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Abstract

Merging supermassive black hole-black hole (BHBH) binaries produced in galaxy mergers are promising

sources of detectable gravitational waves. If such a merger takes place in a gaseous environment, there is a

possibility of a simultaneous detection of electromagnetic and gravitational radiation, as the stirring, shock

heating and accretion of the gas may produce variability and enhancements in the electromagnetic flux.

This can provide a wealth of opportunities to study gravitational physics, accretion physics, and cosmology.

We investigate this scenario by performing fully general relativistic, (magneto)hydrodynamic simulations of

merging, equal-mass, nonspinning BHBH binaries embedded in gaseous environments. We evolve the metric

using the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation with standard moving puncture gauge

conditions and handle the magnetohydrodynamics via a high-resolution shock-capturing (HRSC) scheme.

In the limit of negligible gas angular momentum, we consider both “binary Bondi accretion” in which the

binary is at rest relative to the ambient gas cloud, as well as “binary Bondi-Hoyle-Lyttleton accretion” in

which the binary moves relative to the gas cloud. The gas cloud is assumed to be homogeneous far from the

binary and governed by a Γ-law equation of state. During the binary inspiral, we find evidence for significant

enhancements in both the accretion rate and luminosity over values for a single black hole of the same mass

as the binary. We also consider disk-like accretion flows with significant gas angular momentum. In this case,

we track the inspiral starting from a binary separation of 10M , where M is the total binary mass. Disks

are allowed to relax in the “early inspiral” epoch to provide quasistationary initial data. We then evolve

the spacetime metric and matter during the “late inspiral and merger” epochs. The later simulations are

designed to track BHBH inspiral following disk-binary decoupling, through merger and ringdown. Finally,

we present results from the first fully general relativistic magnetohydrodynamic (MHD) simulations of an

equal-mass BHBH embedded in a magnetized circumbinary accretion disk. Prior to decoupling, we find that

the competition between the binary tidal torques and the effective viscous torque due to MHD turbulence

depletes the disk interior to the binary orbit but induces a two-stream accretion flow onto the BHs and a

mildly relativistic polar outflow. Following decoupling we find that the accretion rate is reduced, while the

electromagnetic luminosity peaks near merger due to shock heating.
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Chapter 1

Introduction

All bulge galaxies (including the Milky Way) are believed to contain a central supermassive black hole

(SMBH) with a mass M between 104M⊙ and 109M⊙ [1, 2, 3]. It is also believed that galaxy mergers

commonly lead to the formation of a massive black hole binary (BHBH) system in the merged remnants

[4, 5]. In the standard picture, the BHBH binary separation decreases, first through dynamical friction

due to distant stellar encounters, then through gravitational slingshot interactions in which nearby stars

are ejected at velocities comparable to the binary’s orbital velocity, and finally through the emission of

gravitational radiation, leading to coalescence of the binary [6]. These low-frequency gravitational waves

will be detectable by LISA-like instruments and will contain a wealth of information about the inspiral. The

gaseous accretion flow that forms around the binary can be a source of electromagnetic radiation as well.

Following the detection of gravitational waves from a BHBH merger, electromagnetic “afterglow” radiation

can provide confirmation of the coalescence [7, 8, 9, 10, 11, 12, 13]. The timescale during which detectable

“afterglow” radiation rises to its maximum is governed by viscous diffusion of gas close to the remnant due

to turbulent viscosity induced by B-fields. This timescale ranges from several years to hundreds of decades

in the case of supermassive BHBH systems.

There also exists the possibility of detecting electromagnetic “precursor” radiation prior to the merger

and before the maximum gravitational wave emission [14, 15]. If the merger takes place in a hot gas cloud in

which the distant gas is nearly homogeneous and either at rest with respect to the binary (“binary Bondi”

accretion) or moving (“binary Bondi-Hoyle-Lyttleton” accretion), then the luminosity will peak at the end

of the binary inspiral phase immediately prior to the final plunge [16]. At this stage shock heating of the

gas and turbulent magnetic field amplification are strongest. The peak luminosity lasts for δt ∼ M6 hours

prior to merger and then plummets sharply following the coalescence. Here M6 is the binary mass in units of

106M⊙. If, instead, the accretion takes place via a geometrically-thin, optically-thick Keplerian disk around

the binary (“binary Shakura-Sunyaev” accretion), there may be a late-time precursor brightening from tidal

and viscous (or turbulent magnetic) dissipation in the inner disk. Each of these scenarios raises the exciting

possibility of a simultaneous detection of electromagnetic and gravitational waves from a BHBH merger.
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This picture is loosely supported by a number of observed AGNs that may be harboring BHBH binaries.

Very-long baseline interferometry (VLBI) observations of the elliptical galaxy 0402+379 have discovered two

radio sources at a projected separation of only 7 pc. The existence of jets, as well as variability associated

with BH activity, indicate that the system may be a BHBH binary [17, 18, 19]. Another candidate is OJ 287,

a BL Lac object whose light curve shows variability with a period of ∼ 12 yr. It is believed that this may

be a massive BHBH binary around which the smaller BH orbits with a period of 12 yr, penetrating the disk

of the primary and giving rise to the observed variability [20, 21, 22]. It has been proposed that the quasar

SDSS 092712.65+294344 may be either a binary system [23, 24], or a recoiling BH that is the product of

a binary merger [25]. Such suggestions are supported by a systematic shift of 2650 km s−1 in the emission

lines. Another candidate is quasar SDSS J153636.22+044127.0, in which two broad-line emission systems are

observed, separated in velocity by 3500 km s−1. This observation has been interpreted as a BHBH binary

system in which each object has its own emission system [26]. Recently, the first triple AGN system, SDSS

J1027+1749, has been discovered [27]. This galaxy contains three emission-line nuclei corresponding to a

supermassive black hole triple with kpc-scale separations.

Information from a simultaneous detection of electromagnetic and gravitational waves may be useful for

studying fundamental aspects of gravitational physics. For example, in some modified gravity scenarios, the

propagation velocity for gravitons may differ from that of photons [28, 29]. Additionally, the measurement

of the luminosity distance from the gravitational wave signal at an accuracy of 1%− 10%, coupled with the

redshift information from the electromagnetic detection, could serve as a cosmological “standard siren” of

unprecedented accuracy (better than ∼ 1%) [30]. Such detections may also combine accurate measurements

of BH spins and masses obtained from gravitational wave signals with electromagnetic observations to

probe BH accretion physics in great detail [31]. It has even been proposed that simultaneous detections of

electromagnetic and gravitational waves may provide a means of witnessing the birth of a quasar [32].

Several mechanisms for electromagnetic emission from accretion disks around merging BHBH binaries

have been proposed. In the case of equal mass BHBH binaries, the inner edge of the accretion disk is

identified as the radius at which the viscous torque on the gas balances the gravitational torque from binary.

This radius is between 1.5 and 2 times the orbital separation [33, 34, 35, 36] and encompasses a hollow

region in the disk. Late in the inspiral the BHBH binary decouples from the disk and coalesces. For a binary

of mass M ≈ 106M⊙ accreting at 10% of the Eddington rate, the subsequent evolution of this disk, which

is optically thick, gives rise to a source that initially peaks in the UV band and then hardens to extreme

ultraviolet and soft x-ray emission at late times [7, 12, 13]. Additionally, there is a sudden change in the

mass of the binary during the final stage of the merger, as gravitational waves carry away a few percent of
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the mass. The abrupt change in the potential creates waves in the disk which may grow into shocks and

increase the luminosity of the disk in a unique way [10, 11, 37], giving rise to a detectable prompt x-ray

signal. Another possibility is that the merged BH remnant may experience a recoil velocity which can, in

principle, be as high as several thousand km s−1 [38], although it is likely to be much lower (< 200 km/s)

in most galaxy mergers [39]. This recoiling BH may “shake” or penetrate the disk, creating shocks which

could give rise to a transient signal.

Various methods have been used to model plausible sources of electromagnetic emission from BH mergers.

In one approach, the dynamics of the inspiral is ignored, focusing on the effect of BH kicks and/or BH mass

loss on the hydrodynamical flow [40, 37, 9, 41, 42, 8, 11, 10, 43]. In another approach, the behavior

of the gas is modeled by following the motion of collisionless “particle tracers” on geodesics [44]. Other

approaches involve vacuum and/or force-free calculations to investigate the role that magnetic fields may

play in producing detectable electromagnetic emission when the density near the binary at merger is very

low [45, 46]. Only recently have fully relativistic, hydrodynamical simulations of BHBH binary inspiral and

merger in a gaseous environment been performed [16, 47, 48, 49].

Here, we present a study of BHBH binary mergers in the presence of a circumbinary accretion flow.

Modeling such systems requires fully general-relativistic dynamical simulations. The development of stable

algorithms to integrate Einstein’s field equations of general relativity numerically in 3 + 1 dimensions,

such as the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [50, 51] and the generalized harmonic

approach [52, 53, 54], together with the identification of suitable gauge conditions, has enabled several

pioneering simulations that demonstrate how to track the late inspiral, plunge and merger of a BHBH

binary in vacuum [55, 56, 57]. More refined follow-up simulations of these strong-field, late phases, joined

onto analytic, post-Newtonian calculations of the early inspiral epoch [58], are now capable of producing

accurate gravitational waveforms for merging BHBH binaries with companions spanning a range of mass

ratios and spins (see e.g. [59] and references therein).

With the problem of gravitational wave emission from a vacuum BHBH binary inspiral well in hand, it

is now important to turn to the problem of electromagnetic emission from BHBH binary coalescence in an

astrophysically realistic gaseous environment.

When gas accretes onto a SMBH in the center of a galaxy the specific angular momentum of the gas L̃

may, in many cases, be much larger than that of a circular orbit near the horizon, L̃ ∼ 2Mc [60] leading to a

disk-like accretion flow. For this reason, simulations to date have focused on disk-like accretion. However, it

has been argued that for hot flows, in which the gas is near the galaxy virial temperature, the gas is supported

by pressure against free infall and the flow may well be described by the spherical “Bondi” accretion model
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[6]. In this so-called “cooling-flow model of quasar fueling”, intergalactic gas during the early stages of

galaxy formation is accelerated toward the center of dark matter halos and is shock-heated to the virial

temperature. This gas accretes then onto the growing SMBH at nearly the Eddington rate. For a 106M⊙

BH, the gas is expected to have a density n ∼ 10 cm−3 and temperature T ∼ 106 K− 108 K [6, 61].

Classical “Bondi accretion” refers to spherically symmetric, steady-state accretion of an adiabatic gas

onto a stationary star. The gas is assumed to be homogeneous and at rest far from the star and flow

adiabatically with a Γ-law equation of state (EOS). The problem was first studied in Newtonian gravitation

for a point mass by Bondi [62], and later extended to accretion onto a BH in full general-relativity [63, 64, 65].

Accretion onto a star moving with constant velocity through a cloud which is asymptotically uniform and at

rest was first studied qualitatively in Newtonian gravity by Hoyle and Lyttleton [66] and later extended by

Bondi and Hoyle [67]. The general-relativistic version for accretion onto a single BH has been studied via

numerical simulations [68, 69, 70, 71]. We refer to this scenario as the “Bondi-Hoyle-Lyttleton accretion”

(BHL) problem.

We probe the hot flow limit by assuming zero net angular momentum and restricting our attention to

simulations in which the binary is placed in a gas cloud which has constant density and temperature at

infinity. As in the classic Bondi and Bondi-Hoyle-Lyttleton accretion problems, we assume that the mass

of the cloud is small compared to the mass of the binaries. We treat two cases: one in which the gas is

asymptotically at rest (binary Bondi accretion), the other where the gas is moving with constant velocity

with respect to the BHBH center of mass (binary BHL accretion). Bondi and BHL accretion onto single BHs

represent classic problems which are well understood. We seek to use this understanding as a foundation for

tackling the problem of accretion onto a merging BHBH binary. The initial conditions of the gas during the

merger of two supermassive BHs in realistic astrophysical environments is still an open question and subject

to uncertainties in cosmological structure and galaxy formation scenarios, and in our understanding of the

formation history and role of massive BHs in this process. The binary Bondi and BHL problems provide

excellent settings in which to begin a rigorous probe of the binary accretion problem.

We also extend this work by considering disk-like binary accretion as well. Disk accretion onto a BHBH

binary has been studied previously in the Newtonian, geometrically thin-disk limit, both analytically [72,

73, 14, 12, 15, 74] and numerically [8, 10, 11, 36]. We extend this work first by performing fully relativistic

hydrodynamcal simulations in 3+1 dimensions. We restrict our attention to a circumbinary disk residing

in the orbital plane of two nonspinning, equal-mass, binary black holes. The black holes are initially in a

quasistationary, nearly circular orbit and represent a solution to the conformal thin-sandwich (CTS) initial-

value equations (see, e.g. [75, 76, 77] and references therein). The mass of the disk is assumed to be small
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in comparison to the total black hole mass. Initially, we explore the response of the disk to the binary on

a dynamical timescale and thus ignore the secular motion of gas in the disk due to viscosity or turbulent

magnetic fields. We treat the gas as a perfect fluid described by a Γ-law equation of state (EOS) and handle

shocks by high-resolution, shock-capturing (HRSC) techniques. We study the response of the disk to tidal

torques during the early and late inspiral phases, as well as during the merger and post-merger epochs. The

inspiral and merger are followed by solving the BSSN field equations [50, 51] with moving puncture gauge

conditions [57, 56]. We are particularly interested in the evolution of the hollow region in the disk about

the binary [33, 34, 35, 36] and the extent to which gas penetrates the hollow and accretes onto the black

holes. We also estimate, as a perturbation, the electromagnetic emission from the disk that characterizes the

inspiral and merger epochs. Our treatment in this regime is appropriate for describing the epoch following

disk-binary “decoupling,” when the BHBH inspiral timescale is much shorter than the viscous timescale

in the disk, whereby viscosity-induced inflow can be neglected. Our analysis remains valid throughout the

binary merger and ringdown phases, but is no longer adequate to describe the late-time evolution when

viscosity serves to drive gas into the hollow and accrete onto the merged remnant [7, 12].

In the pre-decoupling phase, the gravitational wave inspiral timescale is long compared to the viscous

timescale, and BHBH inspiral due to gravitational radiation can be ignored. During this phase, a balance is

achieved between binary torques, which add angular momentum to the gas and drive matter outward, and

viscous torques which transport angular momentum outward, allowing gas to migrate inward. The radius at

which these torques balance determines the inner edge of the circumbinary accretion disk [7] for equal mass

BHBH binaries. While Newtonian analytic calculations have been carried out to determine equilibrium

solutions [33, 74, 78, 79], they are limited by their simplified treatment of binary torques, viscosity, and

restriction to thin disks and unequal mass ratios. A realistic treatment of the problem requires a fully

general-relativistic magnetohydrodynamic (GRMHD) simulation in 3D, in which an effective viscosity arises

naturally through MHD turbulence triggered by the magnetorotational instability (MRI) [80]. Here we

report the first fully GRMHD simulation of a magnetized, circumbinary BHBH accretion disk. The effective

viscosity competes with the tidal torques exerted by the binary, so that a quasi-stationary state is reached

prior to binary-disk decoupling [7, 74]. This state has been simulated both in Newtonian [7] and in Post-

Newtonian [81] gravitation. Typically, the computational domain excludes the region near the BHs and

artificial inner boundary conditions are imposed. Recent Newtonian studies [82] make clear the importance

of imposing the correct boundary conditions on the flow inside the central disk hollow and near the BHs,

further motivating a treatment in full, dynamical GR whereby BH horizons can be modeled reliably.

The basic evolution of the system is as follows: For large binary separations a, the inspiral time due to GW
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emission is much longer than the viscous time (tGW & tvis), so that the disk settles into a quasi-stationary

state. For equal-mass BHs, the binary tidal torques carve out a partial hollow in the disk [33, 7, 36, 78] of

radius ∼ 2a and excite spiral density waves throughout the disk, that dissipate and heat the gas. However,

gas can penetrate the hollow in response to the time-varying tidal torque [36, 83, 78, 81]. At sufficiently small

separations tGW . tvis, and the BHBH decouples from the disk. The disk structure at decoupling crucially

determines its subsequent evolution and the EM emission. GW emission close to merger leads to mass loss

[11, 10] and may induce remnant BH recoil [40], which give rise to further characteristic EM signatures.

Here we simulate the system in two different epochs: (I) The pre-decoupling phase (tGW > tvis) and (II) the

post-decoupling phase (tGW < tvis), including the inspiral and merger of the BHBH. We consider equal-mass,

nonspinning binaries. While the BH mass scales out, we are primarily interested in total (ADM) masses

M & 106M⊙ and low density disks for which the tidally-induced binary inspiral and the disk self-gravity

are negligible. This investigation, though preliminary, previews more detailed GRMHD simulations we plan

to perform in anticipation of future, simultaneous detections of gravitational and electromagnetic radiation

from a merging BHBH-disk system.
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Chapter 2

Metric Evolution Equations

2.1 3+1 decomposition of Einstein’s equations

In the standard formulation of general relativity, space and time are unified into 4-dimensional spacetime.

The curvature of spacetime can be quantified with the 4-dimensional Riemann curvature tensor

(4)Rα
βγδ =

(4)Γα
βδ,γ − (4)Γα

βγ,δ +
(4)Γα

µγ
(4)Γµ

βδ − (4)Γα
µδ

(4)Γµ
βγ , (2.1)

where we have defined the 4-dimensional connection coefficient

(4)Γµ
νλ =

1

2
gµκ(gκν,λ + gκλ,ν − gνλ,κ) . (2.2)

Here gµν is the metric which appears in the spacetime line element

ds2 = gµνdx
µdxν . (2.3)

The influence of matter on the curvature of spacetime, and the motion of matter through curved space-

time, are elegantly described by Einstein’s field equations

(4)Gµν ≡ (4)Rµν − 1

2
gµν(4)R = 8πT µν. (2.4)

where Rµν ≡ Rρ
µρν is the Ricci curvature tensor, R ≡ Rµ

µ is the Ricci curvature scalar, and T µν is the

stress-energy tensor.

While the form of Einstein’s equation given in Eq. (2.4) has aesthetic appeal, we must break the unification

of space and time if we are to recast the equations into an initial value formulation amenable to numerical

simulations. The Arnowitt-Deser-Misner formalism (ADM) provides a suitable starting point [84]. In the

ADM formalism, the spacetime is foliated into a sequence of 3-dimensional spatial hypersurfaces. Initial data

7



may be defined on an initial hypersurface, and evolved to subsequent hypersurfaces according to Einstein’s

equations. The spacetime line element is written as

ds2 = gµνdx
µdxν = −α2dt2 + γij(dx

i + βi)(dxi + βi) , (2.5)

where the lapse function α specifies the amount of proper time which elapses between neighboring hyper-

surfaces, the shift βi describes the relabeling of spatial coordinates from one hypersurface to the next, and

the spatial metric γij describes the spatial geometry of each slice.

The lapse and shift are gauge quantities which reflect the four degrees of coordinate freedom in Einstein’s

Equations. Once these quantities have been specified, the unit normal 4-vector to the spatial hypersurface

is given by nµ = (α−1,−α−1βi). The spatial metric is the projetion of the 4-metric onto the spatial

hypersurface, and is given by

γµν = gµν + nµnν . (2.6)

It is straightforward to compute the Riemann tensor associated with the 3D metric. We simply replace

gµν with γµν in Eq. (2.1) and Eq. (2.2). However, this object only contains information about the intrinsic

curvature of the hypersurface. The remaining information is contained in the extrinsic curvature tensor

Kµν = −1

2
Lnγµν , (2.7)

where Ln is the Lie derivative of along nµ, and can be though of as a “time derivative”.

2.2 Constraint Equations

If we project Einsten’s equation twice along the normal direction, we find

(4)Rµνnµnν +
1

2
(4)R = 8πT µνnµnν ≡ 8πρS , (2.8)

while one normal projection and one spatial projection gives

(4)Rµνγiµnν = 8πT µνγiµnν ≡ 8πSi . (2.9)

Here, ρS ≡ nµnνT
µν and Si ≡ γiµnνT

µν . Using Gauss’ equation, the Codazzi equation, and the Ricci

equation, each of which may be derived by taking spatial and normal projections of the 4D Riemann tensor
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(see [77]), we may rewrite Eqns. (2.8) and (2.9) as

R+K2 −KijK
ij = 16πρS , (2.10)

and

DiK −DjK
j
i = 8πSi . (2.11)

These are known as the Hamiltonian constraint and the momentum constraint, respectively, and they must

be satisfied on each spatial hypersurface.

2.3 Evolution equations

By expanding the Lie derivative in definition of the extrinsic curvature in Eq. (2.7) in terms of covariant

and partial derivatives, we may derive an evolution equation for the spatial metric γij .

∂tγij = −2αKij +Diβj +Djβi (2.12)

We may also combine Einstein’s equations with Gauss’s equation and the Ricci equation to derive an evo-

lution equation for Kij (See [77] for details).

∂tKij = −DiDjα+ α(Rij − 2KikK
k
j +KKij)− 8πα

[

Sij −
1

2
γij(S − ρS)

]

+ LβKij . (2.13)

Here Sij ≡ γα
iγ

β
jTαβ and S ≡ Si

i.

2.4 The Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

formalism

While the ADM formulation successfully recasts Einstein’s equations into the 3+1 form needed for numerical

simulations, it suffers from numerical instabilities. Small deviations from the constraint surfaces grow expo-

nentially, rapidly spoiling the solution. A modification known as the BSSN formulation has been developed

in order to avoid such numerical instabilities. Here we outline the BSSN formulation, following [51, 50]. We

begin by defining the conformal exponent

φ =
1

12
log(det(γij)) . (2.14)
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Next we use φ to define the conformal metric and the conformal, traceless extrinsic curvature

γ̃ij = e−4φγij , (2.15)

Ãij = e−4φ

(

Kij −
1

3
γijK

)

, (2.16)

where K ≡ γijKij is the trace of the extrinsic curvature. With these definitions, Eq. (2.12) splits into two

evolution equations for φ and γ̃ij ,

(∂t − Lβ)γ̃ij = −2αÃij , (2.17)

(∂t − Lβ)φ = −1

6
αK, (2.18)

and Eq. (2.13) splits into two evolution equations for K and Ãij ,

(∂t − Lβ)K = −γijDjDiα+
1

3
αK2 + αÃijÃ

ij + 4πα(ρ+ S),

(∂t − Lβ)Ãij = e−4φ(−DiDjα+ α(Rij − 8πSij))
TF + α(KÃij − 2ÃilÃ

l
j).

The Ricci tensor can be decomposed into a conformal part R̃ij , which depends only on the conformal metric

and it’s derivatives, and it’s remainder Rφ
ij . We also introduce a new evolution variable

Γ̃i ≡ γ̃ijΓ̃i
jk = −γ̃ij

,j . (2.19)

With this defnition, R̃ij can be expressed as

R̃ij = −1

2
γ̃klγ̃ij,kl + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
(

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj

)

. (2.20)

Note that because Γ̃i is an evolution variable, the only second derivatives of γ̃ij appear in the first term of

Eq. (2.20), which is a laplacian. Thus, Eq. (2.17) and Eq. (2.19), taken together, act as an inhomogenous

wave equation for γ̃ij . This feature improves the hyperbolicity of the evolution equations and may be largely

responsible for the stability of the BSSN formulation. An evolution equation for Γ̃i may be derived by taking
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a time derivative of Eq. (2.19) and substituting the momentum constraint in Eq. (2.11),

∂tΓ̃
i = ∂j(2αÃ

ij + Lβ γ̃
ij)

= γ̃jkβi
,jk +

1

3
γ̃ijβk

,kj − Γ̃jβi
,j +

2

3
Γ̃iβj

,j + βjΓ̃i
,j − 2Ãij∂jα

−2α

(

2

3
γ̃ijK,j − 6Ãijφ,j − Γ̃i

jkÃ
jk + 8πγ̃ijSj

)

.

Finally, we rewrite the constrint equations (2.10) and (2.11) in terms of BSSN variables,

0 = H = γ̃ijD̃iD̃je
φ − eφ

8
R̃+

e5φ

12
ÃijÃij +

e5φ

12
K2 + 2πe5φρ, (2.21)

0 = Mi = D̃j(e
6φÃji)− 2

3
e6φD̃iK − 8πe6φSi. (2.22)

2.5 Gauge evolution

In principle, we are free to specify any lapse α and shift βi that we like, reflecting the coordinate freedom

inherent in Einstein’s equations. In practice, however, finding gauge conditions which can avoid numerically

unstable singularities has proven difficult. Fortunately, more sophisticated gauge conditions have been

discovered which can avoid such singularities. We choose the standard moving puncture gauge conditions,

which include the “1+log” slicing condition for the lapse, and the “Gamma-freezing” condition for the shift

[85],

∂0α = −2αK , (2.23)

∂0β
i = (3/4)Bi , (2.24)

∂0B
i = ∂0Γ̃

i − ηBi , (2.25)

where ∂0 ≡ ∂t − βj∂j .

2.6 Treatment of spacetime with helical Killing vector

When simulating BHBH spacetimes, there are many cases of interest for which the binary separation a is

sufficiently large so that the inspiral time scale is much longer than the orbital time scale. This fact can be

exploited by neglecting the change in binary separation and employing a metric that is quasistationary in
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the rotating frame of the binary. This simplification provides an accurate solution for the spacetime without

the computational expense of a full evolution of Einstein’s field equations.

In order to use this method, we must choose a coordinate system in which the metric explicitly reflects

the symmetry of the spacetime. This symmetry, describing a spacetime that is quasistationary in a frame

that rotates with the orbital frequency of the binary Ω, can be constructed by employing a helical Killing

vector,

ξ ≡ ∂t +Ω∂φ. (2.26)

For a spacetime admitting such a Killing vector, we have

Lξgµν = 0 , (2.27)

where L is the Lie derviative, and gµν is the spacetime metric.

Provided we are working in an appropriate coordinate system (i.e. one employing Killing coordinates t

and φ), we may express the metric at any point in spacetime in terms of the metric on an initial t = 0 slice

according to

gµν(t, r, θ, φ)
.
= gµν(0, r, θ, φ− Ωt) (2.28)

where the symbol
.
= denotes that the equality holds only in a particular coordinate system. One can easily

verify that the above equation satisfies Killing’s equation (2.27).

We note that Eq. (2.28) is written in spherical polar coordinates, i.e. {xα} = {t, r, θ, φ}. However,

Cartesian coordinates are more suitable for work in 3D, as coordinate singularities at r = 0 and on the polar

axis are avoided. We therefore transform the spherical components of gµν back to the Cartesian components

using the usual tensor transformation formula.

BHBH evolution employing standard puncture initial data and moving puncture gauge conditions does

not result in a metric that satisfies Eq (2.27) (Puncture initial data does not implement a helical Killing

vector). By contrast, BHBH conformal-thin-sandwich (CTS) initial data (see, e.g. [76]) are specifically

constructed to satisfy this equation: CTS initial data impose the condition that the spacetime in the rotating

frame is stationary (see [77] for discussion and references). This condition is valid, approximately, whenever

the binary companions are sufficiently well separated that the inspiral time scale is much longer than the

orbital time scale. In this quasistationary early inspiral regime we can employ CTS initial data and CTS

lapse and shift functions to evolve the metric via a simple coordinate rotation in lieu of integrating the

Einstein field equations. We can then evolve the disk by integrating the hydrodynamic equations for the
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fluid in this background spacetime.

CTS initial data contains excised interiors. We follow the technique outlined in [86] and fill the excised

region inside the BH interiors with smoothly extrapolated “junk” (i.e., constraint-violating) data. This

treatment is valid because the interior regions are causally disconnected from the exterior spacetime.
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Chapter 3

GRMHD Formalism

3.1 Evolution of large-scale electromagnetic fields

In the ideal MHD limit, in which the fluid is a perfect conductor, Ohm’s law yields the MHD condition

Fµνuν = 0. This condition is equivalent to the statement that the electric field in the fluid’s rest frame

vanishes. The evolution equation for the electromagnetic field can be obtained in conservative form by taking

the dual of Maxwell’s equation F[µν,λ] = 0. One finds

∇ν
∗Fµν =

1

α
√
γ
∂ν (α

√
γ ∗Fµν) = 0 , (3.1)

where Fαβ is the Faraday tensor, and ∗Fαβ = ǫαβµνFµν/2 is its dual. Using the fact that the magnetic

field as measured by a normal observer nα is given by Bi = nµ
∗Fµi, the time component of Eq. (3.1) gives

the no-monopole constraint ∂jB̃
j = 0, where B̃j =

√
γ Bj . The spatial components of Eq. (3.1) give the

magnetic induction equation, which can be written as

∂tB̃
i + ∂j

(

vjB̃i − viB̃j
)

= 0 , (3.2)

where vi ≡ ui/u0.

One of the biggest challenges in solving the MHD equations numerically is ensuring that the no-monopole

constraint (∇ ·B = 0) is satisfied. In general, small errors in the evolution of the induction equation lead to

unphysical violations of this constraint. With uniformly-spaced grids, constrained transport (CT) schemes

are effective in eliminating violations to machine precision [87]. For AMR grids, hyperbolic divergence-

cleaning methods have been employed (see e.g. [88]), but these do not preserve the constraint to machine

precision and have proven to be difficult to use in the presence of black holes.

In this work, we adopt a scheme in which we recast the induction equation as an evolution equation for

the electromagnetic 4-vector potential Aµ = Φnµ+Aµ, with nµAµ = 0. Under this definition, the constraint
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and induction equations become

Bi = ǫijk∂jAk (3.3)

∂tAi = ǫijkv
jBk − ∂i(αΦ− βjAi) (3.4)

The no-monopole constraint is satisfied automatically in this formulation because the divergence of a curl

is always equal to 0. Moreover, this scheme need not be modified in order to work with non-uniform AMR

grids.

When choosing Aµ as our dynamical variable, we intruduce a new gauge degree of freedom. This requires

us to make an EM gauge choice in order to close the system of equations. For this work, we choose the

modified Lorenz gauge,

∇µAµ = ξnµAµ . (3.5)

where we choose ξ = 4/M . Here, we have added a source term to the right-hand-side of the usual Lorenz

gauge equation in order to damp spurious gauge modes. We find that this leads to a significant improvement

in the stability of our evolutions. Rewriting Eq. (3.5) as an evolution equation for Φ, we find,

∂tΦ = βi∂iΦ− α∂iA
i + γ−1/2Φ∂i(

√
γβi)− γ−1/2Ai∂i(α

√
γ)− Φ∂tln(

√
γ)− αξΦ . (3.6)

3.2 Evolution of the MHD field

In the MHD limit, T µν
(em) can be expressed as

T µν
(em) = b2uµuν +

1

2
b2gµν − bµbν , (3.7)

where bµ = Bµ
(u)/

√
4π and where

Bµ
(u) = uν

∗F νµ = −hµ
νB

ν

nνuν
(3.8)

is the magnetic field measured by an observer comoving with the fluid. The stress-energy tensor associated

with the perfect fluid can be expressed as

T µν
(hydro) = ρ0hu

µuν + Pgµν , (3.9)
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where ρ0 is the (baryon) rest-mass density, P is matter pressure, h = 1 + ǫ + P/ρ0 is the specific enthalpy,

and ǫ is the specific internal energy density of the matter. For brevity, we denote

Tαβ
(mhd) = Tαβ

(hydro) + Tαβ
(em) . (3.10)

Thus, we see that the conservation of the total stress-energy tensor can be written as

Tαβ
(mhd);β = ((ρ0h+ b2)uµuν + (P +

1

2
b2)gµν − bµbν);β = 0 (3.11)

Additionally, we have the continuity equation expressing baryon number conservation,

(ρ0u
ν);ν = 0 . (3.12)

Rewriting Eqs. (3.11) and (3.12) in conservative form gives (cf. Section IIC in [89])

∂tρ∗ + ∂j(ρ∗v
j) = 0 , (3.13)

∂tS̃i + ∂j(α
√
γT j

(mhd)i) =
1

2
α
√
γ Tαβ

(mhd)gαβ,i , (3.14)

∂tτ̃ + ∂i(α
2√γT 0i

(mhd) − ρ∗v
i) = s , (3.15)

where the MHD evolution variables are

ρ∗ = α
√
γ ρ0u

0 , (3.16)

S̃i =
√
γ nµT

µ
(mhd)i

= α
√
γ T 0

(mhd)i

= (ρ∗h+ αu0√γ b2)ui − α
√
γ b0bi , (3.17)

τ̃ =
√
γ nµnνT

µν
(mhd) − ρ∗

= α2√γ T 00
(mhd) − ρ∗ , (3.18)

and the source term s is

s = −α
√
γ T µν

(mhd)∇νnµ

= α
√
γ [(T 00

(mhd)β
iβj + 2T 0i

(mhd)β
j + T ij

(mhd))Kij − (T 00
(mhd)β

i + T 0i
(mhd))∂iα] . (3.19)
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Note that these evolution variables are very similar to those in [89].

To complete the system of equations, it remains only to specify the equation of state (EOS) of the fluid.

In this paper, we adopt a Γ-law EOS,

P = (Γ− 1)ρ0ǫ, (3.20)

where Γ is the adiabatic gas constant. We choose a Γ-law EOS because it simplifies some of the calculations,

it is applicable to many cases of interest, and it is a standard choice for demonstrating new computational

techniques in the numerical relativity literature. Also, the analytic solutions we are going to use as code

tests also use this EOS. Nevertheless, all evolution equations derived in this section apply for any equation

of state, and generalization to a more realistic EOS is straightforward. In fact, our code is currently capable

of handling the general class of EOSs of the form P = P (ρ0, ǫ).

3.3 Summary of equations

To reiterate, the system of coupled Einstein-radiation-Maxwell-MHD equations we consider are the BSSN

equations (2.17)–(2.21), the magnetic induction equation (3.4), the magnetic gauge evolution equation (3.6),

and the MHD equations (3.13)–(3.15). The evolution variables are φ, γ̃ij , K, Ãij , Γ̃i, τ̄ , S̄i, A
i, Φ, ρ∗, S̃i

and τ̃ . These variables are not completely independent: the BSSN variables φ, γ̃ij , K, Ãij , and Γ̃i have to

satisfy the Hamiltonian constraint (2.21) and the momentum constraint (2.22).

The total stress-energy tensor T µν is given by

T µν = T µν
(hydro) + T µν

(em) (3.21)

=
(

ρ0h+ b2
)

uµuν +

(

P +
1

2
b2
)

gµν − bµbν . (3.22)

The BSSN matter-energy source terms can be expressed as

ρ = (αu0)2
(

ρ0h+ b2
)

−
(

P +
1

2
b2
)

− (αb0)2 (3.23)

Si = αu0

(

ρ0h+ b2
)

ui − αb0bi (3.24)

Sij =
(

ρ0h+ b2
)

uiuj +

(

P +
1

2
b2
)

γij − bibj . (3.25)
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Chapter 4

Numerical Methods

4.1 Bondi initial data

For each binary-Bondi simulation discussed in this thesis, we consider the gas to be adiabatic (apart from

shocks) with uniform density and pressure at infinity. We take the gas either be asymptotically at rest

(binary Bondi accretion), or moving uniformly (binary BHL accretion). We use the TWOPUNCTURES code [90]

to construct the initial data for the binary BHBH metric. We choose the bare mass and momentum of the

punctures according to [91] in order to ensure that the BHBH binary orbit is initially close to quasicircular.

We restrict our analysis to equal-mass, nonspinning BHs in this thesis. However, we note that upon

merger, the remnant settles down to a spinning black hole with ADM mass Mf = 0.95M . Here Mf denotes

the final ADM mass, while M denotes the initial ADM mass of the binary. We also measure a final spin

parameter Jf/M
2
f = 0.69, in good agreement with the estimate of [92]. For this case, there is no recoil

velocity.

For all of our binary-Bondi runs we use the analytic relativistic Bondi solution for accretion onto a

stationary Schwarzschild BH as initial data. This solution is reviewed in Sec. 5.1. To implement this data,

we treat the binary as a single gravitating object of mass M , where M is the ADM mass of the binary, and

apply the analytic Bondi solution. The fluid pressure is set according to a polytropic EOS, P = KρΓ0 , with

K = P∞/ρΓ0,∞, where ρ0,∞ and P∞ are the rest-mass density and pressure at infinity, respectively.

4.2 Disk initial data

For our disk initial data, we use the equilibrium solution for a stationary disk around a single Kerr BH

derived by Chakrabarti et al. [93] and summarized in [94]. We take this disk as inital data for a binary

BHBH, placing the inner boundary of the disk well outside the BHBH orbital radius. Though no longer

stationary, the initial disk settles down to quasistationary equilibrium as the binary rotates, apart from low

amplitude spiral density waves induced by the time-varying tidal torque. For completeness, we provide a
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brief summary of the construction of disk initial data in Appendix A.

For our fiducial equation of state, Γ = 5/3, the resulting outer disk radius is Rout ≈ 65M and the disk

scale height at Rdisk is H/R = 0.11 (see Table 6.4 for more details). Here H is defined as the height above the

equatorial plane where the pressure falls to 1/e its value on the equatorial plane at the radius of maximum

pressure. For binary BHs, the disk is approximately stationary if Rin ≫ d, where d is the binary separation

and Rin is the inner edge of the disk. Initially, we take Rin/d = 1.5. We find that the disk relaxes to a near

quasistationary state after a time ∼ 4tdisk.

4.3 Evolution of metric and matter

We evolve the BSSN field equations with fourth-order accurate, centered, finite-difference stencils, except on

shift advection terms, where we use fourth-order accurate upwind stencils. We apply Sommerfeld outgoing

wave boundary conditions to all BSSN fields. Our code is embedded in the Cactus parallelization frame-

work [95], and our fourth-order Runge-Kutta time-stepping is managed by the MoL (Method of Lines) thorn,

with a Courant-Friedrichs-Lewy factor set to 0.5 in all BHBH simulations. We use the Carpet [96] infras-

tructure to implement the moving-box AMR. In all AMR simulations presented here, we use second-order

temporal prolongation, coupled with fifth-order spatial prolongation. The apparent horizon of the BH is

computed with the AHFinderDirect Cactus thorn [97].

We write the general-relativistic hydrodynamics equations in conservative form. They are evolved by an

HRSC technique [89] that employs the piecewise parabolic (PPM) reconstruction scheme [98] coupled to the

Harten, Lax, and van Leer (HLL) approximate Riemann solver [99]. The adopted hydrodynamic scheme

is second-order accurate for smooth flows, and first-order accurate when discontinuities (e.g. shocks) arise.

Throughout the evolution, we impose limits on the pressure to prevent spurious heating and negative values

of the internal energy ǫ. Specifically, we require Pmin ≤ P ≤ Pmax inside the horizon, where Pmax = 10KρΓ0

and Pmin = KρΓ0/2. Whenever P exceeds Pmax or drops below Pmin, we reset P to Pmax or Pmin, respectively.

We check that this fix is applied only inside the apparent horizon, which is causally disconnected from the

rest of the grid.

At each timestep, we need to recover the “primitive variables” ρ0, P , and vi from the “conservative”

variables ρ∗, τ̃ , and S̃i. We perform the inversion as specified in Eqs. (57)–(62) of [89], but with a slightly

modified analytic quartic solver from the GNU Scientific Library that outputs only the real roots. We use

the same technique as in [100] to ensure that the values of S̃i and τ̃ yield physically valid primitive variables,

except we reset τ̃ to 10−10τ̃0,max (where τ̃0,max is the maximum value of τ̃ initially) when either S̃i or τ̃ is
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unphysical (i.e., violate one of the inequalities (34) or (35) in [100]). The restrictions usually apply only to

the region near the puncture inside the horizon.

For each of our calculations, we set our outer boundary at 128M and use 8 AMR refinement levels. The

maximum resolution near each BH is δx/M = 0.03125. For our single BH test calculations, we place our

outer boundary at 128M and use 6 AMR refinement levels. For these cases, the highest resolution near the

BH is δx/M = 0.0625.

We model the emission of electromagnetic radiation by treating this radiation loss as a perturbation, and

neglect its influence on the hydrodynamic flow, as well as any deviation from adiabaticity that it induces.

4.4 Diagnostics

4.4.1 Surface density

In order to track the global evolution of disk structure and compare with other disk calculations, it is useful

to define the surface density Σ. Following [101], we define

Σ(R, φ) =

∫

z≥0

ρ0u
t√−gdz , (4.1)

where R ≡
√

x2 + y2 (R will always be the cylindrical radius in this thesis, while r will always be the

spherical polar radius). We also report the angle-averaged surface density 〈Σ(R)〉 where

〈Σ〉 ≡ 1

2π

∫ 2π

0

Σdφ . (4.2)

4.4.2 Flux diagnostics

To derive meaningful flux diagnostics we must identify the conserved currents. Details of this derivation are

given in Appendix C. To summarize, consider a 3D region Σt which lies between two world tubes F and L

on a timeslice t=const. Let F be defined by h(t, x, y, z) = 0, and L be defined by l(t, x, y, z) = 0. In [16],

this region is depicted as the lower shaded region in Fig. 24. For the purposes of this thesis, we let F be

the world tube defined by the apparent horizon(s), and L be the world tube defined by a sphere of constant

coordinate radius centered at the origin. Of course the surfaces could be chosen to take on other shapes as

well.
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4.4.3 Conserved quantities

Now consider a conserved current, jµ which satisfies

∇µj
µ = 0 . (4.3)

Then it can be shown that (see e.g. Appendix A of [16])

q̇ ≡ dq

dt
= −FF + FL , (4.4)

where

q(t) =

∫

Σt

jµd3Πµ (4.5)

=

∫

Σt

jt
√−g d3x , (4.6)

FF = −
∫

F

√

−g′jhdadb , (4.7)

FL = −
∫

L

√

−g′jldadb . (4.8)

Here g′ is the determinant of the metric in the (t, h, a, b) or (t, l, a, b) coordinate systems. In the above

example, FF is the flux of q across the horizon(s), while FL is the flux of q across the outer sphere.

4.4.4 Freedom in coordinate choice

These fluxes are independent of any changes in coordinates that leave the slicing intact. Equivalently, we

may alter the shift without affecting the flux, but the lapse must be kept the same. We can rewrite these

fluxes in any other coordinate system (t, x, y, z) which preserves the same slicing. While a and b can be any

two coordinates on the surface, we label them here as θ and φ for convenience, as this is done in our actual

numerical calculations,

FF = −
∫

F

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(h, θ, φ)

∣

∣

∣

∣

jµ∂µh dθdφ , (4.9)

FL = −
∫

L

√
−g det

∣

∣

∣

∣

∂(x, y, z)

∂(l, θ, φ)

∣

∣

∣

∣

jµ∂µl dθdφ . (4.10)
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4.4.5 Rest-mass conservation

Rest-mass conservation, ∇µ(ρ0u
µ) = 0, corresponds to jµ = ρ0u

µ. If we now define

M0 ≡
∫

Σt

√−gρ0u
0d3x =

∫

Σt

ρ∗d
3x , (4.11)

F (M)
F ≡ −

∫

F

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(h, θ, φ)

∣

∣

∣

∣

ρ0u
µh,µ dθdφ , (4.12)

F (M)
L ≡ −

∫

L

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(l, θ, φ)

∣

∣

∣

∣

ρ0u
µl,µ dθdφ , (4.13)

then we may integrate Eq. (4.4) in time to derive the following rest-mass conservation law

(

M0(t) +

∫ t

ti

dt
(

F (M)
F −F (M)

L

)

)

/M0,i = 1 , (4.14)

where M0,i is the rest mass between the horizons and the surface L at t = 0. Equivalently, we can define

the rest-mass accretion rate

Ṁ0 ≡ −F (M)
F + F (M)

L . (4.15)

4.4.6 E − ΩJ conservation

We employ the helical Killing vector defined in Eq. (2.26) to construct another conserved current,

jµ ≡ ξνT
µν = T µ

t +ΩT µ
φ . (4.16)

We now define the following quantities

E(t) ≡ −
∫

Σt

√−gT t
t d

3x , (4.17)

J(t) ≡
∫

Σt

√−gT t
φ d3x , (4.18)

F (E)
F ≡

∫

F

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(h, θ, φ)

∣

∣

∣

∣

T µ
th,µ dθdφ , (4.19)

F (E)
L ≡

∫

L

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(l, θ, φ)

∣

∣

∣

∣

T µ
tl,µ dθdφ , (4.20)

F (J)
F ≡ −

∫

F

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(h, θ, φ)

∣

∣

∣

∣

T µ
φh,µ dθdφ , (4.21)

F (J)
L ≡ −

∫

L

√−g det

∣

∣

∣

∣

∂(x, y, z)

∂(l, θ, φ)

∣

∣

∣

∣

T µ
φl,µ dθdφ , (4.22)
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and we see that Eqs. (4.4) and (4.16) give

Ė − ΩJ̇ = −
(

F (E)
F − ΩF (J)

F

)

+
(

F (E)
L − ΩF (J)

L

)

, (4.23)

for spacetimes possessing a helical Killing vector. Again, we may integrate in time to derive another conser-

vation law

E(t)− ΩJ(t) +

∫ t

ti

dt
(

F (E)
F − ΩF (J)

F

)

−
∫ t

ti

dt
(

F (E)
L − ΩF (J)

L

)

= E(ti)− ΩJ(ti)

4.4.7 Spiral density wave diagnostics

In our simulations, we use our CTS metric and Eq. (2.28) to ensure that our disk models exhibit quasis-

tationary behavior before we begin the binary inspiral. Such quasistationary configurations are interesting

in their own right, as they lend insight into any accretion flow onto a binary before merger. A key feature

of this flow is the presence of spiral density waves in the inner disk cavity. Following [36], we highlight the

existence of these density waves by calculating the surface density fluctuation δΣ, defined by

δΣ ≡ Σ− 〈Σ〉
〈Σ〉 . (4.24)

We also define the torque density, dT/dR, for comparison with analytic models and other simulations,

dT

dR
=

∫ √
−gT µ

ν∇µφ
νRdzdφ , (4.25)

where φµ ≡ (∂φ)
µ, which gives φµ = (0,−y, x, 0) in Cartesian coordinates. Details of the derivation of

Eq. (4.25) are given in Appendix B.

4.4.8 Luminosity diagnostics

In order to study the electromagnetic emission from our disk evolutions, we estimate the luminosity due

to thermal bremmstrahlung and nonthermal synchrotron emission using the approximations described in

[16]. For synchrotron emission, we assume the presence of a small-scale, turbulent B field whose magnitude

is approximated by setting P = βPM ≡ βB2/(8π). We thus assume that the magnetic pressure is some

fraction 1/β of its equipartition value. Simulations of magnetized accretion flows have demonstrated that

the magnetic fields do not typically reach their full equipartition value [102]. We have chosen β = 10 to

account for this. We also assume that the radiation propagates through an optically thin gas and we neglect

23



the roles of radiation pressure and radiative cooling on the hydrodynamic evolution. While an accurate

estimation of the electromagnetic emission requires a full solution to the radiative transfer problem, this

crude method can provide a reasonable estimate of the magnitude of the emission under suitable conditions.
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Chapter 5

Code Tests

Our HRSC general relativistic hydrodynamic code has been thoroughly tested by passing a robust suite of

tests. These tests include maintaining stable rotating stars in stationary equilibrium, reproducing the exact

Oppenheimer-Snyder solution for collapse to a BH, and reproducing analytic solutions for relativistic shocks,

alfven waves, and spherical Bondi accretion onto isolated BHs [89]. Our code has also been used to simulate

the collapse of very massive, rotating stars to black holes [103]; merging BHBH binaries [86], BHNS binaries

[100, 104], and relativistic hydrodynamic matter in the presence of puncture black holes [105]. Recently, our

code has been generalized to incorporate (optically thick) radiation transport and its feedback on fluids in

dynamical spacetimes [106].

All of the above tests and simulations were performed on grids with uniform spacing. In some of the

simulations, we utilized the multiple-transition fisheye transformation [107] so that a uniform computational

grid spacing corresponds to physical coordinates with spatially varying resolution. Recently, we have modified

our code so that we can use the moving-box AMR infrastructure provided by Carpet [96]. To test our new

code, we have performed shock-tube tests and 3+1 simulations of linear gravitational waves, single stationary

and boosted puncture BHs, puncture BHBH binaries, and rapidly and differentially rotating relativistic stars.

Our AMR code has also been used to perform simulations of BHNS mergers [104].

All of our 3+1 AMR code tests were performed assuming equatorial symmetry (i.e., symmetry about

the z = 0 orbital plane), which we assume in all evolutions presented in this paper. We have also checked

that our AMR code is able to accurately reproduce the analytic Bondi solution, and we have shown good

agreement with the results of [68] for BHL accretion. Results of the latter two tests are summarized in

Sec. 5.2.

5.1 Analytic Relativistic Bondi Solution

Steady state, adiabatic, spherically symmetric accretion onto point masses was first considered by Bondi

for Newtonian gravitation [62]. This work was later extended to handle accretion onto BHs in general
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relativity [63, 64, 108, 109]. A thorough discussion of the relativistic solution may be found in Appendix G

of [65]. Here we briefly summarize this solution. We consider spherically symmetric, steady-state accretion

onto a Schwarzschild BH of mass M . We assume that the BH is at rest in an infinite gas cloud which

has rest-mass density ρ∞, pressure P∞, and fluid 4-velocity ui = 0 at infinity. We assume that the gas is

adiabatic with an adiabatic index Γ. We can solve the equations of relativistic hydrodynamics to derive an

exact solution for the accretion flow.

Key Equations

For simplicity, we will derive the solution in Schwarzschild coordinates, then transform to isotropic coordi-

nates. We begin by recasting the steady-state relativistic continuity and Euler equations into an integral

form, following the derivation outlined in [65],

4πρ0ûr̂
2 ≡ Ṁ = const. (5.1)

h2

(

1− 2M

r̂
+ û2

)

≡ h2
∞ = const. (5.2)

Here, r̂ and û denote the radius and radial fluid 4-velocity in Schwarzschild coordinates.

For adiabatic flow, the Γ-law EOS implies the polytropic relation P = KρΓ0 , with K =const. Thus

P = Kργ0 = (Γ− 1)ρ0
h− 1

Γ
. (5.3)

For an adiabatic gas, the speed of sound is,

a ≡ 1

h1/2

(

dP

dρ0

)1/2

=

(

ΓP

ρ0h

)1/2

. (5.4)

This leads to the following relations between the enthalpy, the speed of sound, and the temperature

a2 = (Γ− 1)
h− 1

h
(5.5)

kT ≡ P

2n
=

mB

2

Γ− 1

Γ
(h− 1) . (5.6)

Any solution satisfying Eqs. (5.1) and (5.2) that maintains the causality constraint a2 < 1 must contain a

transonic radius outside the event horizon [65]. At the transonic radius the radial velocity ûs and the speed
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of sound are given by

û2
s =

M

2R̂s

, (5.7)

a2s =
M/2R̂s

1− 3M/2R̂s

. (5.8)

The transonic radius sets the length scale at which the fluid parameters begin to deviate from their asymptotic

values during inward flow. We derive the transonic radius by plugging Eq. (5.8) into Eq. (G.30) from

Appendix G of [65]. This leads to a polynomial equation which we solve using a numerical root solver. In

the Newtonian limit, in which a∞ ≪ 1 and M/Rs ≪ 1, we recover the expressions,

Rs =











5− 3Γ

4

M

a2∞
1 ≤ Γ < 5/3

3

4

M

a∞
Γ = 5/3 .

(5.9)

Knowing the transonic radius, the accretion rate is given by

Ṁ = 4πρsûsR̂
2
s = 4πλM2ρ∞a−3

∞ , (5.10)

where λ = λ(Γ, a∞) is a parameter of order unity, which in the Newtonian limit is given by

λ =

(

1

2

)(Γ+1)/2(Γ−1)(
5− 3Γ

4

)−(5−3Γ)/2(Γ−1)

. (5.11)

In the relativistic domain, we must solve a cubic equation for to find λ (see [65] for details). Given values for

ρ0,∞ and T∞, we can determine Ṁ and h∞ using Eqs. (5.5), (5.6), and (5.10). We can then use Eqs. (5.1)

and (5.2), along with the EOS, Eq. (5.3), to obtain the complete analytic solution.

Transformation to isotropic coordinates

In order to provide initial data for our simulations, we transform the solution to isotropic coordinates, the

coordinate system adopted for our metric (puncture) initial data. The relation between Schwarzschild radius

r̂ and isotropic radius r outside the horizon is given by

r̂ = r

(

1 +
M

2r

)2

(5.12)

r =
r̂ −M +

√

r̂(r̂ − 2M)

2
. (5.13)
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Since the flow is purely radial, we have

u = −ur = −ûr̂ dr

dr̂
= û

(

dr̂

dr

)−1

=
û

(1−M/2r)(1 +M/2r)
, (5.14)

where ur is the radial component of the 4-velocity. The time component of the 4-velocity, u0, remains

unchanged by the transformation. We find the 3-velocity v = vr = ur/u0 from the normalization condition

uαuα = −1, or

−α2(u0)2 + e4φ(u0)2v2 = −1 (5.15)

The above transformation is needed only when assigning fluid initial data for r > r0. We follow the

method of [105] and adjust the fluid parameters within the radius r0. We choose r0 = 0.6M , which is

outside the horizon, to avoid the initial coordinate singularity of u0 at the horizon. There is no singularity

during the evolution as the adopted 1+log slicing condition is horizon penetrating.

Moving Bondi solutions

We also wish to consider the problem of adiabatic, steady-state accretion onto a BH which moves with

constant velocity V∞ through a gas which is uniform at infinity. This problem was first studied in Newtonian

gravitation in [66] and [67], and is often referred to as “Bondi-Hoyle-Lyttleton (BHL) accretion”. The

problem has also been studied numerically in Newtonian theory by [69, 70], and for BHs in full general

relativity by [68, 71]. For cases in which the gas is not at rest asymptotically, we construct initial data

following the method described in [105], in which we “boost” the stationary Bondi solution by taking the

initial density at any coordinate point to be approximately the stationary isotropic Bondi solution, and

computing the initial velocity field employing a “Lorentz transformation” for the velocities. See [16] for

details of this transformation. This method of computing initial data is only strictly valid asymptotically.

This is because we use the Bowen-York initial data for the moving BH metric, which are not obtained by

boosting the stationary BH metric. However, we find that deviations propagate away quickly, leaving a

stationary flow. In Sec. 5.2 we describe a simulation of Bondi accretion which we perform in a moving

reference frame. In this case, we use the same technique described above to construct hydrodynamic initial

data.
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Figure 5.1: Semi-analytic profiles of density, temperature and fluid 4-velocity for spherical, adiabatic Bondi
accretion onto a Schwarzschild BH. The solid line gives ρ0/ρ0,∞, the dotted line shows T/T∞, and the
dashed line shows the fluid 4-velocity in Schwarzschild coordinates, û. The adiabatic index is given by
Γ = Γ∗ according to Eq. (5.16). The asymptotic temperature is T∞ = 106K. The horizon is labeled Rh.
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Effective adiabatic index

In some cases, we consider a gas cloud which the electrons have nonrelativistic temperatures at infinity,

but achieve relativistic temperatures near the binary. In this case we follow [64] and define an “effective

adiabatic index” Γ∗ according to

Γ∗ =











5/3 kT/mec
2 ≤ 2/3

13/9 kT/mec
2 > 2/3 ,

(5.16)

Thereby replacing the actual continuous transition by a simpler discrete transition. This transition occurs

at a Schwarzschild radius [65]

r∗
M

≈ 9

40

mp

me
≈ 400 . (5.17)

We solve for r∗ using Eqs. (5.1), (5.2), (5.6), and the fact that kT (r∗) = (2/3)mec
2. Using the continuity

of ρ0 and P at r = r∗, we obtain the full equilibrium flow solution. In practice, r∗ is outside the outer

boundary of the computational grid in our simulations, so we still implement a constant Γ. However, taking

into account this transition alters our initial data significantly, since the outer Γ = 5/3 region drives a . u

up to r = r∗, increasing the gas temperature near the black hole when compared to gas in which Γ = 13/9

everywhere. Analytic profiles of density, temperature, and fluid velocity for this equation of state are plotted

in Fig. 5.1.

5.2 Relativistic Bondi test

We test our code’s ability to accurately simulate hydrodynamic accretion onto a moving puncture. This is

particularly important in an AMR code in which matter crosses moving refinement zone boundaries. To test

our code, we simulated spherical Bondi accretion in a frame in which both the BH and gas cloud are moving

with the same velocity. We consider a BH moving with velocity VBH ≡ P x/M = 0.37, initially situated at

the origin. Here P x is the momentum of the BH as measured by a stationary coordinate observer at infinity.

We consider a gas with adiabatic index Γ = 13/9 with asymptotic sound speed a2∞ = 0.022 also moving with

velocity v = VBH at infinity. With this choice the transonic radius is given by areal radius Ra = 45.5M in

the comoving frame. We evolve for a duration t = 713.6M , which is approximately equal to two free-fall

times at the accretion radius. By this time, the BH has moved to a coordinate location of x = 247M .

To assess the agreement with the analytic solution, we compare invariant quantities [105]. Two such

invariants are the fluid rest-mass density, ρ0, and the the rate of change of the fluid rest-mass density, as
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Figure 5.2: Snapshots showing spherical Bondi accretion onto a single BH simulated in a frame in which the
BH and gas move with velocity VBH = 0.37. Contours of constant density ρ0 (solid black lines) and constant
dρ0/dτ (dotted red lines) are shown. Their overlap indicates agreement with the analytic Bondi solution.
The adiabatic index is set to Γ = 13/9 and a∞ = 0.148. The green dashed lines show the boundaries of the
innermost AMR refinement levels. Arrows denote velocity vectors.

measured by a comoving observer, dρ0/dτ . We choose a set of 6 areal radii in the comoving frame. At each

radius, we compute ρ0 and dρ0/dτ analytically. By construction, contours of ρ0 and dρ0/dτ are spherical and

coincide in this frame. However, because ρ0 and dρ0/dτ are both coordinate-independent quantities, their

contours must continue to coincide in any coordinate frame. We use this fact to check that our numerical

simulation, performed in a frame in which the BH and gas are moving, matches the analytic solution (see

Fig. 5.2).
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5.3 Relativistic Bondi-Hoyle-Lyttleton test

We will simulate cases of accretion onto binaries in which the BHBH center of mass moves relative to the

asymptotic gas cloud. Here we verify that we can accurately simulate “BHL” accretion of a single puncture

BH moving at constant velocity through a gas cloud. While there is no analytic solution for this problem, we

compare our findings with results of previous work. We consider a test case in which a single BH puncture

is placed in a cloud with asymptotic sound speed a∞ = 0.1 and Γ = 4/3, with the puncture moving

supersonically with speed V∞ = 0.25 relative to the gas cloud. We perform our simulation in a frame in

which the puncture is at rest and the asymptotic fluid velocity is set to V∞. Figure 5.3 shows a snapshot of

the stationary-state density and velocity profile from our simulation. We measure Ṁ and compare with the

results of [68]. In order to facilitate this comparison, we define a canonical unit of rest-mass accretion flux

to be

Ṁcan =
4πλM2ρ0,∞
(V 2

∞ + a2∞)3/2
, (5.18)

We find Ṁ/Ṁcan = 2.6, which is slightly smaller than the value 3.0 reported in [68]. We have varied our

resolution and determined that our results are convergent to within ∼ 1%. Thus, the most likely sources of

the small discrepancy are the outer boundary condition (we use the stationary spherical Bondi solution with

a Lorentz boost, whereas [68] use constant asymptotic values), and the fact that [68] impose an approximate

inner boundary condition outside the horizon. Other differences between these two codes are that we use

a 3+1 code with AMR, whereas [68] employ an axisymmetric code. Also, our outer boundary is placed at

rmax/M = 820 for this test, whereas [68] place the outer boundary at rmax/M = 140.

5.4 Disk tests

All of our 3+1 AMR code tests were performed assuming equatorial symmetry (i.e., symmetry about the

z = 0 orbital plane), which we assume in all evolutions presented in this paper. We have checked that our

AMR code is able to accurately maintain a stable equilibrium disk around a single Schwarzschild BH, as

demonstrated in Fig. 5.4. For this test, we use the same disk initial data as run A1 in Table 6.4, except

that we set the background metric to be that of a single Schwarzchild BH at the origin. As we describe in

Sec. 4.2, such a disk is an equilibrium solution and is expected to maintain its initial profile.

We have also checked that the conservations laws in Eqs. (4.14) and (4.24) are satisfied in a quasistation-

ary, binary spacetime, as described in Sec. 4.4. In Fig. 5.5, the dashed red curve shows the left-hand side

of Eq. (4.14), with the world tube L chosen to correspond to a sphere centered at the orgin with a radius
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Figure 5.3: Snapshots of density contours for the BHL accretion code test. The adiabatic index is Γ = 4/3,
the sound speed is a∞ = 0.1. Density contours are chosen at ρ0 = ρ0,∞100.25j (j = 1, 2, ....12). Contours of
highest density are very near the BH. Arrows represent velocity vectors.
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Figure 5.4: Surface density profiles at t = 0 (solid line) and t ≈ tdisk (dotted line), where tdisk is the
Keplerian period at the radius of maximum pressure. Overlap indicates that disk accurately maintains
equilibrium configuration over this time scale.
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Figure 5.5: Plots demonstrating the accurate maintenance of conserved quantities. Rest mass M0(t)/M0,i+
∫

dt (F (M)
F −F (M)

L )/M0,i (dashed red line) maintains its initial value accurately when compared to M0/M0,i

(solid red). Similarly, the conserved quantity (E(t)−ΩJ(t)+
∫

dt (F (E)
F −ΩF (J)

F )−
∫

dt (F (E)
L −ΩF (J)

L ))/M0,i

(dashed black line) maintains its initial value accurately when compared to (E(t)−ΩJ(t))/M0,i (solid black
line).

rL = 25M . For comparison, we also plot M0(t)/M0,i with the solid red curve. The data are from run A2,

in which we impose a helical Killing vector to solve for the metric as described in Sec. 2.6, while evolving

the hydrodynamics using Eqs. (3.13), (3.14), and (3.15). We find that Eq. (4.14) is well satisfied, indicating

that our code is conserving rest mass correctly. Similarly, the dashed black line shows the left-hand side of

Eq. (4.24), normalized byM0,i, while the solid black line shows (E(t)− ΩJ(t))/M0,i for comparison. Again,

we see that our code is conserving E − ΩJ correctly.
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Chapter 6

Results

6.1 Binary Bondi-Hoyle-Lyttleton accretion

The transonic radius for Bondi accretion with a realistic asymptotic temperature of 106K is Ra ∼ 106M .

It is beyond the capability of current 3 + 1 GR simulations to evolve the binary from initial separation

d > Ra all the way to merger, while resolving a BH horizon of size ∼ M . The range of length scales is too

large and the total coalescence time too long for such a task. We approach this issue by performing two

types of simulations. We perform simulations of binaries merging in “realistic” gas clouds with asymptotic

temperature T∞ = 106K, following only the last phase of the merger in which the binary separation satisfies

d ≪ Ra. Our focus here is on identifying observable electromagnetic signals generated by the time-dependent

shock heating caused by the binary motion. We also perform “prototype” calculations with artificially high

temperatures and sound speeds in order to study how the accretion flow changes as the binary transitions

between the following regimes during the inspiral:

1. “widely separated regime”, in which d > Ra

2. “moderately separated regime”, in which d ≈ Ra

3. “closely separated regime”, in which d < Ra

We set the asymptotic temperature T∞ ∼ 1011K in the “prototype” calculations to decrease the accretion

radius Ra to a value closer to d so that we can explore all three regimes by combining the results of several

numerical simulations. All of our BHBH simulations are summarized in Table 6.1. Important results are

summarized in Table 6.2 and Table 6.3. The initial BHs in the binary are all equal-mass and nonspinning.

6.1.1 Scaling

For a given asymptotic gas temperature T∞ or sound speed a∞, our solution for binary Bondi flow can

be scaled to arbitrary density n∞ ≡ ρ0,∞/mB (neglecting self-gravity of the gas) and black hole mass M .

Hence a single simulation with an arbitrary n∞ and M suffices to determine the solution for any other n∞
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Table 6.1: Parameters for BHBH simulations

run run type V∞ V∞/a∞ Γ T∞(K) a∞
†Ra/M

††d/M

PA1 prototype 0.0 0.0 13/9 8.73× 1010 0.148 22.7 40, 20, 14, 10
PA2 4/3 9.62× 1010

PA3 5/3 7.44× 1010

PB1 0.1 0.7 13/9 8.73× 1010 0.148 15.6 40, 10
PB2 4/3 9.62× 1010

PB3 5/3 7.44× 1010

PC1 0.4 2.7 13/9 8.73× 1010 0.148 2.74 40, 10
PC2 4/3 9.62× 1010

PC3 5/3 7.44× 1010

RA1 realistic 0.0 0.0 Γ∗ 1× 106 5.53× 10−4 3.27× 106 10
RA2 5/3

†Ra = (M/2)/(a2∞ + V 2
∞)3/2 is the accretion radius for a single BH of mass M/2.

††d = initial binary separation; simulations beginning at 10M proceed to merger.

Table 6.2: Parameters for BHBH simulations

run flow characteristics§

nmax/n∞ Tmax/T∞ Kmax/K∞
†Ṁmax/Ṁa

PA1 631 18.3 1.2 3.7
PA2 1743 14.3 1.5 3.8
PA3 164 30.1 1.6 2.6
PB1 593 18.9 1.2 4.0
PB2 1638 15.2 1.7 3.3
PB3 153 30.8 1.9 2.5
PC1 99.2 28.3 6.0 0.7
PC2 158 32.2 14.0 0.7
PC3 46.6 37.7 6.5 0.8

RA1 1.4× 1010 1.8× 106 4.7 3.9
RA2 3.63× 109 2.7× 106 13.0 3.3

†Ṁac
2 = 4.6× 1040 λ5/3 n1 T

−3/2
6 M2

6 erg s−1 is the accretion rate onto a single BH of
mass M/2 undergoing stationary, spherical Bondi accretion.
§ “max” label refers to the characteristic value at the moment of maximum luminosity.

Table 6.3: Parameters for BHBH simulations

run emission characteristics§§

††Lmax
ff /L35 hνmax

ff
††Lmax

syn /L35 hνmax
syn

RA1 300 150 MeV 3× 108β−1
1 80/(1 + z) n

1/2
1 T

−3/4
6 β

−1/2
1 eV

RA2 400 230 MeV 4× 108β−1
1 100/(1 + z) n

1/2
1 T

−3/4
6 β

−1/2
1 eV

††L35 = 1035 n2
1 T−3

6 M3
6 erg s−1

§§ “max” label refers to the maximum values of the luminosities during the merger and the
characteristic frequencies at these times.
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Figure 6.1: Time evolution of Ṁ and δL for binary Bondi accretion for the prototype case with Γ = 13/9.
Time t/M is measured relative to the time at which the merger occurs. Ṁa and δLa are the accretion
rate and luminosity enhancement over the background for a single isolated black hole with mass equal to
the initial ADM mass of the binary. The left-hand box shows values from “snapshots” in regimes 1 and 2.
The right-hand box shows results for the final inspiral and merger from an initial separation of d = 10M
(regime 3). Solid lines denote numerical data, dashed lines denote extrapolated data. Solid dots correspond
to profile plots highlighted in Fig. 6.4, while open circles show expected values at t = ±∞. The asymptotic
sound speed is set at a∞ = 0.148, for which Ra/M = 22.7.

or M . Thus, for example, the accretion rate is proportional to n∞ and M2 (see, e.g. Eq. (5.10)), while the

4-velocity uα as a function of coordinates xα/M are independent of n∞ and M . If the asymptotic sound

speed is sufficiently low that a∞ ≪ 1, then the solution can also be scaled to arbitrary a∞ or T∞. However,

once a∞ approaches the speed of light and the transonic radius approaches the horizon, scaling with a∞ or

T∞ breaks down. This behavior is already evident from the relativistic Bondi solution for accretion onto a

single BH.

The emergent electromagnetic luminosity and radiation spectrum also exhibit simple scaling. The form

of the scaling relations depend on the temperature and density dependence of the adopted emissivities and

will be described later in Sec. 6.1.3 when we treat realistic asymptotic temperatures and sound speeds.

6.1.2 Prototype Cases

Binary Bondi Accretion

The “prototype” calculations provide valuable qualitative insight into the evolution of the accretion flow as

the binary separation decreases, passing through the three regimes identified above. For the case of “binary

Bondi accretion”, in which the gas at infinity is at rest relative to the binary center of mass, we obtain a
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Figure 6.2: Same as Fig. 6.1, but for Γ = 4/3.

Figure 6.3: Same as Fig. 6.1, but for Γ = 5/3.
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Figure 6.4: Snapshots of rest-mass density ρ0 and temperature T contours in the orbital plane for the
binary Bondi “prototype” case with Γ = 13/9. First and second rows show density contours and velocity
profiles, third and fourth rows show snapshots of temperature T . Density contours are plotted at ρ0 =
ρ0,∞100.25j (j = 1, 2, ...., 12). Temperature contours are plotted at T = 1011+0.125jK (j = 1, 2, ...., 12).
Contours of highest density and temperature are near the BHs. Arrows denote velocity vectors. The AH
interior is marked by a filled black circle.
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Figure 6.5: Same as Fig. 6.4, but for Γ = 5/3.
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Figure 6.6: Snapshots of K/K∞ contours in the orbital plane for the binary Bondi “prototype” case with
Γ = 13/9. Contours are drawn for K/K∞ = 1 + 0.05j (j = 1, 2, ...., 12). Arrows denote velocity vectors.
The AH interior is marked by a filled black circle.
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sequence of “snapshots” for different binary separations. Each snapshot is generated by evolving the binary

long enough to allow the gas to relax to a quasistationary flow, but not long enough for the separation

d to change significantly. This occurs at t ≈ 300M . By sandwiching together snapshots we can trace the

evolution in accretion rate Ṁ and luminosity L as the binary transitions from regime 1 to regime 2. The final

transition from regime 2 to regime 3 is captured by a single simulation which follows the binary through

inspiral and merger. We perform these simulations for cases PA1 (Γ = 13/9), PA2 (Γ = 4/3), and PA3

(Γ = 5/3) in order to study the effect of the EOS on the evolution (see Table 6.1). Numerical results for all

cases are given in Table 6.2 and Table 6.3. The time variations in the accretion rate and total luminosity

for these cases are shown in Figs. 6.1–6.3.

The evolution in Ṁ can be understood as follows. Define Ṁa to be the accretion rate onto a single,

isolated BH of mass M/2. Then it follows that the total accretion rate onto two infinitely separated BHs

of mass M/2 will be given by Ṁ = 2Ṁa. However, late in the inspiral, when the separation satisfies

d ≪ Ra, the binary can be treated as a single gravitating object. From Eq. (5.10) we see the accretion rate

is proportional to M2, so we expect that the accretion rate will approach Ṁ = 4Ṁa. During the final stage

of the inspiral, mass-energy is radiated away in the form of gravitational waves. Thus we expect that the

final post-merger accretion rate will be approximately given by Ṁ = 4Ṁa(1− δM/M)2. In our simulations,

we find δM/M ≈ 0.05, consistent with the values reported in [92]. We observe the expected behavior for

both our PA1 (see Fig. 6.1) and PA2 (see Fig. 6.2) runs. For PA3, the accretion rate never reaches 4Ṁa

before the merger. We attribute this to the fact that for Γ = 5/3, gas is more efficiently heated, allowing

P ∼ ρ0v
2 and a ∼ v, even in the absence of shocks. When shocks do form, the flow is much more easily

disrupted as the kinetic energy of the flow does not dominate the thermal energy, contrary to cases PA1 and

PA2. Thus, some matter is swept away from the vicinity of the binary, causing a lowering of the accretion

rate (see Fig. 6.3). We note, however, that after the merger when the shocks have a chance to dissipate, the

accretion rate does settle to its expected value, taking mass loss into account.

We also plot the luminosity enhancement due to bremsstrahlung and synchrotron emission in Figs. 6.1–

6.3. Because the high-temperature homogeneous background gas in our prototype simulations has an intrin-

sic, nonnegligible emissivity, we subtract it from the total luminosity measured. We define δL ≡ L − Lbg,

where Lbg is the background luminosity which would be present in our computational domain for a homoge-

neous gas cloud of density ρ0,∞ and temperature T∞, with no BH present. We normalize δL by δLa, which

we define as the luminosity above background which would be present for a single, isolated BH of mass M/2.

If we take the limit in which the binary separation d → ∞, we expect that δL/δLa → 2. This limiting value

is indicated by the open circle at t/M = −∞ in Figs. 6.1–6.3. We also calculate the expected value of δL/δLa
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for a single BH of mass M − δM and plot it for reference with an open circle at t/M = +∞. We see that for

each Γ the luminosity enhancement increases by several orders of magnitude over the course of the inspiral.

While the numerical value of this variation is not physically meaningful due to the unrealistic temperatures

used in these “prototype” calculations, this behavior provides strong qualitative evidence of a significant

enhancement in luminosity that can be expected to accompany such an inspiral. Mergers in realistic clouds,

yielding realistic luminosities whose values are physically meaningful, will be treated in Sec. 6.1.3.

Figures 6.4 and 6.5 show snapshots of density and temperature contours for cases PA1 and PA3. We

do not show snapshots for the PA2 case because they look very similar to the PA1 case. We can see that

in the early phases of the inspiral, the accretion flow resembles two independent spherical Bondi flows. As

the separation decreases and becomes comparable to the transonic radius, the orbital velocity of each BH

becomes comparable to the sound speed. Within Ra shocks begin to form, which grow in strength until the

merger. It is the heating from these shocks which contributes to the dramatic increase in the luminosity

observed. Note that the final accretion flow near the BH is not spherically symmetric due to the spin of the

merged BH. The BH spin does not significantly change the final accretion rate predicted by Eq. (5.10), as

this quantity is determined by gas parameters at r ∼ Ra ≫ M , where the effect of the BH spin is negligible.

This result conforms with the findings of [109].

In order to highlight the role that shock heating plays during phases 2 and 3 of the merger, we also

present contours of K/K∞ for our PA1 case (see Fig. 6.6). Here K ≡ P/ρΓ0 and K∞ is the value of K at

infinity. Because K/K∞ = 1 everywhere for adiabatic flow in the absence of shocks, this quantity serves as

a useful tracer for the amount of shock heating which is taking place. The quantity K = K(s), where s is

the gas entropy, and is constant in the absence of shocks; shock heating yields K/K∞ > 1 (see Appendix

B of [104]). As expected, we see that K/K∞ increases steeply near the shock front. For each snapshot,

we compute the maximum value of K/K∞ outside the horizon. We find that Kmax/K∞ initially increases

as the separation decreases and shocks become stronger, as expected. This trend terminates in the very

late stage of the merger, when d ∼ 5M ∼ dISCO [110]. This is likely due to the fact that kinetic energy

dissipated as heat is confined to a small region and is being quickly consumed by the BHs at this stage.

After the merger, the gas relaxes to laminar spherical Bondi flow and K/K∞ returns to unity everywhere.

Binary Bondi-Hoyle-Lyttleton Accretion

In order to investigate additional electromagnetic signatures which may be present due to the motion of the

binary relative to the cloud, we have performed a series of “prototype” simulations of BHL accretion onto

merging binaries. We consider both subsonic cases (V∞/a∞ = 0.7) and supersonic cases (V∞/a∞ = 2.7).
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Figure 6.7: Same as Fig. 6.4, but for subsonic BHL accretion with Γ = 13/9 and V∞ = 0.1. The asymptotic
velocity V∞ is in the +x̂ direction.
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Figure 6.8: Same as Fig. 6.4, but for subsonic BHL accretion with Γ = 5/3 and V∞ = 0.1. The asymptotic
velocity V∞ is in the +x̂ direction.
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Figure 6.9: Time evolution of Ṁ and δL for binary BHL inspirals with Γ = 13/9, a∞ = 0.148, and V∞ = 0.1.
The initial binary separation is d = 10M and the BHs evolve to merger. Ṁa and δLa are the accretion rate
and luminosity enhancement over the background for a single isolated black hole with mass equal to the
initial ADM mass of the binary. Dashed lines in Ṁ plot represent accretion rates onto individual BHs, the
solid line represents the total accretion rate. Dots represent the times highlighted in the last three snapshots
in Fig. 6.7.
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Figure 6.10: Same as Fig. 6.9, but for Γ = 4/3.
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Figure 6.11: Same as Fig. 6.9, but for Γ = 5/3.
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Figure 6.12: Same as Fig. 6.4, but for subsonic BHL accretion with Γ = 13/9 and V∞ = 0.4. The asymptotic
velocity V∞ is in the +x̂ direction.
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Figure 6.13: Same as Fig. 6.4, but for subsonic BHL accretion with Γ = 5/3 and V∞ = 0.4. The asymptotic
velocity V∞ is in the +x̂ direction.
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Figure 6.14: Same as Fig. 6.9, but for Γ = 13/9, V∞ = 0.4.
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Figure 6.15: Same as Fig. 6.9, but for Γ = 4/3, V∞ = 0.4.
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Figure 6.16: Same as Fig. 6.9, but for Γ = 5/3, V∞ = 0.4.
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We again consider Γ = 13/9 (PB1 and PC1), Γ = 4/3 (PB2 and PC2), and Γ = 5/3 (PB3 and PC3) in

order to assess the influence of the EOS on the flow. We perform both wide separation runs (d = 40M) to

produce snapshots that are quasistationary in the corotating frame of the binary, as well as close separation

runs (d = 10M) in which we evolve the binary from inspiral to merger. While the angle between the binary

trajectory and the orbital plane can be chosen arbitrarily, we restrict our attention to cases in which the

binary trajectory lies in the orbital plane.

For our (asymptotically) subsonic cases, the departures from the binary Bondi case are subtle. Figures 6.7

and 6.8 show snapshots of density and velocity field for cases PB1 and PB3. Snapshots for case PB2 are

similar to PB1 and hence are now shown here. At wide separation d = 40M , we see an asymmetry in the

accretion flow for cases PB1 and PB2, as shocks develop around one BH as it moves against the flow of the

gas, but not around the other as it moves in the same direction as the flow. This phenomenon continues

up to the merger. At this separation the orbital Keplerian velocity is Vk ≈ 0.08. Thus, these shocks are

formed when one BH moves supersonically against the flow of the gas and (Vk + V∞)/a & 1. The reason

that this behavior is not seen in case PB3 is that the gas is adiabatically heated more efficiently for Γ = 5/3

as it flows toward the BHs, causing the sound speed of the gas to be greater near each BH. We find that

for Γ = 5/3, (Vk + V∞)/a < 1 near the black hole, preventing any shocks from forming. The post-merger

accretion flow exhibits some departure from spherical symmetry due to BH spin and V∞ 6= 0, but all shocks

dissipate. In Figs. 6.9–6.11, we once again observe an increase in accretion rate and luminosity over the

course of the merger. We have also plotted in these figures the individual accretion rates onto each BH in

order to demonstrate the effect of the binary motion relative to the wind.

For our supersonic cases (PC1-PC3), the departure from the binary Bondi case is more dramatic. When

the BHs are widely separated (d > Ra), a bow shock forms around each individual BH, as seen in Figs. 6.12

and 6.13. Late in the inspiral, when d < Ra, these shocks merge and form a single bow shock surrounding

the binary, which persists after the merger. The final flow resembles the solution found by [68] for steady

accretion onto a moving BH with V∞/a∞ = 2.5, although in our case the remnant is spinning. During the

inspiral, the modulation in Ṁ and δL is more pronounced than in the subsonic case (see Figs. 6.14–6.16).

6.1.3 Realistic Binary Bondi accretion

While the high temperature prototype runs give us valuable insight into the general nature and different

phases of the accretion flows onto inspiralling BHBH binary systems in gas clouds, we require simulations

with more realistic gas temperatures in order to identify observational signatures. Accordingly, we have

performed simulations of the binary Bondi problem for a gas cloud with asymptotic density n∞ = 10 cm−3
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Figure 6.17: Plots showing time evolution of Ṁ and L̇. Here time is measured relative to the time at which the
merger occurs. Asymptotic temperature is T = 106K. Adiabatic index given by Γ = Γ∗. n1 ≡ n∞/10cm−3,
T6 ≡ T∞/106K, M6 ≡ M/106M⊙.
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Figure 6.18: Same as Fig. 6.17, but for Γ = 5/3.
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Figure 6.19: Snapshots of rest-mass density ρ0 and temperature T contours for the Γ = Γ∗ case. First and
second rows show snapshots of density contours and velocity profiles in the orbital plane. Third and fourth
rows show snapshots of T . Density is plotted according to ρ = ρ0,∞107+0.33j (j = 1, 2, ...., 12). Temperature
contours are plotted according to T = 1010+0.25jK (j = 1, 2, ...., 12). Arrows represent the velocity field in
the given plane.
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Figure 6.20: Same as Fig. 6.19 but for Γ = 5/3.
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and temperature T = 106K. This choice is consistent with the proposed “cooling flow model of quasar

fueling” describing the hot interstellar gas found in galaxies [6, 61]. As mentioned previously, computational

limitations demand that our outer boundary be placed inside the transonic radius for these simulations. As

a result, we focus only on the final phase of the inspiral and merger, in which d ≪ Ra. We use both a Γ = Γ∗

(case RA1) and Γ = 5/3 (case RA2) EOS. As explained in Sec. 5.1, we still set Γ = 13/9 in the computational

domain for the Γ = Γ∗ case since the Γ = 5/3 and transition region is outside our computational domain.

However, the initial hydrodynamic profile of the flow is very different from a pure Γ = 13/9 EOS with the

same asymptotic temperature. We focus here on the BHBH Bondi problem only (V∞ = 0), and postpone a

study of binary BHL accretion in a realistic gas cloud for a later analysis. As in the prototype calculations,

we find evidence for a strong enhancement in the luminosity due to shock heating of the gas (see Fig. 6.17

and Fig. 6.18). For these runs, we plot the luminosities in cgs units.

We note that for case RA1, strong shocks form, but are confined to the immediate vicinity of the binary.

This is because the inward gas flow onto the binary is strongly supersonic, making it difficult for shocks to

propagate outward (see Fig. 6.19). For case RA2, on the other hand, the radial component of the 4-velocity

u ∼ a everywhere, making it much easier for shocks to spread outward, as seen in Fig. 6.20.

6.1.4 Scaling and Detectability

All of our quoted results for the accretion rate Ṁ are normalized by the value for a single black hole of mass

M/2 undergoing stationary, spherical Bondi accretion. Using Eq. (5.10) we see that this quantity scales with

asymptotic temperature and density according to

Ṁac
2 = 4.6× 1040 λ5/3 n1 T

−3/2
6 M2

6 erg s−1 , (6.1)

where we define λ5/3 ≡ λ(Γ, a∞)/λ(5/3, a∞), n1 ≡ n∞/10cm−3 , T6 ≡ T∞/106K, and M6 ≡ M/106M⊙.

Recall that in the Newtonian limit, when Ra ≫ M , λ depends only on Γ.

It is also possible to derive simple scaling relations for the luminosities. In each of our simulations, most

of the electromagnetic luminosity is generated near the horizons of the BHs, as the temperature and density

both rise sharply when approaching the horizon, and achieve their maximum values there. By examining

Eqs. (D.1)–(D.5) (ignoring the logarithmic terms), and Eq. (D.18), we see that in the high temperature limit

(kT > mec
2), which applies near the horizon in all of our simulations, the bremsstrahlung and synchrotron
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emissivities depend on the density and temperature according to,

qff ∝ n2
hTh (6.2)

qsyn ∝ n2
hT

3
hβ

−1 (6.3)

Here nh and Th refer to the density and temperature at the horizon, respectively. Integrating Eqs. (6.2) and

(6.3), we find

Lff ≈
∫

dV qff ∝ n2
hThM

3 (6.4)

Lsyn ≈
∫

dV qsyn ∝ n2
hT

3
hβ

−1M3 , (6.5)

where we have assumed that most of the (high-energy) radiation is generated near the horizon and hence

the radiative volume scales as M3. To estimate nh, we use the fact that rh ≪ Ra, and so the fluid 4-velocity

is approximately given by its free-fall value

û ≈
(

2M

rh

)1/2

. (6.6)

Substituting this into Eq. (3.12) and Eq. (5.10), we find that

nh

n∞

∼
(

Ra

rh

)3/2

∝
(

kT∞

mBc2

)−3/2

(6.7)

Here we have used a2 ≈ ΓP/ρ0 = 2ΓkT/mBc
2. This scaling should remain reasonably accurate, even in the

presence of strong shocks, as the shocks cause density enhancements of . (Γ + 1)/(Γ − 1) (see Sec. 89 of

[111]), which is of order unity.

The temperature at the horizon Th, on the other hand, will be strongly affected by the presence of shocks.

The gas in any shocked region will be heated to kT ∼ mBv
2. Since v . c near the horizon, shock heating

guarantees that kTh . mBc
2 ∼ 1013 K independant of the gas temperature at infinity T∞. This result has

important consequences for the scaling of the maximum luminosities. Once the shock-heated gas is accreted

following the merger, Th drops below this value for all Γ < 5/3 (see e.g. Fig 5.1) and the luminosity settles

down to a value below the maximum.

Even in the absence of shocks, kTh . mBc
2 for Γ = 5/3. This is because for this particular EOS, an

appreciable fraction of the gravitational potential energy is converted into thermal energy (both scale as

r−1 inside Ra: kT ∼ MmB/r) [65]. For Γ = Γ∗, it can be shown that the temperature at the horizon for
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spherical Bondi flow is approximately given by [65]

kTh ≈ 2

3

(

9

80

)2/3(
me

mB

)1/3

mBc
2 = 0.013 mBc

2 (6.8)

Thus, we find that the temperature at the horizon, Th is independent of gas parameters at infinity for both

Γ = 5/3 and Γ = Γ∗. However, for Γ = const < 5/3, Th does exhibit scaling with T∞ in the absence of

shocks. In this case, P = KρΓ0 , so we find

Th

T∞

=

(

nh

n∞

)Γ−1

∝
(

kT∞

mBc2

)−3(Γ−1)/2

(6.9)

We can now apply these results to see how the luminosity scales in different phases of the inspiral. During

both the very early pre-merger phase of the inspiral, when d > Ra, and during the post-merger phase after

the fluid has settled to a quasiequilibrium state, there are no shocks present. We can therefore use the above

results to see that in these phases,

Lff ∝











n2
1 T−3

6 M3
6 , Γ = 5/3 or Γ = Γ∗ ,

n2
1 T

−(3Γ+1)/2
6 M3

6 , Γ = const < 5/3 ,
(6.10)

Lsyn ∝











n2
1 T−3

6 β−1
1 M3

6 , Γ = 5/3 or Γ = Γ∗ ,

n2
1 T

−9(Γ−1)/2
6 β−1

1 M3
6 , Γ = const < 5/3 .

(6.11)

Here β1 ≡ β/10. During the late premerger phase when d ∼ M ≪ Ra shocks will be present and Th will

no longer depend on T∞ for any EOS. In this case, we find

Lff ∝ n2
1 T−3

6 M3
6 , Lsyn ∝ n2

1 T−3
6 β−1

1 M3
6 . (6.12)

Using the above scaling relations along with the results of our realistic temperature simulations, we find

that the peak luminosity shortly before the merger of an equal mass BHBH binary in a gas cloud for case

RA1 (Γ = Γ∗) is given by

Lmax
ff ≈ 3× 1037 n2

1 T−3
6 M3

6 erg s−1 , (6.13)

Lmax
syn ≈ 3× 1043 n2

1 T−3
6 β−1

1 M3
6 erg s−1 . (6.14)
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Similarly, the peak luminosity for case RA2 (Γ = 5/3) is given by

Lmax
ff ≈ 4× 1037 n2

1 T−3
6 M3

6 erg s−1 , (6.15)

Lmax
syn ≈ 4× 1043 n2

1 T−3
6 β−1

1 M3
6 erg s−1 . (6.16)

At the late post-merger phase, the fluid relaxes to a stationary flow. The scaling relations (6.10) and

(6.11) hold. Combining these scaling relations and our simulation results, we find that during the post-merger

phase

Lff ≈ 3× 1035 n2
1 T−3

6 M3
6 erg s−1 , (6.17)

Lsyn ≈ 8× 1038 n2
1 T−3

6 β−1
1 M3

6 erg s−1 (6.18)

for case RA1, and

Lff ≈ 3× 1036 n2
1 T−3

6 M3
6 erg s−1 , (6.19)

Lsyn ≈ 2× 1041 n2
1 T−3

6 β−1
1 M3

6 erg s−1 (6.20)

for case RA2. We note that in each case, the total luminosity is dominated by the synchrotron emission.

In each of our calculations, we have ignored the effects of radiative cooling on the gas dynamics. We can

estimate the error induced by this by comparing the rate of thermal energy transport, Ėth, to the luminosity.

Here we define

Ėth = Ṁǫ = Ṁ
P

ρ0(Γ− 1)
. (6.21)

Since the luminosity is dominated by emission near the horizon, we are primarily concerned about the

region near the horizon. Using Eqs. (5.10), (6.7), (6.8), (6.17) and (6.18), we find that for case RA1, at late

times after the merger when the flow has reached equilibrium,

Lsyn + Lff

Ėth

∼ 0.1 n1 T
−3/2
6 β−1

1 M6 . (6.22)

Thus, we see that in these regimes, it is a good approximation to neglect the effects of radiative cooling for

our canonical model parameters. At the moment of maximum luminosity, shortly before merger, we find

that

Lsyn + Lff

Ėth

∼ 40 n1 T
−3/2
6 β−1

1 M6 . (6.23)
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Thus during the final stages of the merger, the validity of our assumption of adiabatic flow begins to break

down for canonical parameters. In future work, we will address this by including cooling terms in our gas

evolution to account for energy losses due to radiation.

We also note that in order for us to be able to neglect radiation pressure in the momentum equation, we

require that the luminosity be small compared to the Eddington luminosity. We find that for case RA1,

Lmax
syn + Lmax

ff

LEdd
∼ 0.2 n2

1 T−3
6 β−1

1 M2
6 , (6.24)

which suggests that radiation pressure may begin to play a role for parameters close to our canonical choices.

In calculating the luminosity, we have assumed that the gas is optically thin. We can verify this as-

sumption by estimating the optical depth. For the gas parameters chosen for this study (n∞ = 10 cm−3

and T∞ = 106K), we find that the dominant source of opacity is electron scattering. We estimate that the

optical depth for electron scattering of synchrotron photons is

τes ≈ nhσTR ∼ 10−3n1T
−3/2
6 M6, (6.25)

where nh ∼ 1011n1T
−3/2
6 is the density at the horizon, σT = 0.67 × 10−24 cm2 is the Thomson scattering

cross-section, and R ∼ 1011M6 cm is the characteristic size of the emission region. Thus, our assumption of

an optically thin gas is valid.

To estimate the characteristic frequencies at which the emission occurs we again note that the maximum

emission comes from near the horizons and compute the characteristic frequency produced in this region. For

bremsstrahlung emission, the characteristic observed frequency of the emission is given by hν ∼ kTh/(1+ z)

for a source at redshift z. We measure the maximum temperature near the horizon for our case RA1, and

find that at the moment of maximum luminosity in the late pre-merger phase,

hνmax
ff ≈ 150 MeV

1 + z
(RA1) , (6.26)

After the merger, in the quasistationary phase, we find that the characteristic frequency drops to

hνff ≈ 10 MeV

1 + z
(RA1) . (6.27)

Following the same procedure for case RA2, we find that at the moment of maximum luminosity in the late
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pre-merger phase,

hνmax
ff ≈ 230 MeV

1 + z
(RA2) , (6.28)

and in the post-merger phase, the frequency drops to,

hνff ≈ 50 MeV

1 + z
(RA2) . (6.29)

Thus, we see that the bremsstrahlung emission will be predominantly in γ-rays, in agreement with [64].

Given the bremsstrahlung luminosity calculated above, we estimate that the flux from this emission will be

∼ 10−21erg cm−2 s−1 for a source at z = 1. Unfortunately, it is unlikely that this emission is strong enough

to be detectable.

We can estimate the characteristic frequency of the synchrotron emission by noting that Eq. (D.10) is

maximized when xM ≈ 1.09. For case RA1, this corresponds to an observed frequency

hνmax
syn =

1.09

1 + z

3ehB

4πmec

(

kT

mec2

)2

(6.30)

=
80

1 + z
n
1/2
1 T

−3/4
6 β

−1/2
1 eV (RA1) (6.31)

during the late pre-merger phase at the moment of maximum luminosity. In the post-merger phase, the

frequency drops to,

hνsyn =
0.008

1 + z
n
1/2
1 T

−3/4
6 β

−1/2
1 eV (RA1) , (6.32)

For case RA2, we find the characteristic synchrotron frequency to be

hνmax
syn =

100

1 + z
n
1/2
1 T

−3/4
6 β

−1/2
1 eV (RA2) (6.33)

during the late pre-merger phase at the moment of maximum luminosity, and

hνsyn =
0.75

1 + z
n
1/2
1 T

−3/4
6 β

−1/2
1 eV (RA2) (6.34)

during the post-merger phase.

This corresponds to infrared and visible radiation. For a binary at z = 1 with the luminosity calculated

above, this source has an apparent magnitude of m = 24 and should be observable by the proposed LSST

instrument [112]. Our simulations follow the late stage of the inspiral in which the binary separation decreases

from d = 10M to merger. For a 106M⊙ binary, this corresponds to a timescale of ∆t ∼ 1.3 hrs during which
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Table 6.4: Parameters for BHBH disk simulations

Case aEpoch Orientation Γ bH/R

A1 early inspiral prograde 5/3 0.11
A2 4/3 0.08
A3 c1.1 0.03
A4 retrograde 4/3 0.08
B1 late inspiral prograde 5/3 0.14
B2 and merger 4/3 0.11
B3 c1.1 0.06
B4 retrograde 4/3 0.11

a Initial binary separation d/M = 10.
b H is the scale height of the disk at R = Rdisk (pressure max), measured at
t = 0 for case-A runs and at t = tmerge for case-B runs.
c Approximately isothermal.

the radiation should achieve peak values.

We note that all the scalings derived above will not apply when V∞ ≫ a∞, but can be derived in a

similar fashion. For a realistic gas with T & 106K (a∞ ≈ 100km/s), this regime may never be realized, so

we neglect here.

6.2 Binary disk accretion

Each of our simulations into two phases. We first perform early inspiral epoch simulations in which we employ

the quasistationary CTS metric while keeping the BH separation constant. This allows the disk to relax to

a reliable quasistationary state. Upon achieving this state, we begin our late inspiral and merger epochs

simulations in which we evolve the metric in full GR, allowing the BHs to inspiral and merge. Parameters

for each of these disk runs are given in Table 6.4.

Equatorial snapshots from our simulations with Γ = 5/3 can be seen in Fig. 6.21, while meridional

snapshots are shown in Fig. 6.22. The first two snapshots are from the early inspiral epoch calculations,

while the second two snapshots are from the late inspiral and merger epochs calculations. We do not show

snapshots for other equations of state here, as the accretion flow is qualitatively similar. Important results

from simulations with other equations of state are reported in Table 6.5.

6.2.1 Early inspiral epoch

While the formulation outlined in Sec. 4.2 provides stable equilibrium disk initial data for a single BH,

torques from the binary disrupt this equilibrium. Thus, it is important to allow the gas to relax to a

66



Figure 6.21: Snapshots of rest-mass density ρ0 contours in the orbital plane for cases with Γ = 5/3. Density
contours are plotted at ρ0/ρ0,max = 10−2.75+0.5j (j = 1, 2, ...., 6). Contours of highest density are shown
with darker shading and are near the BHs. Blue arrows denote velocity vectors. The apparent horizon
interior is marked by a filled black circle. The top left frame is the initial data from the early inspiral epoch,
the top right frame is the relaxed, quasistationary disk, which serves as initial data for the late inspiral and
merger epochs at t ≈ tmerge − 1250M . The bottom left frame is the data from the late inspiral and merger
epochs run at t ∼ tmerge − 50M , while the bottom left frame is the data from the late inspiral and merger
epochs at t ≈ tmerge + tdisk.
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Figure 6.22: Snapshots of rest-mass denstiy ρ0 contours in the meridional plane for cases with Γ = 5/3.
Density contours are plotted at ρ0/ρ0,max = 10−2.75+0.5j (j = 1, 2, ...., 6). Contours of highest density are
near the BHs. The top left frame is the initial data for the early inspiral epoch; the top right frame is the
relaxed, quasistationary disk that serves as initial data for the late inspiral and merger epochs; the lower
left frame is the data from the late inspiral and merger epochs at t ∼ tmerge − 50M ; the bottom right frame
is the data from the late inpiral and merger epochs at t ≈ tmerge + tdisk.

quasistationary state before beginning the BH inspiral. We allow this relaxation to occur over ∼ 5tdisk,

where tdisk ≈ 1300M . At this time, we find that Ṁ0, Lsyn, and Lbrem oscillate around roughly constant

values, and there is little evolution in surface density profiles. Here Lsyn and Lbrem refer to synchrotron and

bremsstrahlung luminosity, respectively.

During the relaxation process, the changes in the matter profiles are due to the presence of binary

torques. These torques cause a disruption of the inner edge of the disk, allowing some gas to fall onto

the BHs. Infalling gas forms spiral waves and shocks which heat the gas near the BHs. In the absence of

shock heating, the disk would behave adiabatically, and the internal energy density would be given by its

polytropic value,

ρ0ǫad = KρΓ0/(Γ− 1) . (6.35)

Thus, shock heating may be measured by computing the enhancement in the internal energy density above

its adiabatic value and integrating over the disk. We therefore compute

Eint =

∫

Vd

√−gρ0u
tǫ d3x , (6.36)

and

Eint,ad =

∫

Vd

√
−gρ0u

tǫad d3x . (6.37)
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Figure 6.23: Time evolution of ∆Eint/Eint,ad for run A2.

Here the integral is over Vd, which is the volume between r = 10M and the outer boundary of the com-

putational domain at 128M . This allows us to compute ∆Eint in the bulk of the disk, ignoring the

gas near the BHs. In Fig. 6.23, we plot ∆Eint/Eint,ad vs time during the relaxation of the gas, where

∆Eint ≡ (Eint − Eint,ad). We find that ∆Eint/Eint,ad increases monotonically over the course of the re-

laxation process, leveling off to a constant value of ≈ 5 × 10−4 as the disk reaches a quasistationary state.

Because ∆Eint/Eint,ad ≪ 1, we conclude that shock heating does not play a significant role in altering the

bulk disk profile during this process.

In order to get a sense of the change in the disk profile from the initial data, we plot angle-averaged

surface density profiles (see Fig. 6.24). In each case, the torque from the binary has the overall effect of

pushing matter outward. However, the effect of the torques diminishes once the disk matter has moved

outward and a quasistationary state is achieved after t ∼ 5tdisk.
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In Fig. 6.21, we plot snapshots of density contours for case A1. We see that the disk cavity, which initially

extends to R = 15M , becomes partially filled, with a clear spiral structure, at small radii R . 2d = 20M

for each of the prograde cases. A similar spiral arm structure extending inside the disk cavity has been seen

in Newtonian simulations (cf. [36, 113, 114]). In the retrograde case (A4), this structure is largely absent.

This point is further emphasized by comparing the surface density fluctuation ∆Σ ≡ (Σ−〈Σ〉)/ 〈Σ〉 between

the prograde case A2 and the retrograde case A4 (see Figs. 6.25 and 6.26). Following [36], we compute this

quantity in a rotating frame in which the binary is stationary, and average over several torb. In Fig. 6.25,

we clearly see two strong spiral arms emanating from each BH and extending throughout the cavity region.

However, unlike the results of the 2D, thin-disk simulations presented in [36], we do not see spiral density

waves extending into the bulk of the disk. We attribute this to the fact that our 3d disks are thicker, which

allows waves that are initially propagating in the radial direction to be deflected in the vertical direction,

disrupting the spiral density wave structure. Such effects have been demonstrated even for geometrically

thin disks in which density and temperature are stratified in the z direction [115, 116].

The structure of the spiral density waves observed near Rin is roughly consistent with the theoretical

Newtonian picture of a wave that is excited by the binary torques at the outermost Lindblad resonance at

R2 = (3/2)2/3d with orbital resonance Ωbin : Ω = 3 : 2 (initially, R2 = 0.87Rin). We demonstrate this by

computing the angle-averaged torque density as described in Sec. 4.4.7, and comparing with the (Newtonian)

analytic prediction given in Eq. (31) of [36],

dT

dR
≈ 49

288
π2Σ(R2)Ω

2
bin

d4

λ2
Ai

(

R2 −R

λ2

)

, (6.38)

where λ2 = 2−2/3(H/R)2/3d. Based on numerical data from run A1 at t & 5tdisk, we choose Σ(R2) =

4 × 10−4Σ0 and H/R = 0.3, where Σ0 is the initial maximum surface density and H/R is measured at R2.

As we show in Fig. 6.27, we find very good agreement with the analytic prediction out to R/d ≈ 2.2, but

break down at larger radii. This breakdown is not unexpected, as we have argued above that spiral density

waves do not extend into the bulk of the disk as a result of the thickness of our 3d disks.

For the retrograde case (A4), we find that the spiral density waves are largely absent, as shown in

Figs. 6.26 and 6.28. This is expected, as the Lindblad resonance does not exist when the angular momentum

of the disk and the binary are antialigned.
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Figure 6.24: Surface density profiles of the Γ = 5/3 disk as a function of radius. The dashed black curve
is the initial disk density prole; the solid red one is the surface density prole when the disk has reached a
quasistationary configuration after t & 5tdisk, averaged over ∼ 2torb. The solid black curve is the density
profile following the merger, averaged over ∼ 2torb. Σ0 is the initial maximum surface density.
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Figure 6.25: Time-averaged surface density fluctuation
(Σ − 〈Σ〉)/ 〈Σ〉 in the rotating frame in which the binary is at rest. The binary point masses are
located at R/a = 0.5 and φ = (0, π). Red regions are density maxima and blue regions are density minima.
Data is from run A2 with Γ = 4/3.
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Figure 6.26: Same as Fig. 6.25 but for a retrograde disk.
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Figure 6.27: Time-averaged torque density dT/dR exerted by the binary on the disk after t & 5tdisk. Time
averaging was carried out over ∼ 2torb after the disk has reached a quasistationary state. Data from run A2
with Γ = 4/3. The torque is plotted in units of 10−3MaΣ0.
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Figure 6.28: Same as Fig. 6.27, but for retrograde disk (run A4).
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6.2.2 Late inspiral and merger epochs

Having allowed the disk to relax to a quasistationary state, we turn to the fully relativistic evolution of

metric and matter fields in order to investigate variations in electromagnetic luminosity over the course of

the inspiral and merger. Our calculations in this epoch apply to the decoupling phase of binary inspiral,

through merger, but before appreciable gas fills the hollow due to viscosity. We again consider the prograde

cases with Γ = 4/3 (B1), Γ = 5/3 (B2), and Γ = 1.1 (B3) the retrograde case with Γ = 4/3 (B4). In each

case, we use the relaxed data from the end of the corresponding quasistationary metric run as initial data.

As the binary inspiral proceeds and the separation shrinks, the torques due to the binary are diminished.

As a result, we find that the spiral density waves visible when a/M = 10 have largely disappeared by the

time of merger and remain absent after the merger. This is evident in the bottom left and right frames of

Fig. 6.21, which show snapshots of the density in the equatorial plane ∼ 50M before merger, and ∼ 1tdisk

after merger. This effect is also illustrated by the evolution of Ṁ0, Lbrem, and Lsyn in Fig.6.29. Here, we

have computed the luminosity assuming a fiducial value of ndisk = 1012 cm−3, where ndisk is the baryon

number density at Rdisk. This value is consistent with density estimates for a typical AGN derived from

the Shakura-Sunyaev disk model [117, 60, 65], albeit in a radiation-dominated, geometrically thin regime.

However, because there are large variations in the gas densities in galactic cores, we provide density scalings

for our results. Because the position of the m = 2 outermost Lindblad resonance is approximately given

by R2 ≈ (3/2)2/3d, we see that as the binary separation is reduced, the location of the resonance retreats

farther inside Rin, enabling less matter to be stripped from the inner edge of the disk, and reducing Ṁ0.

The reduction in accretion similarly suppresses the electromagnetic luminosity generated near the BHs. This

effect is exacerbated by the reduction in shock heating due to binary torques, as this lowers the temperature

of the gas and reduces emissivities. Each of these effects is reflected in Fig. 6.29. We also show the h+

polarization amplitude of the accompanying gravitational wave for comparison. Evidently, the decrease

in electromagnetic luminosity beginning at the onset of decoupling is a precursor to the late inpiral and

merger gravitational radiation. We find that the choice of EOS can play a significant role in setting the

magnitude of the accretion rate and the luminosity. Larger values of Γ lead to both larger Ṁ0 as well as

higher luminosities. We tabulate the values of luminosities, accretion rates and characteristic frequencies of

emission at the onset of the late inspiral and merger epochs and just prior to merger in Table 6.5. In addition

to the increase in the amount of gas near the BHs, larger values of Γ also allow the gas to be shock heated

more effectively. Because the bremsstrahlung and synchrotron emissivities are sensitive to temperature,

this also leads to an increase in luminosity. Comparing Eq. (6.39) and Eq. (6.40) below, we see that the

temperature dependence is much stronger for synchrotron emission. This can explain the particularly large
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differences in synchrotron luminosity for the different cases reported in Table 6.5. This effect also leads the

synchrotron luminosity to be dominated by emission from the heated region near the binary, whereas the

bremsstrahlung emission is predominantly from the bulk of the disk. This dependence accounts for the high

variability of the synchrotron luminosity in comparison to that of the bremsstrahlung emission.

Because our simulations assume a perfect fluid with no dynamical magnetic fields (turbulent fields are

assumed only to estimate synchrotron emission), there is no viscosity present to counteract the effect of the

binary torques in driving matter outward. As a result, we find that even after relaxing to a quasistationary

disk state in our early inspiral epoch calculations, in which the accretion rate and luminosity oscillate around

fixed values, there remains an overall slow outward drift in the bulk of the disk. This is evident in Fig. 6.24,

in which the solid red curve shows the surface density profile at the beginning of the binary inspiral, while

the solid black curve shows the surface density profile at t ∼ tdisk after the merger. We see clear evidence

that the bulk of the disk moves outward, although we suspect that this effect may be altered by the inclusion

of viscosity.

In Paper I, we demonstrated that shocks near the BH horizons increased in strength throughout the

merger as the BHs move more supersonically through the surrounding gas. This shock strengthening leads

to a temperature increase in the inner region, which in turn gives rise to an increasing luminosity peaking

at the moment of merger. Such a temperature increase is largely absent in the disklike accretion case

treated here, as can be seen by comparing temperature contours at the beginning of the late inspiral and

merger epochs simulation and at t ∼ tmerge − 50M , as displayed in Fig. 6.30. As such, we do not expect

to see significant increase in luminosity during the post-decoupling inspiral phase, even at high-frequency

components of the spectrum. We note that this contrasts the conclusions of the Newtonian calculation

in [15], where a brightening of the precursor light curve before merger is found. However, these results

do not necessarily contradict one another, as [15] consider geometrically thin, optically thick disks around

non-equal-mass BHBH binaries. This is a very different scenario from the geometrically thick, optically thin

disks surrounding equal-mass binaries that we consider in this paper.

To highlight the role that shock heating plays in our simulations, we also plot contours of K/K0. Here

K ≡ P/ρΓ0 and K0 is the initial value of K everywhere. The quantity K = K(s), where s is the specific

gas entropy, remains constant in the absence of shocks; shock heating yields K/K0 > 1 (see Appendix B

of [104]). As expected, we see that K/K0 increases steeply near the BHs, where the binary torque-induced

spiral arms are strongest (see Fig. 6.31). Following the merger, binary torques are no longer present and we

find that K/K0 is dramatically reduced in the cavity region. While we do find that a small region near the

remnant continues to have K/K0 long after the merger (see Fig. 6.31), we note that the gas in this region
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is of very low density and carries a relatively insignificant amount of thermal energy.

We also note that the shocks are confined to the inner region and do not propagate into the bulk of

the disk. While it has been proposed that changes in the potential due to mass loss and/or BH kicks

following merger can give rise to shocks throughout the disk [118, 11], we do not observe such behavior in

our simulations. However, this is expected, as it has been noted that a condition for shocks to form due

to mass loss is that ǫ > H/R, where ǫ ≡ (Mi − Mf )/Mi is the fractional mass loss due to gravitational

wave emission [11]. Comparing the fractional mass loss for an equal-mass merger, for which ǫ ≈ 0.05, to

the estimates of H/R measured at the moment of binary merger (see Table 6.4), we find that the above

condition is never satisfied. The criteria above for shocks to form is derived from the condition that the

radial velocity must exceed the sound speed cs ≡ (ΓP/ρ0h)
1/2 near the inner edge of the disk. We have also

checked this directly and have found that the condition is never met in our simulations - our disks are too

hot, hence too geometrically thick, to trigger this effect.

6.2.3 Scaling and detectability

In quoting values for the accretion rate Ṁ0, we normalize by the quantity ρmaxM
2 = 0.2n12M

2
8M⊙yr

−1,

which allows for easy scaling to arbitrary disk density and binary mass. It is also possible to derive sim-

ple scaling relations for the luminosities. The dominant region of emission differs for bremsstrahlung and

synchrotron radiation. Because of the stronger dependence of synchrotron emissivity on temperature (see

Appendix B of [16]), we find that the synchrotron emission originates chiefly from the hot gas near the

BHs, while the majority of bremsstrahlung emission originates from the cooler, denser gas in the bulk of

the disk. In each simulation, we find that the temperature is maximum near the BHs, typically reaching

kTh ≈ 100MeV at the horizon. In the high-temperature limit (kT > mec
2) the synchrotron emissivity given

in Appendix B of [16] scales with temperature and density according to

qsyn ∝ n2
hT

3
hβ

−1 . (6.39)

By contrast, the temperature in the bulk of the disk where the majority of the bremsstrahlung emission

originates is nonrelativistic (kTdisk < mec
2) so that the bremsstrahlung emissivity scales according to

qff ∝ n2
diskT

1/2
disk . (6.40)

Here nh and Th refer to the density and temperature at the horizon, and ndisk and Tdisk refer to the

density and temperature at Rdisk, and β ≡ 8πP/B2 sets the strength of the assumed turbulent magnetic
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Figure 6.29: Time evolution of total BH accretion rate across the BH horizons Ṁ0, luminosity L̂ and
waveform Dh+ for a circumbinary prograde disk with Γ = 5/3. The initial binary separation is d =
10M and the BHs evolve to merger. Ṁ0/(ρmaxM

2) is the dimensionless accretion rate. Here, ρmaxM
2 =

0.2n12M
2
8M⊙yr

−1. L̂ ≡ L/[1046M3
8n

2
12 erg s−1] is the total luminosity due to bremsstrahlung (dashed line)

and synchrotron (solid line) emission. For synchrotron emission, we assume β = 10. h+ is the + polarization
of the gravitational wave signal as measured by an observer looking down the polar axis at a distance D
from the binary. BHBH merger occurs at t = 0.
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Figure 6.30: Contours of temperature kT (= mBP/ρ0) at select times for prograde disk with Γ = 5/3.
Contours correspond to kT = 940 × 10−5+0.33jMeV (j = 1, 2, ...., 6). Frames correspond to the beginning
of the late inspiral and merger epochs phase at t ≈ tmerge − 1250M (top), t ∼ tmerge − 50M (middle),
and t ∼ tmerge + tdisk (bottom). Regions with density less than ρ0/ρ0,max < 10−4.5 are left white. Lighter
shading denotes higher kT .

Figure 6.31: Contours of entropy parameter K (= P/ρΓ0 ) at select times for prograde disk with Γ = 5/3.
Contours correspond to K/K0 = 100.1+0.3j (j = 1, 2, ...., 6). Frames correspond to the beginning of the
late inspiral and merger epochs phase at t ≈ tmerge − 1250M (top), t ∼ tmerge − 50M (middle), and
t ∼ tmerge + tdisk (bottom). Regions with density less than ρ0/ρ0,max < 10−4.5 are left white. Darker
shading denotes higher K.
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field responsible for synchrotron emission. As in Paper I, we choose β = 10 so that the magnetic field is

assumed to reach a fraction of its equipartition value consistent with MHD simulations [102].

Integrating Eqs. (6.39) and (6.40), we find

Lsyn ≈
∫

dV qsyn ∝ n2
hT

3
hβ

−1M3 , (6.41)

Lff ≈
∫

dV qff ∝ n2
diskT

1/2
diskR

3
disk(H/R) , (6.42)

where the factor of M3 comes from the volume element.

Because we ignore self-gravity in the disk, our scaling results apply for arbitrary density. Accordingly,

as the density at the horizon is varied, its value is simply proportional to the maximum density in the disk,

nh ∝ ndisk ∝ ρmax.

Consider the onset of the binary decoupling (late inspiral) phase. The spiral arms through which the

gas enters the disk cavity are shock heated. The gas in any shocked region will be heated to kT ∼ mBv
2.

Since v . c near the horizon, shock heating guarantees that kTh . mBc
2 ∼ 103 MeV, independent of the

temperature in the bulk of the disk (in fact KTh is closer to 100 MeV). Scaling for synchrotron luminosity

then simplifies to

Lsyn ∝ ρ2maxβ
−1M3 . (6.43)

While the bremsstrahlung luminosity does depend on Tdisk, we note that for the fixed values of q, l(Rin),

and Rin/M , the enthalpy profile h, and therefore kTdisk = mB(hdisk − 1)(Γ − 1)/Γ, is uniquely specified.

We therefore regard Tdisk as a fixed parameter, so that

Lff ∝ ρ2maxM
3 . (6.44)

Using these scaling relations, along with the results of our simulations, we estimate the average luminosity

when the binary separation is a = 10M , the adopted onset of the late inspiral and merger epochs. Results

are given in Table 6.5.

In calculating the luminosity, we have assumed that the gas is optically thin. We can verify that this

is a good assumption by estimating the optical depth. Taking the dominant opacity source to be electron

scattering, we find

τes ≈ nhσTR ∼ 0.2n12M8 (6.45)

where R is the characteristic size of the emission region that we have set to R ≈ 2M . Thus, we see that our

assumption of an optically thin gas is valid for our canonical parameters, although it begins to break down
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Table 6.5: Electromagnetic emission at beginning of late inspiral and merger epoch and shortly before merger

Case Time aṀ0/(ρmaxM
2) bLff/L46 Lsyn/L46

B1 tmerge − 1250M 0.02 0.65 1.2β−1
1

B2 0.003 0.16 0.05β−1
1

B3 0.0005 0.003 2× 10−5β−1
1

B4 0.01 0.15 0.5β−1
1

B1 tmerge − 50M 0.0003 0.60 0.3β−1
1

B2 0.0005 0.14 0.008β−1
1

B3 0.0001 0.002 2.0× 10−6β−1
1

B4 0.0005 0.13 0.0002β−1
1

aρmaxM
2 = 0.2n12M

2
8M⊙yr

−1, n12 ≡ n/1012cm−3, M8 ≡ M/108M⊙.
bL46 = 1046n2

12M
3
8 erg s−1

when we consider denser disks and/or more massive binaries.

For bremsstrahlung emission originating at Rdisk, the characteristic observed frequency of the emission

is given by

hνff ∼ kTdisk/(1 + z) (6.46)

for a source at redshift z. We measure the temperature at Rdisk for each of our cases, and report the

estimated characteristic frequencies in Table 6.6. For canonical parameters, bremsstrahlung emission will be

predominantly in γ rays. Based on our measured luminosities, we estimate that the observed flux from this

emission will be in the range of ∼ 10−15− 10−14n2
12M

3
8 erg cm−2 s−1 for a source at z = 1. Unfortunately, it

is unlikely that this emission is strong enough to be detectable. We note that the bremsstrahlung emission

we measure is actually dominated by emission from the bulk of the disk rather than the heated gas near

the BHs. This makes the emission even less likely to be detectable, as it exhibits only a small amount of

variability.

In contrast, the synchrotron emission is predominantly produced near the BHs. We can estimate the

characteristic frequency of the synchrotron emission by noting that Eq. (B10) of [16] is maximized when xM ≡

2ν/3ν0θ
2 ≈ 1.09. Here, ν0 ≡ eB/2πmec is the cyclotron frequency and θ ≡ kT/mec

2. The corresponding

observed frequency is

hνsyn =
1.09

1 + z

3ehB

4πmec

(

kT

mec2

)2

. (6.47)

We can use this expression, along with measured values of density and temperature in the vicinity of the

horizon, to estimate characteristic values of hνsyn. Values for each case at the moment of decoupling and

shortly before merger are given in Table 6.6, and typically fall in the infrared range. We estimate that

in each case, the synchrotron emission should be observable by the proposed Wide Field Infrared Survey
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Table 6.6: Characteristic frequencies at beginning of late inspiral and merger epoch and shortly before
merger

Case Time chνff [(1 + z)−1MeV] dhνsyn [(1 + z)−1n
1/2
12 β

−1/2
1 eV]

B1 tmerge − 1250M 0.3 2.5
B2 0.2 0.6
B3 0.08 0.01
B4 0.2 1.6
B1 tmerge − 50M 0.3 1.7
B2 0.2 1.5
B3 0.08 1.7
B4 0.2 1.4

chνff = kTdisk
dβ1 ≡ β/10, β ≡ 8πP/B2.

Telescope (WFIRST) [119], and possibly by the Large Synoptic Survey Telescope instrument (LSST) [112].

Our simulations follow the late stage of the inspiral in which the binary separation decreases from d = 10M

to merger. This corresponds to a time scale of δt ∼ 100M8 hrs during which the gradual decline in emission

should be observed.

6.3 Magnetized binary disk accretion

Here we report the first fully GRMHD simulation of a magnetized, circumbinary BHBH accretion disk.

The effective viscosity driving accretion arises from MHD turbulence triggered by the magnetorotational

instability (MRI) [80]. This effective viscosity competes with the tidal torques exerted by the binary, so that

a quasi-stationary state is reached prior to binary-disk decoupling [7, 74]. This state has been simulated both

in Newtonian [7] and in Post-Newtonian [81] gravitation. Typically, the computational domain excludes the

region near the BHs and artificial inner boundary conditions are imposed. Recent Newtonian studies [82]

make clear the importance of imposing the correct boundary conditions on the flow inside the central disk

hollow and near the BHs, further motivating a treatment in full, dynamical GR whereby BH horizons can

be modeled reliably.

The basic evolution of the system is as follows: For large binary separations d, the inspiral time due to GW

emission is much longer than the viscous time (tGW & tvis), so that the disk settles into a quasi-stationary

state. For equal-mass BHs, the binary tidal torques carve out a partial hollow in the disk [33, 7, 36, 78] of

radius ∼ 2a and excite spiral density waves throughout the disk, that dissipate and heat the gas. However,

gas can penetrate the hollow in response to the time-varying tidal torque [36, 83, 78, 81]. At sufficiently small
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separations tGW . tvis, and the BHBH decouples from the disk. The disk structure at decoupling crucially

determines its subsequent evolution and the EM emission. GW emission close to merger leads to mass loss

[11, 10] and may induce remnant BH recoil [40], which give rise to further characteristic EM signatures.

Here we simulate the system in two different epochs: (I) The pre-decoupling phase (tGW > tvis) and (II) the

post-decoupling phase (tGW < tvis), including the inspiral and merger of the BHBH. We consider equal-mass,

nonspinning binaries. While the BH mass scales out, we are primarily interested in total (ADM) masses

M & 106M⊙ and low density disks for which the tidally-induced binary inspiral and the disk self-gravity are

negligible.

We use the Illinois numerical relativity code to carry out our simulations. The code has been extensively

tested [89, 120] and used in our earlier BHBH simulations in gaseous media [16, 83]. For details and equations

see [89, 120, 121]. The main new feature concerns our vector potential (Aµ = Φnµ+Aµ) formulation for the

magnetic induction equation, where nµ is the future-directed timelike unit vector normal to a t =const. slice

and nµAµ = 0. We introduce a new generalized Lorenz gauge condition ∇µAµ = ξnµAµ, where ξ is a param-

eter (typically ξ = 4/M) and M is the total BHBH (ADM) mass. This condition results in damped traveling

EM gauge modes, preventing the spurious emergence of B-fields associated with refinement boundaries [122].

The disk initial data represent an equilibrium disk orbiting a single Schwarzschild BH [93, 83] with an

inner disk edge at Rin = 18M = 1.8a, where the specific angular momentum ℓin = 5.15M at Rin, and a

nearly Keplerian rotation profile parameter q = 1.7. We adopt a Γ-law equation of state with Γ = 5/3,

appropriate for a disk composed of an ideal, nonrelativistic gas. We seed the disk with a weak poloidal

B-field as described in [121]. The maximum relative strength of the initial B-field in the equatorial plane is

(PM/P )max = 0.025. Here PM ≡ B2/8π is magnetic pressure, P is gas pressure, and Bµ is the magnetic

field measured in the comoving frame of the fluid.

Prior to decoupling we can neglect the slow BHBH inspiral. We model the spacetime during this epoch

by adopting the BHBH metric derived in the conformal thin-sandwich (CTS) formalism [76], whereby the

spacetime is stationary in the corotating frame (see [83] for details). The inner part of the disk settles into

a quasiequilibrium state on a “viscous” time scale

tvis
M

=
2R2

in

3νM
∼ 6500

(

Rin

18M

)3/2
( α

0.13

)−1
(

H/R

0.3

)−2

, (6.48)

Here R is the disk radius and ν is the effective viscosity induced by MHD turbulence [80]. This viscosity
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can be fit (approximately) to an ‘α-disk’ law for purposes of analytic estimates.

ν(R) ≡ (2/3)α(P/ρ0)Ω
−1
K

≈ (2/3)α(R/M)1/2(H/R)2M (6.49)

where H is the disk scale height, and we have assumed vertical hydrostatic equilibrium to derive an approx-

imate relationship between P/ρ0 and H/R (see [65]). Equating the viscous time scale and the GW inspiral

time scale yields the decoupling separation

dd
M

≈ 13
( α

0.13

)−2/5
(

H/R

0.3

)−4/5

, (6.50)

where the normalizations give the typical parameters our simulations obtain for the relaxed state. Note, that

for the geometrically thick, magnetic disks we treat, the expected decoupling radius is an order of magnitude

smaller than typical thin-disk cases [7, 13]. We thus set our initial binary separation at d/M = 10 (orbital

period 2π/Ω = 225M).

We evolve the system using the CTS spacetime for ∼ 45 binary orbits (10,000 M) to allow the inner

parts of the disk to settle into a quasistationary state. This epoch (1) models the pre-decoupling phase

and (2) provides realistic, relaxed disk initial data for the post-decoupling inspiral phase. We model the

post-decoupling phase by continuing the GRMHD evolution in the dynamical spacetime of the inspirational

and merging BHBH binary. We treat two extreme opposite limiting cases: “no-cooling”, which allows for

gas heating via shocks induced by tidal torques and MHD turbulence, and “cooling”, which removes all the

heat generated via an effective local emissivity Λ of the form T µν
;ν = −Λuµ as in [123]. Our “cooling” case,

though artificial, provides a representative example of the effects of cooling and has been adopted in previous

work (e.g. [124, 81]). The particular “cooling” prescription we use drives the gas to isentropic behavior, i.e.

P/ρΓ0 = const. The cooling timescale is set to the local, Keplerian orbital period. Our simulations resolve

the BH horizons and we impose no inner boundary conditions. In the pre-decoupling phase our grid consists

of a hierarchy of 6 refinement levels with (coarsest, finest) resolution of (5.33M , 0.16M) and outer boundary

at 250M . We resolve the fastest-growing MRI mode by at least 10 grid points in the bulk of the inner disk.

We add two extra levels centered on each BH in the post-decoupling phase, increasing the (coarsest, finest)

resolution to (4M , M/32). After merger and ringdown we freeze the spacetime evolution, but continue to

evolve the plasma. Equatorial symmetry is imposed throughout. We normalize results to those for a single

BH that we evolved with the same initial magnetized disk and BH mass equal to M .

The initial disk (see Fig. 6.32) is not in equilibrium around the binary as it is perturbed by the binary
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Figure 6.32: The disk α parameter and surface-density Σ profiles. Σ0 is the maximum surface density at
t = 0. Dotted magenta line is the initial data, solid lines are at decoupling, and dashed lines are at merger.
Black lines are from the “no-cooling” case, and blue lines are from the “cooling” case.

torques. This leads to spiral density waves in the disk which dissipate and heat the gas. The gas gains angular

momentum and the surface density profile moves slightly outward. Magnetic winding converts the poloidal

field into one with a large toroidal component. MRI is induced, resulting in turbulent flow. After about 20

binary orbits (∼ 4− 5 disk orbits at the pressure maximum) the MRI saturates, driving disk accretion onto

the BHBH. In the relaxed disk prior to decoupling we measure a time-averaged Maxwell-stress as in [125]

at 20M < R < 30M , and find α = 0.13 for the “no-cooling” (see Fig. 6.32) and α = 0.2 for the “cooling”

case. The magnetic-to-gas-pressure ratio 1/β ranges from 0.1 to 5 in the bulk of the disk.

Cooling influences the global disk structure. In particular, we observe matter pile-up near the inner

disk edge only with cooling (see Fig. 6.32), as has previously been found in [36, 74, 126, 81]. The binary

maintains a partial hollow in the disk (see Fig. 6.32) by exerting torques on the plasma, while the MRI-

induced effective viscosity drives matter inward. Cooling leads to smaller scale height and lower ν, which

explains the enhanced pile-up at Rin. We confirm the result in [36, 83, 126, 81] that non-negligible amounts
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Figure 6.33: Orbital plane snapshot of rest-mass density log(ρ0/ρ0,max) from the “no-cooling” simulation at
t ∼ 10000M in the relaxed disk, prior to decoupling. The inset zooms in on the region close to the BHs.

Figure 6.34: Time-averaged binary accretion rate ṀBHBH , normalized to the average value for a single BH
ṀBH , versus time. Colors have the same meaning as in Fig. 6.32. Left panel: pre-decoupling (d =const)
phase. Right panel: post-decoupling (inspiral) phase. ṀBH = 0.45n12M

2
8M⊙yr

−1 where M8 ≡ M/108M⊙

and n12 ≡ n/1012cm−3 is the initial maximum gas particle number density.
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Figure 6.35: Meridional snapshot of magnetic pressure log(PM/ρ0,max) and fluid velocity vectors at t ∼
10000M for the “no-cooling” case.

of gas are present inside the cavity.

Accretion occurs predominantly via two spiral density streams inside the cavity (see Fig. 6.33). We

find that accretion exhibits an alternating pattern by accreting primarily on one of the BHs for about half

a binary orbit. This is similar to flow features observed in [126]. The behavior has been attributed to a

gradual increase of disk-eccentricity [36], which weakens one of the two streams when the BHs pass near the

disk-apocenter and strengthens the other stream at pericenter.

Prior to decoupling, but after an initial transient phase (5000M . t . tvis(Rin)), the accretion rate

ṀBHBH settles to values comparable to those onto a single BH of mass M (see Fig. 6.34). We perform a

Fourier analysis of ṀBHBH and find that the strongest contributions arise at f ∼ 2/3Ω in both of our cases.

This is likely associated with the dominant (2,3) Lindblad resonance [36]. During the early inspiral the

inward drift of the disk edge lags behind the binary orbital decay, decreasing ṀBHBH . In contrast to the

magnetic-free case [83], the accretion streams remain present until merger at tm for the “no-cooling” case

and up until t− tm & −400M for the “cooling” case. At merger ṀBHBH decreases gradually to about 30%

of the single, quasi-stationary BH accretion rate, ṀBH (see Fig. 6.34).

The remnant BH settles down via quasi-normal mode ringing to a Kerr-like BH with mass Mf ∼ 0.95M

and dimensionless spin s = Jf/M
2
f = 0.68. In the “cooling” case the inner disk edge reaches Rin(tm) ∼ 10M
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Figure 6.36: The Poynting luminosity LEM measured at R = 100M as a function of time (blue line for
“cooling”, black line for “no-cooling”). The cooling luminosity Lcool from the “cooling” case (red line).
ṀBHc

2 = 2.58 · 1046ergs−1n12M
2
8 .

at merger, while the edge is more dispersed in the “no-cooling” case (see Fig. 6.32).

Prior to decoupling we detect persistent, magnetized, mildly relativistic (v & 0.5c) collimated outflows

in the polar regions (see Fig. 6.35) in both cases. After merger there is an increase of the velocities in the

outflow reaching Lorentz factors W . 4 for the “no-cooling” case, while the outflow in the “cooling” case

remains relatively unchanged. These properties persist throughout the postmerger evolution. After merger

the effective, turbulent viscous torque will cause the gas to refill the cavity and accrete on the merger remnant.

Thus, brightening crucially depends on the surface density at decoupling. If there is only a small pile-up and

the majority of gas lies at radii R & 40M , then a significant brightening will take tvis(R & 40M) > O(104M)

following merger. Using Eq. (6.48) we estimate tvis & 22000M (α ∼ 0.13, H/R ∼ 0.3) for the “no-cooling”

case and tvis & 6800M (α ∼ 0.27, H/R = 0.17) for the “cooling” case, respectively. We observe the

surface density profile diffusing inward, but we have not followed the evolution for this long. The Poynting

luminosity (LEM ≡
∫

−T r(EM)
t

√−gdS) across a sphere at R = 100M and the (approximate) luminosity

from disk cooling (Lcool ≡
∫

Λut
√−gd3x) are shown as functions of time in Fig. 6.36. We find a sudden

enhancement in the Poynting luminosity for the “no-cooling” case beginning at merger and growing for

. 200M . This enhancement originates from shocked gas in the immediate vicinity of the binary and escapes

mainly through the polar regions. It is absent for the “cooling” case, for which there is less gas near the

binary prior to merger. Heat generated by shocks is also removed in the cooling case, leaving less energy

available for conversion to a Poynting flux. In Fig. (6.36) we also plot the cooling luminosity for the “cooling”
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case, for which we also observe a sudden jump at merger. We find that the outward flux of kinetic energy is

much smaller in both cases. Total efficiencies ǫ ≡ L/ṀBHc2 increase to ǫ = 0.25 at merger. The Poynting

luminosity is presumably reprocessed at larger distance from the remnant. The characteristic frequencies

of the total emitted EM radiation will depend on the BH masses, disk densities and dominant cooling

mechanisms.
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Chapter 7

Summary, Discussion, and Future
Work

In this thesis, we study merging black hole binaries in gaseous environments using fully relativistic (mag-

neto)hydrodynamic simulations. This work is motivated by promise of multi-messenger astronomy, i.e.

systems which may be observed in both electromagnetic and gravitational waves. We have restricted our

attention to accretion onto equal-mass, nonspinning BH binaries, although our methods may be extended

to other binary configurations.

As a first step, we focus on the limit in which the angular momentum of the gas can be neglected. We

consider unmagnetized gas clouds which are asymptotically uniform and either at rest (BHBH Bondi accre-

tion), or moving (BHBH BHL accretion) with respect to the binary center of mass. We perform “prototype”

high-temperature (T∞ ∼ 1011 K) simulations in order to gain a qualitative understanding of the different

flow regimes characterizing such systems. In these simulations, the accretion radius Ra is placed within the

computational domain, which allows us to sample all the various regimes, studying how the luminosity and

accretion rate change when the binary separation d goes from d > Ra to d < Ra. We also performed “realis-

tic” simulations with astrophysically plausible asymptotic temperatures (T∞ = 106K) to identify observable

electromagnetic signals. For each simulation, we calculatedthe time-varying rest-mass accretion rate, as well

as the electromagnetic luminosity due to bremsstrahlung and synchrotron emission. We also derive scaling

relations for the luminosity for the realistic cases, enabling our results to be used for different asymptotic

gas parameters and BH masses. In each case, we find evidence for a time-varying electromagnetic signature

accompanying the BHBH binary merger. For our “realistic” temperature simulations, we find that during

the final inspiral from separation d = 10M to merger, there is an enhancement in the total luminosity of

∼ 1 − 2 orders of magnitude. This is followed by a sharp drop in the luminosity by a factor of ∼ 2 − 5

orders of magnitude immediately following the merger. We find that the luminosity is dominated by the

synchrotron component, and that this signature should be detectable by the proposed LSST instrument.

By solving the BHBH binary analogs of the classic Bondi and BHL accretion problems we have sought

to lay a natural and rigorous foundation for our future simulations involving BHBH mergers in gaseous

environments. Our focus here was to perform “prototype” simulations to identify the different regimes
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characterizing the gas flow in these classic scenarios and then to perform a “realistic” simulation for a

merger occuring in an astrophysically plausible gaseous setting. For the latter case we also determined the

scaling behavior of the gas dynamical parameters, emitted luminosities and characteristic frequencies so that

they could be used to apply our results to other environments.

As a next step, we consider unmagnetized disklike accretion flows in which the angular momentum of

the disk plays an important role. We exploit the approximate helical Killing symmetry to determine the

binary spacetime for widely separated BHBHs. The disk we evolve in this early inspiral spacetime relaxes

to near quasiequilibrium. Our late inspiral and merger simulations begin with such a quasistationary disk.

We then evolve the field as well as the matter. This epoch corresponds to the post disk-binary decoupling

phase, terminating after merger, but before viscosity fills in the hollow.

For each simulation, we have calculated the time-varying rest-mass accretion rate, as well as the electro-

magnetic luminosity due to bremsstrahlung and synchrotron emission. We also derive scaling relations for

the luminosity, enabling our results to be applied to a range of gas parameters and BH masses.

In each case, we find evidence for a time-varying electromagnetic signature accompanying the BHBH

binary merger. The synchrotron emission is the most easily detectable component, and we observe a steady

decline in synchrotron luminosity throughout the post-decoupling binary inspiral. This change serves as a

characteristic precursor of a binary merger, and should be detectable by the proposed WFIRST and possibly

by the LSST instrument.

It is instructive to compare the electromagnetic signatures associated with binary Bondi accretion with

the signatures from disklike accretion discussed in this paper. In the binary Bondi case, there is a steady

supply of gas accreting onto the binary at all stages of the merger. In this case, the evolution of the luminosity

is determined by the strength of shock heating near the BHs. As the separation decreases, the BHs orbit

more rapidly, and the shock-heated temperature of the gas increases. This increase leads to a luminosity

that increases throughout the inspiral, then drops precipitously following the merger as the shocks dissipate.

This scenario is quite different from the case of disklike accretion, in which binary torques create a hollow

region around the binary as well as a small amount of matter that leaks into the hollow in the form of spiral

arms. Because the torques decrease throughout the inspiral as the BH separation decreases, we find that

the accretion rate and luminosity decrease steadily over the course of our inspiral simulations.

By introducing magnetic fields into our BHBH+disk simulations, we have been able to probe the pre-

decoupling epoch of the binary inspiral. We have found that significant gas enters the cavity along a two

stream accretion flow and that the quasistationary rest-mass accretion rate is comparable to that of a single

BH+disk system. We find that following decoupling, the accretion rate is reduced, while the EM luminosities
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peak near merger due to shock heating. We have also compared simulations with and without cooling and

found significant modifications in the accretion flow. In future work, we intend to study the role of cooling in

more detail, and to incorporate more realistic cooling prescriptions. We also intend to study other precursor

(e.g. twin jets) and afterglow effects, different mass ratios, and different BH spins more thoroughly in future

work. Finally, we plan to incorporate more advanced tools for accurately modeling the electromagnetic

signatures of these systems (i.e. ray-tracing techniques).
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Appendix A

Disk initial data

Our formulation for an equilibrium stationary disk around a single Kerr BH follows closely that of [93, 94].

From the conservation of the stress-energy equation, we find

0 = T β
α;β =

1

α
√
γ

(

α
√
γTα

β
)

,β
− Γλ

αµTλ
µ (A.1)

=
1

α
√
γ

(

α
√
γρ0huαu

β
)

,β
+ P,α +

1

2
(gµν,αρ0huµuν) . (A.2)

Since we are seeking a solution for a stationary torus in Kerr spacetime for a single BH, we can now

impose time independence, axisymmetry, and no poloidal or radial motion:

∂t(. . .) = ∂φ(. . .) = 0 , (A.3)

ur = uθ = 0 . (A.4)

In Boyer-Lindquist and Kerr-Schild coordinates, these constraints imply that ur = uθ = 0.

We may now simplify Eq. (A.2) according to

0 =
h,j

h
− 1

2
u2
t (u

−2
t ),j −

Ω

1− lΩ
l,j . (A.5)

Here we have also assumed constant entropy, and we have introduced the specific angular momentum l ≡

−uφ/ut. We have also used the fact that uµuµ = −1 to show that

u−2
t = −(gtt − 2lgtφ + l2gφφ) , (A.6)

and have defined

Ω ≡ uφ/ut = (gtφ − lgφφ)/(gtt − lgtφ) . (A.7)
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We now follow [93, 94] and assume the disk has a power-law rotation dependence, whereby Ω takes the form

Ω = ηλ−q , (A.8)

where

λ2 ≡ l

Ω
= l

gtt − lgtφ

gtφ − lgφφ
. (A.9)

Combining Eq. (A.8) and Eq. (A.9), we find that

Ω = klα , (A.10)

where α ≡ q/(q − 2) and k = η−2/(q−2).

It is now straightforward to show that Eq. (A.5) is satisfied by

h(r, θ) =
ut,inf(lin)

ut(r, θ)f(l(r, θ))
, (A.11)

where f(l) = |1− klα+1|1/(α+1). A disk solution is uniquely determined for fixed Rin, l(Rin), and q.

While the solution described above applies to equilibrium disks in general Kerr spacetimes, we assume a

Schwarzschild geometry for the purposes of this study.

In the Newtonian limit, we know that l = Ωr2, so λ2 = l/Ω = r2, whereby

Ω ∝ λ−q ∝ r−q . (A.12)

Thus we can see that asymptotically,

q = 0 ⇒ Ω= const , (A.13)

q = 2 ⇒ l = const , (A.14)

q = 1.5 ⇒ Keplerian . (A.15)
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Appendix B

Derivation of the torque density
dT/dR

If we consider a four vector ~j that is not necessarily conserved, then we must generalize Eq. (4.4) to

dq

dt
= −FH + FL +

∫ √
−g∇µj

µd3x (B.1)

If we choose to set H and L to be two concentric cylinders of infinite extent, centered around the z axis and

of radius R and R+ δR respectively, we can rewrite Eq. (B.1) as

d

dt
(q(R + δR) − q(R)) = −F(R) + F(R+ δR) +

∫ √
−g∇µj

µR dR dz dφ

taking the limit δR → 0, we therefore find that

d

dR

(

dq

dt

)

=
dF
dR

+

∫ √
−g∇µj

µR dz dφ . (B.2)

We can consider the specific case where jµ = T µ
νφ

ν , and φν ≡ (∂φ)
µ = (0,−y, x, 0), so that Eq. (B.2)

becomes

d

dR

(

dJ

dt

)

≡ dTtot

dR

=
dF (J)

dR
+

∫ √
−gT µν∇µφνRdzdφ . (B.3)

We interpret the first term on the right-hand side of Eq. (B.3) as arising from the net outflow of angular

momentum carried by matter across the surfaces at R and R+ δR, while the second term is the torque due

to the gravitational field. Because we are most interested in the torque from the gravitational field of the

binary, we define

dT

dR
≡ dTtot

dR
− dF (J)

dR
=

∫ √−gT µν∇µφνR dz dφ . (B.4)
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Note that in an axisymmetric spacetime in which φν is a Killing vector field, T µν∇µφν = T µν∇(µφν) = 0,

hence dT/dR = 0 as expected.

In order to compute Eq. (B.4) numerically, it is convenient to transform the expression into Cartesian

coordinates. Note that

T µν∇µφν = T µ
ν∇µφ

ν

= T µ
ν(φ

ν
,µ + Γν

σµφ
σ)

= T µ
νφ

ν
,µ +

1

2
T µνgµν,σφ

σ

= −T µ
x y,µ + T µ

y x,µ +
1

2
T µν (−gµν,xy + gµν,yx)

= −T y
x + T x

y −
1

2
yT µνgµν,x +

1

2
xT µνgµν,y (B.5)

Inserting Eq. (B.5) into Eq. (B.4), we find

dT

dR
=

∫

R dφ dz
√−g (−T y

x + T x
y) (B.6)

+
1

2

∫

R dφ dz
√−g (−yT µνgµν,x + xT µνgµν,y) .

Eq. (B.6) is integrated numerically at a number of different radii, so that we can compute profiles of dT/dR.

B.1 Newtonian limit

We can check that Eq. (B.6) reduces to the correct expression in the Newtonian limit. If we let T 00 ≈ ρ0,

|T 0i/T 00| ≪ 1, and |T ij/T 00| ≪ 1, we find

dT

dR
≈ 1

2

∫

R dφ dz T 00(−yg00,x + xg00,y)

=
1

2

∫

R dφ dz T 00g00,φ

= −
∫

R dφ dz ρ0Φ,φ

= −2πR 〈ΣΦ,φ〉 (B.7)

where angled brackets indicate angle averaging, and Φ is the Newtonian gravitational potential. Eq. (B.7)

matches the expression given in Eq. (14) of [36].
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Appendix C

Derivation of Ṁ Expression

Consider a 3D hypersurface F given by f(t, x, y, z) = constant in a spacetime diagram (see Fig. C.1). The

intersection of F with a t = constant time slice is a 2-surface S(t). Below we will identify S(t) to be the

apparent horizon of a black hole at time t. Let L be a 3D hypersurface which is a worldtube enclosing

F . Let us further define Σt to be the 3D region on the time slice t between the surface S(t) and Ω(t), the

2D cross section of L on the time slice t. We can imagine a 4-volume V to be the region bounded by the

hypersurfaces Σt0 ,Σt0+δt, L, and F . Consider a 4-vector flux jµ with a vanishing divergence, ∇µj
µ = 0. At

a given time t, define the function q(t) according to

q(t) =

∫

Σt

jµd3Πµ (C.1)

From Gauss’s law,

0 =

∫

V

∇µj
µdV =

∫

∂V

jµd3Πµ

= q(t0 + δt)− q(t0) +

∫

F

jµd3Πµ −
∫

L

jµd3Πµ . (C.2)

To evaluate the integral on F , it is convenient to introduce a coordinate system (t, f, a, b), where a =

t +  t0∆

S(t )
t0

L L

0

0S(t +  t)∆

F F

Figure C.1: Spacetime diagram depicting the hypersurfaces relevant to calculating the mass accretion rate.
The 2D hypersurface S(t0) and S(t0+∆t) (white regions) represent BH horizons on neighboring time slices.
They are enclosed by spacelike 3D hypersurfaces Σt0 and Σt0+∆t (shaded region) on these slices.
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a(t, x, y, z) and b = b(t, x, y, z) are two other coordinates. We may write

∫

F

jµd3Πµ =
1

3!

∫

jµǫµνρσdx
νdxρdxσ

=
1

3!

∫

jf ǫftab dt ∧ da ∧ db

= −
∫

√

−g′jf dtdadb

= −
∫ √−gjµ∂µfJ dtdadb , (C.3)

where g′ is the determinant of the metric in the (t, f, a, b) coordinate system, g is the determinant in the

(t, x, y, z) coordinate system, J is the Jacobian

J =

∣

∣

∣

∣

∂(t, f, a, b)

∂(t, x, y, z)

∣

∣

∣

∣

−1

=

∣

∣

∣

∣

∂(f, a, b)

∂(x, y, z)

∣

∣

∣

∣

−1

, (C.4)

and jf = jµ∂µf follows from the usual transformation formula for a vector field between the (t, f, a, b) and

(t, x, y, z) coordinate systems. Similarly, if L is given by l(t, x, y, z) = 0, then

∫

L

jµd3Πµ = −
∫ √−gjµ∂µlJl dtdadb , (C.5)

where Jl = |∂(l, a, b)/∂(x, y, z)|−1. Taking the limit δt → 0, we obtain

dq

dt
= −FF + FL , (C.6)

where

FF = −
∫

F

√−gjµ∂µfJ dadb , (C.7)

FL = −
∫

L

√−gjµ∂µlJl dadb . (C.8)

Consider a fluid accreting onto a BH. Let F be the BH horizon world tube. At any given time t, consider

the fluid in the region Σt between the BH (apparent) horizon S(t) and a distant 2-surface Ω(t) surrounding

the BH. Let L be the 3D hypersurface formed by stacking Ω with time. The continuity equation gives

∇µ(ρ0u
µ) = 0. Setting jµ = ρ0u

µ, we have

q(t) =

∫

Σt

ρ0u
µd3Πµ =

∫

Σt

ρ∗d
3x = M0(t) (C.9)
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is the rest mass bounded by the surface Ω and the horizon, where ρ∗ =
√−g ρ0u

0. Hence we have

dM0

dt
= FL −FF . (C.10)

This equation states that the rate of change of the rest mass is equal to the amount of rest mass flowing into

Ω per unit time (FL) minus the amount of rest mass flowing into the horizon per unit time (FF ). Hence we

define the rest-mass accretion rate onto the BH according to

Ṁ ≡ FF = −
∫

F

α
√
γρ0u

µ∂µfJdθdφ , (C.11)

Here we have used the identity
√−g = α

√
γ, and choose a and b to be the spherical angular coordinates θ

and φ with the origin at the BH center.

It is apparent from the definition that in general Ṁ depends on how the spacetime is sliced near the

horizon. However, in some cases Ṁ may be time independent. Consider the cases where the fluid’s mass is

negligible compared to the BH’s mass and there exists a timelike Killing vector ξ = ∂/∂λ in the vicinity of

a BH. This Killing vector could be the time Killing vector describing a stationary BH, or a helical Killing

vector which approximates the BHBH spacetime in the inspiral phase. One might choose to measure Ṁ

using a coordinate system in which t = λ (at least locally). In this case,

Ṁ ≡ Ṁλ = −
∫

F

√−gλρ0u
fdθdφ , (C.12)

where gλ is the determinant of the spacetime metric in the (λ, f, θ, φ) coordinate system. Suppose the flow

of the fluid also achieves a stationary state near the horizon in which ∂λ(ρ0u
f) = 0 everywhere on F , i.e.

ρ0u
f = ρ0u

f (θ, φ) on F . Since ∂λgλ = 0, Ṁλ is a constant independent of the coordinate time λ. On the

other hand, in a coordinate system in which λ is not the time coordinate, we have

Ṁ = −
∫

F

√

−g′ρ0u
fdθdφ = −

∫

F

(ξt)−1√−gλρ0u
fdθdφ , (C.13)

where g′ = gλ/(ξ
t)2 is the determinant of the spacetime metric in the (t, f, θ, φ) coordinate system, and ξt

is the time component of the Killing vector ξ. Note that both gλ and ρ0u
f are still time independent on

F , but Ṁ is time dependent if ξt is time dependent. The accretion rate Ṁ is time independent only if a

gauge is chosen so that ∂tξ
t = 0 on F . Furthermore, if ξt is constant everywhere on F , then Ṁ = Ṁλ/ξ

t
h,

where ξth is the value of ξt on F . As an example, consider a stationary accretion flow onto a Kerr BH. In
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the boosted Kerr-Schild coordinates, we have ξt = γb = 1/
√

1− v2b everywhere in the spacetime, where vb

is the boost velocity. Hence we have Ṁ = Ṁλ/γb in the boosted Kerr-Schild coordinates.

We point out that in a numerical simulation, even if a Killing vector exists, the adopted gauge (i.e.

time slicing) may not correspond to the gauge in which ∂/∂t is the Killing vector. However, in some

situations there exists a gauge in which a (quasi)stationary flow is expected. Such situations include the

Bondi accretion onto a BHBH binary in the inspiring phase and the Bondi accretion onto a single BH

following the binary merger. In these situations, the mass accretion rate onto a distant, fixed surface Ω (i.e.

FL) is time independent for any gauge choices that give rise to a spacetime that is asymptotically Minkowsky.

A “well-behaved” gauge should give a FF (or the sum of two FF ’s in the BHBH case) equal to FL (when

averaged over time); otherwise, Eq. (C.10) implies that there will be an accumulation (if FF < FL) or

depletion (if FF > FL) of rest mass in the interior of Ω as a result of a pure gauge effect. In our numerical

simulations, we do not see such a gauge effect. We compute FL on spherical surfaces of various radii. We

find that after the flow reaches a (quasi)stationary state, FL is slowly changing with time in the binary

inspirling phase and is approximately time independent after merger. The computed fluxes at various radii

are also the same. Moreover, the sum of the computed fluxes at the BH horizons agree with the value FL,

indicating that our adopted puncture gauge conditions are well-behaved.
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Appendix D

Emissivities

D.1 Bremsstrahlung emissivity

In order to estimate the electromagnetic emission due to bremsstrahlung, we use the following expressions

for electron-ion, and electron-electron cooling rates given in [127]

qff = qei + qee (D.1)

qei = n2 8π

3
(αfr

2
ec) (mec

2)Fei(θ) ergs cm
−3 s−1 (D.2)

qee = n2(αf r
2
ec)(mec

2)Fee(θ) ergs cm
−3 s−1 (D.3)

Here, αf = e2/~c is the fine structure constant, re = e2/mec
2 is the classical electron radius, θ ≡ kT/mec

2,

n = ρ0/mB is the baryon number density, and

Fei(θ) =















4

(

2θ

π3

)1/2

(1 + 1.781 θ1.34) θ < 1

9θ

2π
[ln(1.123θ+ 0.48) + 1.5] θ > 1

(D.4)

Fee(θ) =























20

9π1/2
(44− 3π2)θ3/2

×(1 + 1.1θ + θ2 − 1.25 θ5/2) θ < 1

24θ(ln 1.123θ+ 1.28) θ > 1 .

(D.5)

D.2 Synchrotron emissivity

We use the estimates for synchrotron cooling rates given by [128]:

qν,s =
4πne2ν√
3cK2(1/θ)

I
( xM

sinθ

)

ergs cm−3 s−1 Hz−1 , (D.6)
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where

ν0 =
eB

2πmec
= cyclotron frequency (D.7)

xM =
2ν

3ν0θ2
. (D.8)

From [129], we get the following approximation for I(xM ).

I(xM ) = 2.561

(

1 +
1.92

x
1/3
M

+
0.9977

x
2/3
M

)

exp(−1.8899x
1/3
M ) , (D.9)

and the angle averaged version,

I ′(xM ) =
4.0505

x
1/6
M

(

1 +
0.40

x
1/4
M

+
0.5316

x
1/2
M

)

exp(−1.8899x
1/3
M ) . (D.10)

We integrate over frequency to get the total cooling rate.

Let us denote,

A = 4.0505
4πne2√

3cK2(1/(θ))
(D.11)

a1 =
2

3ν0θ2
(D.12)

a2 = 1.8899 . (D.13)

Thus, we see,

∫ ∞

0

qν,sdν =
A

a21

∫ ∞

0

x
5/6
M

(

1 +
0.4

x
1/4
M

+
0.5316

x
1/2
M

)

× exp
(

−a2x
1/3
M

)

dxM

=
3AC

a21
(D.14)

Where

C ≡ Γ(11/2)

a
11/2
2

+
0.4 Γ(19/4)

a
19/4
2

+
0.5316 Γ(4)

a42
= 2.151889 (D.15)

Thus, we find

qs =

∫ ∞

0

qν,sdν = 4.0505 C
108n2e4c√
3K2(1/θ)

θ5

βmec2
. (D.16)

103



Here we have used

P = βPM ≡ β
B2

8π
. (D.17)

As discussed in Sec. 4, we have chosen β = 10 for our simulations based on simulations of magnetized accre-

tion flows which have demonstrated that the magnetic fields do not typically reach their full equipartition

value [102]. We further assume that the hydrodynamic flow is turbulent due to the magneto-rotational

instability (MRI), causing the frozen-in field lines to be tangled, and randomly oriented [108]. This justifies

our use of the angle averaged function in Eq. (D.10). Note that for x ≪ 1, K2(x) ≈ 2/x2, so that for

sufficiently large temperatures we may approximate:

qs ≈
∫ ∞

0

qν,sdν = 4.0505 C
54n2e4c√

3

θ3

βmec2
. (D.18)
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[36] A. I. MacFadyen and M. Milosavljević. An Eccentric Circumbinary Accretion Disk and the Detection
of Binary Massive Black Holes. Astrophys. J., 672:83–93, January 2008.

[37] M. Megevand, M. Anderson, J. Frank, E. W. Hirschmann, L. Lehner, S. L. Liebling, P. M. Motl,
and D. Neilsen. Perturbed disks get shocked: Binary black hole merger effects on accretion disks.
Phys. Rev. D, 80(2):024012–+, July 2009.

[38] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt. Maximum Gravitational Recoil. Physical
Review Letters, 98(23):231102–+, June 2007.
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