by S. Letting k→ ∞ in relation (4.46) and using (4.45), we obtain

S≤ λS+

(
2
√

λ

1−
√

λ
+1

)
2C2

α
2
max = λS+

1+
√

λ

1−
√

λ
2C2

α
2
max,

which upon solving for S and recalling the notation yields

limsup
k→∞

E[‖vk+1(`)− [yk+1]`1‖2]≤ 1+
√

λ

(1−λ )(1−
√

λ )
2C2

α
2
max =

1

(1−
√

λ )2
2C2

α
2
max.

The preceding relation is true for any `. Thus, since limsup is invariant under the index-shift, we
have

limsup
k→∞

n

∑
`=1

E[‖vk(`)− [yk]`1‖2]≤
n

∑
`=1

limsup
k→∞

E[‖vk(`)− [yk]`1‖2]≤ 2nC2α2
max

(1−
√

λ )2
,

and by the linearity of the expectation, it follows

limsup
k→∞

E

[
n

∑
`=1
‖vk(`)− [yk]`1‖2

]
≤ 2nC2α2

max

(1−
√

λ )2
.

Recalling that vector vk(`) consists of the `th coordinates of the vectors vk
1, . . . ,v

k
N (i.e., vk(`) =

([vk
1]`, . . . , [v

k
N ]`)

T ), we see that ‖∑
n
`=1 ‖vk(`)− [yk]`1‖2 = ∑

N
i=1 ‖vk− yk‖2. Hence, the preceding
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relation is equivalent to

limsup
k→∞

N

∑
i=1

E[‖vk
i − yk‖2]≤ 2nC2α2

max

(1−
√

λ )2
,

which is the first relation stated in the lemma. In particular, the preceding relation implies that

limsup
k→∞

√
N

∑
i=1

E[‖vk
i − yk‖2]≤

√
2nCαmax

1−
√

λ
. (4.47)

On the other hand, by Holders’ inequality we have

N

∑
i=1

E[‖vk
i − yk‖]≤

√
N

√
N

∑
i=1

E[‖vk
i − yk‖2].

from which by taking the limit as k→ ∞ and using (4.47), we obtain

limsup
k→∞

N

∑
i=1

E[‖vk
i − yk‖]≤

√
2nNCαmax

1−
√

λ
.

�

We now estimate the limiting error of the algorithm under the additional assumption of strong
monotonicity of the mapping φ . For this result, we assume an additional Lipschitz property for the
maps Fi, as given below.

Assumption 15. Each mapping Fi(xi,u) is uniformly Lipschitz continuous in xi over Ki, for every

fixed u ∈ K̄ i.e., for some Li > 0 and for all xi,yi ∈ Ki,

‖Fi(xi,u)−Fi(yi,u)‖ ≤ Li‖xi− yi‖.

We have the following result.

Proposition 13. Let Assumptions 8–10, 14, and 15 hold, and let the mapping φ be strongly mono-

tone over the set K with a constant µ > 0, in the following sense:

(φ(x)−φ(y))T (x− y)≥ µ‖x− y‖2 for all x,y ∈ K.

Consider the sequence {xk} generated by the method (4.26)–(4.28) with αk,i = αi. Suppose that
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the stepsizes αi are such that

0 < 1−2µ pminαmin +2pmax(max
i

Li)(αmax−αmin)< 1, (4.48)

where Li,i = 1, . . . ,N, are Lipshitz constants from Assumption 15, αmax = max
i

αi, αmin = min
i

αi,

pmax = max
i

pi, and pmin = min
i

pi. Then, the following result holds

limsup
k→∞

E[‖xk− x∗‖2]≤
pmaxα2

max

(
2C2N +BC

√
2nN

1−
√

λ

)
µ pminαmin− pmax(maxi Li)(αmax−αmin)

,

where x∗ is the unique solution of VI(K,φ), C is as in Corollary 5, λ is as in (4.29), and B =

(maxi L−i)NM with L−i, i = 1, . . . ,N, being the Lipschitz constants from Assumption 10, and M ≥
maxxi,zi∈Ki ‖xi− zi‖ for all i.

Proof. Since the map is strongly monotone, there is a unique solution x∗ ∈ K to VI(K,φ) (see
Theorem 2.3.3. in [35]). Then, by the definition of xk+1

i we have

‖xk+1
i − x∗i ‖2 = ‖

(
ΠKi[x

k
i −αiFi(xk

i ,Nv̂k
i )]− xk

i

)
1{i∈{Ik,Jk}}+ xk

i − x∗i ‖2.

Using x∗i = ΠKi[x
∗
i −αiFi(x∗i , x̄

∗)] and the non-expansive property of the projection operator, we
have for i ∈ {Ik,Jk},

‖xk+1
i − x∗i ‖2 ≤‖xk

i −αiFi(xk
i ,Nv̂k

i )− xk
i − x∗i +αiFi(x∗i , x̄

∗)‖2

=‖xk
i − x∗i ‖2 +α

2
i ‖Fi(xk

i ,Nv̂k
i )−Fi(x∗i , x̄

∗)‖2

−2αi(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i ). (4.49)

By using (a+b)2 ≤ 2a2 +2b2 and Corollary 5 we can see that

‖Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗)‖2 ≤ 4C2.

We now approximate the inner product term by adding and subtracting Fi(xk
i ,Nyk) and using yk =

∑
N
i=1 xk

i = x̄k (see Lemma 13), to obtain

(Fi(xk
i ,Nv̂k

i )−Fi(x∗i , x̄
∗))T (xk

i − x∗i )≥−|(Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk))T (xk

i − x∗i )|
+(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ).
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By the Lipshitz property of the mapping Fi in Assumption 10, we have

|(Fi(xk
i ,Nv̂k

i )−Fi(xk
i ,Nyk))T (xk

i − x∗i )| ≤ L−iN‖v̂k
i − yk‖‖xk

i − x∗i ‖ ≤ L−iNM‖v̂k
i − yk‖,

where M ≥ maxxi,zi ‖xi− zi‖ for all i, which exists by compactness of each Ki. Upon combining
the preceding estimates with (4.49), we obtain

‖xk+1
i − x∗i ‖2 ≤‖xk

i − x∗i ‖2 +4α
2
i C2 +2αiL−iNM‖v̂k

i − yk‖
−2αi(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ). (4.50)

Now, we work with the last term in (4.50), by letting αmin = mini αi, and by adding and sub-
tracting 2αmin(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ), we can see that

‖xk+1
i − x∗i ‖2 ≤‖xk

i − x∗i ‖2 +4α
2
i C2 +2αiL−iNM‖v̂k

i − yk‖
+2(αi−αmin)|(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i )|

−2αmin(Fi(xk
i , x̄

k)−Fi(x∗i , x̄
∗))T (xk

i − x∗i ). (4.51)

By using the Cauchy-Schwartz inequality and the Lipschitz property of Fi given in Assumption 15,
we obtain

|(Fi(xk
i , x̄

k)−Fi(x∗i , x̄
∗))T (xk

i − x∗i )| ≤ Li‖xk
i − x∗i ‖2. (4.52)

Further, by letting αmax =maxi αi, from (4.51) and (4.52) by collecting the common terms we have
for i ∈ {Ik,Jk},

‖xk+1
i − x∗i ‖2 ≤(1+2Li(αmax−αmin))‖xk

i − x∗i ‖2 +4α
2
i C2 +2αiL−iNM‖v̂k

i − yk‖
−2αmin(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ).

The fact that xk+1
i = xk

i when i 6∈ {Ik,Jk} implies that ‖xk+1
i − x∗i ‖2 = ‖xk

i − x∗i ‖2 for i 6∈ {Ik,Jk}.
Next, we take the expectation in (4.53), whereby we combine the preceding two cases and take
into account that agent i updates with probability pi, and obtain for all i ∈N,

E[‖xk+1
i − x∗i ‖2 | Fk]≤ (1+2piLi(αmax−αmin))‖xk

i − x∗i ‖2 +4piα
2
i C2

+2piαiL−iNME[‖v̂k
i − yk‖ | Fk]−2piαmin(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ).

Since v̂k
i is a convex combination of vk

j, j ∈ N and the norm is a convex function, we have ‖v̂k
i −
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yk‖ ≤ ∑
N
j=1[W (k)]i j‖vk

j − yk‖. Thus, E[‖v̂k
i − yk‖ | Fk] ≤ ∑

N
j=1E[W (k)]i j‖vk

j − yk‖. By using the
preceding relation, mini pi = pmin, pmax = maxi pi, and αi ≤ αmax, we arrive at the following
relation for all i ∈N,

E[‖xk+1
i − x∗i ‖2 | Fk]≤ (1+2pmax max

i
Li(αmax−αmin))‖xk

i − x∗i ‖2 +4pmaxα
2
maxC2

+2pmaxαmaxB
N

∑
j=1

E[W (k)]i j‖vk
j− yk‖−2pminαmin(Fi(xk

i , x̄
k)−Fi(x∗i , x̄

∗))T (xk
i − x∗i ), (4.53)

with B = (maxi L−i)NM.
Summing the relations in (4.53) over all i= 1, . . . ,N, recalling that Fi, i= 1, . . . ,N are coordinate

maps for the map F (see (4.6)), which in turn defines the mapping φ through (4.7), we further
obtain

E[‖xk+1− x∗‖2 | Fk]≤ (1+2pmax max
i

Li(αmax−αmin))‖xk− x∗‖2 +4pmaxα
2
maxC2N

+2pmaxαmaxB
N

∑
i=1

N

∑
j=1

E[W (k)]i j‖vk
j− yk‖−2pminαmin(φ(xk)−φ(x∗))T (xk− x∗),

The matrix E[W (k)] is doubly stochastic, so we have

N

∑
i=1

N

∑
j=1

E[W (k)]i j‖vk
j− yk‖=

N

∑
j=1

N

∑
i=1

E[W (k)]i j‖vk
j− yk‖=

N

∑
j=1
‖vk

j− yk‖.

Using this relation and the strong monotonicity of the mapping φ with a constant µ, gathering the
common terms, and taking the total expectation, we obtain for all k ≥ 0,

E[‖xk+1− x∗‖2]≤ qE[‖xk− x∗‖2]+4pmaxα
2
maxC2N +2pmaxαmaxB

N

∑
j=1

E[‖vk
j− yk‖], (4.54)

where q = 1−2µ pminαmin +2pmax maxi Li(αmax−αmin). Note that by the condition

0 < 1−2µ pminαmin +2pmax max
i

Li(αmax−αmin)< 1

we have 0 < q < 1. We further have {xk} ⊆ K for a compact set K, so the limit superior of
E[‖xk−x∗‖2] exists. Thus, by taking the limit as k→∞ in relation (4.54) and using Lemma 20, we
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obtain

limsup
k→∞

E[‖xk+1− x∗‖2]≤ q limsup
k→∞

E[‖xk− x∗‖2]+4pmaxα
2
maxC2N +2pmaxαmaxB

√
2nNCαmax

1−
√

λ
,

which implies the stated result. �

We have few comments on the result of Proposition 13, as follows. The error bound depends
on the dimension n of the decision variables, the number N of players, the frequency with which
players update their decisions (captioned by pmin and pmax), and the network properties including
the connectivity time bound B and the ability to propagate the information (captured by the value
1−
√

λ ). When the network parameters B and λ , and the players’ update probabilities (pmin and
pmax) do not depend on N, the error bound grows linearly with the number N of players.

As a special case, consider the case when the agents employ an equal stepsize, i.e., αmin =

αmax =α and α satisfies the following condition 0<α < 1
2µ pmin

. Then, the result of Proposition 13
reduces to

limsup
k→∞

E[‖xk− x∗‖2]≤
pmaxα

(
2C2N +BC

√
2nN

1−
√

λ

)
µ pmin

.

As another special case, consider the case when all players have equal probabilities of updating,
i.e., pmin = pmax = p. Then, we have the following result:

limsup
k→∞

E[‖xk− x∗‖2]≤
α2

max

(
2C2N +BC

√
2nN

1−
√

λ

)
µαmin− (maxi Li)(αmax−αmin)

,

When all players have equal probabilities of updating and all use equal stepsizes, i.e., pmin =

pmax = p and αmin = αmax = α, then the condition of Proposition 13 reduces to 0 < α < 1
2µ p , and

the bound further simplifies to:

limsup
k→∞

E[‖xk− x∗‖2]≤ α

µ

(
2C2N +BC

√
2nN

1−
√

λ

)
.

4.4 Extensions

It may have been observed that the proposed developments in the earlier two sections required
that the agent decisions be of the same dimension. In this section, we extend the realm of (4.2)
and generalize the algorithms presented in section 4.2 and section 4.3. To this end, consider the
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following aggregative game

minimize fi(xi,
N

∑
i=1

hi(xi))

subject to xi ∈ Ki, (4.55)

where Ki ⊆ R
ni, hi : Ki→ R

n. The mappings gi and hi are considered to be information private to
player i. Such an extension allows players decisions to have different dimensionality. To recover
the problem articulated by (4.2), we set hi(xi) = xi with Ki ⊆ R

n for all i. We next discuss the
generalization of the proposed distributed algorithms to solve problem (4.55).

4.4.1 Synchronous Algorithm

To make the synchronous algorithm suitable for the generalized problem in (4.55), the mixing step
in (4.8) remains the same, but with a different initial condition. Namely, the mixing in (4.8) is
initiated with

v0
i = hi(x0

i ) for all i = 1, . . . ,N, (4.56)

where x0
i ∈Ki are initial players’ decisions. The iterate update of (4.9) and average estimate update

of (4.10) modify to become:

xk+1
i = ΠKi[x

k
i −αkFi(xk

i ,Nv̂k
i )], (4.57)

vk+1
i = v̂k

i +hi(xk+1
i )−hi(xk

i ), (4.58)

where, αk is the stepsize and the mapping Fi is given as

Fi

(
xi,

N

∑
i=1

hi(xi)

)
= ∇xi fi

(
xi,

N

∑
i=1

hi(xi)

)
, (4.59)

and Nv̂k
i in (4.57) is an estimate for the true value ∑

N
i=1 hi(xi). For the extended synchronous

algorithm in the preceding discussion we have the following result.

Proposition 14. Let Assumptions 8–13 hold for the mapping φ(x) = (φ1(x), . . . ,πN(x))T with co-

ordinates φi(x) = ∇xi fi
(
xi,∑

N
i=1 hi(xi)

)
and x = (xT

1 , . . . ,x
T
N)

T . Then, the sequence {xk} generated

by the method (4.57)–(4.58) converges to the (unique) solution x∗ of the game in (4.55).

Proof. The proof mimics the proof of Proposition 11. �
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4.4.2 Asynchronous Algorithm

The gossip algorithm in section 4.3 can be modified as follows. The estimate mixing in (4.22)
remains unchanged, but the initial condition is replaced with the one given in (4.56). The iterate
update of (4.27) and average estimate update of (4.28) are modified, as follows:

xk+1
i = (ΠKi[x

k
i −αk,iFi(xk

i ,Nv̂k
i )]− xk

i )1{i∈{Ik,Jk}}+ xk
i , (4.60)

vk+1
i = v̂k

i +hi(xk+1
i )−hi(xk

i ), (4.61)

where αk,i is the stepsize for user i and the mapping Fi is as defined in (4.59). The following result
establishes the convergence of the extended asynchronous algorithm.

Proposition 15. Let Assumptions 8–10 and Assumption 14 hold. Then, the sequence {xk} gener-

ated by the method (4.60)–(4.61) with stepsize αk,i =
1

Γk(i)
converges to the (unique) x∗ of the game

almost surely.

Proof. With the initial condition specified by (4.56), the proof parallels the line of argument used
in the proof of Proposition 12. �

4.5 Numerics

In this section, we examine the performance of the proposed algorithms on a class of Nash-Cournot
games. Such games represent an instance of aggregative Nash games and in section 4.5.1, we de-
scribe the player payoffs and strategy sets as well as verify that they satisfy the necessary assump-
tions. In section 4.5.2, we discuss the synchronous setting and present the results arising from
applying our algorithms. In section 4.5.3, we turn our attention to asynchronous regime where we
present our numerical experience of applying the gossip algorithm.

4.5.1 Nash-Cournot Game

We consider a networked Nash-Cournot games which is possibly amongst the best known exam-
ples of an aggregative game. Specifically, the aggregate in such games is the total sales which
is the sum of production over all the players. The market price is set in accord with an inverse
demand function which depends on the aggregate of the network. A formal description of such a
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game over a network is provided in Example 2. Before proceeding to describe our experimental
setup, we show that Nash-Cournot games do indeed satisfy Assumptions 10 and 15, respectively,
under some mild conditions on the cost and price functions. It is worth pointing that we have used
Assumption 15 only for the error bound results for the asynchronous algorithm with a constant
stepsize.

In the sequel, within the context of Example 2, we let xil = (gil,sil) for all l = 1, . . . ,L, xi =

(xi1, . . . ,xiL) and x = (x1, . . . ,xN)
T . Further, we define coordinate maps Fi(xi,u), as follows:

Fi(xi,u) =


Fi1(xi1,u1)

...
FiL(xiL,uL)

 , Fil(xil,ul) =

(
c′il(gil)

−pl(ul)− p′l(ul)sil

)
, (4.62)

where the prime demotes the first derivative. We let F(x,u) = (F1(x1,u)T , . . . ,FN(xN ,u)T )T , and
Ki denote the constraint set on player i decision, xi, as given in Example 2.

We note that the Nash-Cournot game under the consideration satisfies Assumption 8 as long
as the cost functions cil are convex and the price functions pl(ul) are concave for all i and l.
Furthermore, the strict convexity condition of Assumption 9 is satisfied when, for example, all
price functions pl are strictly concave. This can be seen by observing that

(F(x,u)−F(x̃,u))T (x− x̃) =
L

∑
l=1

N

∑
i=1

(c′il(gil)− c′il(g̃il))(gil− g̃il)−
L

∑
l=1

N

∑
i=1

p′l(ul)(sil− s̃il)
2.

Next, we show that the Lipschitzian requirements on the maps Fi of Assumption 10 holds under
some mild assumptions on the cost and price functions in Nash-Cournot games.

Lemma 21. Consider the Nash-Cournot game described in Example 2. Suppose that each pl(ul) is

concave and has Lipschitz continuous derivatives with a constant Ml (over a coordinate projection

of K̄ on the lth coordinate axis). Then, the following relation holds:

‖Fi(xi,u)−Fi(xi,z)‖ ≤
√

2

√√√√ L

∑
l=1

(C2
l +M2

l cap2
il)‖u− z‖ for all u,z ∈ K̄.

Proof. This result follows directly from the definition of the coordinate maps Fil(xil,u) and recall-
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ing that xil = (gil,sil). In particular, for each i, ` we have

‖Fil(xil,ul)−Fil(xil,zl)‖=
√
|c′il(gil)− c′il(gil)|2 + |pl(ul)+ p′l(ul)sil− pl(zl)− p′l(zl)sil|2

=
√
|(pl(ul)− pl(zl))+(p′l(ul)− p′l(zl))sil|2

≤
√

2
√
|pl(ul)− pl(zl)|2 + |p′l(ul)− p′l(zl)|2s2

il,

where the inequality follows from (a+ b)2 ≤ 2(a2 + b2). Since K̄ is compact and each pl has
continuous derivatives, it follows that there exists a constant Cl for every l such that

|p′l(ul)| ≤Cl for all ul with u = (u1, . . . ,uL)T ∈ K̄.

Then, by using concavity of pl , we can see that |pl(ul)− pl(zl)| ≤Cl|ul− zl| implying that

‖Fil(xil,ul)−Fil(xil,zl)‖ ≤
√

2
√

C2
l |ul− zl|2 + |p′l(ul)− p′l(zl)|2s2

il

≤
√

2
√

(C2
l +M2

l s2
il)|ul− zl|,

where the last inequality is obtained by using the Lipschitz property of the derivative p′l(ul). From
the structure of constraints we have sil ≤ capil yielding

‖Fil(xil,ul)−Fil(xil,zl)‖ ≤
√

2
√

C2
l +M2

l cap2
il |ul− zl| for all l.

Further, by using Hölder’s inequality, and recalling that xi = (xi1, . . . ,xiL) and u = (u1, . . . ,uL),
from the preceding relation we obtain

‖Fi(xi,u)−Fi(xi,z)‖=

√√√√ L

∑
l=1
‖Fil(xil,ul)−Fil(xil,zl)‖2 ≤

√
2

√√√√ L

∑
l=1

(C2
l +M2

l cap2
il)‖u− z‖.

�

Lemma 22. Consider the Nash-Cournot game described in Example 2. Suppose that each c′il is

Lipschitz continuous with a constant Lil and |p′l(u)| ≤ p̄l for some scalar p̄l and for all u ∈ K̄.

Then, the following relation holds for all i,

‖Fi(xi,u)−Fi(x̃i,u)‖ ≤

√√√√ L

∑
l=1

(
L2

il + p̄2
l

)
‖xi− x̃i‖ for all xi, x̃i ∈ Ki.
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Proof. First, we note that for each i, l,

‖Fil(xil,ul)−Fil(x̃il,ul)‖=
√
|c′il(gil)− c′il(g̃il)|2 + |p′l(ul)(sil− s̃il)|2

≤
√

L2
il|gil− g̃il|2 + p̄2

l |sil− s̃il|2.

Recalling our notation xil = (gil,sil) and x̃il = (g̃il, s̃il), and using Hölder’s inequality, we find that

‖Fil(xil,ul)−Fil(x̃il,ul)‖ ≤
√

L2
il + p̄2

l ‖xil− x̃il‖.

Further, recalling that xi = (xi1, . . . ,xiL), x̃i = (x̃i1, . . . , x̃iL), and u = (u1, . . . ,uL), the desired result
follows from the preceding relation by using Hölders inequality. �

In our numerical study, we consider a Nash-Cournot game being played over ten locations, i.e.
L= 10, in which all players have the same cost type and the ith player’s optimization problem can
be expressed as

minimize
10

∑
l=1

(cil(gil)− pl(s̄l)sil)

subject to
10

∑
l=1

gil =
10

∑
l=1

sil,

gil,sil ≥ 0, gil ≤ capil, l = 1, . . . ,10, (4.63)

where gil and sil denote player i’s production and sales at location l, respectively, and s̄l denotes
the aggregate of all the players’ decisions (s̄l = ∑

N
i=1 sil) at location l. The function cil(gil) is the

cost for ith player at location l and it has the following form:

cil(gil) = ailgil +bilg2
il,

where ail and bil are scaling parameters for agent i. In our experiments, we draw ail and bil from
a uniform distribution and fix them over the course of the entire simulation. More precisely, for
i = 1, . . . ,N, and l = 1, . . . ,10, we have ail ∼U(2,12) and bil ∼U(2,3), where U(t,τ) denotes the
uniform distribution over an interval [t,τ] with t < τ. The term pl(s̄l) captures the inverse demand
function and takes the following form:

pl(s̄l) = dl− s̄l,
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where dl is a parameter for location l. The parameters dl are also drawn randomly with a uniform
distribution, dl ∼ U(90,100) for all l = 1, . . . ,10. Furthermore, we use capil = 500 for all i =

1, . . . ,N and for all l = 1, . . . ,10. The affine price function gives rise to a strongly monotone map
φ =F(x, x̄), which together with the compactness of the sets Ki, implies that this game has a unique
Nash equilibrium.

4.5.2 Synchronous Algorithm

In this section, we investigate the performance of synchronous algorithm of section 4.2 for the
computation of the equilibrium of aggregative game (4.63). We begin by describing our setting for
the connectivity graph of the network of players, where each player is seen as a node in a graph.
At each iteration k, we generate a symmetric N×N adjacency matrix A such that the underlying
graph is connected. The entries of A are generated by performing the following steps:

(0) Let I denote the set of nodes that have already been generated;

(1) For each newly generated node j, select a node randomly i ∈ I to establish an edge {i, j} and
set [A]i j = [A] ji = 1;

(2) Repeat step 1until I = {1, . . . ,N}.

Given such an adjacency matrix A, we define a doubly stochastic symmetric weight matrix W

such that

[W ]i j =


0 if Ai j = 0
δ if Ai j = 1 and i 6= j

1−δd(i) if i = j,

where d(i) represents the number of players communicating with player i, and

δ =
0.5

maxi{d(i)}
.

Using the adjacency matrix A and the weight matrix W players update their decision and their
estimate of the average using (4.8)–(4.10). The stepsize rule for agent update is as follows:

αk,i =
1
k

for all i = 1, . . . ,N.

The algorithm is initiated at a random starting point, and it is terminated after a fixed number of
iterations, denoted by k̃, for each sample path. We use a set of 50 sample paths for each simulation
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setting, and we report the mean of the sample errors, defined as:

errork̃

max
i∈{1,...,N}

max
l∈{1,...,10}

{
|gk̃

il−g∗il|, |sk̃
il− s∗il|

}
max

i∈{1,...,N}
max

l∈{1,...,10}
{|g∗il|, |s∗il|}

, (4.64)

where g∗il and s∗il are the decisions of agent i at the Nash equilibrium. The Nash equilibrium deci-
sions g∗il and s∗il are computed using a constant steplength gradient projection algorithm assuming
each agent has true information of the aggregate. Note that such an algorithm is guaranteed to
converge under the strict convexity of the players’ costs.

We investigate cases with 20 and 50 players in the network. In Table 4.1 and Table 4.2, we report
the mean terminating error and confidence interval attained for different number k̃ of iterations,
respectively. Some insights that can be drawn from the simulations are provided next:

• Expectedly, as seen in Table 4.1 and Table 4.2, the mean terminating error and width of the
confidence interval decreases with increasing k̃ and increases with network size.

• The impact of the time-varying nature of the connectivity graph is explored by considering
a static complete graph as a basis for comparison. In Table 4.3 and Table 4.4 we report the
mean error and the confidence interval when the network is static. Under this setting, the
agents have access to the true aggregate information throughout the run of the algorithm.
Naturally, the performance of the algorithm on a static complete network is orders of mag-
nitude better than that on a dynamic network. This deterioration in performance may be
interpreted as the price of information from the standpoint of convergence.

4.5.3 Asynchronous Algorithm

We now demonstrate the performance of the asynchronous algorithm of section 4.3. We consider
four instances of connectivity graphs which we describe next and, also, depict these graphs in
Figure 4.3.

• Cycle: Every player has two neighbors;

• Wheel: There is one central player that is connected to every other player;

• Grid: Players on the vertex have two neighbors, players on the edge have three and everyone
else has four neighbors. Each row in the grid consists of five players and there are N/5 rows
where N is the size of the network;
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• Complete graph: Every player has an edge connecting it to every other player.

For every type of connectivity graph, we initiate the algorithm from a random starting point
and terminate it after k̃ iterations. A 95% confidence interval of the mean sample error at the
termination is computed for a sample of size 50, where the sample-path error is defined as in (4.64).
The players’ stepsize rules that we use are:

αk,i =

{
9

Γk(i)
for a diminishing stepsize

αi for a constant stepsize,

where αi is randomly drawn from a uniform distribution, αi ∼U(5e-3,1e-2). We again investigate
cases when there are 20 and 50 players in the network and derive the following insights:

• In Tables 4.5–4.6, we report the mean error and in Tables 4.7–4.8, we report the width of
the confidence interval for various levels of k̃. The results are consistent with our theoretical
findings, and they indicate a decrease in the mean error and the width of the confidence
interval with increasing k̃. As expected, the mean error at the termination increases with
the size of the network. It is worth mentioning the discrepancy in the value of k̃ across
synchronous and asynchronous algorithm. Note that in the asynchronous algorithm, only
two agents are performing updates and thus, for a network of size N, k̃ global iterations
translates to 2k̃/N iterations per agent, approximately.

• On comparing the performance of the synchronous algorithm (cf. Tables 4.1–4.4) to that of
the asynchronous algorithm (cf. Tables 4.5–4.8), we observe that the synchronous algorithm
performs better than its asynchronous counterpart in terms of mean error and the confidence
width at termination. This is expected as in the synchronous setting, the players’ communi-
cate more frequently and the network diffuses information faster than in the asynchronous
setting.

• The nature of the connectivity graph plays an important role in the performance of the syn-
chronous algorithm. However, such an influence in the asynchronous setting is less pro-
nounced.

• In an effort to better understand the impact of connectivity, in Table 4.9, we compare the
number of iterations3 required for the player’s to concur on the aggregate ḡ∗ within a thresh-
old of 1e-3 when the network consists of N = 20 players. We also present a metric of

3The iteration number is the mean for 50 sample rounded to the smallest integer over-estimate.
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connectivity density given by pmin/pmax as well as the square root of the second largest
eigenvalue of the expected weight matrix, i.e.,

√
λ , which in effect determines the rate of

information dissemination in the network. We note that the number of iterations needed to
achieve the threshold error correlates with the value of

√
λ and this prompts us to arrive at the

following conclusion: Having a well-informed up-to-date neighbor is more important than
having a denser connectivity. For instance, a wheel network has a poor connectivity of all
the network type based on the pmin/pmax criterion yet it has superior aggregate convergence
to all but the complete network. In part, this is because the central agent in such a network
updates throughout the course of the algorithm, allowing for good mixing of network wide
information. In contrast, the cycle network though better connected yet cannot ensure good
mixing of information, given that no agent has access to “good information.” Similarly, a
complete network provides each agent with an opportunity to communicate with every other
agent and thus ensures good mixing of information. The grid network falls between the
wheel and the cycle network in terms of availability of well-informed neighbors and thus the
performance.

4.6 Summary and conclusions

This chapter focuses on a class of Nash games in which user interactions are seen through the
aggregate sum of all players’ actions. These agents are a part of network with limited connectiv-
ity which only allows for restricted local communication. We propose two classes of distributed
algorithm, one synchronous and other asynchronous which abides the information exchange re-
striction for computation of equilibrium point. Our distributed synchronous algorithm can also
contend with dynamic graph with varying connectivity. In contrast, our asynchronous algorithm
allows for implementation with distributed architecture. Moreover, we establish error bounds on
the deviation of user’s decision from the equilibrium decision when a constant yet user specific
stepsize is employed in the asynchronous algorithm. Our extension allows the users’ decision to
be an independent space. The contribution of our work can broadly be summarized as: (1) the
development of synchronous and asynchronous distributed algorithm for aggregative games over
graphs; (2) the establishment of the convergence of the algorithm (with agent specific stepsizes)
to an equilibrium point; and (3) extension to more general classes of aggregative games. We also
provide illustrative numerical results that support our theoretical findings.
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Table 4.1: Dynamic network: Mean terminating
error vs network size for various thresholds

N k̃ = 5e3 k̃ = 1e4
20 9.22e-5 3.66e-5
50 8.38e-2 2.65e-3

Table 4.2: Dynamic network: Width of confi-
dence interval of mean error

N k̃ = 5e3 k̃ = 1e4
20 2.147e-4 9.33e-5
50 1.24e-1 2.78e-2

Table 4.3: Static network: Mean terminating er-
ror

N k̃ = 5e3 k̃ = 1e4
20 3.66e-5 3.66e-5
50 6.23e-5 6.23e-5

Table 4.4: Static network: Width of confi-
dence interval of mean error

N k̃ = 5e3 k̃ = 1e4
20 6.99e-9 6.99e-9
50 1.61e-8 1.61e-8

(a) Cycle (b) Wheel (c) Grid (d) Complete graph

Figure 4.3: A depiction of communication networks used in simulations.

Table 4.5: Mean error after k̃ = 5e4 iterations for gossip algorithm

Constant Step Diminishing Step
N Cycle Wheel Grid Complete Cycle Wheel Grid Complete
20 2.29e-3 3.66e-5 3.66e-5 3.66e-5 2.51e-2 1.01e-4 1.93e-3 4.64e-5
50 2.80e-1 6.76e-2 1.76e-1 1.26e-3 1.22 2.33e-2 8.41e-1 3.68e-3

Table 4.6: Mean error after k̃ = 1e5 iterations for gossip algorithm

Constant Step Diminishing Step
N Cycle Wheel Grid Complete Cycle Wheel Grid Complete
20 3.78e-5 3.66e-5 3.66e-5 3.66e-5 3.93e-3 3.65e-5 1.69e-4 3.67e-5
50 1.65e-1 1.09e-3 9.19e-2 6.23e-5 7.63e-1 1.99e-3 4.57e-1 2.83e-4

Table 4.7: Width of confidence interval after k̃ = 5e4 iterations for gossip algorithm

Constant Step Diminishing Step
N Cycle Wheel Grid Complete Cycle Wheel Grid Complete
20 1.87e-4 8.22e-7 5.34e-7 0e0 7.51e-2 4.76e-3 2.08e-2 3.23e-3
50 1.68e-2 6.33e-3 1.89e-2 1.77e-4 5.23e-1 7.23e-2 4.35e-1 2.87e-2

131



Table 4.8: Width of confidence interval after k̃ = 1e5 iterations for gossip algorithm

Constant Step Diminishing Step
N Cycle Wheel Grid Complete Cycle Wheel Grid Complete
20 2.4e-6 4.74e-10 4.74e-10 4.74e-10 4.40e-4 7.23e-7 2.07e-5 1.56e-7
50 1.35e-2 1.33e-4 1.40e-2 1.78e-8 6.91e-2 1.81e-4 4.15e-2 2.22e-5

Table 4.9: Number of iteration for concurrence of player’s aggregate within an error of 1e-3

Network pmin/pmax λ Iterations
Cycle 1 0.9994 48818
Wheel 1/19 0.1622 8324
Grid 5/7 0.3151 17950

Complete 1 1.0888e-08 5842
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Appendix A

Bound on optimal value

Lemma 23. Let Assumption 2 hold. Then, for each ν > 0, we have

0≤ f (x∗ν)− f ∗ ≤ ν

2
(D2−‖x∗ν‖2) where D = max

x∈X
‖x‖.

Proof. Under Assumption 2, both the original problem and the regularized problem have solutions.
Since the regularized problem is strongly convex, the solution x∗ν ∈ X is unique for every ν > 0.
Furthermore, we have

fν(x∗ν)− fν(x)≤ 0 for all x ∈ X .

Letting x = x∗ in the preceding relation, and using fν(x) = f (x)+ ν

2‖x‖2 and f ∗ = f (x∗) we get

f (x∗ν)− f ∗ ≤ ν

2
(
‖x∗‖2−‖x∗ν‖2) .

Since x∗ ∈ X solves the original problem and x∗ν ∈ X , we have 0 ≤ f (x∗ν)− f (x∗). Thus, from
f ∗ = f (x∗), using D = maxx∈X ‖x‖, it follows that 0≤ f (x∗ν)− f ∗ ≤ ν

2

(
‖x∗‖2−‖x∗ν‖2)≤ ν

2 (D
2−

‖x∗ν‖2). �
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