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ABSTRACT

Due to the lack of explicit spatial consideration, the existing epitome model

may fail for image recognition and target detection, which directly moti-

vates us to propose the so-called spatialized epitome in this thesis. Extended

from the original simple graphical model of epitome, the spatialized epito-

me provides a general framework to integrate both appearance and spatial

arrangement of patches in the image to achieve a more precise likelihood rep-

resentation for image(s) and eliminate ambiguities in image reconstruction

and recognition. From the extended graphical model of epitome, a new EM

learning procedure is derived under the framework of variational approxi-

mation. The learning procedure can generate an optimized summary of the

image appearance based on patches and automatically cluster the spatial

distribution of the similar patches. From the spatialized epitome, we present

a principled (parameter-free) way of inferring the probability of a new input

image under the learned model and thereby enabling image recognition and

target detection. We show how the incorporation of spatial information en-

hances the epitome’s ability for discrimination on several tough vision tasks,

e.g., misalignment/cross-pose face recognition, and vehicle detection with a

few training samples. We also apply this model to image colorization which

not only increases the visual appeal of grayscale images, but also enriches

the information contained in scientific images that lack color information.

Most existing methods of colorization require laborious user interaction for

scribbles or image segmentation. To eliminate the need for human labor, we

develop an automatic image colorization method using epitome. Built upon

a generative graphical model, epitome is a condensed image appearance and

shape model which also proves to be an effective summary of color informa-

tion for the colorization task. We train the epitome from the reference images

and perform inference in the epitome to colorize grayscale images, rendering

better colorization results than previous methods.
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CHAPTER 1

INTRODUCTION

Recently, epitome has been successfully applied in computer vision as a

patch-based generative model of image(s) or video [1, 2]. As a maximum

likelihood representation for image data, it can be considered as a tradeoff

representation in-between template and histogram. The balance between vi-

sual resemblance and generalization of image and video can be adjusted by

the sizes of epitome and patch. It has attracted more and more attention in

computer vision due to its impressive abilities in many vision tasks.

The “epitomes” were first introduced as simple appearance and shape mod-

els in [2]. These models are learned by compiling patches drawn from input

images into a condensed image model. It was shown in [3] that the image

epitome is an image summary of high “completeness.” The epitome idea has

also found its use in representing audio information [4] and human activi-

ties [5]. Jigsaw proposed in [6] took the epitome beyond square patches and

modeled local spatial coherence. The epitome model was also extended to

location recognition [7], where it uses each of the entire input image as a

patch in which the mappings are fixed during learning and inference. The

image frames from a panoramic video are automatically stitched together to

form a panorama due to epitome’s ability in exploring image similarities [3].

Most recently, epitome priors are investigated for image parsing in which

non-overlapping patches are associated with labels of object classes [8].

Under the generative model framework, the learned epitome is a condensa-

tion of image patches, which are however not able to regenerate a meaningful

image without guidance by an input image to give a meaningful spatial lay-

out. The input image serves as a location map during the learning and

inference process. Since the expected mapping posteriors are only estimated

from patch-similarity measurements in inference, it will often cause ambigu-

ities in reconstruction and recognition during the inference process due to

the lack of spatial constraints. For example, epitome was used to recover the
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Figure 1.1: A 36× 36 spatialized epitome (in the first column) is learned
from the image in the third column. The distribution in the middle column
shows the positions of the significant patches. Note that most locations are
of zero value due to regularization. The leftmost image in each row
highlights a significant patch in the spatialized epitome. Its associated
Gaussian mixture which represents the spatial arrangement of the
significant patch in the input image is shown as ellipse contours in the third
column.

occluded part of the object in a video by replacing the occlusion with the

patches learned from the nearby images without occlusions. However, the

conventional epitome model can only assign a patch in the model to a patch

in the image according to the patch-wise similarity of intensity. When the

occluded area contains patches that are of different appearance from nearby

patches in the image, the model would generally fail to assign the correct

patch to replace the occlusion. Therefore, the epitome might not be applica-

ble for recognition/detection tasks because of this ambiguity caused by the

lack of information about where the patches come from and how similar-

patches are distributed on the input images. In [9], a few pairs of long-range

patches are randomly selected for each patch for spatial constraints in image

reconstruction. Such pairs represent a few specific spatial correlations. They

cannot model the general spatial distributions of similar patches, and, in
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worse cases, may capture false correlation between two long-range patches,

e.g. the foreground patch with background patch. As for rebuilding from

compressed image, Wang et al. [10] proposed to record the fixed mapping to

copy the patches from the epitome to the image locations. The flexibility

and optimality of image summarization and inference by generative model

are lost in such a hard-coding approach.

Motivated by the aforementioned observations, we propose a new graphical

model of epitome to integrate information about the appearance summary

and spatial arrangement of patches in the image(s). A set of Gaussian mix-

tures is introduced into the original graphical model of epitome to relate

the appearance and shape with their spatial arrangements on the input im-

ages, see Figure 1.1 for illustration. In this way, the model is self-contained

with appearance, shape, as well as patch spatial distribution in input im-

ages. So by sampling the learned model itself, the spatialized epitome is

capable of synthesizing the scenes and objects it “saw” during training (see

Section 4.1). With spatial constraints included in the epitome model, the

misalignment problem with various variations can be solved automatically

because the proposed model allows the patches to organize adaptively dur-

ing inference. To evaluate on a few tough vision tasks, we investigate by

applying the proposed spatialized epitome for misaligned face recognition

and cross-pose face recognition, which means to recognize people with pos-

es unseen in the training set. The main contributions of this thesis can be

summarized as follows:

1. A new graphical model of epitome which combines the information

about patch appearance and its associated spatial distributions.

2. An EM procedure to learn the optimized appearance summary and

cluster the spatial distributions of image patches.

3. A likelihood probability by image inference from the spatialized epito-

me.

4. Investigation on applying the spatialized epitome for a few tough vision

tasks including colorization.

The rest of this thesis is structured as follows: In Chapter 2, we present the

spatialized epitome model and the derivation of the learning procedure. We
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derive the inference process in Chapter 3. Experiments, including the com-

parisons with the original epitome, on face recognition with misalignments,

cross-pose face recognition, and car detection with and without occlusions,

are presented in Chapter 4. The application of epitome for colorization is

presented in Chapter 5. Conclusions are presented in Chapter 6.
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CHAPTER 2

LEARNING A SPATIALIZED EPITOME

An image does not merely consist of patches, and it is also about how the

patches are spatially arranged. In existing epitome [2, 9], for each patch Zk,

the likelihood probability was calculated by an intensity similarity. There-

fore, the process of inference and reconstruction on an input image is purely

guided by intensity-similarity measure with respect to the training images

regardless of how patches are arranged in the training or probe image. We

show the problem of this under-constrained process in Chapter 3.

Here we present a generative model combining both patch appearances

and arrangements in an image or a collection of images. Suppose P patches

are sampled from M images, denote each patch as Zk. The corresponding

mapping random variable is denoted as Tk, which is hidden and unknown.

The patch is sampled from the position yk in the original image, so yk is

observed. For each patch in the epitome, we use Gaussian Mixture Models

(GMM) to model the image locations from which the patches are originated.

If the size of the epitome is a, then we have a × R such GMMs. Ck is a

R-dimensional binary random variable in which a particular element Ckr is

equal to 1 and all other elements are equal to 0 when the component r is

active. For each observed location yk, there is a corresponding latent variable

Ck. We now define the generative process:

1. Choose a position in the epitome, Tk ∼ Cat(π).

2. For each of the chosen position Tk,

(a) Choose a patch Zk from p(Zk|Tk, e).

(b) Choose a component Ck from the GMMs for the given location

Tk: Ck ∼ p(Ck|Tk).

(c) Choose a coordinate yk from the component Ck for patch Zk:

yk ∼ p(yk|Tk, Ck).
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This process is illustrated in Figure 2.1. The generation of each patch (in-

tensity) is formulated as:

P (Zk|Tk, e) =
∏
i∈Sk

N (zi,k;µTk(i), ϕTk(i)), (2.1)

where Sk is the set of the coordinates of all pixels in the patch Zk. The

generation of the coordinate of each patch is formulated as:

P (yk|Tk, Ckr = 1) = N (yk;ρ
r
Tk=e,Σ

r
Tk=e), (2.2)

where e represents the location in the epitome that the patch maps to, and

the superscript r indicates the rth component of the GMM. Write it in a

compact distribution form:

p(yk|Tk, Ck) =
R∏

r=1

N (yk;ρ
r
Tk=e,Σ

r
Tk=e)

Ckr . (2.3)

Given the mapping Tk of the patch Zk, there are several Gaussian compo-

nents in the location Tk = e to choose from, where e denotes a particular

location in the epitome. The probability distribution of choosing each Gaus-

sian component given the location e is

p(Ck|Tk) =
R∏

r=1

π̃
CTk=e,r

Tk=e,r . (2.4)

Since p(Ck, Tk) = p(Ck|Tk)p(Tk) and the prior on both parameters shall be

learned, we use the joint distribution of Ck and Tk to perform parameter

estimation on the mixing coefficients.

2.1 Learning procedure for spatialized epitome

For the P patches generated independently, we have the joint distribution:

p({Zk, Tk, Ck,yk}Pk=1, e,π) =

p(e,π)
P∏

k=1

p(Zk|Tk, e)p(yk|Tk, Ck)p(Ck, Tk), (2.5)
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Figure 2.1: The graphical model representations of the epitome and the
spatialized epitome. The boxes are “plates” representing replicates.

where π are the parameters of the mixing proportions on Tk and Ck. Since

we cannot observe Ck and Tk, we sum over all possible values that they might

be taking, and

logP ({Zk,yk}Pk=1) = log
∑

{Ck,Tk}

∫
e,π

p({Zk, Tk, Ck,yk}Pk=1, e,π)d(e,π)

= log
∑

{Ck,Tk}

P∏
k=1

p(Zk|Tk, e)p(yk|Tk, Ck)p(Ck, Tk). (2.6)

Now we first assume that the prior on the parameters are flat. We use varia-

tional approximation to put the log inside the
∑

for tractable optimization,

the auxiliary distribution q({Tk, Ck}Pk=1) is put into the likelihood of data

and then use the Jensen’s inequality [11]:

logP ({Zk,yk}Pk=1) = log
∑

{Ck,Tk}

q({Tk, Ck}Pk=1)p({Zk, Tk, Ck,yk}Pk=1)

q({Tk, Ck}Pk=1)

≥
∑

{Ck,Tk}

q({Tk, Ck}Pk=1) log
p({Zk, Tk, Ck,yk}Pk=1)

q({Tk, Ck}Pk=1)

=
∑

{Ck,Tk}

q({Tk, Ck}Pk=1) log p({Zk, Tk, Ck,yk}Pk=1)

−
∑

{Ck,Tk}

q({Tk, Ck}Pk=1) log q({Tk, Ck}Pk=1) = B. (2.7)
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Since q({Tk, Ck}Pk=1) =
∏P

k=1 q(Tk, Ck) due to the independence assumption

by variational mean field theory [11], we have

logP ({Zk,yk}Pk=1) ≥ B =∑
{Ck,Tk}

P∏
k=1

q(Tk, Ck) log
P∏

k=1

p(Zk|Tk, e)p(yk|Tk, Ck)p(Ck, Tk)

−
∑

{Ck,Tk}

q({Tk, Ck}Pk=1) log q({Tk, Ck}Pk=1)

=
P∑

k=1

∑
Ck,Tk

q(Tk, Ck)[log p(Tk, Ck)+

log p(yk|Tk, Ck) + log p(Zk|Tk, ê)]− E. (2.8)

When q(Tk, Ck) = p(Tk, Ck|Zk,yk, ê), the lower bound is tight and the en-

tropy E = 0, which can be proved by substituting the posterior into the

bound. Note that here we can update p(Ck, Tk), p(yk|Tk, Ck) and p(Zk|Tk, ê)

independently. By iteratively optimizing the bound B, we can derive an EM

procedure to learn the spatialized epitome.

The E-Step: By setting the auxiliary distribution to be the posterior of

hidden variables, there is

q(Tk, Ck) = p(Tk, Ck|Zk,yk, ê) =
p(Zk, Tk, Ck,yk, ê)

p(Zk,yk, ê)

=
p(Zk|Tk, ê)p(yk|Tk, Ck)p(Ck, Tk)

p(Zk,yk, ê)

∼ p(Zk|Tk, ê)p(yk|Tk, Ck)p(Ck, Tk)

=
∏
i∈Sk

N (zi,k;µTk(i), ϕTk(i))
R∏

r=1

N (yk; ρ
r
Tk=e,Σ

r
Tk=e)

Ckrp(Ck, Tk). (2.9)

The M-Step: Note the equal sign indicates that the bound is tight at this

moment, the bound B can be separated into three parts: B = B1 + B2 +

B3, where B1 is related to the epitome appearance, B2 is related to spatial

distributions, and B3 is related to mixing weights. Hence, we can derive the

update rules for the three sets of parameters separately.

a) Updating the appearance

Only the term B1 in B relates to the epitome appearance ê. Let us denote
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the estimated distribution q(Tk, Ck) as qk for simplicity. B1 can be expressed

as

B1 =
P∑

k=1

∑
Ck,Tk(i)=j

qk log p(Zk|Tk, ê) =

=
P∑

k=1

∑
Ck,Tk(i)=j

∑
i∈Sk

qk

[
−1

2
log 2πϕj −

(zi,k − µj)
2

2ϕj

]
. (2.10)

Finding the solution for ∂B1/∂ê = 0 is equivalent to finding the solutions for
∂B1

∂µj
= 0 and ∂B1

∂ϕj
= 0, respectively. Hence, the updating rule for µj can be

obtained as:

µj =

∑P
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk

q(Tk, Ck)zi,k∑P
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk

q(Tk, Ck)
, (2.11)

and the corresponding updating rule for ϕj is:

ϕj =

∑P
k=1

∑
Ck,Tk(i)=j

∑
i∈Sk

q(Tk, Ck)(zi,k − µj)
2∑P

k=1

∑
Ck,Tk(i)=j

∑
i∈Sk

q(Tk, Ck)
. (2.12)

This is similar to the original epitome updating rules.

b) Update GMM Means and Covariances

From Eq. (2.8), the bound for the GMM term is simplified as:

B2 =
P∑

k=1

∑
Ck,Tk

q(Tk, Ck) log p(yk|Tk, Ck) =

=
P∑

k=1

∑
Ck,Tk

q(Tk, Ck)
R∑

r=1

Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e). (2.13)

Set the derivative w.r.t ρr
Tk=e to be 0, i.e. ∂B2

∂ρr
e
= 0, then there is

∂

∂ρr
e

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)
R∑

r=1

Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e)

=
∂

∂ρr
e

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e)

=
P∑

k=1

∑
Ck,Tk

q(Tk, Ck)Ckr(yk − ρr
e)

T (Σr
e)

−1 = 0. (2.14)
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From the equation 2.14, we can obtain the updating rule for ρr
e as:

(ρr
e)

T =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckry

T
k∑P

k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr

. (2.15)

Applying the same deduction for the GMM mean, we take derivative w.r.t

(Σr
e)

−1 and set it to be 0:

∂

∂(Σr
e)

−1

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr logN (yk;ρ
r
Tk=e,Σ

r
Tk=e)

=
∂

∂(Σr
e)

−1

P∑
k=1

∑
Ck,Tk

q(Tk, Ck)Ckr[− log 2π − 1

2
log |Σr

e|−

1

2
(yk − ρr

e)
T (Σr

e)
−1(yk − ρr

e)]

=
P∑

k=1

∑
Ck,Tk

q(Tk, Ck)Ckr[+
1

2
Σr

e −
1

2
(yk − ρr

e)
T (yk − ρr

e)] = 0. (2.16)

Therefore we obtain the updating rule for Σr
e as,

Σr
e =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr(yk − ρre)(yk − ρr

e)
T∑P

k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr

. (2.17)

c) Update mixing coefficients

From Eq. (2.8), the term related to mixing coefficients can be expressed:

B3 =
P∑

k=1

∑
Ck,Tk

q(Tk, Ck) log p(Tk, Ck). (2.18)

Denoting p(Tk = e, Ck = r) = πer, we can maximize the bound B3 subject

to
∑

e,r p(Tk = e, Ck = r) = 1 as:

∂

∂πer

(B3 + λ(
∑
e,r

πer − 1))

=
∂

∂πer

P∑
k=1

∑
Ck=r,Tk=e

q(Tk, Ck) log p(Tk = e, Ck = r) + λ

=
P∑

k=1

q(Tk = e, Ck = r)
1

πer

+ λ = 0. (2.19)

10



Table 2.1: The number of parameters for spatialized epitome model.

Epitome(ê) Gaussians(ρ,Σ) Mixing Coefficients (π)

N ×N × 2 N ×N × 2 N ×N ×R

Then, we can obtain λ = −P and the updating rule of the mixing coefficient

as,

πer =

∑P
k=1 q(Tk = e, Ck = r)

P
. (2.20)

2.2 Bayesian regularization and priors

Suppose we have R Gaussian components at one epitome location e. The

number of parameters for our epitome with a size of N ×N is N2 × (R+4).

The details are listed in Table 2.1. Since we have a finite training set and

a relatively large set of parameters, in order to avoid overfitting, on each

location in the epitome we put a Dirichlet-Normal-Wishart prior on the three

sets of parameters {ρr
e,Σ

r
e}Rr=1 and πe, i.e.

p({ρr
e,Σ

r
e}Rr=1,πe) = b(γe)

R∏
r=1

(πr
e)

γr
e−1

R∏
r=1

N
(
ρr
e|νr

e ,
Σr

e

ηre

)
Wi((Σr

e)
−1|βr

e , τ
r
e ), (2.21)

where b(γe) is the normalizing factor of the Dirichlet distribution and Wi(.|)
denotes a Wishart distribution. By determining appropriate values for the

hyper-parameters {γr
e ,ν

r
e ,Σ

r
e, η

r
e ,β

r
e , τ

r
e } we state our beliefs about the data

generation process in terms of a prior distribution. The use of such prior is

justified in [12]. By incorporating the prior, the updating rules are derived

to be:

(ρr
e)

T =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckry

T
k + ηreν

r
e∑P

k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr + ηre

, (2.22)
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Σr
e =

∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr(yk − ρre)(yk − ρre)

T∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr + 2τ re − 2

+
ηre(µ

r
e − νr

e )(µ
r
e − νr

e )
T + 2βr

e∑P
k=1

∑
Ck,Tk=e q(Tk, Ck)Ckr + 2τ re − 2

, (2.23)

πer =

∑P
k=1 q(Tk = e, Ck = r) + γr

e − 1

P +
∑R

r=1 γ
r
e −R

. (2.24)

The prior penalizes singularities in the log-likelihood function in the case

when an epitome patch has only one corresponding patch in the image(s).

We also encode our prior belief that the covariance matrices of GMMs are

diagonal with diagonal values to be the width of the training image. We

adjust the strength of the prior by modifying γ, β and τ which are functions

of the equivalent sample size in Bayesian terms. A sparsity inducing prior

(Dirichlet) with α = 0.05 is used so that most of the mixing coefficients tend

to zero and the corresponding Gaussian components will not contribute in

modeling the distributions, as shown in Figure 1.1.
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CHAPTER 3

INFERENCE BASED ON SPATIALIZED
EPITOME

3.1 Inference

We denote the set of learned parameters {ρ̂, Σ̂, ê, π̂} of training set D as Θ̂.

Given the data of a training set D, the probability of seeing a given probe

image can be directly calculated as:

logP (I|D) ≃ logP (I|Θ̂) = logP (I|ρ,Σ, ê,π)

= logP ({Zk,yk}Pk=1|ρ,Σ, ê,π)

= log
P∏

k=1

P (Zk,yk|ρ,Σ, ê,π)

=
P∑

k=1

log
∑
Ck,Tk

P (Zk,yk, Ck, Tk|ρ,Σ, ê,π)

=
P∑

k=1

log
∑
Ck,Tk

p(Zk|Tk, e)p(yk|Tk, Ck)P (Ck, Tk)

=
P∑

k=1

log
∑
Ck,Tk

∏
i∈Sk

N (zi,k;µTk(i), ϕTk(i))

R∏
r=1

N (yk;ρ
r
Tk=e,Σ

r
Tk=e)

CkrP (Tk, Ck). (3.1)

This inference formulation is similar to the way of evaluating the probability

value of seeing a new data under a learned GMM. The first step of this deriva-

tion follows [13]. The third step uses the assumption that all the patches are

independently sampled. The calculated probability value in Eq. 3.1 indicates

how likely the probe image is generated by the learned model, and can be

directly used for image recognition and object detection purposes.
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3.2 Recognition and Detection

Suppose there are N epitomes with parameters {Θi}Ni=1 learned from N

classes of visual objects. Denote the label of the input image to be C and

we assume no prior knowledge on label C, so the recognition is achieved by

computing the label posterior p(C|I) using:

p(C|I) = p(I|C)p(C)
p(I)

∼ p(I|C), (3.2)

and select the one with the maximum posterior value:

Ĉ = argmax
i

P (I|C = i) = argmax
i

P (I|Θi), (3.3)

where P (I|Θi) can be calculated from Eq. (3.2) which is in turn calculated

by Eq. (3.1).

Detection If we scan the input image with multi-scale windows (W ), we

can perform object detection. In this way, Eq.(3.2) becomes

p(C|W ) =
p(W |C)p(C)

p(W )
∼ p(W |C). (3.4)

The mean-shift approach can be used to select local maxima to locate the

target objects in the image.

3.3 Epitomic reestimation

Using existing epitome for image reestimation, for each patch Zk, the infer-

ence step evaluates how likely each epitome patch is to generate Zk. Then

the estimation step will replace the initialized values of Zk with the average

votes from the epitome patches according to q(Tk). Consequently, the esti-

mated texture will be more consistent with the epitome texture. This is how

denoising, video super-resolution and other video repairing applications are

achieved. However, the position posterior q(Tk) is evaluated purely based on

the intensity similarity between the epitome patches and the image patch-

es [2, 9]. This may give an incorrect estimation when the occluded part has

different appearances from nearby patches.
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re-estimation
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     re-estimation
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Figure 3.1: The comparison of image reestimation results between epitome
and spatialized epitome. Both 40× 40 epitomes are learned with patch
sizes of 8× 8 and 4× 4 which is also the patch size used in the reestimation
process. During the reestimation process, 40, 000 patches are uniformly
sampled from the input image to ensure that all the coordinates are covered
for the reestimated image. Since the original epitome just uses a
color/intensity similarity to estimate the position posterior, the patches
probabilistically chosen from the epitome generate artifacts in the occluded
region. In contrast, the spatialized epitome estimates the position posterior
based on both intensity similarity and location information; thus, many
fewer artifacts are generated due to the spatial constraint. For non-uniform
image regions with occlusion, e.g. the second row, spatialized epitome can
also restore the occluded region with proper patches.

The reestimation process of spatialized epitome will automatically solve

this problem as the position posterior q(Tk, Ck) takes also the spatial ar-

rangement into account as in Eq. (2.9) in image reestimation. The compari-

son of existing epitome and spatialized epitome on image reestimation from

partially occluded image is given in Figure 3.1.
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CHAPTER 4

EXPERIMENTS

In the proposed spatialized epitome, the correlation between the local ap-

pearance and spatial arrangement is introduced. This makes it possible to

employ epitome for image recognition, object detection, and image reestima-

tion from partial occlusions. To evaluate the performance of the spatialized

epitome, several experiments were conducted, including the comparison with

existing epitome on face recognition, and applications to several tough vision

tasks, e.g., face recognition with misalignments, cross-pose face recognition,

occlusion detection, and car detection with a few training samples. The de-

tails are described in the following sections. We will provide functional codes

such as spatialized epitome learning, inference and synthesis to reproduce

the results in this thesis. The codes for the current state-of-the -art results

on misalignment face recognition are also provided to facilitate future works.

4.1 Synthesis

Being a self-contained generative model, with both patch intensity and asso-

ciated spatial distribution, images can be synthesized by ancestral sampling

of the proposed model. We show the synthesis results for a scene epitome

model (where scene images often consist of large number of redundant patch-

es) as well as for a face epitome model learned from multiple images of the

same person in Figure 4.1.

4.2 Generative face recognition

In this experiment, we evaluate the effectiveness of our spatialized epitome

formulation by face recognition. This generative method does not need to

go through any feature extraction or dimensionality reduction step but just
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Figure 4.1: The left half of the figure shows the synthesis results for a
spatialized epitome learned from a scene image. At the right half of the
figure, we show synthesis results for a spatialized epitome model learned
from multiple images from the same person.

uses the intensity image as the input and give out the results in probability

terms. In order to evaluate the effectiveness of including spatial information,

we need to derive a recognition algorithm for the original epitome proposed

in [9, 2]. Following the same principle in Chapter 3, the inferred probability

of seeing a new image with original epitome is:

logP (I|D) ≃ logP (I|ê) = logP ({Zk}Pk=1|ê)

=
P∑

k=1

log
∑
Tk

∏
i∈Sk

N (zi,k;µTk(i), ϕTk(i))P (Tk). (4.1)

In this experiment, two benchmark face databases, e.g. ORL and CMU PIE 1

are used. The ORL database contains 400 images of 40 persons, where each

image is manually cropped and normalized to the size of 32× 32 pixels. The

CMU PIE (Pose, Illumination, and Expression) database contains more than

40,000 facial images of 68 people. In our experiment, a subset of five near

frontal poses (C27, C05, C29, C09, and C07) with illumination indexed as 08

and 11 are used and manually normalized to the size of 32× 32 pixels. Both

original and spatialized epitomes are evaluated with two different patch sizes.

1Available at http://www.face-rec.org/databases/.

17



Table 4.1: Recognition accuracy rates (%) on two face databases.

Database: ORL PIE

Patch Size: 4× 4 6× 6 4× 4 6× 6

Epitome 12.0 15.5 8.2 11.2

Spatialized 67.5 88.5 74.1 78.8

We can observe from Table 4.1 that the incorporation of spatial information

considerably increases the recognition accuracy. Therefore, the performance

of original epitome in later more complex applications are not evaluated.

4.3 Occlusion detection

For a facial image with occlusions, the occluded parts can be revealed by

evaluating the likelihood for one patch or a set of few nearby patches by

Eq. (3.1). The set of patch samples with the probabilities lower than a cer-

tain threshold are considered to be the patches that are occluded. In this

experiment we examine the occlusion detection capability of our spatialized

epitome formulation on the CMU PIE and ORL databases. We randomly

pick five images of each subject for training, the remaining five images of

each person serve as probe images. Then an 18 × 18 artificial occlusion is

generated at a random position in each probe image. Seven images are ran-

domly selected from the probe set and the occlusion detection results are

shown in Figure 4.2, where the first row shows the original face images, the

second row shows the images with occlusions, the third row shows the de-

tected occlusion regions, and the fourth row shows the reconstructed images

by the spatialized epitome.

4.4 Face recognition with misalignments

In most of the techniques for face recognition, explicit semantics is assumed

for each feature. But for computer vision tasks, e.g., face recognition, the

explicit semantics of the features may be degraded by spatial misalignments.

Face cropping is an inevitable step in an automatic face recognition system,
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Figure 4.2: Examples of occlusion detection.

and the success of subspace learning for face recognition relies heavily on the

performance of the face detection and face alignment processes. Practical

systems or even manual face cropping, may bring considerable image mis-

alignments, including translations, scaling and rotation, which consequently

change the semantics of two pixels with the same index but in different im-

ages [14]. To a certain extent, the spatialized epitome proposed here can

naturally adapt to misaligned inputs because: (1) a moderate amount of co-

ordinate shifts caused by the misalignments can also have a high probability

value under a Gaussian mixture distribution as long as the “data point” is

still in the vicinity; (2) the spatialized epitome is learned from patches of

images of different expressions (ORL) or different poses (PIE), so the defor-

mation is learned to account for misalignments on the patch level; and (3)

the misalignment effect is reduced from the image level to patch level. We

evaluate the performance of our algorithm with respect to each of the mis-

alignment factor, e.g., translation, scaling, and rotation as well as the mixed

spatial misalignments to simulate the misalignments brought by the auto-

matic face alignment process. These experiments are also conducted on two

benchmark face databases, e.g. ORL and PIE with spatial misalignments for

the testing data and no misalignments for the training data. A set of four

images from each subject is used for training while the remaining six images

of each person are artificially misaligned with a rotation α ∈ [−5◦, 5◦], a

scaling s ∈ [0.95, 1.05], a horizontal shift Tx ∈ [−1,+1], or a vertical shift

Ty ∈ [−1,+1]. The value of each of the misalignment factor is drawn from
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Table 4.2: Recognition accuracy rates (%) on two databases with mixed
misalignments. The patch size of 6× 6 is used in both learning and
recognition.

Database: ORL PIE

Methods PCA LDA Ours PCA LDA Ours

Results 63.2 51.7 88.0 65.9 54.0 67.9

Table 4.3: Cross-pose recognition accuracy rates (%) on PIE database.
Each column shows the respective results for each pose. The patch size of
6× 6 is used in both learning and recognition.

Methods: c09 c27 c07 Overall

PCA 34.3 36.1 33.4 34.6

LDA 65.3 66.3 49.1 60.2

Ours 82.4 66.2 72.1 73.6

a uniform distribution. The performance of our algorithm for each misalign-

ment factor is evaluated in Table 4.2 and compared with baselines algorithms

such as PCA and LDA (the results come from [14] with four training sam-

ples). In the mixed spatial misalignment configuration, the aforementioned

effects are added in a random order to the original test image, and the results

are shown in Table 4.2.

4.5 Cross-pose face recognition

In the real-world scenario, we may often have to recognize a face with a pose

that we have not seen before. We show in this experiment that our spatialized

epitome can adapt to unknown pose variations to a certain extent. Here we

use a different subset of the PIE database. For each subject in the PIE

database, three images with illumination index 8, 11, 21 from each of the

two near frontal poses, namely c05 and c29 are chosen as training set. three

images from each of the five different poses (c09, c27, c07, c37, and c11) for

each subject are then selected for testing. In both learning and testing, we

use patch size of 6× 6. Detailed results and comparison with PCA and LDA

(with K-nearest neighbor classifier) baselines are listed in Table 4.3.
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Figure 4.3: The ROC curve of car detection.

4.6 Car detection

In order to show the detection ability of our spatialized epitome, the UIUC

side-view car dataset 2 was used for evaluation. Six representative cars are

chosen for learning the car model. During learning, we use gradient images

which are extracted from the six Gaussian-smoothed positive training images.

We slide the window of size 30×90 over the entire query image and calculate

the probability value given by Eq. (3.1). The windows that have probability

values above a threshold t are considered to be the locations of the cars. We

evaluate performance by comparing the bounding box of detection to the

“ground truth” bounding box Bt in manually annotated data. We follow the

procedure adopted in the Pascal VOC competition, and compute the area

ratio a of Bp

∩
Bt and Bp

∪
Bt. If a > 0.5, then Bp is considered a true

positive. By varying the threshold on this confidence, we compute the ROC

curve as shown in Figure 4.3. Our method achieves reasonable performance

under a less restrictive condition which requires a few training samples and no

negative training samples are needed. In this case, conventional supervised

learning algorithms are not applicable.

In these experiments, we have shown the strong abilities of spatialized

epitome for image representation, pattern recognition, and object detection.

Especially, the tests on some tough vision tasks like misaligned and cross-

pose face recognition demonstrate the advantages of the spatialized epitome

2http://l2r.cs.uiuc.edu/ cogcomp/Data/Car/.
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in adapting to variations in real-world conditions.
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CHAPTER 5

COLORIZATION BY EPITOME

Colorization adds color to grayscale images by assigning color values to im-

ages which only contain a grayscale channel. It not only increases the visu-

al appeal, but also enhances the information conveyed by scientific images.

For example, the grayscale images acquired by scanning electron microscopy

(SEM) can be made more illustrative by adding different colors to different

parts of the images. However, the manual colorization is tedious and time

consuming, so it is not suitable for batch process. To overcome this prob-

lem, we propose an automatic colorization method by epitome. We train the

epitome from one manually colorized nano mushroom-like image, and use

that epitome to automatically colorize the other nano mushroom-like image,

which eliminates the need for human labor and makes the batch colorization

process possible.

Based on the source of the color information used to colorize the grayscale

images, existing colorization techniques fall into two main categories: user

scribble based methods and color transfer methods. The user scribble based

method in [15] asked users to draw color scribbles in the grayscale image,

and the algorithm propagated the user-provided color to the whole image re-

quiring that similar neighboring pixels should receive similar color. Later, L.

Qing et al. [16] proposed a method which required less human intervention.

The user scribbles were employed for texture segmentation and user-provided

color was propagated within each segment. Using a similar color image as a

reference, the color transfer methods such as [17] performed colorization by

transferring the color from the reference image to the grayscale image, either

automatically or with user intervention. However, the pixel-level matching

based on luminance value and neighborhood statistics adopted by [17] suf-

fered from spatial inconsistency and the user-provided swatches were required

to guide the matching process in many cases. Using [18] improved the spatial

consistency by an image space voting scheme. Their method first transferred
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color to a few pixels in the target image with high confidence, then applied

the method in [15] to colorize the whole image, treating the colorized pixels in

the first step as the scribbles. However, their method required a robust seg-

mentation of the reference image, which was difficult in many cases without

user intervention.

Similar to [17], our automatic colorization method transfers the color in-

formation from the reference image to the target grayscale image. Since most

of existing colorization methods need user interactions for color selection or

segmentation, a robust and automatic colorization algorithm is preferable.

In order to approach this problem, it is worthwhile to exploit the biological

characteristics of human visual system. The average human retina contains

many more rods than cones [19] (92 million rods versus 4.6 million cones).

Rods are more sensitive to cones but they are not sensitive to color, so that

most of visually significant variation arises only from luminance differences.

This fact suggests that we do not need to search the whole reference image

for the color patches to colorize the target image, instead we can reduce the

search space for color patches, or equivalently find an effective color summary

of the reference image, to improve the efficiency and alleviate color assign-

ment ambiguity. In [17], such a color summary is a set of source color pixels

randomly sampled, which is, however, subject to noise in the raw pixels.

In order to find an effective and compact summary of the color information

in the reference image, we adopt the condensed image appearance and shape

representation, i.e. epitome [20]. Epitome consolidates self-similar patches in

the spatial domain, and the size of the epitome is much smaller than that of

the image it models. By virtual of the generative graphical model, epitome

can be interpreted as a tradeoff between template and histogram for image

representation and it has been applied to many computer vision tasks such

as object detection, location recognition, and synthesis [21, 22]. Epitome

summarizes a large number of raw patches in the reference image by only

representing the most constitutive elements. In our epitomic colorization

scheme, the color patches used to colorize the target grayscale image are

retrieved from the epitome trained with the reference image, rather than from

the raw image patches. Epitome proves to be an effective summary of the

color information in the reference image, which produces more satisfactory

colorization results than [17] in the experiments.
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5.1 Description of Automatic Colorization by Epitome

Given a reference color image cI and the target grayscale image gI, we aim to

automatically colorize gI with the color information from cI. We achieve this

goal by first training an epitome e from the reference image, then performing

inference in e so as to transfer the color information of the color patches

of ê to the corresponding grayscale patches of gI. Note that the grayscale

channel of gI is retained as the luminance channel after the color transfer

process. We will illustrate the training and inference process in detail in the

following subsections.

5.2 Training the Epitome

Epitome is a latent representation of an image, which comprises hidden vari-

ables and parameters required to generate the image patches according to

the epitome graphical model. Epitome summarizes a large set of raw image

patches into a condensed representation of a size much smaller than the o-

riginal image, and it approaches this goal in a manner similar to Gaussian

mixture model with overlapping means and variances.

The epitome e of an image I of size M ×N is a condensed representation

of size Me × Ne where Me < M and Ne < N . The epitome contains two

parameters: e = (µ,ϕ). µ and ϕ represent the Gaussian mean and variance,

respectively, and both are of size Me ×Ne. Suppose Q patches are sampled

from the reference image, i.e. {Zk}Qk=1, and each patch Zk contains pixels

with image coordinates Sk. Similar to [20], the patches are square and we

use fixed patch size throughout this chapter. These patches are densely

sampled and they can be overlapping with each other to cover the entire

image. We associate each patch Zk with a hidden mapping Tk which maps the

image coordinates Sk to the epitome coordinates, and all the Q patches are

generated independently from the epitome parameters and the corresponding

hidden mappings as follows:

p(Zk|Tk, e) =
∏
i∈Sk

N (zi,k;µTk(i),ϕTk(i)), k = 1..Q (5.1)
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Figure 5.1: The mapping Tk maps the image patch Zk to its corresponding
epitome patch with the same size, and Zk can be mapped to any possible
epitome patch according to Tk.

and
Q∏

k=1

p({Zk}Qk=1|{Tk}Qk=1, e) =

Q∏
k=1

p(Zk|Tk, e). (5.2)

where zi,k is the pixel with image coordinates i from the k-th patch. Since

zi,k is independent of the patch number k, we simply denote it as zi in the

following text. N (·;µ, ϕ) represents a Gaussian distribution with mean µ̂

and variance ϕ̂

N (·; µ̂, ϕ̂) = 1√
2πϕ̂

exp
− (·−µ̂)2

2ϕ̂ .

Based on Eq.(5.1), the hidden mapping Tk can be interpreted as a hid-

den variable that indicates the location of the epitome patch from which the

observed image patch Zk is generated, and it behaves similar to the hid-

den variable in the traditional Gaussian mixture models that specifies the

Gaussian component from which a specific data point is generated. Also, Tk

maps the image patch to its corresponding epitome patch, and the number

of possible mappings that each Tk can take, denoted as L, is determined

by all the discrete locations in the epitome (L = Me × Ne in our setting).

Figure 5.1 illustrates the role that the hidden mapping variables play in the

generative model, and Figure 5.2 shows the epitome graphical model, which

again demonstrate its similarity to Gaussian mixture models. π
∆
= {πl}Ll=1

indicates the prior distribution of the hidden mapping. Suppose Tk,l is the

l-th mapping that Tk can take, then
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p(Tk) =
L∏
l=1

πl
δ(Tk=Tk,l),

which holds for any k ∈ {1..Q}. δ is an indicator function and δ equals to 1

when its argument is true, and 0 otherwise.

Our goal is to find the epitome ê that maximizes the log likelihood function:

ê = argmax
e

log p
(
{Zk}Qk=1|e

)
. (5.3)

Given the epitome e, the likelihood function for the complete data, i.e. the

image patches {Zk}Qk=1 and the hidden mappings {Zk}Qk=1, is derived in the

following according to the epitome graphical model:

p({Zk, Tk}Qk=1|e,π) =
Q∏

k=1

p(Zk, Tk|e,π)

=

Q∏
k=1

p(Tk)p(Zk|Tk, e)

=

Q∏
k=1

L∏
l=1

[
πl

∏
j∈Sk

N (zj;µTk,l(j),ϕTk,l(j))

]δ(Tk=Tk,l)

(5.4)

We use the expectation-maximization algorithm [23] to maximize the like-

lihood function Eq.(5.3) and learn the epitome ê, following the procedure

introduced in [24].

The E-step: The posterior distribution of the hidden variables, i.e. the

hidden mapping is
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q(Tk)
∆
= p(Tk|Zk, e,π)

=
p(Zk|Tk, e)p(Tk)∑
Tk p(Zk|Tk, e)p(Tk)

=

∏L
l=1

[
πl

∏
j∈Sk

N (zj;µTk,l(j),ϕTk,l(j))
]δ(Tk=Tk,l)

∑
Tk

∏L
l=1

[
πl

∏
j∈Sk

N (zj;µTk,l(j),ϕTk,l(j))
]δ(Tk=Tk,l)

.

(5.5)

We observe that q(Tk) corresponds to the responsibility in Gaussian mix-

ture models.

The M-step: We obtain the expectation of the log-likelihood function for

the complete data with respect to the posterior distribution of the hidden

mapping from the E-step as follows:

E
[
log p

(
{Zk, Tk}Qk=1|e,π

)]
=

Q∑
k=1

L∑
l=1

q(Tk = Tk,l) · [log πl + log p (Zk|Tk = Tk,l, e)]. (5.6)

Maximizing Eq.(5.6) with respect to (e,π), we get the following update of

the parameters of the epitome and π:

µj =

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)zi

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)

(5.7)

ϕj =

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)(zi − µj)

2

Q∑
k=1

∑
i∈Sk

∑
Tk δ(Tk(i) = j)q(Tk)

(5.8)

πl =

Q∑
k=1

p (Tk = Tk,l)

Q
, l = 1..L. (5.9)

The index j indicates the epitome coordinates in Eq.(5.7) and Eq.(5.8).
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We alternate between E-step and M-step until convergence or the maximum

number of iterations (20 in our experiments) is achieved, and then obtain

the resultant epitome ê from the reference image cI.

Note that the preceding training process is applicable for a single type of

feature of cI. We use two types of feature to train the epitome, i.e. the YIQ

channels and the dense sift feature [25]. We convert cI from the RGB color

space to the YIQ color space where Y channel represents the luminance and

IQ channels represent chrominance information. Moreover, dense sift feature

is computed for each sampled patch. A K × K patch is evenly divided

into R × R grids, and the orientation histogram of the gradients with eight

bins is calculate for each grid, which results in an 8R2-dimensional dense

sift feature vector for each patch. R is typically set to be 3 or 4. We then

train the epitome e =
(
eY IQ, edsift

)
for the YIQ channels and the dense sift

feature, and the epitome for YIQ channels (eY IQ) share the same hidden

mapping with the epitome for the dense sift feature (edsift) in the inference

process [21]:

p(Zk|Tk, e) = p(ZY IQ
k |Tk, e

Y IQ)λp(Zdsift
k |Tk, e

dsift)1−λ, (5.10)

where ZY IQ
k and Zsift

k represent the YIQ channel and the dense sift feature

of patch Zk respectively, eY IQ and edsift represent the epitome trained from

the YIQ channels and dense sift feature of cI respectively. 0 ≤ λ ≤ 1 is a

parameter balancing the preference between color and dense sift feature.

5.3 Colorization by Epitome

With the epitome ê learned from the reference image, we colorize the target

grayscale image gI by inference in the epitome graphical model. Similar to

the epitome training process, we densely sample Q̂ patches {Ẑk}Q̂k=1 from gI

(these patches cover the entire gI). With the hidden mapping associated

with patch Ẑk denoted as T̂k, the most probable mapping of the patch Ẑk,

i.e. T̂ ∗
k , is formulated as follows:

T̂ ∗
k = argmax

T̂k
p
(
T̂k|Ẑk, ê,π

)
(5.11)

which is essentially the same as the E-step Eq.(5.5). We take the grayscale
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channel of gI as the luminance channel (Y channel) of itself. Since the

color information (IQ channels) is absent in gI, we only use the epitomes

corresponding to the Y channel and the dense sift feature to evaluate the

right-hand side of Eq.(5.12). The color information is then transferred from

the epitome patch, whose location is specified by T̂ ∗
k , to the grayscale patch

Ẑk. We denote the target image after colorization as gIc. Since {Ẑk}Q̂k=1 can

be overlapping with each other, the final color (the value of IQ channels) of

a pixel i in image gIc is averaged according to:

gIc (i) =

Q̂∑
k=1

∑
j∈Ŝk

δ (j = i)êIQT̂ ∗
k (j)

Q̂∑
k=1

∑
j∈Ŝk

δ (j = i)

, (5.12)

where Ŝk is the image coordinates of patch Ẑk, and eIQT̂ ∗
k (j)

represents the value

of the IQ channels in the epitome e at location T̂ ∗
k (j).

5.4 Experimental Results

We show colorization results in this section. As mentioned in section 5.2, we

use square patches of size K×K, and the size of epitome is half of the size of

the reference image. We densely sample patches with horizontal and vertical

gap of ωK pixels, where ω is a parameter between [0, 1] and it controls the

number of sampled patches.

Figure 5.3 shows the result of colorization for the dog image. We convert

the original image to grayscale as the target image. The patch size is 12×12

and the parameter λ balancing between the color and the dense sift feature is

0.5. We compare our method to [17] which transfers color from the reference

image to the target image by pixel-level matching. The result produced by

[17] lacks spatial continuity and we observe small artifacts throughout the

whole image. On the contrary, our method renders a colorized image very

similar to the ground truth. This example also demonstrates that the learned

epitome, which is a summary of a large number of sampled patches, contains

sufficient color information for colorization.

Figures 5.4 and 5.5 show the colorization result for the nano mushroom-
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like images and the cheetah. The patch size is chosen as 12×12 and 15×15,

respectively, and λ is set to be 0.8 for both cases. While [17] still generates

artifacts around the top and bottom of the mushroom-like structure, while

our method produces a much more spatially coherent result. Moreover, we

transfer the correct color for the cheetah to the target image, which results

in a more natural colorization result than that of [17].

Figure 5.3: The result of colorizing the dog. From left to right: the
reference image, the target image (obtained by converting the reference
image to the grayscale), the result by [17], and our result.

Figure 5.4: The result of colorizing the nano mushroom-like images.

Figure 5.5: The result of colorizing the cheetah.
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CHAPTER 6

CONCLUSIONS

In this thesis, we proposed a new graphical model for epitome, i.e. the

spatialized epitome. The new epitome model integrates both the local ap-

pearance and spatial arrangement for image representation. Employing the

powerful generative model framework in both learning and inference, the

spatialized epitome is flexible for image representation, discriminative for

pattern recognition, adaptive to variation, and robust for object detection.

Experiments on several tough vision tasks have shown its superiority over the

original epitome model in image modeling. In addition, we present an auto-

matic colorization method using epitome in this thesis. While most existing

colorization methods require tedious and time-consuming user intervention

for scribbles or segmentation, our epitomic colorization method is automat-

ic. Epitomic colorization exploits the color redundancy by summarizing the

color information in the reference image into a condensed image shape and

appearance representation. Experimental results shows the effectiveness of

our method.
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