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ABSTRACT

This thesis describes the generation and use of program invariants to improve

software reliability. It introduces PRECIS, a technique for automatic invari-

ant generation based on program path guided clustering. The invariants

generated by PRECIS can be directly used by programmers for regression

testing and improved code documentation. The generated invariants can also

be used as part of hardware error detectors, by checking variables key to pro-

gram output. PREAMBL, a bug localization technique, is introduced as a

way of providing increased utility to the generated invariants in diagnosing

post-release bugs.

The benefits of these uses of the generated invariants are shown through ex-

periments. The high control-flow coverage of generated invariants is demon-

strated for the Siemens benchmark suite, and higher quality is indicated

when compared with Daikon, a prior technique. Fault injection experiments

show high error detection coverage for several types of manifested errors.

Results for PREAMBL show higher scoring for localized paths than previous

approaches.
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CHAPTER 1

INTRODUCTION

Developing programs that work as intended and keeping them that way after

numerous changes are two of the most fundamental goals of software engi-

neering. Despite this, the goal of “bug-free” software remains as elusive as

ever. As software grows in both complexity and importance, from manag-

ing the national power grid to running implanted pacemakers, the ability to

validate that software works as expected is critical.

1.1 Software Development

The modern software development process is divided into roughly four parts:

design, implementation, verification, and operation and maintenance. A di-

agram showing the typical software development life cycle (SDLC) is shown

in Figure 1.1.

The design stage involves writing formal or informal specifications for how

the software is intended to work. This typically includes a functional re-

quirements document, a high-level design document, and a UI document.

Depending on the project, a specification of the behavior in a formal model-

ing language may also be written during this stage.

The following stage is implementation. In this stage the code which runs

the software is written. In the case of new software, the code may be started

from scratch. The code may also be modified from an existing codebase,

if the product is a new version of existing software. Very basic testing is

done during this stage to ensure that existing functionality does not break

(regression testing).

Once the software is feature complete the third stage, verification, begins.

During this stage the software is tested using a variety of techniques to ensure

that it behaves according to the specifications defined in the design stage.
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Verification is often the most difficult stage in terms of time and resources;

it is common for software to spend more time in verification than the first

two stages combined.

The final stage of the software development life cycle is operation and

maintenance. This stage involves the end-user’s use of the software, as well as

maintenance required to keep the software functional in the face of a changing

environment and use cases. Regression tests are also very important during

maintenance; existing functionality can fail when the execution environment

changes, such as after an operating system update.

Design 

Implementation Verification 

     Operation 
and  

     Maintenance 
 

Figure 1.1: A diagram showing a typical software development life cycle
(SDLC).

1.2 Software Verification

Of all the stages in the SDLC, verification continues to be the most time-

consuming and the most difficult. The research field of software verification

is as old as software itself. Roughly speaking, techniques can be divided

into two categories. Static techniques involve the analysis of program code,

such as in formal verification and source code analysis. Dynamic techniques

involve the analysis of a program’s runtime state, such as in unit testing,

invariant generation, and bug localization.
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Formal verification techniques analyze program source code to construct

a model of program behavior. This model can be used to verify that the

program obeys a previously defined formal specification, through a process

called model-checking. Formal verification tools have been used to ensure

functional correctness [1, 2, 3]. While formal verification tools can provide a

provable guarantee that a program adheres to a specification, they suffer from

the path-explosion problem. The path-explosion problem reflects the fact that

as programs get larger, the number of possible paths grows exponentially.

Since formal tools must represent each such path in the constructed model,

this means the time and memory requirements for analysis quickly become

untenable. Thus, even the most advanced formal model-checking tools have

considerable scalability issues.

Source code analysis is another form of static analysis. However, instead

of using program text to build a model, the program text itself is checked to

adhere to various constructs. Industry tools such as Coverity and HP Fortify

[4, 5] use source-level analysis to check for code conventions and language-

level “rules” such as: “For each open() call in a function there must be a

corresponding close() call.” Research tools such as PR-Miner have extended

that approach to automatically discover such rules and check the program for

them [6, 7, 8]. While source code analysis is considerably lighter-weight and

more efficient than model-checking tools, it is limited in its ability to verify

program correctness, since it does not construct a model of the program or

monitor its execution.

Of the dynamic techniques to software verification, manual testing is per-

haps the oldest and most basic. Manual testing involves hand writing test

cases for a program, running them on the code, and verifying that the out-

put is correct. Despite this simplicity, there are many different scopes of

manual testing. Unit testing has the smallest scope; a single function or

class is tested independently. Integration testing involves testing the inter-

face between several units linked together. System testing involves testing

the entire program or application. Manual testing has several advantages: it

is intuitive and easy to verify whether the program works correctly for the

tested cases. However, manual testing requires human effort proportional to

the amount of testing required, and it is usually impractical or impossible to

perform enough tests to verify the entire input space.

To address these concerns, automated testing is an active area of research.
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Traditional automated testing has used fuzzing, that is, random generation of

test inputs [9]. More recent work has been done in the field of concolic testing

[10, 11, 12, 13]. Concolic testing involves executing a program with a given

input, while tracking the path condition for that input. This means that

at the end of each execution a concolic tool will have a Boolean expression

which evaluates to true if and only if the input follows the same path through

all control flow as the given execution. Through multiple executions with

inversions of terms in the path condition, test cases can be generated which

cover more program functionality than fuzz testing. However, given large

programs it can still be impractical or impossible to cover all unique paths,

given their exponential growth.

Automatic invariant generation has been an important goal toward in-

creasing confidence of programs for many decades. Recent techniques, such

as Daikon and DIDUCE, observe dynamic data from program runs and infer

statistically relevant relationships [14, 15, 16]. Some recent techniques use

symbolic execution to infer invariants [17, 18].

Inevitably bugs will escape detection until after a program is released.

Automated bug localization tools use a dynamic statistical analysis of cap-

tured program state to determine where a bug likely is. Recent tools such as

CBI and HOLMES capture predicate and path information and calculate a

score representing the association of a given predicate or path with the bug

[19, 20, 21].

1.3 Software Verification in Industry

Despite the breadth and depth of research, industry practice for the verifica-

tion of program correctness generally remains limited to manual testing.

Model checking techniques are used extensively in certain safety-critical

applications, such as in the aerospace industries and for medical devices, but

widespread adoption is very low. This is due to the large cost in time and

resources required to maintain formal specifications for each program, and

because model checking techniques suffer from computational capacity issues

for even moderately sized programs due to their attempt to enumerate all

possible executions.

Several source code analysis tools have adoption in industry, such as HP
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Fortify and Coverity, though their use is generally limited to enforcing code

conventions and identifying the most obvious language misuse, as they are

not powerful enough to identify bugs in functionality.

Simple bug localization techniques have been used in production code for

decades. For example, Microsoft has integrated a crash reporter into its

operating systems since Windows XP [22]. However, modern crash reports

tend to be simplistic: they contain information such as the stack trace at

program failure, version of software, and hardware. This information is often

difficult to use to localize the root cause of a bug.

Invariant generation tools have also not seen widespread adoption in in-

dustry, as static tools do not have the scalability required, and dynamic tools

often generate spurious, low-quality invariants.

1.4 Approach

This thesis proposes an alternative paradigm of software verification that ad-

dresses many of the issues preventing existing research from gaining widespread

adoption in the software industry. Specifically, it describes and explores the

idea of combining the paradigms of static and dynamic analysis through the

capture of statically captured program path structure and dynamically in-

strumented program state. This white-box, incremental approach to software

verification works well for several reasons:

• Software usually exists in an “almost-correct” state. Rarely in the

software development process is a program so incorrect that it never

produces the correct answer. Manual testing, which is well-practiced

by virtually all software developers, makes it easy to determine whether

a program works correctly for the common case. It is the uncommon

cases, however, where most time and effort is spent to identify and fix

bugs. This means that relying a program’s typical behavior provides a

good insight into how the program should behave.

• Program text implicitly describes expectations. Formal verification of

independently defined program specifications is perhaps one of the most

ironclad ways of ensuring software works as intended under all circum-

stances. Yet industry use of formal methods is limited to very specific
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applications, such as aerospace software and medical device controllers.

In other words, circumstances where the need for reliability justifies the

very large time and resource commitment required to maintain formal

specifications. Since programs tend to behave correctly in the general

case, an alternative to a programmer defining formal specifications is to

automatically infer them from the existing program’s behavior. While

this is necessarily just an approximation to the truly desired behavior

of the program, it allows programmers to check behavior against the

common case, and to check changes in behavior between versions, with

a fraction of the resources required for formal methods.

• Program path information provides an intuitive way to isolate specific

program behavior. Programs taken as a whole are complex entities.

Model checking approaches to software verification run into scalabil-

ity issues for even modestly sized programs, due to the path-explosion

problem. However, isolating the behavior of each single program path

allows an analysis to separate when an action is performed (the condi-

tions under which the path is executed), with what the action is (the

end result of execution of that program path). These analyses can

then be recombined to provide an insight into the full behavior of the

program.

The thesis focuses on three techniques that use this idea in three subfields

of software verification: invariant generation, hardware error detection, and

bug localization. For each of these three techniques, the path information

gathered improved the dynamic analysis beyond past work. The following

subsections introduce the techniques developed in this thesis, and describe

their advantages compared to previous work.

These techniques are not a standalone answer to software verification.

Rather, they should be part of a verification strategy with techniques such as

manual testing and automatic test suite generation. However, when added,

they improve the software development process and program reliability, with

minimal extra human effort.
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1.4.1 Program Path Based Invariant Generation

PRECIS (PREdicate Clustering for Invariant Synthesis) is an invariant gen-

eration technique that uses program path information to guide the statistical

analysis of dynamic data. PRECIS generates invariants on function-level con-

ditional linear input-output relationships. Function-level relationships tend

to be more actionable, since developers generally unit test or document pro-

grams modularly at function boundaries. Further, conditional relationships

allow for the piecemeal analysis of complex functions, since rarely does a sin-

gle relationship hold for all executions of a function. These relationships tie

function inputs to outputs directly, which allows for the capture of an entire

function’s behavior for a given output using a single expression. Figure 1.2

illustrates the use of PRECIS in the software development lifecycle.

Focusing specifically on linear relationships captures interesting function

behaviors. A vast majority of functions return error codes or status values

that are constants or simply a linear combination of the inputs. For example,

errno in Unix is a global variable that is set to fixed constant values when an

error is encountered along a path in the function. Similarly, most functions

in easy or default cases return values or status codes that are linear functions

of the input (often one of the inputs itself) or are constants. Note that while

this PRECIS employs linear regression by default, it can be replaced by an

arbitrary curve fitting strategy, to capture more complex invariants.

PRECIS generates invariants on a per output (or observable) basis. It in-

struments the program to capture inputs, target outputs and path conditions.

For paths with sufficient trace data, it uses a regression strategy to infer an

invariant relating the outputs of a function to the inputs. PRECIS encodes

every path as a path predicate word. Capturing path information through

dynamic analysis ensures that the generated invariants represent true paths

in the program.

One of the primary usage requirements for inferred invariants is succinct-

ness. PRECIS achieves this through a novel clustering of the inferred in-

variants. Paths are examined as candidates for clustering with neighboring

groups. Neighboring groups are identified from the path predicate words

using a notion of distance between words. Among the neighboring groups,

those that can be represented by an inferred invariant that describe the

input-output behavior along all the paths are clustered. By clustering, we
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reduce the number of predicates in the inferred invariants capturing behav-

iors in succinct ways along those paths. The clustering process in PRECIS

enables the topological grouping of a subgraph of paths in a control flow

graph. The invariant inference is repeated for each output value of interest

in the function.

PRECIS uses static, deterministic knowledge to guide dynamic, statistical

methods. This offsets the capacity issues of the static analysis. The domain

awareness and structural knowledge from static analysis provides context and

focus to the statistical technique. The statistical method we use is agglomer-

ative clustering [23] but instead of the standard notion of nearest data points

as neighbors, we define a notion of neighborhood that agrees with actual

structure of the control flow graph. This synergistic interaction between two

solution spaces produces invariants that are simultaneously high-accuracy,

high-coverage, and easy for programmers to understand.

Design 

Implementation Verification 

     Operation 
and  

     Maintenance 
 

PRECIS Invariant 
Generation 

Invariant Use 

Figure 1.2: A diagram showing a PRECIS’s use in the SDLC.

1.4.2 Hardware error detection

For high-reliability systems, the presence of hardware faults and their poten-

tial to influence software systems can be an important concern. This thesis

describes a technique that utilizes PRECIS for invariant generation to derive

path-specific invariants at function boundaries. These invariants check the
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     Maintenance 
 

Error  
Detection 

Invariant 
Generation 

Figure 1.3: A diagram showing the generated error detectors’ use in the
SLDC.

output values of a function, and so attempt to detect any corruption in state

that happened during function execution. This corruption can be caused by

a number of reasons: transient errors in memory, defects in functional units,

and interference in communication buses, for example.

PRECIS is well-suited to generate application-level error detectors for

hardware faults. PRECIS invariants tend to be relatively succinct, and they

have a low false positive rate. Further, PRECIS invariants check equality:

this means that a corrupted state is much more likely to be caught than with

an inequality or range-based invariant.

After a program is verified to be functionally correct, invariants are gen-

erated by PRECIS to typify the correct behavior of the program. Each

invariant is then integrated into the program source as an assertion that

checks to see if a variable holds the expected value. Figure 1.3 shows the us-

age of the error detectors in the SDLC. If the observed value does not equal

the expected value, a data corruption is detected. Once the corruption is

identified, corrective steps can be taken by the system administrators, such

as restarting the system or replacing faulty hardware.

The detection overage of hardware errors is evaluated through fault injec-

tion. Experimental results show high error detection coverage (over 60% of

fail-silent violations and 90% of hangs) with a low false positive rate (under

9



2.5%) for the applications evaluated.

1.4.3 Bug localization

Design 

Implementation Verification 

     Operation 
and  

     Maintenance 
 

PREAMBL 

Figure 1.4: A diagram showing a PREAMBL’s use in the SDLC.

Invariants are typically removed from shipped production code due to ef-

ficiency concerns, but the need to catch and diagnose bugs remains. This

thesis also presents PREAMBL (PREdicate Analysis for Multi-phase Bug

Location), an integrated approach to invariant generation and statistical de-

bugging. PREAMBL uses PRECIS infrastructure for capturing program

predicate information to guide statistical debugging. It then performs a mul-

tiprocedural analysis and localize bugs to paths of variable lengths. The use

of PREAMBL in the SDLC is shown in Figure 1.4.

The result of PREAMBL is focused, relevant localization. These local-

ized post-deployment bugs on paths can be mapped to pre-release invariants

generated along that path. Together, this information provides for a more

educated and effective bug fixing experience for the developer. Experimental

results demonstrate the efficacy of the use of PRECIS for regression analy-

sis, as well as the ability of PREAMBL to zone in on relevant segments of

program paths more efficiently than the state of the art, as can be seen by

higher scores when judged by the Importance metric introduced in previous

work.
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1.5 Contributions

In summary, this thesis describes the following contributions:

• A novel invariant generation methodology. PRECIS, an invariant

generation methodology based on predicate clustering, is introduced.

The three-step process of data generation, predicate clustering, and in-

variant generation that comprises PRECIS is described. How PRECIS

handles complex program constructs is explained.

• An evaluation of PRECIS’ effectiveness in detecting hardware

errors: The application of invariants generated by PRECIS to hard-

ware error detection is described. Hardware and software implementa-

tions are outlined, and experimental results for detection coverage are

presented.

• Regression detection using PRECIS. We present a method for

integrating automatically generated invariants into program code. We

show a case study illustrating its benefit in identifying regressions, and

evaluate its effectiveness in detecting buggy versions of several bench-

mark applications.

• A bug localization methodology based on PRECIS. PREAMBL,

a bug localization technique based on program path information, is

introduced. Metrics used to score the importance of each path are

listed, and a data structure that optimizes the calculation of these

metrics is presented.

• An evaluation of PREAMBL’s effectiveness. PREAMBL is tested

by introducing bugs into various applications. PREAMBL’s ability to

localize the bugs to a particular code path is compared with other

techniques using metrics introduced in previous literature.

• Automated implementations of PRECIS and PREAMBL. The

implementations of PRECIS and PREAMBL are detailed. Important

optimizations and lessons learned are described.
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1.6 Outline

The rest of this thesis proceeds as follows:

Chapter 2 introduces PRECIS, a program path based invariant genera-

tion tool. A running example of a minimum/maximum function describes

the three-step process of invariant generation: the data generation, predicate

clustering, and invariant generation steps. The chapter describes how PRE-

CIS handles more complicated program constructs, such as loops, functions,

and pointers. In the experimental results section, PRECIS is applied to the

Siemens benchmarks. The comprehensiveness of the generated invariants

is evaluated and the invariants are compared qualitatively with Daikon, a

similar technique.

Chapter 3 describes the application of PRECIS to hardware error detec-

tion. It describes the motivation behind detecting hardware errors, then

describes a software and a hardware approach to using the invariants gener-

ated by PRECIS as part of error detectors. The error detectors are evaluated

through fault injection experiments, and error detection coverage is measured

for various types of manifested errors, such as crashes, fail-silent violations,

and hangs.

Chapter 4 describes a holistic software testing technique, PREAMBL,

based around the path predicate information used by PRECIS. The tech-

nique is twofold; it proposes the use of PRECIS for pre-release software

development such as regression testing, while performing a lighter instru-

mentation processes post-release to localize bugs to specific interprocedural

path segments and map them to relevant generated invariants. Two case

studies show examples of PREAMBL used to detect bugs. PREAMBL is

applied to several benchmark applications to evaluate its effectiveness.

Chapter 5 covers previous work related to the techniques discussed in the

thesis. The chapter is divided into three sections, each of which describes the

related work of one chapter. Section 5.1 describes prior automatic invariant

generation work and compares it with PRECIS. Section 5.2 describes previ-

ous work involving automated error detection. Finally, Section 5.3 describes

previous bug localization work and compares/contrasts it with PREAMBL.

Chapter 6 describes the implementation work of PRECIS tool. It exam-

ines the important design decisions that were made in developing the tool,

and implementation details of the various stages of the tool. Standard file

12



formats used for storing trace data and generated invariants are shown. The

fault injection and predicate capture frameworks used in Chapters 3 and 4,

respectively, are described.
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CHAPTER 2

PROGRAM PATH GUIDED INVARIANT
GENERATION

The integration of assertions into programs is a time-tested software veri-

fication practice [24]. Assertions are statements that describe an invariant

property of program execution: one that is always true at a given point in

program execution. These statements are evaluated at runtime to ensure they

always hold. The use of assertions has several advantages as a means of guar-

anteeing certain behavior during the execution of the program. Other than

their obvious benefits of testing variables to make sure they are acceptable,

assertions establish a design-by-contract system that formalizes the inputs,

intermediaries, and outputs of a system. This helps catch undesirable be-

havior caused by security exploits and serves to document code, leading to

greater programmer understanding.

However, most software written today makes very limited use of assertions;

they are typically used to check relatively trivial edge-cases such as null-

pointers or out-of-bounds array references, if they are used at all. Although

this is unfortunate, it is somewhat understandable; writing good assertions

takes developer time away from implementing new features, and is generally

given a lower priority.

Automatically inferring invariants from program behavior addresses this

issue of program verification being given a lower priority in industry, while

providing documentation, correctness, and security benefits. An argument

Figure 2.1: PRECIS flow for generating invariants through predicate
clustering.
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can be made that assertions generated from a program are only as good as

the program itself. However, most program behavior is correct by the time

extended testing begins, and a significant proportion of bugs are regressions:

broken functionality that was working in an earlier version of the code. In

addition, assertions can be inspected by an engineer to both verify correctness

and ensure intent.

This chapter introduces PRECIS, an invariant generation technique based

on program path information. A hallmark of a useful invariant generation

tool is that it generates succinct invariants and also generates as few spurious

assertions as possible. The distinctive strength of PRECIS can be attributed

to the following principles:

• First, PRECIS focuses on invariants that describe the return values of

a function as well as side effects to global variables or heap values upon

completion of a function execution. These values are referred to as

the outputs of a function. Writing invariants exclusively on outputs al-

lows for the description of an entire function’s behavior while requiring

invariants on a relatively small set of variables.

• Second, input-output relationships in a function tend to often be simple

(and often linear). Further, confidence in such inferred relationships

can be reinforced through these observed input-output relationships

recurring over the same path in the function in multiple tests in a test

suite.

• Third, PRECIS takes advantage of the path information from the con-

trol flow graph of a function to intelligently cluster invariants together.

The goal of this chapter is to show that applying the aforementioned prin-

ciples generates invariants that are valuable to the developer and succinct in

their description. Specifically, Sections 2.1-2.3 describe the steps that com-

prise PRECIS through a running example of a simple minimum/maximum

function. Section 2.4 describes how PRECIS handles more general program

constructs, such as loops, internal function calls, arrays, and pointers. Sec-

tion 2.5 evaluates the technique on the Siemens benchmarks, and compares

the generated invariants to Daikon, a similar technique.
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int min, max; //outputs

void minmax(int a, int b, int c) { //Inputs

min = a, max = a;

if (min > b) //p0

min = b;

else if (max < b ) //p1

max = b;

if (min > c) //p2

min = c;

else if (max < c) //p3

max = c;

}

Figure 2.2: An example program to find the minimum and maximum of
three integers. a, b, c are the inputs and min, max are the outputs.
Predicates p0,p1,p2, and p3 are defined for each of the branch conditions.

PRECIS Methodology Overview

Figure 2.1 illustrates the flow of PRECIS to generate invariants. It consists of

three main steps: instrumenting the target function to generate the required

dynamic trace data for the function, applying our method of path condition

(predicate) clustering on this data, and, finally, generating invariants based

on the identified clusters.

We discuss each of these steps in detail with the help of the running ex-

ample shown in Figure 2.2, which consists of a function to find the minimum

and maximum of three integers, a, b, and c. We then discuss how we han-

dle more complex program constructs such as loops, pointers, arrays, and

function calls.

2.1 Data Generation

The first step in PRECIS flow is to instrument each target function in the

program with its inputs, path conditions, and outputs that are relevant to

record as part of the function’s trace data. This instrumentation is easily

automated for any function whose source code is available, since we cur-

rently track all possible inputs, predicates (path conditions), and outputs of

a function.
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We define inputs to be the data on which the outputs of a function directly

depend. We consider the function arguments, the results of internal function

calls, global variables, and arbitrary heap accesses. In Figure 2.2, the inputs

are simply variables a, b, and c. We define outputs to refer to the after-

effects of a function. Function return values are the most obvious, but we

also consider changes to global variables and persistent heap modifications,

since these are often considered the true effects of a particular function. In

the example, the outputs are min and max, both global variables. Finally,

predicates are the conditional statements which control the path through the

program, also referred to in literature as path conditions. In other words,

knowing the values of all predicates is equivalent to knowing the path taken

in the function. Loops are handled in a different manner as described later

in Section 2.4. For the example program, we consider: (min > b), (max

< b), (min > c), and (max < c) as predicates, which we will refer to as

p0, p1, p2, and p3, respectively. Since we want to capture the behavior

of the target function, we record the specific value each input, output, and

predicate takes for each run through the function. Inputs and outputs of

basic atomic types are converted to a numerical floating point representation

before recording their values so that they can be used for linear regression,

as described in Section 2.2. Pointers, arrays, and composite data types are

handled differently, as shown later in Section 2.4.

When the program is exercised using a test case, the instrumented code

captures the input, output, and predicate values along a particular program

path. This path captures a behavior of a single path in each of the functions

in the program. Using a battery of tests, we get more data points for inputs,

outputs, and predicates. Further, a good test suite can achieve a greater

coverage of paths in the program that are exercised by these tests. Ideally,

a good test suite exercises all interesting function behaviors, exhibiting high

code coverage. In our example, the test suite may simply be 100 sets of

random values for variables a, b, and c. The end result will be a set of

behavior tuples of the form <input values,predicate values,output values>

which describes the behavior of the function over the test suite. Table 2.1

shows a sample trace data for the example program.
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Table 2.1: Sample trace data for the example program from Figure 2.2.

2.2 Predicate Clustering

The second step, predicate clustering lies at the crux of PRECIS invariant

generation. We first define some terms that describe the predicates that are

key to our inferred invariants. We then describe an algorithm to infer reliable

path-based invariants. We then demonstrate how we can use clustering to

generate succinct invariants, avoiding unnecessary predicates.

Before we describe the process of predicate clustering we must first define

some key entities:

• A predicate word is a string containing the values taken for all function

predicates during the execution of the function.

• A predicate group is the set of <input values, predicate values, out-

put values> behavior tuples in trace data that share the same predicate

word.

• An output function is a linear expression for a target function output

in terms of the inputs.

• A seed cluster is the set of behavior tuples in a predicate group that

has an associated output function that can be obtained by a successful

regression.
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2.2.1 Basic invariant generation

We first discuss our approach to inferring invariants simply from the observed

input and output values along a single path in a function. Here we apply our

intuition that program traces with the same program path through a function

have the same, often linear, expression for function outputs in terms of the

inputs.

Since we evaluate and record the value each predicate takes during run-

time, we can encode a specific program path into a predicate word. Thus,

we consider all behavior tuples in our trace data with the same predicate

word taken together as a predicate group. We then run a linear least-squares

regression on each predicate group, attempting to write each output as a

linear combination of the inputs. A regression is said to succeed (making it

a successful regression) if there is a linear function that represents an output

in terms of the inputs to the function that satisfies all the behavior tuples in

a predicate group.

For example, consider the program path in which the first if statement is

taken, thus the second is not evaluated, the third is not taken, and neither

is the fourth. This path corresponds to the predicate word p = 1X00 (since

the predicate p1 was not evaluated, we represent its value with an X). In our

sample trace data, we have four behavior tuples in this predicate group, as

shown in Table 2.1. Since we have (at least) one more tuple than we have

input variables, we can perform a linear regression to attempt to derive a

linear combination of the inputs that describes each output. For min, we

find that the coefficients to the linear combination are [0,1,0,0]; in other

words, min = b.

The seed cluster is computed for each predicate group with enough behav-

ior tuples to perform a regression. The result is a set of seed clusters, each

representing a single predicate group with some function for the output as a

linear combination of the inputs. We will refer to this function as the output

function of that cluster. At this stage, if there are multiple seed clusters

with the same output function, they are merged into a single seed cluster

containing all relevant behavior tuples.
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Algorithm 1 Generate Seed Clusters

Require: A set predicate groups, containing all predicate groups in trace data
Ensure: A set seed clusters, containing all seed clusters
{Generate seed clusters}
seed clusters := {}
for all predicate group in predicate groups do

(coeff, error) := LinReg(predicate group)
if error = 0 then
{Add new seed cluster}
new cluster := (coeff, predicate group)
seed clusters := seed clusters ∪ new cluster

end if
end for

2.2.2 Predicate clustering

After the generation of seed clusters, there can still be cases where there are

insufficient behavior tuples in our predicate group to generalize its behavior.

To help address this case, we introduce the concept of distance between pred-

icate words. We define the distance as an analogue of the Hamming distance

[23]. The distance between two predicate words is equal to the number of

predicate values by which they differ. Distance is a useful concept in re-

lation to predicates because it helps to quantify the similarity/dissimilarity

between two paths. It is our experience that program paths that are almost

the same, but only differ in a few branches, often share the same behavior

for a particular output variable. Thus a pair of predicate groups with a low

distance is much more likely to have the same output function.

We use this heuristic to identify the clusters which most likely share the

same behavior as predicate groups without enough tuples to independently

derive an output function. We attempt to merge such groups with the

seed clusters in single-link agglomerative fashion [23] starting from the least-

distance clusters. We call this process predicate clustering. In Table 2.1,

note that the predicate group 1X01 only has one tuple, which is clearly not

enough to perform a linear regression. However, since it is only 1 distance

away from 1X00, which already has a derived output function for min, we

attempt to merge the tuples.

A merge is said to be successful if a linear regression on the combination

of the existing cluster and the new predicate group is successful. In other

words, a merge is successful if the output function derived for the existing
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Algorithm 2 Predicate Clustering

Require: A set pred groups, containing all predicate groups in trace data besides
those that have been converted into seed clusters, and a set of seed clusters as
generated by Algorithm 1.

Ensure: A set pred clusters, containing all predicate clusters merged according
to behavior, a set pred groups containing all predicate groups that could not be
merged
for all pgroup in pred groups do

failed merges := {}
repeat
{Find min dist. cluster whose merge has not failed}
min dist := MinDist(pred clusters,failed merges)
{Attempt to merge cluster with predicate group}
success := attemptMerge(cluster, pgroup)
if success then

cluster := Merge(cluster, pgroup)
pred groups := pred groups− pgroup

else

failed merges := failed merges ∪ (cluster, pgroup)
end if

until pred clusters− failed merges is empty
or success

end for

cluster matches all tuples for the predicate group. A successful merge creates

a cluster that contains both the behavior tuples in the existing cluster as well

as those in the predicate group being merged.

Predicate clustering algorithm

Compute the distance between each unclustered predicate group and all the

predicate clusters. For a particular predicate group, rank the clusters by

distance and test the predicate group with the first cluster for a successful

merge. If it succeeds, then merge the clusters. If unsuccessful, the predicate

group will be tested against the next-closest cluster. In the example above,

predicate groups 1X01 and 1X00 are successfully merged and the resulting

output function for the cluster is min = b. This iterative process continues

until all predicate groups that follow the same output function as any cluster

are successfully merged.

The end result after predicate clustering is a set of clusters, each likely

containing multiple predicate groups, each of which expresses a different out-
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put function of the program. Certain predicate groups may fail regression,

either because the output is a nonlinear function of the inputs, or because

it could not be merged with a seed cluster and the cluster does not have

enough tuples for an independent regression. These predicate groups do not

belong to any cluster, and thus no invariants will be generated to describe

their behavior.

2.3 Invariant Generation

In the final step of PRECIS flow, we generate invariants for clusters which

have output functions. Since by the end of clustering all predicate groups

present in the trace data that share the same output function are merged,

this gives us a complete summary of the conditions under which a particular

output behavior of the function occurs.

For example, the following invariant is generated for the sample trace data

from Table 2.1:

(p ∈ {1X01, 1X00})⇒ (min = b).

The antecedent of the invariant, p ∈ {1X01, 1X00}, describes the set of

predicate words that the invariant covers. If the program path taken during a

particular function execution corresponds the predicate word 1X01 or 1X00,

then the consequent of the invariant specifies that the output min must take

on the value of the input b. If the predicate word is neither of the two, the

invariant does not put any constraint on the output value.

If we convert these invariants back into a symbolic form corresponding

to function variables, we often see that our method eliminates irrelevant

predicates to capture a function’s deeper meaning. Consider the predicate

word in our example 1X01. Symbolically, it refers to program runs where:

#4(min > b) ∧ ¬#8(min > c) ∧#10(max < c)

The number in front of a statement indicates the line in program code at

which it should be evaluated. Likewise, the predicate word 1X00 corresponds

to program runs where:

#4(min > b) ∧ ¬#8(min > c) ∧ ¬#10(max < c)
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Since both predicates are in the same cluster, we can conclude that the

last predicate, corresponding to ¬#10(max < c) is irrelevant, since its value

does not affect the output function. Thus, from the predicate words we can

conclude that #4(min > b) ∧ ¬#8(min > c) alone is the necessary and

sufficient condition for the output min to be assigned to b at the end of

the function. This matches our intuition that if min (which is initially a) is

greater than b at line 3, and min (which is now the value of b) is less than

c at line 9, then b must be the overall minimum of a, b, and c. The same

process allows us to make similar conclusions about the cases where a and c

are the minimum and maximum of the three input variables.

2.3.1 Extending the method to multiple output variables

Until now, we have described the predicate clustering process for a single

output. In reality, most functions have multiple outputs, each with different

behavior that depends on different predicates. Thus, to generate assertions

for the complete program, we repeat the previously described process for

all outputs. We then apply the invariant generation technique described in

step 3 to each set of generated clusters, and combine the resulting assertions

generated to express the behavior of the program for all outputs.

2.4 Handling Complex Program Constructs and Types

The example in Figure 2.2 is a simple program only containing if/else

conditions and assignments to local or global variables of basic types. How-

ever, programs usually contain more complex control flow constructs such as

while/for loops, internal function calls as well as pointer, array and user-

defined data types. We briefly describe how we handle each of these in the

PRECIS flow.

2.4.1 Function calls

Since an internal function call, such as rand() in Figure 2.3, represents

behavior that we consider outside the scope of invariants covering a target

function, we use outputs from the function call as inputs for the purpose of

23



int min, max; //outputs

void max_rand(){

//function inputs: N/A

int i = 0;

while (i < 100) {

//inputs: i, orig(L1.i), L1.rand().ret

int rand_num = rand() % 1000;

if ( rand > max ) //p0

max = rand_num;

i++;

//outputs: L1.i, L1.max

}

//loop outputs = inputs: L1.i, L1.max

max = max + 1;

//function output: max

}

Figure 2.3: A function that uses a loop to generate 100 random numbers
between 1 and 1000, selects the largest among them, and returns that
number plus one.

invariant generation. The most straightforward output is the return value,

which we represent in Figure 2.3 X as L1.rand().ret. We also consider

pointer values passed as arguments to the called function, since modifications

to those can also influence the output of the target function. These outputs

are recorded as new target function inputs at the call site.

2.4.2 Loops and functions

Consider Figure 2.3. Our high-level approach to handling such functions is

to write an invariant for the desired output variable directly before the loop

starts, write another invariant within the scope of the loop that captures the

changes in state that can happen during a single iteration, and finally define

the value of the variables at the termination of a loop as new inputs to the

enclosing block (which can be a function or enclosing loop).

In our example, this first means processing the contents of the loop. We

refer to the instrumented inputs in this case as: L1 pre.i, L1.i, L1.max, and

L1.rand().ret. These variables refer to the value of i before the loop starts,

the value of i at the start of the current iteration, the current maximum
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random value seen, and the random number generated by the iteration’s call

to rand(), respectively. Our two outputs in this case are L1.max and L1.i,

because they are the variables that persist across iterations. We have a single

predicate p0, which is the conditional that checks if the generated random

number is bigger than the current max.

When we run this block through the PRECIS flow, the result will be

invariants that express the relationship between loop iterations. For example,

one invariant will indicate that if L1.rand().ret is greater than max, then

max is assigned to that value. Another will express the increment-by-one

behavior of i on each iteration. Together these invariants will attempt to

capture the properties that hold across loop iterations.

To generate meaningful invariants for function outputs that depend on

operations in the loop, we define new inputs corresponding to each of the

outputs of the loop; in this case L1.post.i and L1 post.max. These new

inputs are recorded as part of the larger function instrumentation process

immediately after exiting from the loop. We use these as a basis to write

invariants for our function outputs. For example, at the end of max rand,

max is assigned to the largest random number generated in the loop plus one.

PRECIS represents that by generating the assertion max == L1 post.max +

1.

Our method for handling loops takes inspiration from the formal process

of writing loop invariants. While we do not rigorously prove our generated

invariants correct and complete, we rely on the same basic premise that if

an output is computed correctly until the start of the loop, likewise across

iterations, and is handled correctly from the exit of the loop to the end of

the program, then the variable is correct overall.

2.4.3 Arrays and pointers

Reading an element of an array is considered similar to a function call in

that we define a new input to hold the value read. Reads from a memory

location referenced by a pointer are handled similarly.

A write to an array element or to a memory location referenced by a pointer

is a persistent memory modification and hence is considered a function out-

put (Section 2.1). However, the value at such a memory location might be
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Table 2.2: Summary of benchmark programs and PRECIS invariant
coverage.

Program Lines of Code Functions Invariants
Average
Invariant
Coverage

gzip 7477 141 1281 49.9%

replace 413 33 48 77.15%

schedule 564 24 104 67.25%

schedule2 323 22 97 78.0%

space 6199 165 1583 91.4%

totinfo 565 21 161 84.3%

BST.java 168 1 12 73%

changed by another pointer later in the function, which would lead to an

incorrect value being recorded as being output. This problem is known as

the aliasing problem. In order to avoid this, we only store the location in

memory of the address that was modified at the point in the program where

the write is performed. We read the value at the that address only at the

end of the target function to ensure we record the true output value.

2.4.4 User-defined types

For structs in C programs as well as classes in object-oriented languages,

each field or member variable of basic types is used to define an input or

output appropriately.

2.5 Experimental Results

We evaluate the PRECIS methodology through experiments on the Siemens

benchmarks [25]. All experiments were carried out on a machine with Intel

Core i5 750 with 16 GB RAM. Time taken for data generation and clustering

was under 10 seconds for each experiment.

We use invariant coverage to denote the number of program paths covered

by an invariant. We evaluate the generated invariants w.r.t. this metric.

Table 2.2 summarizes the programs used for experiments along with the

average invariant coverage of PRECIS invariants for these programs.
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Table 2.3: Summary of results after running PRECIS on functions from
replace and schedule. Columns 3 shows the percentage of covered paths
(P) while column 4 shows the number of invariants generated (N). †For
loops, the number of paths inside the body of the loop are considered.
Total number of paths would be higher than that shown in Column 3.

Function/Loop Output P(%) N Comments
variable

esc result 100 5 Complete cov-
erage for both
outputs, no
clustering for
result

(’replace.c’) *i 100 2
while loop† lj 100† 2

Complete
coverage and
clustering for
4/7 outputs

in makepat j 100 2
(’replace.c’) junk 100 3

getres 100 3
done 100 2
escjunk 100 2
lastj 100 2

while loop† escjunk 100† 2 Complete
coverage and
clustering for
3/5 outputs, no
clustering for *j

in dodash junk 100 5
(’replace.c’) k 100 2

*i 0 0
*j 100 5

del ele d list 100 1
Complete
coverage for 4/6
outputs,
clustering for all
outputs

(’schedule.c’) d list->first 100 2
d list->last 100 2
d list->mem count 100 1
d ele->next->prev 50 1
a ele->prev->next 50 1

2.5.1 Siemens benchmarks

Table 2.3 summarizes the results obtained by running PRECIS on some func-

tions from Siemens benchmarks ‘replace.c’ and ‘schedule.c’. Results for

remaining functions are not shown here due to space constraints.

In the majority of cases, the invariants are found to cover all paths, i.e.,

completely describe the output behavior in terms of inputs. For some outputs

such as d ele->next->prev, the output is only defined in some of the paths.

Therefore the generated invariants do not have complete invariant coverage.

Table 2.4 shows the invariants generated for output *i in the esc function

from replace.c. At a high level, esc processes escape sequences. It takes

two arguments: a string, char* s, and an index passed by reference, int*

i. If the character at the index *i reflects the start of an escape sequence
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Table 2.4: Example invariants that PRECIS generates for output *i of the
function esc from ‘replace.c’.

Output Variable Invariant
(s[orig(*i)] != ESCAPE) || (s[orig(*i)] == ESCAPE &&

s[orig(*i) + 1] == ENDSTR) ⇒ (*i == orig(*i))

*i s[orig(*i)] == ESCAPE && s[orig(*i) + 1] != ENDSTR

&& s[orig(*i) + 1] != ’n’ && s[orig(*i) + 1] ==

’t’) || (s[orig(*i)] == ESCAPE && s[orig(*i) + 1]

!= ENDSTR && s[orig(*i) + 1] != ’n’ && s[orig(*i)

+ 1] != ’t’) || s[orig(*i)] == ESCAPE && s[orig(*i)

+ 1] != ENDSTR && s[orig(*i) + 1] == ’n’) ⇒ (*i ==

orig(*i) + 1)

s[orig(*i)] == ESCAPE && s[orig(*i) + 1] != ENDSTR &&

s[orig(*i) + 1] != ’n’ && s[orig(*i) + 1] == ’t’) ⇒
(result == TAB)

(s[orig(*i)] != ESCAPE) ⇒ (result == s[orig(*i)])

result (s[orig(*i)] == ESCAPE && s[orig(*i) + 1] != ENDSTR

&& s[orig(*i) + 1] != ’n’ && s[orig(*i) + 1] != ’t’)

⇒ (result == s[orig(*i)+1])

(s[orig(*i)] == ESCAPE && s[orig(*i) + 1] != ENDSTR

&& s[orig(*i) + 1] == ’n’ ) ⇒ (result == NEWLINE)

(s[orig(*i)] == ESCAPE && s[orig(*i) + 1] == ENDSTR)

⇒ (result == ESCAPE)

d ele->next->prev (!(!d list || !d ele) && (d ele->next)) ⇒
(d ele->next->prev == d ele->prev)

(either \n, \t, or \0), then the function parses the sequence. At the end of

the function, *i+1 refers to the character after the just processed character

or sequence.

Two invariants are generated for *i: one that describes executions in which

*i does not change, and the other covering executions where *i is incre-

mented by one. An example of clustering is the disjunction of the two cases

in which *i does not change: either the character indexed by *i is not an

escape character or it is, but the subsequent character is invalid. The same

process also allows PRECIS to identify and combine all paths that cause *i

to increment.

2.5.2 Comparison with Daikon

We now compare the invariants generated by PRECIS and Daikon [14] for

Siemens benchmarks ‘replace.c’ and ‘schedule.c’.

Since PRECIS invariants express outputs as a function of inputs, we com-

pare them to the function postconditions inferred by Daikon for the same
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outputs. It is possible that one PRECIS invariant represents multiple Daikon

invariants and vice versa. Therefore we ranked the collection of invariants

for each output as a whole. For objective comparison, we define four ranks

to evaluate the quality of the invariants:

• Rank 0: Spurious invariants that are true in the given trace data but

do not hold in the program in general are assigned Rank 0.

• Rank 1: These invariants provide useful information about outputs,

but do not express the outputs as exact functions of other variables.

• Rank 2: Rank 2 invariants express output as an exact function of

inputs. However, the functions hold only on a subset of program paths.

• Rank 3: These invariants express the output function completely i.e.

along all possible paths.

Figure 2.4 shows the percentage of total invariants belonging to each of

the described ranks for PRECIS and Daikon. Daikon generates some (13%)

spurious invariants, while PRECIS generates none. All the invariants gener-

ated by PRECIS belong to Ranks 2 and 3. In some cases, Daikon is found

to generalize a PRECIS invariant of Rank 2 or 3 into a Rank 1 invariant.

Figure 2.4: Percentage of total invariants belonging to each rank inferred
by PRECIS (left) and Daikon (right).
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CHAPTER 3

APPLICATION OF INVARIANTS TO
HARDWARE ERROR DETECTION

This chapter presents a technique for generating hardware error detectors

for C and C++ programs based the invariants generated by PRECIS. The

detectors identify data and control errors in an application. There are sev-

eral possible faults that could cause these errors: cosmic ray strikes, pro-

cess defects, and mechanical device malfunction are examples. In each case,

program state is corrupted from the correct value due to a hardware mal-

function. In particular, these detectors identify two manifestations of these

faults: data errors and control errors [26]. Data errors cause a divergence

in data values from the error-free program. Control errors represent an in-

correct path through the control flow graph (CFG) of a program. Detecting

these errors allows corrective measures to be taken and reduces the chance

of irrecoverable errors in application state.

The rest of the chapter is structured as follows: Section 3.1 discusses the

motivation behind detecting hardware errors using invariants. Section 3.2

provides a high-level overview of the way PRECIS invariants are used to con-

struct error detectors. Sections 3.3 and 3.4 provide details on a software and

a hardware implementation of the error detectors, respectively. Section 3.5

provides experimental results describing the fault injection methodology and

provides data on error coverage, the rate of false positives, overhead, and the

relationship between CFG coverage and error detection coverage.

3.1 Motivation

Traditional hardware-based techniques like ECC in memory have limited use

in detecting errors that manifest at the software level for several reasons.

First, an error that manifests in software can be caused by a malfunction

in any of several hardware components, for example: functional units in the
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CPU, cache memory, main memory, hard disks, and the buses and links that

interconnect them. A single, software-level approach is considerably less com-

plex than integrating error correction schemes for each of these components.

Further, a software-based approach allows the selective use of error detectors

on only those applications and application subcomponents where reliability

is a concern; those for which reliability is not of high importance can run on

the same hardware without the overhead of error detectors.

In addition, a software-level approach has the potential to provide much

higher error coverage. ECC and other parity-check codes are designed to

only detect a certain number of bit-flips from the correct value. In contrast,

the error detectors proposed in this thesis check for exact values, and thus

have a much higher likelihood of detecting an error.

Replication techniques [27] have also been used for software-level checking

of hardware errors. The replication causes an unreasonably high overhead

if faithfully implemented for every line of code. In cases where the replica-

tion is limited to certain program points, the coverage is consequently low.

These replication techniques are also not selective with their detection; they

frequently detect errors that are not catastrophic in nature [28]. Static pro-

gram or model analysis techniques suffer from computational capacity issues

due to their attempt to enumerate all possible executions. Dynamic statis-

tical techniques are computationally efficient, and have the benefit of being

able to reason statistically about variables whose inherent static relationship

is very complex. However, they frequently lack context and produce large

volumes of information, including irrelevant or unimportant inferences.

Prior invariant generation based on dynamic techniques such as [29, 14, 15]

generate invariants between variables based on certain templates by observ-

ing program traces. Invariants generated in this manner often include spuri-

ous behavior; the derived relationships may hold for the observed data but

not the program in general. This is because many statistically correlated,

but actually noncausal behaviors are captured. This lack of focus results in

incorrect data values as well as incidentally inferred control information.

Static techniques for error detection [1, 3] attempt to infer invariants by

analyzing the source code. These techniques generate formally correct invari-

ants. However, due to the path explosion issues in software, such techniques

are likely to suffer from computational capacity problems.
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3.2 Approach

In this thesis, we use PRECIS (PREdicate Clustering for Invariant Synthesis)

[30] to derive the core relationships checked by our detectors. PRECIS is an

invariant generation technique that uses program path information to guide

the statistical analysis of dynamic data. The generated invariants are on a

per output, per path basis. These invariants are then used as error detectors

to ensure program state remains correct throughout execution.

To generate invariants with PRECIS, we instrument the program to cap-

ture inputs, target outputs and path conditions (which are captured as pred-

icates). The program is then run through a training phase, generating trace

data representing normal behavior of the program. For paths with suffi-

cient trace data, we use a regression strategy to infer an invariant relating

the outputs of a function to the inputs. Similar paths are then clustered

together, leading to general, high-coverage invariants. Capturing path in-

formation through dynamic analysis ensures that the generated invariants

represent true, feasible paths in the program.

We evaluate the generated detectors through fault injection experiments

that simulate the effects of transient errors, e.g. flipping the bits, on the

data states of applications. The data states, which are the injection targets

of fault injection, are all local and global variables used during the execution

of the target applications. After each fault is injected to the target variable,

the behavior of the target applications will be observed and classified into

one of four categories of errors: crashes, hangs, a fail-silent violation (FSV),

or not manifested. Crashes include all abnormal program terminations, such

as segmentation faults. Hangs are errors which cause a program to never

terminate. FSVs represent an incorrect output of the program. An error is

not manifested if it does not cause an abnormal termination or an incorrect

output, and is not detected.

In the tested applications, our detectors cover an average of 23% of injected

crashes. They cover 61% of fail-silent violations and silent data corruptions.

For those applications with significant number of hangs, our detectors cover

95%. The performance overhead generated by our technique depends on

the extent of checking, and whether the implementation is in software or

hardware. On average for software, it is about 100%. We provide a possi-

ble hardware implementation to decrease overhead, but do not evaluate its
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performance characteristics.

Another important advantage of using PRECIS is the extremely low rate

of false positives in the detection (less than 2.5% in the tested applications).

Detectors that are very broad in scope, like variable value based, or interval

based detectors, suffer from a high false positive rate [29, 14, 15]. In our

case, we are able to generate more focused detectors, since we generate in-

variants for a single program path. This would normally present the problem

of “too much focus,” causing lower error coverage per detector. However, we

circumvent this problem by using clustering, which increases the scope of the

invariant from a single concrete path to a cluster of similar paths. Our invari-

ants are able to have a negligible false positive rate without compromising

much on scope.

Using our methodology we also study the relationship between the control

flow graph coverage of an invariant and corresponding error coverage. The

CFG coverage of an invariant corresponds to the percentage of CFG paths

that when executed, trigger the invariant. An invariant is triggered when the

antecedent condition evaluates to true. We show that invariants with high

CFG coverage tend to also have high error coverage. This can be used as a

heuristic for the selective inclusion of invariants in the deployed set.

3.3 Software Implementation

This subsection describes the process through which the invariants generated

are integrated into the target application code to support runtime error de-

tection. It first describes the process at a high level then illustrates it with

an example.

Recall that PRECIS generates invariants on input-output relationships.

This means that the function exit points are a natural place to put our checks.

Since our checks are of the form “antecedent” implies “consequent,” we can

represent the checks in two steps. Since the expression in the consequent is

only binding if the antecedent is true, then we can put the condition in the

antecedent in an if statement. In this case, the consequent can be checked

through an assert statement in the body of the if. For readability, we

generate a new checking function for each original function in the program,

and call it <F> check, where <F> is the original function’s name. The
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checking function is called at all exit points in the original function.

int min, max; //outputs

void minmax (int a, int b, int c) { //inputs

min = a, max = a;

int in0=a, in1=b, in2=c;

int p0,p1,p2,p3;

int out0,out1;

if (p0 = (min > b))

min = b;

else if (p1 = (max < b))

max = b;

if (p2 = (min > c))

min = c;

else if (p3 = (max > c))

max = c;

out0 = min, out1 = max;

minmax_check(in0, in1, in2, p0, p1, p2, p3, out0, out1);

}

void minmax_check(int in0, int in1, int p0, int p1, int p2,

int p3, int out0, int out1){

if (p0 == 0 && p2 == 0) {

assert(out0 == in0);

} else if (p0 == 1 && p2 == 0) {

assert(out0 == in1);

} else if (p2 == 1) {

assert(out0 == in2);

}

//Similar structure for out1

}

Figure 3.1: An instrumented and self-checking version of minmax. The
minmax check function serves as the function’s error detector. The
assertion structure for out1 is not shown for brevity but is of the same
format as out0.
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To further illustrate this procedure, we continue the minmax example in-

troduced in [30]. A self-checking version of minmax is shown in Figure 3.1.

During the instrumentation phase, the values of the in (PRECIS inputs), p

(predicates), and out (output) variables during each execution are appended

to a text file in comma-separated format. The “in” variables will be eval-

uated when they are introduced to the function, the “p” variables will be

evaluated with their corresponding predicate, and the “out” variables will

be evaluated at the function exit(s). As the program is run through a test

suite or regular execution, this will build training data which can later be

used for the predicate clustering process.

Once the trace data is fed into the predicate clustering tool, we can derive

three invariants to describe the output min:

• (p0 = 0 ∧ p2 = 0)⇒ (out0 = in0)

• (p0 = 1 ∧ p2 = 0)⇒ (out0 = in1)

• (p2 = 1)⇒ (out0 = in2)

To integrate these invariants into the code as assertions, we perform a two-

step process. First, we define a function minmax check, which is responsible

for verifying that these invariants hold at runtime. One way of representing

these checks is an assert statement inside an if statement. This corre-

sponds intuitively to the format of the invariants generated: the antecedent

represents the “if” path condition under which the invariant holds, and the

consequent is the output value that is being “asserted” to be true. Figure

3.1 shows this integration into a C program for output out0, which corre-

sponds logically to the function output min.

Second, we insert function calls to the checking function at all function

exits. In Figure 2.2, the check call is inserted at the only exit point (at the

end of the function).

3.4 Hardware Implementation

The following section provides an alternate implementation of the derived

error detectors: one which introduces additional hardware in the form of

a coprocessor to provide checking functionality. While we use the software
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Table 3.1: An example Instrumentation ROM.

Program Counter [32b] Predicate [1b] Predicate Number [4b]

0x6a45b320 1 9

0x3485ba53 0 12

implementation described in Subsection 3.3 for the rest of the thesis, we also

propose the hardware implementation as a means of reducing time and space

overheads for performance-critical applications.
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Figure 3.2: A high-level architecture showing the proposed hardware
implementation of the error detectors.

In this section we propose a hardware-based architecture of the error de-

tectors in order to reduce overhead in performance-critical systems focused

on high reliability. The design is based on the Reliability and Security Engine

(RSE) framework described in [31]. This design has not been implemented,

but serves as a proof-of-concept for applications where performance is of the

highest importance.

Specifically, we propose a invariant checking coprocessor that takes signals

from the main processor and uses them to check the invariants in parallel

with regular execution. A high-level diagram of the architecture is shown in

Figure 3.2.

The proposed architecture is general, but with the shown ROMs loaded

with application-specific values. During compilation, the PRECIS inputs and

predicates are identified. The Program Counter (PC) values representing the

location in machine code that a given input or predicate is computed is saved.

Each mapping from a PC to the corresponding input or predicate number is

stored in the Instrumentation ROM, as shown in Table 3.1.

36



Table 3.2: An example Invariant ROM.

PC [32b]
Predicate

Word [16b]
Input0

Coeff [32b]
...

Input15
Coeff [32b]

0x00126a7bc 0x0000 0 ... 1

0x00126a7bc 0x0001 1 ... 0

0xff162ab4 0x3F26 1 ... 5

During program execution, the instrumentation ROM will allow the in-

variant checking processor to identify when an input or predicate is being

computed. If there is an entry corresponding to the current PC, the write

enable (WE) flag will be set for the register file corresponding to that entry

(either the Input Reg or Predicate Reg). This will cause the relevant value

(Commit Out for inputs and brValue for predicates) to be saved to the regis-

ter file. In the example shown in Table 3.1, when the PC is 0x6145b320, the

Commit Out value would be saved to Input Register 9. When the current

PC cannot be found in the table, no value is saved to either register file.

While the Instrumentation ROM stores the location of inputs and predi-

cates, the Invariant ROM stores the location of outputs and the generated

invariants that describe them. Similarly to inputs and predicates, during

program compilation the compiler will save the PC at which each output

is computed. Invariants are then generated using the standard PRECIS

software-level flow. These invariants are then integrated into the Invariant

ROM.

An example invariant ROM is shown in Table 3.2. An invariant is evaluated

when the current PC corresponds to an output invariant stored in the table,

and the predicate word (the contents of the Predicate Register) corresponds

to a predicate word entry stored for that output. For example, for the output

PC 0x00126a7bc and the predicate word 0x0000, the invariant (out = in15)

will be evaluated. This is done by multiplying each stored input with the

corresponding Input Coefficient. The resulting products are then summed

and compared with the observed output value, which is the current value at

the Commit Out wire. If they are not the same, an invariant violation is

detected.

The proposed architecture is for the invariant checking phase, and does

not support generation. This is because we envision the invariant genera-

tion process to be done once per application, before widespread deployment.

37



Thus, performance is not as critical during that phase. The Instrumentation

ROM and Invariant ROM tables can be generated once and loaded onto sev-

eral systems. Once loaded, the Invariant Checking Processor can be used to

provide error detection in real time.

3.4.1 Language support

The instrumentation process described was designed for C and C++, but it

can be easily extended to Object-Oriented Languages such as Java and C#.

In both cases, the instrumentation process is considerably simpler because it

does not need to handle pointer-based memory modification; rather, objects

are treated the same way as structs are treated, and print all of their sub-

attributes as additional outputs.

Data Generation in the PRECIS flow simply involves compiling the instru-

mented source file and running the established test suite on it. The result

will be a file in CSV (Comma Separated Value) format which contains the

input, predicate, and output values for a particular execution on each row.

3.5 Experimental Results

This section describes the evaluation of the invariant generation and inte-

gration methods described earlier in the thesis. We first provide a brief

description of the experimental setup, and an overview of the tool which we

base our fault injection framework on, Fjalar [32], . We then provide exper-

imental results for error detection coverage: of the total number of errors

of a given type (crash, fail-silent violation, etc.) induced in the application,

the percentage that the generated invariants detect before the error is man-

ifested. This is followed by a discussion of the false positive rate for the

detector, and figures for the overhead of the technique. Finally, an empir-

ical relationship between an assertion’s control-flow coverage and its fault

coverage is explored.
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Table 3.3: Breakdown of total number of fault injections and frequency of
each error type encountered.

Source File
Total

Injections
FSVs Crashes Hangs

Not
Manifested

replace.c 3894 359 1281 8 2246

schedule.c 1407 284 93 84 946

schedule2.c 2824 683 16 40 2085

tot info.c 2926 760 686 0 1480

3.5.1 Experimental setup

We evaluate our method using four applications from the well-known Siemens

benchmarks [25]. Specifically, we use replace.c, a program for regular ex-

pression string replacement, tot info.c, a statistics calculation program,

schedule.c, a scheduling program for tasks of different priorities, and

schedule2.c, a different implementation of the same functionality as

schedule.c.

For each target application, we first generate invariants using PRECIS, as

described in Chapter 2. We use the first 50% of test executions as train-

ing data. We then integrate these invariants into the target applications as

assertions. To measure error coverage, we injected between 2000 and 5000

single-bit errors, one per run, into the checked and unchecked versions of the

application as described in Subsections B and C. A summary of the fault

injection campaign is shown in Table 3.3.

3.5.2 Fault injection framework

We developed a custom fault-injection framework to simulate the effect of

source-level faults on program execution. It is based on Fjalar [32], a tool

developed for binary instrumentation of applications for use with the Daikon

invariant generation engine [14]. Fjalar is itself based on Valgrind [33], an

instrumentation framework that allows for memory analysis of running pro-

grams.

At a high level, the framework is used by generating a tuple (Program

Point, Tag, Variable) specifying when during program execution a target

variable is to be injected. Specifically, Program Point can be the start of

any basic block in the program, Tag is specific to a single execution through
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the program point, and Variable specifies a random source-level variable for

injection. This variable can be a local, global, or formal parameter, and its

value can logically be stored either on the stack, heap, or in static memory.

However, the fault we simulate could happen elsewhere, such as when the

variable is loaded into a register or during computation. When the specified

program point is reached, the target variable is corrupted according to a

predetermined fault model.

Doing fault injection at the source-level allows us to gain insight into

source-level concepts such as which program variables are highly correlated

with certain types of failures. In addition, it allows us to easily reproduce the

same source level fault on different application binaries. This is especially

useful in providing a comparison between binaries with and without the error

detector integrated.

3.5.3 Fault Model

We use fault injection to simulate the effects of transient errors, represented

by single-bit flips on the target variables. The targeted variables can be

any stack variables (not necessarily just those on the top frame), globals, or

heap data pointed to by these variables. To measure the extent to which

the generated assertions detect errors, we first execute the program without

fault injection. The frequency of execution of each program point is captured

and used to determine a set of random injection points, weighted by their

relative frequency of execution, and a random variable valid during each of

those points to be corrupted. For each generated tuple (Program Point, Tag,

Variable), we execute the program twice again, injecting the given fault.

The first injection is unchecked version – the program is executed without

the error detection integrated. The resulting type of error (whether crash,

hang, FSV, or not manifested), is then recorded. The second injection is

on the checked version, with the error detection. If an invariant is triggered

during execution, the error is considered detected.
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Table 3.4: Generated invariant statistics.

Source File
# of Functions

or Loops
# of

Outputs

Avg. # of
Predicates per

Output
replace.c 34 44 2.41

schedule.c 24 82 1.68

schedule2.c 22 90 1.24

tot info.c 21 131 2.00
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Figure 3.3: Crash, FSV, and total error coverage.

3.5.4 Data Fault Coverage

A primary measure of the effectiveness of our method is the proportion of data

errors the generated assertions can detect. To this end, we inject a number

of data faults into checked and unchecked versions of each target application

and record the types of errors manifested. The goal is to catch the errors with

our generated assertions before they can propagate to more serious errors.

Specifically, we evaluate error detection coverage for the following classes of

errors:

• Crashes are the result of faults that cause program execution to end

prematurely, such as through a segmentation fault or permissions vio-

lation.
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• Hangs are faults that cause a program to never finish execution, through

corruption of a loop condition or some other control flow subversion.

• Fail-Silent Violations, or FSVs, results from faults that do not cause

a program to exit irregularly, but manifest through a difference in pro-

gram output from the correct value.

• Non-manifested faults are faults that corrupt some program state

but which do not ultimately cause program output to be any different

from a correct execution.

Statistics for the generated invariants are shown in Table 3.4, and the re-

sulting error coverage is shown in Figure 3.3. The results show that the error

coverage for Fail-silent Violations is relatively high – over 60% in three of the

four applications tested. We found that this is a strong positive result for the

method; FSVs are generally the most insidious type of program misbehavior,

since they often are not immediately apparent to the users of a system and

thus can accumulate over time. The higher rate of detection of FSVs shows

the method’s strength in identifying hardware errors that might otherwise

go undetected.

In contrast, crash coverage for the tested applications is generally low:

for the majority of applications tested the coverage was less than 20%. In

practice we found that this was because the corrupted programs often failed

even before the first assertion was reached. Although this result is not ideal, it

is acceptable; since crashes are often easily identified by a system’s users and

administrator, corrective measures for errors manifesting in crashes would

likely be taken anyway.

We also find that the error detectors caught an average of 48% of faults

that ultimately did not manifest in the unchecked version of the program.

Even though such faults do not cause errors in execution, identifying them

may still be helpful to system administrators. For example, identifying the

presence of faults may help identify problematic hardware on a certain system

before it fails entirely.

Finally, we found statistically significant results for hang-causing faults

for two of the tested applications: schedule and schedule2. For both ap-

plications, the hang coverage was relatively high, over 90%. This indicates

that the generated detectors were effective in identifying faults that caused
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Table 3.5: Time taken to execute the target applications with and without
the error detection integrated.

Source File
Original Time

(s)
Self-checking Time

(s)
Overhead

Factor
replace.c 1.155 4.751 4.113

schedule.c 7.279 8.222 1.130

schedule2.c 9.021 9.932 1.101

Table 3.6: False positive rate for target applications.

Source File % False Positives
replace.c 2.1 %
schedule.c 2.0 %
schedule2.c 1.8 %
tot info.c 1.4 %

stalled execution. Thus, they may be useful in maintaining system uptime

by automatically restarting the system once the error is detected.

In particular, we found that replace.c had considerably different results

than the rest of the tested applications. Both the relative frequency of man-

ifested errors and the error coverage values did not match those of the other

three applications. We theorize this is because of the highly data-intensive

nature of replace. As a string replacement algorithm, any errors in the

state representing text data are likely to manifest as fail-silent violations,

since such errors do not generally subvert control flow. However, PRECIS

does not typically generate invariants on entire arrays, since it generally only

instruments the first element of each array. This explains the lower FSV

coverage encountered. We found crash coverage was higher than the average

mainly because data corruption was less likely to cause an immediate crash

before the error detectors were reached.

3.5.5 False positives

A potential downside to any dynamic technique such as PRECIS is the gen-

eration of spurious invariants: properties which may hold for the training set

but do not for the program in general. We define the invariant generation

false positive rate for each application as the number of spurious invariants

divided by the total number of generated invariants. The false positive rates
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for the target applications are shown in Table 3.6.

3.5.6 Overhead

Since the error detectors are integrated into the application source code,

they have overhead in terms of code size, memory usage, and performance.

Table 3.5 shows the percentage increase in these metrics for the three of the

target applications. Figure 3.4 shows the distribution of this overhead in

instrumented, non-instrumented, and checking functions.
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Figure 3.4: The breakdown of exclusive time spent in various functions in
original and error-detecting versions of each target application. (a) and (b)
show the distribution for replace, (c) and (d) for schedule, and (e) and
(f) show the distribution for schedule2.

The CPU overhead varies considerably between applications. Among the

applications tested, replace.c proved to require the largest increase in exe-
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cution time. This is understandable when the location of the detector logic is

considered. Since replace tends to have complex loop structures with mul-

tiple nested loops and control flow inside these loops, the assertion-checking

code tends to be more complex and add a significant number of instructions

to the most frequently executed regions of code. In contrast, schedule.c

and schedule2.c have very different implementations, but both have rela-

tively simple inner loops. This means the detectors do not add significant

overhead.
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Figure 3.5: Crash, FSV, and total c overage as path coverage is increased.

3.5.7 Path coverage as a means to predict fault coverage

As discussed earlier in the thesis, the assertions generated through our tech-

nique are path specific. This means that it is possible to ascertain their path

coverage: the proportion of program paths in which the invariants take ef-

fect. In terms of the instrumented code, this is equivalent to the proportion

of program paths for which the assert statement will be evaluated for a
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particular output. Assertions with high coverage will cover a large propor-

tion of the program paths in a function, and the opposite for low-coverage

assertions. If path coverage correlates with fault coverage, a possible advan-

tage to our technique would be to qualitatively judge a detector for fault

coverage without time-consuming fault injection experiments. To obtain the

degree of correlation for our target applications, we designed an experiment

to measure the degree to which fault coverage varies if we control for path

coverage.

Specifically, we created three versions of replace.c. The first, version

is identical to the fully checked version used elsewhere in this section. It

has high path coverage: 94.4%. We modified this file to create a medium-

coverage version with approximately 50% path coverage, and another with

15% path coverage. We then injected faults into each of them, and recorded

the crash coverage, FSV coverage, and total fault coverage for each. The

results are shown in Figure 3.5.

Figure 3.5 shows a clear correlation between path coverage and error cov-

erage. With 15% path coverage, replace-low detects slightly over 25% of

manifested errors. In contrast, replace-high detects over 45% of errors.

Intuitively, this correlation makes sense. If an assertion checks a higher per-

centage of paths, it is more likely to catch an error.

3.6 Chapter Summary

This chapter describes a novel technique to derive function-level invariants

and integrate them into applications as error detectors. The invariants that

comprise the error detectors exhibit high specificity, as seen through the

discussion on tightness.

Experimental fault injections show that the generated detectors have high

error detection coverage for fail-silent violations (FSVs) and hangs. Fur-

thermore, they have a low false positive rate for the applications tested. In

addition, the path-specificity of the generated detectors allows for an easy

gauge of the expected error detection coverage; experiments show that high

path coverage assertions tend to have high error coverage. This is useful in

evaluating error detectors without setting up a costly and/or time-consuming

fault injection framework.
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CHAPTER 4

APPLYING PRECIS FOR BUG
LOCALIZATION AND REGRESSION

DETECTION

Previous chapters have introduced PRECIS as a technique for automatic in-

variant generation. PRECIS uses static program path information guided

statistical analysis to generate invariants. These invariants are computation-

ally inexpensive and capture meaningful relationships between path predi-

cates and outputs of a function. Section 2.5 showed PRECIS invariants to

be demonstrably more valuable than other invariant generation techniques

[14, 17, 15] in terms of expressiveness, coverage and scalability.

In this chapter, we present two novel, significant applications for PRECIS

invariants during different phases of the software development life cycle – (a)

for regression testing and (b) during bug localization. We call the umbrella

technology driving the application of PRECIS predicates and invariants as

PREAMBL (PREdicate Analysis for Multi-phase Bug Location).

PREAMBL uses the invariants generated by PRECIS to locate bugs in

the regression testing phase during development, and the predicates as well

as invariants of PRECIS for bug localization in the post deployment phase.

PREAMBL for Regression Testing

Regression testing involves determining if program behavior has changed be-

tween versions. The goal is to identify regressions, i.e., program functionality

that was correct in a previous version and incorrect in a current version. Re-

gression testing is often done by creating a set of test cases and expected

outputs which cover the expected behavior of the program [34, 35]. These

test cases are then run whenever the program has changed. In practice, how-

ever, maintaining and updating a comprehensive test set is highly time and

labor intensive [35, 36].

With PREAMBL, we introduce the idea of using invariants for regres-

sion testing. Invariants summarize key relationships and functionality of the
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program. They can be thought of as detailed specifications of the program

intent. While each test can exercise only a single program execution, each

invariant can correspond to a set of executions. Hence satisfaction of an

invariant in successive versions of a program is a more comprehensive check

than traditional testing. Additionally, in regressions, tests would capture

input/output equivalence between versions. In contrast, invariants provide a

behavioral or functional check. Invariants for regression testing are intended

to complement, not replace traditional regression test suites in any way.

However, the tradeoff with using invariants for regression testing is that un-

like tests, they do not port easily across versions. We describe a methodology

to apply PRECIS invariants for regression testing in Figure 4.1. The princi-

ple we use is that invariants from a previous version (n) should be satisfied,

i.e. hold true in its next version (n+1). Hence, porting of invariants is only

relevant between two successive versions. For such a pair of versions, invari-

ants from version n undergo a check for whether they are admissible in n+1.

Each invariant generated by PRECIS expresses a function output as a linear

combination of function inputs, predicated on some program paths. Every

PRECIS invariant has a reference source code, from which it was inferred.

If this reference source code is unchanged in version n+1, the invariant can

be used. We can detect this case automatically in PREAMBL. If there are

name changes to input/output variables or predicates in a reference source

code, but the functionality is intended to be retained, then annotations can

be provided by the programmer. Such annotations are very specific and quick

in PREAMBL. In the case that the output computation changes in n+1, but

the control flow structure remains the same as n, the PRECIS invariant can

be used to detect the regression. In the case that the control flow structure

of the reference code changes, the invariant will not be admissible for version

n+1.

If an admissible invariant fails, then it can mean that a regression has been

detected. Alternately, it can mean that a bug from version n was fixed in ver-

sion n+1. The programmer can inspect the invariant to judge this, and then

regenerate it for version n+2 using the corrected n+1 version. If an invariant

is not admissible in n+1, it can be regenerated from the changed source code

in n+1, for use in n+2. It should be noted that the unsoundness of PRE-

CIS invariants does not affect its application to regression testing, since the

faithfulness between two successive versions is being checked, not absolute
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correctness of these invariants. We present a case study demonstrating the

use of PREAMBL in regression testing in Section 4.4.

PRECIS invariants are very aptly suited for regression testing. PRECIS

generates invariants independently at the function level. Hence, it only re-

quires source code for individual functions in the case of limited access. Also,

a user has the option to selectively generate invariants only for functions of

interest. This is an inherently scalable usage model. In contrast to dynamic

techniques that generate inequalities or range based invariants, PRECIS gen-

erates strict equalities, that are obviously more specific and accurate. Since

invariants are generated at function interfaces, they are more easily trans-

ferred between program versions.

PREAMBL for Bug Localization

Bug localization attempts to answer a simple question: given a program mis-

behavior (bug), which lines of code cause it? Identifying the cause of a bug

in program code is often a time-consuming part of debugging, so several au-

tomatic techniques have been proposed to give developers information about

locations in code highly correlated to the buggy behavior [19, 21, 20].

Assertion checks are typically removed from a program when it is released,

due to the overhead caused by those checks. Thus, instead of integrating

assertions into release code, PREAMBL performs a lightweight instrumen-

tation of program branch points.

Our vision of PREAMBL for post-deployment bug localization and anal-

ysis is shown in Figure 4.2. In the case of a failure, the sequence of branch

points leading to the crash is used to decipher the program path that resulted

in the crash. We describe a statistical analysis that identifies which program

subpaths are most highly correlated with failure. The statistical analysis

takes into account the proportion of total failures occur on that path and

the percentage of executions through that path that result in failure. Our

analysis uses a path frequency tree to identify the maximum importance sub-

paths. Hence, we are able to determine subpaths of varying lengths. Highly

correlated subpaths can be presented to developers directly to aid in debug-

ging. This assists in localizing the bug in a smaller, more relevant region,

than searching through the entire path during debug. A failing path can be
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Figure 4.1: PREAMBL: Automated regression testing.

associated with the corresponding PRECIS invariant(s) that summarized it

in the pre-deployment phase. From the invariants, the developer will have

information about the inputs, outputs and variables defined along that path.

This provides more information than is normally available during the debug-

ging phase. Since PRECIS invariants summarize behavior along a path, they

can greatly enhance program understanding, especially for maintenance of

legacy code or for a programmer dealing with an unfamiliar code base. In

addition, examining why a buggy invariant passed or a bug free one failed

can reveal insights about the errors in the program.

The scalability of PREAMBL is not a major concern, since it is based on

a dynamic, statistical methodology which does not perform any exhaustive

analysis. Also, the PRECIS invariant generation is only within a function,

making it easy to scale. Hence, our results are presented at a function level

for regression testing and bug localization.

To summarize, this chapter makes the following contributions:

• Regression detection using invariants. We present a method for in-

tegrating automatically generated invariants into program code (Sec-
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tion 4.1). We show a case study illustrating its benefit in identifying

regressions (Subsection 4.4.1).

• Subpath to invariant association. We present a method for mapping

program subpaths identified by bug localization to automatically gen-

erated invariants (Section 4.2.4). We show that this information can be

used to identify the root cause of a bug more effectively than existing

approaches (Subsection 4.4.2).

• Inter-procedural path-based bug localization. We present a novel bug

localization technique that captures inter-procedural program paths

(Section 4.2), and demonstrate its ability to localize bugs that exist-

ing path-based techniques cannot (Subsection 4.4.2). We evaluate its

effectiveness in localizing bugs in several open-source applications (Sec-

tion 4.5.4).

• Extension and automation of PRECIS. We present the framework for

automating the PRECIS tool, as well as its extensions to generic C/C++
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constructs (Section 4.1).

4.1 Regression Testing

Automatically generated invariants provide a compact way of representing

the behavior of a function or program. Whereas a single test case checks the

behavior of a program for a single point in the input space, a PRECIS invari-

ant validates the output for all input values following a particular program

path. This means PRECIS invariants can much more compactly express a

large set of program behavior. If an invariant generated for an earlier version

of the program fails on a new version, then we have detected a regression.

However, unlike test cases, invariants are not inherently portable between

program versions. Variables are added and removed, control structure is

altered, and code is shifted. Therefore, a mapping has to be made, where

possible, between the semantics of the original invariant expression and the

those used in the new version. For an invariant to be admissible for a new

version of a program, all predicates, inputs, and outputs referenced in that

invariant must have a mapping.

In practice, most predicates do not change in a new version of a program.

We automatically map such predicates to the corresponding old-version pred-

icates using a string literal match. A map is created between the matching

strings that are closest in position in the old and new source files.

At times, however, the expression of a predicate is changed between ver-

sions. In this case, PRECIS relies on annotations given by the programmer

to describe the intent behind the change. If the change in the predicate ex-

pression is not intended to change the meaning of a particular branch point,

the programmer can annotate the predicate as being equivalent to a given

predicate in an earlier version. One example of this might be prefixing a

branch expression with a null pointer check to solve a null dereferencing bug.

This will create a mapping between predicates, even if their constituent ex-

pressions are different. If the programmer intends to change the behavior of

the predicate, then no annotation would be necessary, and invariants using

that predicate would be dropped.

A variable name change may need a programmer annotation depending

on the type of variable. If the variable is an intermediate variable (not an
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input or output as defined by PRECIS), it does not need a mapping because

it will not appear directly in generated invariants. For input and output

variables, a mapping similar to that for predicates is created. The current

implementation PRECIS requires programmers to explicitly denote input or

output variables which have changed. However, in practice, this can be done

automatically using refactoring tools built into most IDEs. For example

Visual Studio and Eclipse both support a variable renaming operation that

renames all references to a declared variable. This can be extended to update

the mapping maintained by PRECIS.

Overall, we describe the three cases that can result from mapping an in-

variant, depending on the degree of programmer effort required for them to

be admissible in a new version:

• Case 1: invariants can be mapped between two versions fully automat-

ically. This is the case if all predicates can be mapped automatically,

and no input or output variables change names.

• Case 2: invariants require some programmer effort to be valid in the

new versions. This may be due to an annotation required for a predi-

cate, or an input or output variable name change.

• Case 3: invariants cannot be mapped between versions, due to funda-

mental code changes. For example, if a predicate or variable referred to

in the original invariant is removed altogether from the program, then

no valid mapping for the invariant can be created.

We explore the frequency of each of these cases and the resulting coverage

in Section 4.5.

4.2 Bug Localization

While invariants are often effective in identifying bugs during software de-

velopment, they are usually disabled for release to end-users due to their

execution overhead. Rather than evaluating full-form invariants as in PRE-

CIS, PREAMBL supports the conditional instrumentation of predicates in

released applications to localize bugs. PREAMBL then analyzes the captured

program path data to localize bugs to certain subpaths in the application.

53



Once localized, these bugs are associated with invariants generated by PRE-

CIS. This gives the developer improved context to diagnose and fix bugs.

The following section provides detail on the methodology of the approach.

4.2.1 Capturing path data

PREAMBL captures path profiles by instrumenting control flow branch points

(if statements, case statements, etc.) as predicates, using the same criteria

as PRECIS. Thus, predicates correspond to nodes in the control flow graph,

and the value of the predicate represents the direction through the graph.

During program execution, the value of each predicate is recorded as the cor-

responding branch is executed. Taken together for a program run, a sequence

of predicates and their values represents the path taken through the program.

In this thesis, we will use the format: (p0 = v0) ⇒ ... ⇒ (pn−1 = vn−1) to

indicate a program path that takes the p0 branch if v0 = 1 and does not if

v0 = 0, then evaluates a number of other predicates, and finally evaluates the

pn−1 branch to be the value vn−1. Each such sequence is marked as Succeeded

or Failed, depending on the status of the given execution.

To quantitatively score paths, PREAMBL uses the algorithm originally

proposed by [19] and also used by [21]. In this algorithm, we collect four

measurements for each path p:

• So(p): The number of successful runs in which the path p was observed.

• Fo(p): The number of failed runs in which the path p was observed.

• Se(p): The number of successful runs in which the path p was executed.

• Fe(p): The number of failed runs in which the path p was executed.

A path is considered executed if all of its constituent predicates were eval-

uated to their specified value. It is observed if the first predicate in the path

was evaluated, whether or not the result was the one corresponding to the

start of the path. Using these measures and F , the total number of failed

executions, we calculate four scores to quantitatively judge to what degree a

path is likely the cause of a bug.

Sensitivity(p) =
log(Fe(p))

log(F )
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Context(p) =
Fo(p)

Fo(p) + So(p)

Increase(p) =
Fe(p)

Fe(p) + Se(p)
− Context(p)

Importance(p) =
2

1
Increase(p)

+ 1
Sensitivity(p)

At a high level, Sensitivity(p) for some path p assigns a score between 0

and 1 depending on the proportion of failures when p was executed relative

to the number of total failures. Increase(p) for some path p measures the

proportion of executions of p that were associated with a failure, corrected

by the proportion of failures on all subpaths of p with one fewer edge.

The goal of PREAMBL is to identify program paths p which are executed

in a large proportion of all failures (Sensitivity(p)) and when executed re-

sult in failure much often then when they are observed and not executed

(Increase(p)). We balance both of these criteria through the Importance

metric, by finding paths that maximize the harmonic mean of Sensitivity(p)

and Increase(p).

4.2.2 Building the path frequency tree

In order to efficiently generate variable-length paths, PREAMBL must be

able to quickly determine So(p), Fo(p), Se(p), and Fe(p) values for any path.

To do this, it generates a path frequency tree for each observed predicate.

Each path frequency tree Tpi is a data structure that holds the number of

times a path starting with some predicate pi is executed in both failed runs,

Fe(p), and succeeded runs, Se(p).

Under the root node for the tree is a node for each observed value for

pi. In general, each node in the tree represents the value of single predicate

(pk = vk) in a program path. The parent of the node is the predicate value

that immediately preceded the node in the path. Each child represents a

predicate value executed directly after the current one. As we read each

executed path from the path trace file, we increment counters for Se(p) and

Fe(p) on each node as we traverse the tree for the given path. In addition,

we increment a tree-level counter for either So(p) or Fo(p), depending on

whether the execution was a success or failure. The end result for each
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predicate frequency tree Tpi after processing all paths is final counts on each

node for Se(p) and Fe(p) for the path starting at pi and ending on that node,

and counts for So(p) and Fo(p) for paths starting with pi.

To lookup these values for a path (px = vx) ⇒ (py = vy) ⇒ ... ⇒ (pz =

vz), PREAMBL would first begin by finding the path frequency tree for px.

We would then traverse the tree, starting from the child of the root node

px = vx, to the child node py = vy, and continue traversing the tree until

we reached the node corresponding to pz = vz. The measures for Se(p)

and Fe(p) stored at this node would indicate how many times the path was

executed in successful and failed runs, respectively. We can use these values

and So(p) and Fo(p) stored at the root node to calculate Increase, Sensitivity,

and Importance for the path.

Generating the path frequency tree has a computational complexity of

O(n × l2), where n is the number of paths captured and l is the maximum

length of these paths. In practice, PREAMBL takes less than a minute to

analyze all tested applications.

4.2.3 Generating high-importance subpaths

Once a path frequency tree is generated for each predicate, we traverse the

tree searching for the maximal-Importance paths. Specifically, for each node

we calculate Increase(p). Nodes corresponding to paths with Increase <

0 are immediately discarded. Others are added to a priority queue which

ranks paths by their Importance score. This process continues until all path

frequency trees are fully analyzed. At this point, the top results can be

queried from the priority queue. The worst-case efficiency of this process is

O(n log(n)), where n is the number of distinct paths captured.

4.2.4 Mapping bugs to invariants

The top-scoring paths will likely tell a developer where a bug is in program

code but not necessarily what is going wrong. Thus, PREAMBL links this

localization information with the invariants generated by PRECIS. These

invariants summarize what the expected output behavior is, and so allow

the developer to understand what code is computing more succinctly than
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re-reading the program code. Furthermore, since the generated invariants

are path-specific, only those specific to the failing path are shown. If the

invariants capture undesirable behavior, having the behavior summarized in

the form of an invariant may make it easier for the developer to identify

a problem with implementation. If the invariant appears correct, it can

be checked by the developer by reproducing failed program runs. Since it is

possible that the original test suite did not cover the failing path, re-checking

invariants specifically for failing runs may identify which variable is violating

expected behavior.

4.2.5 User-driven debugging

Previous bug localization work has usually focused on sending reports after

program crashes. Crashes are an important set of bugs, and are well-suited

for automatic localization because they are easy to automatically detect.

However, many bugs lie in other misbehavior, such as incorrect output. In

practice, these types of bugs are more difficult to programmatically detect,

so PREAMBL implements user-driven debugging to allow program end-users

identify misbehaving executions and submit bug reports containing path data

labeled for both buggy and successful executions. This allows applications

with a large set of motivated but possibly non-technical users to aid in de-

bugging, and allows them to contribute directly to fixing a bug that affects

themselves.

In PREAMBL, user-driven debugging works by encapsulating a command-

line program in a script. This script first executes the program with path

instrumentation enabled. After the program completes, the user is prompted

as to whether the execution was successful or buggy. Depending on the user’s

answer, the path captured for the execution is marked as succeeded or failed.

A number of such labeled paths can be generated by a single user and sent

as part of a bug report. Multiple users having the same issue can combine

their path traces for further improvement in localization.
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4.3 Implementation

A high-level flow of the methodology discussed in this thesis is shown in

Figure 4.3.

We instrument our programs to capture inputs and outputs for PRECIS.

The instrumentation environment uses Fjalar [32], a tool based on Valgrind

[33], initially developed to support invariant generation in DAIKON. We

extend Fjalar to handle pointers, loops, and loops. In order to capture values

of predicates, we perform source to source transformations. We consider

only path conditionals as predicates in this work. For every if-else and case

statement, we substitute the statement content with function calls that log

the value of the if-statement. If a path is taken during a program execution,

the predicate corresponding to that path thus gets recorded.

An important feature of a truly automated invariant generation engine is

automatic integration of the generated invariants into program code. With-

out this, programmers would be required to examine each generated invariant

and manually add a check for it. This is especially true for invariants tar-

geting regressions; a set of invariants comprehensive enough to detect most

regressions would necessarily be verbose.

To extend PRECIS to automatically detect regressions, we define a machine-

readable format for generated invariants. For every output, the generated in-

variants specify how the output can be expressed as a linear combination of
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inputs. Although we derive linear relationships in our implementation, it is

possible to derive quadratic/cubic relationships as well. This is orthogonal to

the method itself. The invariant file is read into the Fjalar tool. If during the

execution of a program, an invariant fails, the failing invariant is reported,

as is the stack trace that caused the failure. This is more information than

simply providing binary information about a program crashing or not. An

example for the type of information that can be retrieved using PRECIS is

shown in Section 4.4.1.

In order to capture the path profiles for bug localization, we use a similar

framework for capturing predicates. This is more lightweight, since we do

not need to capture inputs and outputs. Instead of executing the application

program inside Fjalar, we add a function call from the branches that records

if a path was taken or not. Hence, the format of the captured predicates is

the same, but the overhead required to run the bug localization is much less

than PRECIS.

4.4 Case Studies

We explain the benefits to our approach using two case studies; one for

each phase of the software lifecycle: development and release. To show

PREAMBL’s benefit to software in active development, we provide a case

study of a hypothetical scientific computing application. We give an exam-

ple of a possible regression that might occur during development. We show

that PREAMBL is effective in detecting the regression, and provides useful

data to the developer as to its root cause. We also show the effectiveness

of PREAMBL on post-release software by showing how it localizes a post-

release bug and associates it with generated invariants.

4.4.1 Regression Detection

Figure 4.4 shows an implementation of the function convert units in a

hypothetical scientific computing application. The intended behavior is sim-

ple: the function is passed three arguments, value, which is the measured

value, src, an enumeration which represents the passed value’s unit of mea-

surement, and tgt, which is the unit of measurement to be converted to.
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int convert_units(int val, Unit src, Unit tgt){

int result = val;

if (src == YD && tgt == IN) { //p0

result *= 36;

//Overflow check:

if (val != result/36) { //p1

result = -1;

}

} else {

result = -1;

}

return result;

}

Figure 4.4: A unit conversion function that might be part of a scientific
computing application. This first, correct implementation is the basis for
automatically generated invariants by PRECIS.

The returned value is the input value converted to the corresponding value

in the target unit of measurement. The function has checks in place to catch

the case of integer overflow, and to catch unsupported conversions. In both

cases, the function returns −1, which is considered an invalid value.

The function convert units is tested thoroughly, and is released in the

first version of the application. At this point, PRECIS is run on the appli-

cation, and the following invariants are captured for convert units:

(p0 = 1 ∧ p1 = 0)⇒ (result = 36× val)

(p0 = 1 ∧ p1 = 1)⇒ (result = −1)

(p0 = 0 ∧ p1 = X)⇒ (result = −1)

These invariants represent the derived functional specifications for convert units.

Any future changes to the function will be judged against this baseline.

Let us suppose the developer is now working on the next version of the

application. The developer wants to make the code more generic. Rather

than hard-coding 36 as the conversion ratio between yards and inches, the

developer defines it as a preprocessor macro and uses this definition in all

relevant conversion code. This new version is shown in Figure 4.5. Unbe-

knownst to the developer, the ratio YD TO IN has been defined incorrectly as

35.
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#define YD_TO_IN 35

int convert_units(int val, Unit src, Unit tgt){

int result = val;

if (src == YD && tgt == IN) { //p0

result *= YD_TO_IN;

//Overflow check:

if (val == result/YD_TO_IN) { //p1

result = -1;

}

} else {

result = -1;

}

return result;

}

Figure 4.5: A second version of the unit conversion function. In attempting
to make the function more generic, the developer has introduced a bug by
defining the conversion ratio incorrectly.

When the developer runs the test suite, the second and third invariants

will not trigger, as the behavior under those circumstances has not changed.

However, the first invariant will trigger, as when the first if statement is

taken and the second is not, the result is not 36 × val. This quickly alerts

the developer to the bug in the code. More importantly, unlike a simple

comparison of output values for the application, the failed assertion also tells

the developer specifically which function output (in this case convert unit’s

result is problematic, but under what conditions (a yard to inch conversion

with no overflow) it is failing. This helps the developer quickly and effectively

isolate the bug.
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4.4.2 User-driven bug localization

int convert_units(int val, Unit src, Unit tgt){

int result = val;

if (src == YD && tgt == IN) { //p0

result *= YD_TO_IN;

//Overflow check:

if (val == result/YD_TO_IN) { //p1

result = -1;

}

} else {

result = -1;

}

return result;

}

void handle_input(){

...

if (task == UNIT_CONVERSION){ //p2

long in_val = input();

long out_val =

convert_units(in_val, in_u, out_u);

if (result != -1) { //p3

printf("%ld %s", out_val, str(out_u));

} else {

printf("Could not convert\n");

}

}

...

}

Figure 4.6: Two functions, convert units and handle input. One
functionality of handle input is to convert a specified value between two
units of measurement. However, there is a mismatch in implementation:
handle input passes a long but convert units expects an int. Under
certain circumstances, this may cause an overflow where the converted
value is not correct.
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Path So(p) Fo(p) Se(p) Fe(p) Inc(p) Sens(p) Imp(p)

(p2 = 1)⇒ (p0 = 1)⇒ (p1 = 0) 424 40 64 40 0.298 1.000 0.460

(p2 = 1)⇒ (p0 = 1) 424 40 71 40 0.274 1.000 0.430

(p2 = 1) 424 40 80 40 0.247 1.000 0.396

(p0 = 1)⇒ (p1 = 0) 475 40 426 40 0.008 1.000 0.0162

(p1 = 0) 452 40 426 40 0.005 1.000 0.009

(p0 = 1) 475 40 452 40 0.004 1.000 0.007

(c) Ranking of derived program paths

Figure 4.7: Example of the analysis done by PREAMBL on the code
snippet shown in Figure 4.6. (a) shows the constructed path frequency tree
for an example test suite. Predicates not explicitly defined in Figure 4.6 are
not shown. In (b) the paths that are candidates for localization are colored
red. (c) shows the metrics used in calculating the Importance(p) of each
candidate path.

We also show how PREAMBL helps in debugging released applications

through an example. Consider a user of the same simple open-source scientific

computing application discussed in Section 4.4.1, who notices an intermittent

bug which is affecting the results. This user does not know how to program

and is not at all familiar with the codebase, so diagnosing the issue is difficult.

However, the user is interested in helping the developers identify the bug, and

so enables PREAMBL path instrumentation on the application.

Once path instrumentation is enabled, the user continues using the appli-

cation normally. At the end of each execution, the user labels the execution

as buggy or normal, depending on whether the bug manifested. By reproduc-

ing the bug several times, the user builds two path data files: one containing
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buggy path traces and one containing normal path traces. Once the user feels

the bug has been reproduced a sufficient number of times, the user submits

a bug report, sending both files to the developer for further analysis.

Unknown to the developer at the time, the bug the user is encountering

is due to an occasional integer overflow in the same unit conversion function

discussed in Section 4.4.1, shown in Figure 4.6. The developer has now

fixed the function so it uses the correct conversion ratio. However, a newly

constructed function, handle input() passes a long, rather than an int

for the value to be converted. If the value is large enough, and on certain

architectures where long and int are not represented by the same number

of bits, this can cause an overflow. In other words, the value held by val will

not be the same numeric value that was held in in val.

Once the developer receives the bug report, the developer automatically

localizes the bug by running PREAMBL on the data. In the following section,

we will show how PREAMBL is able to localize the bug to the interaction

between the handle input and convert units functions.

Building the path tree

The first step in PREAMBL is to construct a path tree that stores the fre-

quency of each executed path in both successful and failed executions. To do

this, PREAMBL reads the path trace files and increments the corresponding

path frequency tree nodes for each path it sees. An abridged version of the

path tree is shown in Figure 4.7(a).

Once the path frequency tree is constructed, the path derivation process

starts. Starting from length-1 paths, PREAMBL traverses the tree for nodes

with increasing values for Increase(p) as described in Section 4.2. The

paths represented by these nodes, depicted in Figure 4.7(b) and listed in

Figure 4.7(c), represent the paths most highly correlated with the bug. In

this case, we can see that the highest ranking path is (p2 = 1)⇒ (p0 = 1)⇒
(p1 = 0). This accurately matches the observation that the bug manifests

when convert units is called from within the if statement p2 and a valid

non-overflowing conversion is performed.
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Table 4.1: A brief description of each application tested.

Application
Lines of

Code
Buggy

Versions
Description

replace 564 7 Performs pattern match-
ing and substitutions on
strings.

schedule 412 9 Schedules tasks based on
priority.

schedule2 323 9 Alternate implementa-
tion of schedule.

tot info 565 7 Computes statistics
given input data.

space 6199 8 Interprets an Array Defi-
nition Language.

gzip 7447 7 Compression / decom-
pression program.

Associating paths with invariants

In order to further help the developer identify what is the problem in code

rather than simply where it is, PREAMBL automatically associates the local-

ized path with invariants previously generated for that path. In this example,

an invariant generated for convert units() is:

(p0 = 1 ∧ p1 = 0)⇒ (result == 36× result).

Since this invariant describes the behavior of result on the path that

the bug was localized to, it is associated with the bug and presented to the

developer. Thus, PREAMBL presents both the localized path for the bug

and the corresponding expected behavior to the developer. In this case,

the developer may immediately notice the type mismatch between the long

passed to convert units and the int type used.

4.5 Experimental Results

The experiments in this thesis are focused on answering the following ques-

tions about PREAMBL:

• What is the quality of invariants generated by PRECIS?
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• What proportion of regressions can PREAMBL detect?

• How effective is the bug localization technique used in PREAMBL in

localizing bugs?

4.5.1 SIR applications

To judge the effectiveness of PREAMBL in localizing bugs, we test it on

several applications in the Software-artifact Infrastructure Repository (SIR)

[37]: a set of applications from the Siemens suite [25] and space [38]. We use

the SIR as a standardized repository of applications and bugs to compare

with previous bug detection tools [19, 21]. A brief description of each target

application can be found in Table 4.1.

4.5.2 Invariant quality

Table 4.2: A summary of generated invariant quality.

Invariants CFG Coverage FP Rate

replace 48 45.7% 2.1%
schedule 104 82.8% 3.8%
schedule2 97 78.0% 5.5%

totinfo 161 84.3% 5.5%
space 1583 91.4% 7.6%
gzip 1281 49.9% 3.3%

We first examine the quality of the invariants generated by PRECIS for the

tested applications. This is done by running one-third of the available test

suite on each application to generate trace data, then performing predicate

clustering to derive a set of invariants. Table 4.2 summarizes the results.

The number of invariants generated grows proportionally with the size of

the program, but varies considerably even for similarly sized programs. We

found this had to with each programs structure. For example, programs

which make heavy use of global variables tend to have a high number of

invariants generated, as the number of function outputs is higher.

We define an invariants control-flow graph (CFG) coverage to be the per-

centage of program paths in which the invariant is triggered. Coverage ranged
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considerably between applications, and was highest for control-flow oriented

programs where data flow could mostly be described through linear opera-

tors.

We also examine the degree to which the generated invariants are spurious.

Specifically, we define an invariant false positive rate to be the percentage

of invariants generated by PRECIS, on one third of the test set, which are

invalidated when running the full test set. PRECIS has a low false positive

rate for generated invariants: less than 10

4.5.3 Regression detection

Table 4.3: Metrics for the effectiveness of regression testing.

Admissible In-
variants w/o
Annotations

Admissible In-
variants w/
Annotations

Detection Cov-
erage

replace 82.4% 85.7% 56.6%
schedule 98.5% 99.9% 55.6%
schedule2 95.75% 96.4% 33.3%
space 100% 100% 62.5%
gzip 100% 100% 57.1%

We next evaluate the usefulness of PREAMBL for regression testing. We

do this through the use of buggy program versions included with each of the

applications tested. The first step is to generate invariants for the correct

version of the program. Then, for each buggy version, we map all invariant

predicates, inputs, and outputs to the corresponding value in new version.

The average proportion of invariants that are admissible to the new version,

with and without user annotation, is shown in the first two columns of Table

4.3.

To evaluate whether the invariants are effective in detecting regressions,

we run the test suite while checking the generated invariants. If any invariant

evaluates to false during a test run, then we have detected the regression.

The resulting regression detection coverage results are shown in Table 4.3.

While the percentage of admissible invariants is high (all tested applica-

tions had higher than 80%), there is range between the highest and lowest-

scoring applications. In particular, replace had the lowest score without an-
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notations, at 82.4%. This was due to a high proportion of control-flow centric

bugs encountered. Since changes to control flow require annotation, replace

had an especially low proportion of invariants which could be transferred to

the next version. In contrast, space had a high proportion of data-flow bugs.

Consequently, a high proportion of invariants were admissible to the next

version.

Detection also varied considerably between applications. In general, ap-

plications with a higher proportion of admissible invariants tended to have

higher detection coverage. This is intuitive; the more invariants can be ap-

plied to the next program version, the more likely that one will catch the

regression. However, the detection coverage is ultimately limited by the

manifestation of the bug; if the regression is in a program output that is not

captured by any invariant, then the detection coverage will be lower. For

example, several regressions in schedule2 involved wrong output from printf

statements. Since the output of such statements is not checked by invariants,

the detection coverage for schedule2 was much lower than other applications.

Tables 4.4 and 4.5 show a detailed breakdown of two representative appli-

cations: replace and schedule. In both applications, the majority of buggy

versions have modifications from the original version that fall into either

Case 1 or Case 2 as defined in Section 4.1. Both the percentage of admissi-

ble invariants and the detection coverage is highest for Case 1 modifications.

This is intuitive, as invariants affected by such changes can be automatically

mapped between versions. PREAMBL has reduced coverage for Case 2 mod-

ifications; during such changes PREAMBL needs programmer annotations

to identify equivalent predicates or variables between versions. Finally, Case

3 modifications show the lowest detection percentages. This is because such

modifications mean the relevant invariants cannot be admissible, and so the

likelihood of detecting a regression through them is very low.

4.5.4 Bug localization

We evaluate the effectiveness of the path-based localization technique used

by PREAMBL, and measure what percent of localized bugs can be associ-

ated with invariant information. To do this, we measure the percentage of

these bugs that can be localized to a specific subpath, and provide aggregate
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Table 4.4: Detailed breakdown by case of regression testing effectiveness for
replace. For Case 2 and Case 3, the values shown are the percentages of
admissible invariants assuming no annotation. x%/y% represent the
percent of admissible invariants in the affected function and overall,
respectively. The detection coverage value assumes annotation.

replace
Case 1 Case 2 Case 3

Proportion of Cases 3/7 3/7 1/7
Admissible Invariants 100% 0%/92.3% 0%/90%
Detection Coverage 66% 55% 0%

Table 4.5: Detailed breakdown by case of regression testing effectiveness for
schedule. For Case 2 and Case 3, the values shown are the percentages of
admissible invariants assuming no annotation. x%/y% represent the
percent of admissible invariants in the affected function and overall,
respectively. The detection coverage value assumes annotation.

schedule
Case 1 Case 2 Case 3

Proportion of Cases 4/9 4/9 1/9
Admissible Invariants 100% 8.25%/96.8% 66%/99%
Detection Coverage 75% 50% 0%

information on the specificity of these subpaths.

Localization quality

Profiling multi-procedure, variable-length paths allows PREAMBL to bet-

ter localize bugs to relevant paths. We compare PREAMBL to previously

proposed profiling schemes: the fixed-length intraprocedural path used in

[21], and a simple single-branch profiling scheme. All three techniques are

scored by the average importance score for the top five derived paths. Ta-

ble 4.6 shows the aggregated results on several benchmarks. In each case,

PREAMBL generates higher-scoring results.

We also discuss the average path length for highly ranked paths in both

PREAMBL and fixed-path profiling. Figure 4.8 shows the distribution of

path lengths for both. On average, PREAMBL tends to generate shorter

paths than fixed-path profiling. This indicates that path-length is optimized

to not include predicates that are not relevant to the failure. Since it also on
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Table 4.6: The average Importance score for the best-scoring paths using
PREAMBL, fixed path profiling, and branch profiling. In all tested
applications, PREAMBL derives higher-Importance paths.

space replace schedule tot info

PREAMBL 0.640 0.502 0.553 0.636
Fixed path 0.537 0.310 0.196 0.585
Branch 0.419 0.138 0.121 0.260

average generates higher Importance paths, shorter paths are preferable for

developers: the fewer blocks of code developers need to inspect to identify

the bug, the better.

Figure 4.8: The distribution of path length in top-scoring paths for both
PREAMBL and a fixed-path profiling technique. A higher proportion of
PREAMBL-generated paths are shorter, which indicates more effective
localization.

4.6 Chapter Summary

In conclusion, this chapter proposes a technique, PREAMBL, to unite two

principal aspects of software reliability and debugging. Instead of dividing

the program debugging into water-tight pre-release and post-release phases,

we propose a flow where debugging information from these phases can be

used synergistically. Using this technology, both the invariant generation

and bug localization are made path-centric. Thus, focused information can
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be given to the developer for bug identification and repair. The generated

invariants may be used beyond regression testing, for both bug association

and providing context. Passing invalid invariants and failing valid invariants

can be used to help a developer identify logical bugs instantly through the

reuse of invariant information from the pre-release phase.
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CHAPTER 5

RELATED WORK

This chapter discusses previous work related to the topics discussed in this

thesis. The chapter is divided into three sections. Section 5.1 describes

previous work in automatic invariant generation and compares it to PRECIS.

Section 5.2 describes related work in automatically generating error detectors.

Finally, section 5.3 describes related bug localization work and compares it

to PREAMBL.

5.1 Invariant Generation

Various approaches for automatic invariant generation for programs have

been proposed, involving both dynamic [14, 15] and static [17, 18] approaches.

In this section, we discuss key differences between PRECIS and several of

these related techniques.

5.1.1 DIDUCE

DIDUCE [15] is an online technique to learn invariants on variables in the

program at specific program points. Each invariant is for a single variable

and represents the set of values of the variable in the observed executions.

Due to the simple form of the invariants, they do not track the dependence

of the variable on other variables or program paths. PRECIS invariants, on

the other hand, summarize the higher-level relationships between outputs,

inputs and program paths.
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5.1.2 Daikon

The Daikon tool [14] discovers invariants by analyzing program execution

traces. At function entry/exit points and other specified program points,

Daikon instantiates a set of invariant templates such as comparison with

constant value, linear relationships, ordering, etc. For each template, dif-

ferent combinations of variables including function parameters, return values

are tried. Corresponding invariants are reported if they hold for all execution

traces.

The main advantage of PRECIS over Daikon is that it employs predicate

word information to guide the analysis of execution traces. As a result,

PRECIS is able to discover path-specific invariants not inferred by Daikon.

Although the CreateSpinfo utility in Daikon has some support for using

program predicates to generate conditional invariants, it is not able to com-

bine the predicates to encode program paths and therefore does not generate

such invariants with complex path conditions.

Daikon includes some complex invariant templates such as membership

(e.g. x∈ {0, 1, 3}) and sortedness, not supported by PRECIS currently.

However, we believe that our program path based clustering method can

be extended to consider additional templates such as these.

5.1.3 DySy

DySy [17] introduces dynamic symbolic execution in order to infer function

preconditions and postconditions. DySy executes test cases and simultane-

ously also performs symbolic execution of the program. The program path

followed is recorded as a symbolic expression which gets refined with execu-

tion of the set of tests. The resulting invariants express output as a function

of inputs conditioned on the program path.

Although PRECIS generates invariants similar in form to those of DySy,

it does it without symbolic execution. Program paths are tracked with

lightweight instrumentation of branch conditions. As a result, it has much

less overhead and does not require dealing with typical issues with symbolic

approaches such as handling floating point numbers.

DySy simplifies the path conditions using symbolic engines before present-

ing the invariants to the user, which is not possible with PRECIS. However
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the predicate words present in PRECIS invariants provide a direct mapping

to the program paths the invariant covers which can be useful to the user.

5.1.4 Krystal

Krystal [18] generates data structure invariants through a variant of symbolic

execution called universal symbolic execution, which is argued to be more

powerful in deriving complex invariants over heaps. Since PRECIS defines an

input corresponding to each heap modification, it can also generate invariants

that capture dependence of output on heap modifications.

5.1.5 Statistical debugging

Statistical Debugging is a dynamic technique that employs predicates ex-

tracted from branch conditions in the program, wherein the predicates are

used in a very different context than in bug predictors [39, 40, 41]. These

techniques analyze the correlation of predicate values to the success or failure

of a program run and evaluate the utility of predicates for bug localization.

PRECIS employs predicates to encode program paths for the purpose of

generating invariants. In [40], predicates are clustered for localizing multi-

ple bugs. It should be noted that unlike this approach, PRECIS clusters

predicate words that encode program paths and not predicates themselves.

5.2 Fault Detection

When deciding which invariant generation technique to use for detectors,

the two broad categories of existing approaches are static and dynamic tech-

niques. Static approaches [1, 2, 3] generate concise and correct invariants,

but have scalability issues for real-world programs. Dynamic approaches like

Daikon and DIDUCE [14, 15] are more scalable and modular than static or

symbolic approaches. However, many of the generated invariants can be spu-

rious, since a property may hold for the gathered training data but not for

all valid executions. In addition, these techniques generate a large quantity

of invariants on relatively trivial relationships. Both of these factors make

automatic integration of the generated invariants into code difficult.
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The work of Pattabiraman et al., “Automated Derivation of Application-

Specific Error Detectors Using Dynamic Analysis” [29] has a similar approach

to our work. Both methodologies involve generating some set of assertions

during a training phase and using these as a means of error detection.

A significant difference, however, is in type of assertions generated. Pat-

tabiraman et al. is very similar to Daikon [14] in that there are predefined

generic “rule classes,” similar to Daikon’s templates. This means it suffers

the same problems as Daikon: the high number of false positives and the

large amount of low-quality invariants. These shortcomings are especially

troublesome in an error detector, because false positives can mean necessary

interruption and re-execution of critical software.

Furthermore, since the rule classes from which the assertions are generated

are fixed, they cannot adapt to the specifics of the target application. Instead,

they must be sufficiently broad so that they are applicable in a wide range

of use cases. For example, one rule class generated by the method in [29] is

x > y. In this case, rather than checking what the value of x or y should

be, an assertion is effectively checking what the value should not be. This

contributes to the false positive problem discussed earlier; since the assertion

generated is broad, an incorrect one may not be invalidated in a limited

number of executions. In addition, this means that the assertions are less

useful as error detectors; the broader the assertion, the more likely that an

error will not be detected by it.

In contrast, the assertions generated by our technique are succinct yet

expressive. Instead of requiring behavior to fall into one of the predefined

rule classes, we capture expected program behavior in terms specific to the

program itself. Rather than attempting to generate an assertion that cap-

tures all behavior of a variable, capturing program path information allows

us to consider only a single straight-line execution through the program at

a time. Since these straight-line executions are much simpler than the total

behavior of the program, this allows the generated assertion to be much more

strict than an assertion that singlehandedly attempts to cover all executions.

And since we simultaneously merge the models constructed for a single path

through predicate clustering, we can narrow down the behavior to the min-

imal set of such assertions that describe program behavior. This leads to a

low false positive rate, and high coverage per assertion.
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5.2.1 Tightness

We can quantitatively examine the degree to which our generated assertions

more specific through the measure of tightness introduced in [29]. In that

work, tightness is used as a means to predict which assertion of multiple

candidates will be most likely to detect an error.

Tightness is not a mathematically sound measure of the coverage of an

invariant; the following analysis makes assumptions that may not be true in

real-world code. However, we use the same set of assumptions as in [29] to

show how the format of invariants generated by PRECIS are quantitatively

higher quality by the same metric as used in the previous work.

To make our analysis general, we will make the following assumptions

about the nature of errors and detectors:

• The distribution of errors is uniform throughout the set of N possible

values for any given variable.

• Variables are independent; an error in a variable does not affect the

likelihood of an error in other variables.

• Detectors are independent; the distribution of other detectors in code

does not affect the likelihood of an error occurring at any other detector.

• An error is equally likely to occur on any single program path, and that

all generated invariants have the same likelihood of detecting an error

in their output variables.

If we define tightness as (1− P (Inv)), where P (Inv) is the probability of

an error in output O being caught by invariant I which describes that output

under the program path being executed, we can write an expression for the

tightness of the invariants our technique generates:

P (Inv) = P (Ante) ∗ P (Cons|Ante)
+(1− P (Ante)) ∗ P (Covered|¬Ante) ∗ P (Cons|Ante)

where:

• P (Ante) is the probability that the antecedent in the invariant expres-

sion will be evaluated correctly (to true) with an incorrect value.

• P (Cons|Ante) is the probability the evaluated consequent will detect

the error given the antecedent is evaluated correctly.
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• P (Covered|¬Ante) is the probability there is another invariant on out-

put O whose antecedent (incorrectly) evaluates to true given the incor-

rect value.

More fundamentally, we can think of this equation as expressing a series

of contingencies for catching the error. The most likely way to catch an error

is if we can correctly detect which program path was traversed, and evaluate

the consequent for that path on the corresponding output variable. Since the

antecedent and consequent check for a strict linear equation, the likelihood

of an error being detected is (N − 1)/N , since any different value than the

expected output will be flagged.

However, it is possible that the antecedent is not evaluated correctly due

to the error. In this case, the antecedent expression may evaluate to another

program path, or may not be covered at all. The likelihood that it evaluates

to another program path given our assumptions is the control-flow coverage

of our output variable. In this analysis, we will conservatively assume this

to be 1/2. Experimental results show this number to be much higher. In

this case, the probability of detecting the error is the probability that the

consequent of this incorrectly applied invariant happens to evaluate is again

(N − 1)/N .

Thus, if we evaluate the P (Inv) expression with these parameters, we find

that P (Inv) = (N − 1)2/N2 + (1 − (N − 1)/N) ∗ (N − 1)/2N , which is

considerably tighter than the bounded range rule used in the example in

[29].

5.3 Bug Localization

To our knowledge, no previous technique proposes the combination of bug

localization and invariant generation for improved software reliability as we

do in this thesis with PREAMBL and PRECIS. However, both automatic

invariant generation and bug localization are active topics of research with a

number of related works.

The two main categories of automatic invariant generation tools are static

[17, 18] and dynamic [14, 15, 30] analysis. DySy combines these approaches

to generate invariants similar in form to those generated by PRECIS. DySy
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performs a concurrent dynamic and symbolic executions of the target pro-

gram, keeping track of the symbolic value of each variable during execution.

These are used to construct an expression for each output during the given

execution. This expression is considered to be an invariant for a given path,

and the conjunction of all observed paths is the derived output invariant.

Static or symbolic approaches like DySy work well for small, self-contained

programs but often have difficulty scaling to real-world applications. To re-

duce overhead, PRECIS can be applied to some subset of functions in the

program. However, by their nature static approaches will need to build a

model of the entire program, which may prove infeasible for large applica-

tions. A related concern is the use of binary libraries. Because a source-level

implementation of the library may not be available, a model for its behavior

cannot be statically derived and it cannot be symbolically executed.

Another approach to invariant generation is dynamic analysis of program

executions. The Daikon tool instruments a target program to capture the

values of variables during execution [14]. Invariants are generated by at-

tempting to apply templates – common unary, binary, or ternary relations

– to each single, pair, or triple of instrumented variables. In practice, the

invariants generated by Daikon can be unspecific, in that they define accept-

able ranges for values or what a value should not be, rather than finding an

expression of what the value should be. This is because Daikon invariants

attempt to capture behavior for all executions through the function. In con-

trast, since PRECIS invariants are path-specific, they can be simultaneously

more specific and still cover a large proportion of function executions. In

addition, Daikon often suffers from generating too many invariants – a typ-

ical function can have 20 or more generated invariants, some of which may

be spurious and others which check trivial properties. This makes automat-

ically checking the invariants infeasible, and requires manual effort from the

developer to browse through the generated invariants and decide which are

of interest.

DIDUCE is another dynamic approach that is instead designed for online

anomaly detection [15]. For each variable of interest, it generates an invariant

in the form of a bit-string mask representing the valid values for each bit in

the binary representation of the variable. This mask is gradually loosened

during the training phase to be as restrictive as possible while still allowing

all observed values. During online execution, this mask invariant will trigger
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when a bit-string not covered by the mask is observed. DIDUCE has been

shown effective at detecting latent bugs. A downside is the invariants it

generates are not very intuitive for humans, as they describe a valid bit-

string for each variable.

We find that PRECIS is the invariant generation technique best suited for

bug localization for a number of reasons. It uses dynamic analysis, and so

scales better for large applications or those which use binary libraries. It

generates a relatively small number of high-quality invariants, which makes

automatic integration into code more feasible. These invariants are intuitive

for humans to understand, so they are likely to help developers diagnose bugs.

Furthermore, since these invariants are path-specific, they can be combined

with a path-based bug localization technique to capture behavior specifi-

cally on problematic program paths. To our knowledge, no other invariant

generation techniques can claim all of these advantages.

Early statistical bug localization techniques analyzed the correlation be-

tween predicates and failing runs [19, 41]. In these works predicates refer

a Boolean expression that is inserted into program code, rather than the

specific control-flow oriented meaning used by PRECIS. In particular, [19] is

closely related to PREAMBL. Both tools use the same scoring metrics, but

in PREAMBL it is applied to path profiles, while CBI to predicate profiles.

A more recent work by Chilimbi et al., HOLMES, proposed the use of path

profiling to capture more information about failing runs while using less

overhead [21]. HOLMES targets single-procedure, acyclic paths. For each ex-

ecution, it identifies whether or not a given path was observed or executed.

It then scores and ranks paths based on the same Sensitivity, Increase, and

Importance metrics as CBI.

PREAMBL shares many similarities with HOLMES. Both localize bugs to

specific path profiles, and both use the same scoring metrics proposed by [19].

However, PREAMBL localizes to variable-length, interprocedural paths. This

allows for improved quality of localization: since PREAMBL selects the paths

with maximal Increase scores, predicates that are not relevant to the bug are

naturally not included in the localized path. Further, multi-procedure paths

lead to better detection of bugs which result from interactions between pro-

cedures.
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5.4 Regression Testing

The vast majority of both research and practice in detecting regressions is

through the technique of regression testing. Regression testing involves main-

taining a set of program test input and expected output values such that re-

gressions are detected by a discrepancy in the output value. The problem of

selecting, prioritizing, and minimizing regression tests has been approached

in various contexts [42, 43, 44, 45, 46]. The work presented in this thesis is

orthogonal to this body of work in that it captures relationships (invariants)

between intermediate variables in the program in addition to the program

input and output relationships captured by a typical regression test.

Regression testing based on value spectra [47] proposes capturing relation-

ships between program states and entry and exit of functions (value spectra)

in addition to the relationship between program inputs and outputs. Do-

main specific invariants to create regression tests have been proposed for

web applications using Javascript and Ajax [48, 49].
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CHAPTER 6

PRECIS IMPLEMENTATION

The goal of PRECIS implementation was to create a fully automated system

to perform all steps of the PRECIS methodology, from program instrumen-

tation, to data collection, to invariant generation, and to integration of those

invariants into code for runtime checking. The following sections describe

the implementation work that went into creating the PRECIS tool.

6.1 Program Instrumentation

The program instrumentation phase involves capturing all the inputs, pred-

icates, and outputs relevant to PRECIS. This is nontrivial, for a number of

reasons:

Prior work in instrumenting Daikon indicated that a static, source-to-

source transformation for the instrumentation of the desired variables would

be problematic for larger programs. Their tool, dfec, was developed as

an extension to a C/C++ front end [50]. It works by instrumenting the

entry and exit points of functions with statements which evaluate input and

output values, and print them to a trace data file. dfec worked for smaller,

simpler programs but quickly ran into issues when dealing with complex

program constructs. Specifically, the instrumentation code needed to be

added at every possible function exit, and for each input or output null-

checking statements needed to be added, possibly multiple in the case of

multi-level pointers or structs.

Ultimately, these problems spurred Daikon to move to a dynamic instru-

mentation framework, Fjalar [32]. Fjalar is based on Valgrind [33], a well-

known tool for the dynamic inspection of program state. Valgrind runs in a

context enclosing the executing program while remaining in the same mem-

ory space. This allows for easy programmatic access to program state, in
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Daikon’s case the input and output variables. For example, hooks can be

made such that Fjalar code is called whenever the executing program enters

or exits a function. However, as Daikon is a C/C++ source level tool, it

needs more information to identify the names and locations of source-level

variables. Thus, the program is compiled with the GDWARF-2 standard

debugging format. This information is read by Fjalar, and parsed to identify

the stack memory offsets of the variables of interest. These offsets can then

be queried during runtime to capture the desired variable values.

As Fjalar is a dynamic instrumentation approach, it proved to be more

versatile than dfec. Much larger programs could be handled, including those

with irregular control flow structure such as goto and longjmp statements.

To make use of the existing work that has been done in dynamic instru-

mentation of program state for the purpose of invariant generation, we build

the PRECIS instrumentation tool on top of Fjalar as a plug-in. However,

the program state information provided by Fjalar proved less than required

for PRECIS for the following reasons:

First, each run of a function may have a different number of inputs and

outputs, and so the instrumentation process must be able to dynamically

adjust for that fact. Inputs and outputs can vary between runs for a number

of reasons: input declarations might not be reached in some executions,

certain inputs may be NULL during executions, and certain heap address

locations may or may not be written during other executions. Thus, null-

checking had to be integrated into the variable capture code.

Second, the value of predicates (control flow branches) is not easily avail-

able in a binary, even when compiled with debugging flags. This makes

counting and instrumenting a function’s predicates difficult.

Third, the presence of loops and structure of loops is also not readily

available for analysis in a binary. This makes handling loops in the manner

described by the PRECIS methodology difficult.
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#ifndef PRECIS_LOOP_FUNC_HEADER

#define PRECIS_LOOP_FUNC_HEADER 1

void precis_loop_test(int io, int loop_num){}

#endif

#ifndef PRECIS_PREDICATE_FUNC_HEADER

#define PRECIS_PREDICATE_FUNC_HEADER 1

int precis_pred_test(int var, int p_num){return var;}

#endif

...

if (precis_pred_test(if_cond, 0)){

...

}

while (loop_cond) {

precis_loop_test(0,0);

...

precis_loop_test(1,0);

}

Figure 6.1: Example source file test.c after initial source-to-source
transformation.

To address the second and third concerns, an initial source-to-source trans-

formation had to be performed to in effect trigger the existing hooks available

in Fjalar. This transformation does not intrinsically add any instrumenta-

tion. However, a dummy function is defined for predicates and for each loop.

The dummy predicate function is called with the evaluated result of that

predicate, and the unique predicate number corresponding to the predicate.

A loop is instrumented with at least two dummy loop function calls: one at

the start of the loop and one at each possible exit. Each such call passes 0 or

1 depending on whether the loop is being entered or exited, and the unique

number of the loop in the program.

Figure 6.1 shows an example transformed source file. When the program

is executing, precis pred test will be called whenever a predicate is eval-

uated. PRECIS is called during each function entrance; in this case it reads
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and saves the formal parameters as the value and number of the predicate,

respectively. Similarly, when precis loop test is called with io=0, the con-

text of the calling function (which is the next function on the stack) is noted.

Loop inputs are captured. Then, when it is called at the end of a loop, the

loop outputs are captured. Any predicates encountered in between are saved

in the context of the loop, not the surrounding function.

6.2 Trace Data Format

Figure 6.2 shows the CSV trace data format outputted by Fjalar and used

by the PredicateClustering tool. It encodes the variable names of each input,

predicate, and output, along with all observed values. Each line represents

a single execution of that function. Values that were not observed during a

given execution are encoded with an INVALID value.

<function_name>:

i,i,...,i,p,p,...,p,o,o,...,o

<i0_name>,..,<iN_name>, p<p_N1>,..,p<p_NN>,<o0_name>,..,<oN_name>

<i0_val>,..,<iN_val>,<p_V1>,..,p<p_VN>,<o0_val>,..,<oN_val>

<i0_val>,..,<iN_val>,<p_V1>,..,p<p_VN>,<o0_val>,..,<oN_val>

[Repeated for all lines of trace data]

Figure 6.2: Generated trace data CSV format.

6.3 Predicate Clustering

Predicate clustering is performed by the PredicateClustering tool, a pro-

gram written in Java. PredicateClustering reads in the CSV trace data file

shown in Figure 6.2. It then performs the steps of predicate grouping, seed

cluster generation, and invariant generation discussed in Chapter 2. The end

result is a set of generated invariants, which can be exported in a human-

readable format for programmer review, or a machine-readable format as

shown in Figure 6.3.
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6.4 Invariant Format

Figure 6.3 shows the format of machine-readable invariants generated by

the PredicateClustering tool. The header of the file contains informa-

tion about the function name, the input variable names, and the predicate

numbers. Following this is a set of outputs. Each output contains a list of

predicate word to output function mappings. The predicate word is simply a

list of values (1, 0, or X), depending of the observed value of the predicate in

that position. The mapping from predicate positions to predicate numbers

is indicated in the header: the first predicate number on the third line of the

header corresponds to the first shown value in the predicate word, and so on.

The input vector is a list of coefficients corresponding to the linear output

function. The mapping between coefficients and variable names is the same

as the second line of the header, except that the input vector has one more

coefficient, corresponding to a constant offset.

<function_name>: <--

<input0_name>,<input1_name>,...,<inputN_name> <-- Header

p<p_Num1>,p<p_Num2>,...,p<p_NumN> <--

<output0_name>{

<pWord0>:[input vector]

.

.

.

}

<output1_name>{

...

}

...

Figure 6.3: Generated invariant machine-readable format.
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6.5 Automated Assertion Integration and Checking

Automatic invariant integration is done through the PRECIS plug-in to

Fjalar. Once the machine-readable invariant format shown in Figure 6.3

is produced, it can be passed into Fjalar with the --check-invariants

command-line argument. This will in effect use the same instrumentation

process as was used in generating the trace data file, except instead of gen-

erating the file will check the observed output values against the encoded

invariants. This is done by gathering the inputs listed in the invariant file

and computing an expected output based on the output function for the pred-

icate word observed. If the observed output and expected output match, the

assertion passes. Else, the assertion fails and the program exits.

6.6 Fault Injection Framework

The PRECIS plug-in to Fjalar has also been extended to inject faults into

running programs, specifically for the work discussed in Chapter 3. Fjalar is

a naturally intuitive place to put fault injection for several reasons. First, it

provides easy access to program state. Given that this is done dynamically,

it is not very difficult to simply change the value stored at a given address,

rather than capture it as is done in the PRECIS flow.

However, instead of dividing observed variables into inputs and outputs,

all program state is considered as a candidate for injection. This includes

local variables, heap variables, and other variables not typically captured for

PRECIS. A minor extension to Fjalar was required to be able to access and

modify this program state.
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CHAPTER 7

CONCLUSION

7.1 Lessons Learned

The following is a list of some lessons learned in the time spent developing

the techniques discussed in this thesis:

• Path information is an intuitive way to divide a program’s

behavior. Isolating the behavior of a single program path is in effect

separating the “when” (the path condition) from the “what” (the end

result) in the behavior of the program. The forward direction – given

a path, what should the behavior be? – is intuitive as a way to struc-

ture invariants as generated by PRECIS. The backward direction also

proved useful – given some behavior, what is the program path associ-

ated with it? This reverse relationship is used in PREAMBL to localize

program misbehavior to certain program paths.

• Building a tool to automate PRECIS is nontrivial. A compiled

C/C++ program does not lend itself easily to source-level analysis.

Once a program is compiled, most to all source level information such

as variable names, if statement conditions, and loop structure is lost.

Programs compiled with debugging flags retain some of that informa-

tion, but not all. Thus, a source-to-source transformation must be

performed first to trigger events that could be observed by a dynamic

instrumentation tool. In this, Valgrind and Fjalar proved invaluable as

they provided a way to examine the contents of program state from an

enclosing state. This increased overhead, but provided a way for much

simpler, relatively speaking, instrumentation.
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7.2 Future Work

There is a great deal of future work possible to extend the techniques dis-

cussed in this thesis.

An important step in linking the regression testing and bug localization

phases of software development is an automatic way to associate localized

paths derived by PREAMBL with invariants generated by PRECIS. At

present, paths are associated with invariants by human inspection. However,

given large programs this would be impractical. A relatively simple addition

to PREAMBL would be a way of reading in the invariant format generated

by PRECIS and reporting the associated invariants in user-readable terms.

This will greatly improve the relevance of the localized paths by associating

them with some behavior.

7.3 Final Thoughts

This thesis explored the idea of automatically generating program invariants

and applying them to research areas across the field of software engineering.

PRECIS is an invariant generation technique that uses predicate data in

combination with a linear regression combination to derive function-level

invariants. The three-step process of data generation, predicate clustering,

and invariant generation generates high-specificity, high-coverage, and high-

quality invariants.

The invariants generated by PRECIS can be used to detect hardware

faults. The invariants can be integrated into program text for software-level

checking, or used on specialized hardware for low overhead. Fault injection

experiments show that these invariants have high-coverage for a several types

of manifested errors.

The same predicate information gathered by PRECIS can also be used

for bug localization. PREAMBL localizes bugs to variable-length interpro-

cedural paths through a statistical path-scoring algorithm. This process is

optimized through the use of a path-tree data structure. These localized

paths can then be associated with invariants to improve the software debug-

ging process.

A major theme of this thesis is the use of existing code to improve the
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software development process. Past approaches to static invariant genera-

tion have shortcomings due to the path-explosion problem, while dynamic

approaches have remained too general and unspecific. This thesis explores

an answer to these problems by using path information (in the form of pred-

icates). Program path predicates provide a unique “fingerprint” for each ex-

ecution, which “filters” the specific behavior for that particular path. Since

each individual path tends to have relatively simple behavior, this allows for

the piecemeal analysis of each path individually. These analyses can then be

recombined to form a model for the entire program.

This thesis has shown the promise of predicate-based automatically gener-

ated invariants for improvements in regression testing, bug localization, and

fault detection. Continuing with a similar approach holds promise for even

greater improvements in those areas, as well as new applications in other

challenging areas of software development.
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APPENDIX A

GETTING PRECIS AND PREAMBL

PRECIS and PREAMBL are available on an University of Illinois at Urbana-

Champaign wiki page. Documentation on how to use the tools is included.

For more details, go to:

https://wiki.engr.illinois.edu/display/precis/.
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